Coronavirus Disease 2019 (COVID-19) adalah penyakit menular yang disebabkan oleh virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus ini pertama kali ditemukan di Wuhan China pada desember 2019 dan pertama kali masuk ke Indonesia pada 2 Maret 2020. Selama masa pandemi COVID-19 banyak terjadi lonjakan secara tiba-tiba pada jumlah kasus baru COVID-19 yang menunjukkan bahwa adanya kesulitan dalam mengantisipasi peningkatan penyebaran COVID-19. Skripsi ini membahas pemodelan jumlah kasus baru harian COVID-19 di Indonesia menggunakan Gaussian Mixture Model (GMM) dimana model ini merupakan salah satu Mixture Model. Mixture Model merupakan penjumlahan linear berbobot dari beberapa fungsi distribusi dimana masing-masing fungsi distribusi disebut sebagai komponen campuran. Pada GMM, setiap komponen campuran diasumsikan berdistribusikan Gaussian (Normal). Pada penelitian ini, dikonstruksi beberapa GMM dengan 2, 3 dan 4 jumlah komponen untuk pemodelan data jumlah kasus baru harian COVID-19 di Indonesia dari 1 Januari 2021 sampai 31 Maret 2022 dengan interval waktu 455 hari. Parameter dari setiap GMM tersebut diestimasi menggunakan metode maximum likelihood estimation (MLE) melalui algoritma Expectation-Maximization (EM). Berdasarkan nilai Akaike Information Criteria (AIC), diperoleh GMM dengan 4 komponen merupakan model terbaik untuk pemodelan data jumlah kasus baru harian COVID-19 di Indonesia. Dengan GMM 4 komponen, diperoleh probabilitas jumlah kasus baru harian COVID-19 di Indonesia kurang dari jumlah kasus harian terendah adalah 0,009598, lebih dari jumlah kasus harian rata-rata adalah 0,299443 dan lebih dari jumlah kasus harian tertinggi adalah 0,017669.
Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This virus was first found in Wuhan, China in December 2019 and first got into Indonesia on March 2, 2020. During the pandemic, there are a lot of sudden spikes in new COVID-19 daily cases which indicates that there is a struggle in anticipating the sudden increase in COVID-19 transmission. This research discuss about the modeling of new COVID-19 daily cases in Indonesia using Gaussian Mixture Model (GMM) which is a part of Mixture Model. Mixture Model is a linear weighted sum of some distribution function where each function is called a mixture component. In GMM, every mixture components are assumed to be normally distributed. In this research, three GMMs with 2,3 and 4 components were constructed to model new COVID-19 daily cases in Indonesia from January 1, 2021 to March 31, 2022 with a total of 455 days of observation. The parameters of each GMM were estimated with maximum likelihood estimation (MLE) method through Expectation-Maximization (EM) algorithm. According to Akaike Information Criteria (AIC) value, it was found that GMM with 4 components was the best model for modeling new COVID-19 cases in Indonesia. With this model, the probability of new COVID-19 daily cases in Indonesia are less than the lowest daily cases is 0,009598, more than the average daily cases is 0,299443 and more than the highest daily cases is 0,017669.