Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Desorption temperature characteristic of mg-based hydrides catalyzed by nano-sio2 prepared by high energy ball milling

Adi Rahwanto, Farid Mulana, Mustanir (Faculty of Engineering, Universitas Indonesia, 2017)

 Abstrak

Magnesium-based hydrogen storage alloy is one of the most attractive hydrogen storage materials for fuel cell-powered vehicle application. However, a high desorption temperature and slow kinetics limit its practical application. Extensive efforts are required to overcome these problems, one of which is inserting a metal oxide catalyst. In this work, we reported the current progress of using nano-silica (SiO2) as a catalyst to improve the thermodynamics and kinetics of magnesium hydride (MgH2). Nano-SiO2 was extracted from local rice husk ash (RHA) using the co-precipitation method. Then, the MgH2 was catalyzed with a small amount of nano-SiO2 (1 wt%, 3 wt%, and 5 wt%) and prepared using a high-energy milling technique. The microstructure and hydrogen desorption performance were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results of the XRD test showed that the milling process over 5 h reduced the material to a nanometer scale. Then, SEM images showed that the powders were agglomerated after 5 h of milling. Furthermore, it was also found that nano-SiO2 reduced the hydrogen desorption temperature of MgH2 to 338°C in 14.75 min when the 5 wt% variation of the catalyst was applied.

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : UI-IJTECH 7:8 (2016)
Entri utama-Nama orang :
Subjek :
Penerbitan : Depok: Faculty of Engineering, Universitas Indonesia, 2017
Sumber Pengatalogan : LibUI eng rda
ISSN : 20869614
Majalah/Jurnal : International Journal of Technology
Volume : Vol. 7, No. 8, December 2016: Hal. 1301-1306
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : volume
Akses Elektronik : https://doi.org/10.14716/ijtech.v7i8.6890
Institusi Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4 R. Koleksi Jurnal
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
UI-IJTECH 7:8 (2016) 08-23-60696223 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920530848
Cover