UI - Disertasi Membership :: Kembali

UI - Disertasi Membership :: Kembali

Metode Deteksi Motif Batik Berdasarkan Clustering Fitur-Fitur Scale Invariant Feature Transform (SIFT) pada Ruang Hough = Detection Method for Batik Motif Based on SIFT (Clustering Scale Invariant Feature Transform) Features in Hough Space

Ida Nurhaida; Aniati Murni Arymurthy, promotor; Manurung, Hisar Maruli, co-promotor; Agus Buono, examiner; Heru Suhartanto, examiner; Mirna Adriani, examiner; Mohamad Ivan Fanany, examiner; Wahyu Catur Wibowo, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2016)

 Abstrak

Batik adalah kain yang dihias dengan menggunakan teknik dekorasi tekstil yang memanfaatkan malam sebagai perintang warna. Seni batik telah dikembangkan sejak lama di beberapa bagian negara Asia termasuk Indonesia. Pemanfaatan teknologi informasi dalam bentuk metode deteksi motif batik dapat mendukung perkembangan industri kreatif karena sistem ini nantinya dapat dijadikan sebagai acuan bagi perkembangan elemen-elemen desain motif batik. Fokus penelitian ini adalah deteksi motif batik yang memiliki karakteristik kemunculan yang berulang, multi translasi, multi skala, dan multi orientasi. Domain batik dengan pola geometrisnya dipilih sebagai area implementasi terkait dengan karakteristik motif batik yang bersifat simetri, kemunculan obyek yang berulang di beberapa lokasi dalam satu bidang kain, dan sering kali obyek-obyek motif batik tersebut telah mengalami perubahan skala ataupun perubahan orientasi. Kondisi tersebut dapat menyebabkan adanya kesalahan deteksi dan kesalahan klasifikasi. Metode deteksi motif batik yang diusulkan menggunakan fitur SIFT dan serangkaian post processing berupa voting Hough Transform, clustering, smoothing, deteksi peak, penambahan jumlah minimum voting dan penggabungan konfigurasi yang memiliki nilai berdekatan. Pada citra kueri dilakukan ekstraksi fitur menggunakan SIFT. Deskriptor yang dihasilkan dicocokkan dengan deskriptor citra template pada basis data. Pada penelitian ini diusulkan metode pencocokan keypoint yang berbeda dengan metode standar pencocokan SIFT. Seluruh pasangan keypoint diurutkan mulai dari yang memiliki jarak terdekat hingga yang paling jauh. Selanjutnya ditentukan nilai ambang jumlah keypoint sebesar 1%, 5% dan 10%. Pasangan keypoint hasil pencocokan dilakukan voting menggunakan Hough Transform terhadap konsistensi pose geometris obyek citra kueri. Sehubungan dengan permasalahan yang dihadapi dalam deteksi motif batik, proses pencocokan deskriptor citra berupa keypoint yang diperoleh melalui ekstraksi fitur, harus dapat dilakukan dengan baik sehingga kualitas deteksi motif batik menjadi lebih baik.
Pada penelitian ini dikembangkan pula beberapa metode deteksi obyek yang berfungsi sebagai pengambil keputusan terhadap keberadaan obyek tertentu pada citra kueri. Metode deteksi obyek ini bekerja dengan cara mengambil hingga maksimum 80% dari nilai peak tertinggi yang terbentuk pada ruang Hough (MDOTresh), penggunaan nilai ambang berdasarkan rumusan rata-rata nilai peak yang terendah dan peak yang tertinggi (MDOAverage), penentuan nilai k berdasarkan nilai-nilai peak tertinggi sesuai dengan jumlah obyek yang terdapat pada groundtruth (MDOTopk), mengambil konfigurasi pada peak yang memiliki minimum nilai sebesar 3 voting pada setiap konfigurasi luaran ruang Hough (MDOMin), penentuan representasi obyek berdasarkan keluaran clustering DBSCAN (MDOScan), dan melakukan proses smoothing menggunakan filter Gaussian pada hasil deteksi dengan jumlah minimum voting sebanyak 3 buah (MDOGauss).
Kehandalan metode dalam melakukan deteksi diindikasikan dengan ketepatan dalam menentukan jumlah obyek yang terdapat pada citra kueri dan mampu mengenali motif batik walaupun telah mengalami transformasi geometris melalui perpindahan posisi, perbedaan skala, dan perubahan orientasi. Berdasarkan hasil yang telah diperoleh, metode deteksi motif batik untuk data citra kueri dengan obyek tunggal, kombinasi translasi, skala, dan orientasi mencapai nilai kinerja maksimum 95.28% menggunakan MDOTresh, sedangkan pada citra kueri dengan obyek tunggal dan variasi noise mencapai 100% melalui MDOTresh, MDOAverage, dan MDOTopk. Hal ini menunjukkan bahwa metode deteksi motif batik mampu menangani obyek tunggal dengan berbagai kondisi. Pada deteksi motif batik dengan multi obyek, multi translasi, multi skala dan multi orientasi capaian maksimum kinerja metode usulan adalah 92.13%, sedangkan untuk citra kueri dengan multi obyek, multi translasi, multi skala, multi orientasi, dan variasi noise diperoleh capaian kinerja 89.89%. Keduanya diperoleh melalui pendekatan MDOGauss. Pada kondisi ini, penambahan jumlah obyek motif pada citra kueri menyebabkan bertambahnya jumlah obyek yang tidak berhasil dideteksi. Kasus selanjutnya adalah deteksi obyek motif batik dengan multi motif, multi obyek, multi skala, dan multi orientasi dengan luaran ruang Hough berupa jumlah voting absolut mencapai 96.09% untuk MDOTresh. Transformasi geometris pada obyek motif batik berakibat penurunan kontras citra sehingga berpengaruh pada jumlah voting yang dihasilkan. Untuk komposisi motif teratur dengan jumlah maksimum 16 obyek motif batik untuk motif sejenis mendapatkan hasil 100% melalui MDOAverage, sedangkan untuk multi motif 92.59% melalui pendekatan MDOTresh dan MDOAverage.

Batik is a fabric printed design of hand-printing textiles by coating with wax. Batik has been developed since a long time in various countries including Indonesia. Nowadays, information technology is being utilized in recognizing batik motif. Therefore, the development of batik motif detection system is expected to support creative industries since the system can be used as a reference for the development pattern design. This study proposes an object recognition system for batik motif based on clustering Scale Invariant Features Transform (SIFT) features in Hough space. Our principal objective is to verify how many instances of the same object to our method detects accurately, when the object motif is posed in different positions, orientations, and scales. The geometric patterns domain is being selected regarding the characteristics of batik motifs. Batik motifs have symmetrical property and repeated in multiple locations. In addition, the objects of batik motif may be changed in terms of scale and orientation. The proposed method in this research consists of the feature extraction process using SIFT and post processing, namely voting Hough Transform, clustering, smoothing and peak detection. The keypoints from query image and the keypoints from template are matched with comparing the Euclidean distance of each keypoints descriptor in query image to all keypoint descriptors in template image. In this study we proposed a new matching keypoints method. All matched keypoints will be sorted from the closets distance to the farthest distance. Then, we determine the number of matched keypoint that will be used in the next process through the threshold 1%, 5%, and 10%. The similarity of primitive pattern and the occurrences of a motif in different location, scale and orientation will interfere the detection process. Consequently, the SIFT local feature representation must be performed well in terms of feature detection and matching.
In this study, several object detection methods are proposed as well based on object’s representation resulted from the voting process in Hough space. Object detection method using thresholding (MDOTresh) is taking 80% of maximum peak value, while object detection method with average threshold (MDOAverage) picks the mean value of minimum and maximum peak in the Hough space. Object detection method Top k (MDOTopk) determines k number of objects from the highest peaks found in the Hough space based on the number of objects in ground truth. Object detection method based on Minimum Voting (MDOMin) considers the voting configurations which have a certain number of votes. In this study the minimum number of votes is tuned to 3 as a valid configuration. Object detection method based on DBSCAN (MDOScan) determines the representation of the object from output clustering. Object detection method using Minimum Voting + Gaussian (MDOGauss) implements smoothing process using Gaussian filter for the output configurations which have a minimum number of votes as 3.
The reliability of batik motif recognition system is indicated by the ability of the system to find the number of object motif contained in query image and to classify the object motif into one of several batik motif classes even though the objects motif have undergone a geometric transformation. The evaluation of the proposed method is employing several data sets. Based on the evaluation result using query images with a single object, combination of translation, scale and orientation, object detection system MDOTresh gained balanced score 95.28%, while for the query image with a single object and scale variation of noise reached 100% through MDOTresh, and MDOAverage. It is apparent that the recognition system is capable of dealing with a single object with a various conditions. In recognition process for query image with multiple occurrences object, multi translation, multi scale and multi orientation, the highest performance is 92.13%, whereas for the image query with multi object, multi translation, multi-scale, multi- orientation, and variations in noise yielded 89.89%. Both are obtained through MDOGauss approach. In this case, increasing the number of object motif in the query image, a greater number of incorrect detections are obtained. The next case is the object motif recognition from query images with multi motif, multi object, multi scale and multi orientation. This data set has 2 outputs from Hough space namely absolute voting number and normalized voting number. The absolute voting number outputs achieved the best performance at 96.09% for the MDOTresh, while the normalized voting number gained 36.92% for MDOGauss. Geometric transformations on the object motif will be decreased contrast of object in the query image so that affected the number of voting resulted. The last data set is a regular texture, composition of the object motif with a maximum numbers are 16 objects. The best performance is 100% for homogeneous motif achieved from MDOAverage, while for multi motif yielded 92.59% achieves from MDOTresh and MDOAverage as the best.

 File Digital: 1

Shelf
 D-Ida Nurhaida.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Disertasi Membership
No. Panggil : D-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xxix, 199 pages + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
D-pdf 07-24-77390661 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920531078
Cover