Misalkan G = (V, E) adalah suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G), serta |V(G)| menyatakan banyak simpul dan |E(G)| menyatakan banyak busur. Pelabelan dari graf G adalah suatu pemetaan f dari himpunan simpul atau busur ke suatu himpunan label yang umumnya berisi bilangan bulat positif. Suatu pelabelan dari graf G disebut pelabelan total jika domain dari pemetaan tersebut adalah himpunan simpul dan himpunan busur. Suatu pelabelan dari graf G disebut pelabelan total busur antiajaib-(a,d) jika terdapat bijeksi f dari gabungan V(G) dan E(G) ke himpunan {1, 2, …, |V(G)|+|E(G)|} sedemikian sehingga himpunan dari bobot busur {f(u)+f(uv)+f(v) | uv ∈ E(G)} sama dengan {a, a+d, …, a+(|E(G)|-1)d} untuk suatu bilangan bulat a > 0 dan d ≥ 0. Suatu pelabelan total busur antiajaib-(a,d) pada graf G disebut super jika label pada simpul adalah 1, 2, …, |V(G)|. Pada studi literatur ini, diberikan bukti lengkap dari pelabelan total super busur antiajaib-(a,d) dari gabungan dua graf lintasan dengan banyak simpul yang sama.
Let G = (V, E) be a graph with vertex set V(G) and edge set E(G), where |V(G)| denotes the number of vertices and |E(G)| denotes the number of edges. A labeling of graph G is a mapping f from the vertex set or the edge set to a set of labels, which usually is positive integers. A labeling is called total labeling if the domain of the mapping is the union of vertex set and edge set. A labeling of graph G is called (a,d)-edge antimagic total labeling if there exists a bijection f from the union of V(G) and E(G) to the set {1, 2, …, |V(G)|+|E(G)|} such that the set of edge weights {f(u)+f(uv)+f(v)│uv ∈ E(G) } is {a, a+d, …, a+(|E(G)|-1)d} for some positive integer a > 0 and d ≥ 0. An (a,d)-edge antimagic total labeling of G is called super if the labels on the vertices are 1, 2, …, |V(G)|. This literature study will include complete proof of super (a,d)-edge antimagic total labeling of disjoint union of two paths.