Kemiskinan adalah suatu masalah yang tidak hanya dipengaruhi oleh dimensi ekonomi, namun juga dapat dipengaruhi oleh dimensi-dimensi lain seperti pendidikan, kesehatan, dan standar hidup yang layak. Kemiskinan dapat diukur dengan Head Count Index, yaitu indeks yang mengukur persentase penduduk miskin di suatu wilayah. Dimensi-dimensi yang menjelaskan kemiskinan biasanya terdiri dari beberapa variabel. Sehingga apabila dalam penelitian akan dilakukan pemodelan menggunakan beberapa dimensi, akan mengandung banyak sekali variabel, yang memungkinkan adanya multikolinearitas antar variabel independen. Kondisi ini menyebabkan pemodelan tidak dapat dilakukan dengan baik. Masalah multikolinearitas pada data yang dimodelkan, dapat diatasi menggunakan metode Analisis Komponen Utama (Principal Component Analysis). Metode Principal Component Analysis (PCA) dilakukan pada variabel-variabel independen, sehingga diperoleh komponen-komponen utama yaitu hasil reduksi dari variabel-variabel independen. Komponen-komponen utama ini tidak lagi saling berkorelasi. Selanjutnya dilakukan analisis regresi dengan komponen-komponen utama tersebut sebagai variabel independen barunya. Model ini disebut Regresi Komponen Utama (RKU). Penelitian ini menggunakan data yang terkait dengan lokasi atau geografis atau dapat disebut dengan data spasial. Setelah dilakukan pemeriksaan asumsi, terdapat multikolinearitas dan heterogenitas spasial pada data. Oleh karena itu, untuk menangani kedua masalah ini, dapat digunakan pemodelan Geographically Weighted Principal Component Regression (GWPCR) atau Regresi Komponen Utama Terboboti Geografis (RKUTG). Sebelum diterapkan metode Regresi Komponen Utama Terboboti Geografis (RKUTG), akan digunakan metode Analisis Komponen Utama menentukan komponen-komponen utama untuk dijadikan variabel independen atau prediktor baru dalam penelitian ini. Didapat tiga komponen utama yang masing-masing komponen menjelaskan Faktor Demografi dan Air Bersih untuk PC1 atau komponen utama pertama, Faktor Kondisi Hidup Layak dan Ketimpangan untuk PC2, dan Faktor Kesejahteraan Anak untuk PC3. Lalu dilakukan Regresi Komponen Utama (RKU) dengan PC1, PC2, dan PC3 sebagai prediktornya dan diperiksa asumsi heterogenitas spasial dari model RKU. Pemeriksaan asumsi mengambil keputusan bahwa terdapat heterogenitas spasial pada model RKU sehingga model GWPCR dapat dilakukan. Berdasarkan hasil pemodelan RKUTG, pengaruh setiap komponen utama bervariasi pada setiap lokasi dan jika dikelompokkan diperoleh 4 kelompok, yaitu kelompok 1 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi oleh PC1 yaitu sebanyak 13 Kabupaten/Kota, kelompok 2 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi PC1 dan PC2 yaitu sebanyak 5 Kabupaten/Kota, kelompok 3 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi PC1 dan PC3 yaitu sebanyak 4 Kabupaten/Kota, dan kelompok 4 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi PC1, PC2 dan PC3 yaitu sebanyak 4 Kabupaten/Kota.
Poverty is a problem that is not only influenced by the economic dimension, but can also be influenced by other dimensions such as education, health, and a decent standard of living. Poverty can be measured by the Head Count Index, which is an index that measures the percentage of poor people in a region. The dimensions that explain poverty usually consist of several variables. Therefore, if the research will be modeled using several dimensions, it will contain a large number of variables, which allows for multicollinearity between independent variables. This condition causes the modeling to not be done properly. The problem of multicollinearity in the data being modeled can be overcome using the Principal Component Analysis method. The Principal Component Analysis (PCA) method is performed on the independent variables, so that the main components are obtained, namely the reduction results of the independent variables. These main components are no longer correlated with each other. Furthermore, regression analysis is carried out with these main components as the new independent variables. This model is called Principal Component Regression (RKU). This study uses data related to location or geography or can be called spatial data. After checking the assumptions, there is multicollinearity and spatial heterogeneity in the data. Therefore, to handle these two problems, Geographically Weighted Principal Component Regression (GWPCR) modeling or Geographically Weighted Principal Component Regression (RKUTG) can be used. Before applying the Geographically Weighted Principal Component Regression (RKUTG) method, the Principal Component Analysis method will be used to determine the main components to be used as independent variables or new predictors in this study. There are three main components, each of which explains the Demographic and Clean Water Factors for PC1 or the first main component, the Decent Living Conditions and Inequality Factors for PC2, and the Child Welfare Factor for PC3. Principal Component Regression (RKU) was then conducted with PC1, PC2, and PC3 as predictors and the assumption of spatial heterogeneity of the RKU model was checked. The assumption check makes a decision that there is spatial heterogeneity in the RKU model so that the GWPCR model can be carried out. Based on the results of RKUTG modeling, the influence of each main component varies at each location and if grouped, 4 groups are obtained, namely group 1, namely districts / cities with Head Count Index influenced by PC1, consisting of 13 districts / cities, group 2, namely districts / cities with Head Count Index influenced by PC1 and PC2, consisting of 5 districts / cities, group 3, namely districts / cities with Head Count Index influenced by PC1 and PC3, consisting of 4 districts / cities, and group 4, namely districts / cities with Head Count Index influenced by PC1, PC2 and PC3, consisting of 4 districts / cities.