UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Distribusi Bilal = Bilal Distribution

Yudha Fernando; Sindy Devila, supervisor; Fevi Novkaniza, supervisor; Dian Lestari, examiner; Arman Haqqi Anna Zili, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Data waktu survival sering kali berdistribusi skewed. Dibandingkan dengan mean, median lebih sedikit dipengaruhi oleh data skewed sehingga lebih menarik untuk menganalisis median populasi dibandingkan dengan mean populasi. Median sampel acak merupakan estimator untuk median populasi. Distribusi asimptotik dari median sampel acak telah diketahui berdistribusi Normal. Namun, aproksimasi ini bekerja dengan baik untuk sampel acak yang berukuran cukup besar dan normalitas tidak berlaku pada sampel acak berukuran kecil. Dalam skripsi ini, diperkenalkan keluarga distribusi dari median sampel acak dari sembarang distribusi survival. Keluarga distribusi ini dibentuk dengan menggunakan statistik terurut dan mengasumsikan sampel acak berukuran ganjil. Sebagai kasus khusus, distribusi Bilal diperoleh dengan mengasumsikan sampel acak berukuran 3 dari distribusi Exponential. Distribusi Bilal dapat digunakan sebagai alternatif untuk memodelkan data waktu survival yang berbentuk upside-down bathtub, skewed positif, lancip, dan memiliki fungsi hazard yang berbentuk monoton naik. Penaksiran parameter distribusi Bilal dilakukan dengan menggunakan metode maximum likelihood estimation. Sebagai ilustrasi, dilakukan pemodelan data waktu tunggu hingga nasabah bank dilayani menggunakan distribusi Bilal dan distribusi pembanding, yaitu distribusi Rayleigh, Lindley, serta Half-Logistic. Hasil pemodelan menunjukkan bahwa distribusi Bilal lebih baik dalam memodelkan data tersebut dibandingkan dengan distribusi lainnya.

Survival times data often exhibit skewed distributions. Compared to the mean, median is less affected by skewed data, so it is more interesting to analyze the population median than population mean. Median of a random sample serves as an estimator for the population median. Distribution of the median of a random sample is known to be asymptotically Normal. However, the approximation works well when the sample size is sufficiently large and the normality on small samples should not be expected. This study introduces a family of distributions for the median of a random sample from any survival distribution. It is constructed using ordered statistics when assuming an odd sample size. Bilal distribution, a special case, is obtained when assuming a random sample of size 3 from an Exponential distribution. Bilal distribution offers an alternative to model survival times data with an upside-down bathtub, positively skewed, and taper shape, and monotonically increasing hazard function. Bilal distribution’s parameter is estimated by maximum likelihood estimation method. As an illustration, waiting times before service of bank customers data is modeled using Bilal distribution along with Rayleigh, Lindley, and Half-Logistic distributions as comparisons. Result shows that Bilal distribution outperforms other distributions in modeling the data.

 File Digital: 1

Shelf
 S-Yudha Fernando.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 83 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-60731048 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920531793
Cover