UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model Extreme Value Theory Modified Lee-Carter untuk Peramalan Tingkat Mortalitas Kejadian Ekstrim di Indonesia pada Periode Covid-19 = Extreme Value Theory Modified Lee-Carter for Forecasting Extreme Mortality Events in Indonesia during Pandemic Covid-19

Muhammad Sandy Athalla Syach; Fevi Novkaniza, supervisor; Mila Novita, supervisor; Hendri Murfi, examiner; Rahmat Al Kafi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Dalam kurun waktu beberapa tahun terakhir ini dunia sedang menghadapi bahaya dari pandemi serta peperangan atau konflik antar negara. Kasus seperti pandemi dan konflik atau perang antar negara merupakan kejadian atau kondisi ekstrim yang dapat terjadi kapan saja dan menimbulkan banyak korban jiwa. Oleh karena itu, diperlukan pemodelan yang dapat mengakomodir mortalitas akibat kejadian ekstrim tersebut. Model Lee-Carter merupakan sebuah model yang menggunakan data tingkat mortalitas dari kelompok usia yang diamati dari waktu ke waktu. Untuk mengakomodir tingkat mortalitas ekstrim, model Lee-Carter dimodifikasi menggunakan Extreme Value Theory (EVT) yang disebut dengan Model EVT modified Lee-Carter. Pendekatan EVT yang digunakan adalah pendekatan Peak Over Threshold (POT) dengan Generalized Pareto Distribution (GPD). Model ini diimplementasikan pada data tingkat mortalitas Indonesia tahun 1998 untuk peramalan tingkat mortalitas periode pandemi Covid-19 tahun 2021 dan 2022. Dalam pemodelan GPD, didapatkan nilai threshold sebesar 0,02. Untuk nilai yang berada di atas threshold, dimodelkan dengan GPD dan nilai yang berada dibawah threshold dimodelkan dengan distribusi normal dan empiris. Hasil yang didapatkan dari nilai Mean Absolute Error (MAE) dan Mean Absolute Percentage Error (MAPE) adalah model Extreme Value Theory Modified Lee-Carter distribusi empiris memberikan nilai MAPE terkecil sebesar 12,156%. Sementara itu, model Extreme Value Theory Modified Lee-Carter distribusi normal memiliki nilai MAPE sebesar 13,175% dan model Lee-Carter biasa sebesar 13,343% dalam peramalan tingkat mortalitas Indonesia pada kelompok usia yang mengalami kejadian ekstrim.

In the last few years the world has been facing danger from pandemics and wars or conflicts between countries. Cases such as pandemics and conflicts or wars between countries are extreme events or conditions that can occur at any time and cause many casualties. Therefore, modeling is needed that can accommodate mortality due to extreme events. The Lee-Carter model is a model that uses mortality rate data from age groups observed over time. To accommodate extreme mortality rates, the Lee-Carter model was modified using Extreme Value Theory (EVT) which is called the modified Lee-Carter EVT Model. The EVT approach used is the Peak Over Threshold (POT) approach with Generalized Pareto Distribution (GPD). This model was implemented on Indonesian mortality rate data in 1998 to forecast mortality rates for the Covid -19 pandemic period in 20 21 and 2022. In GPD modeling, a threshold value of 0.02 is obtained . For values that are above the threshold, they are modeled with GPD and values that are below the threshold are modeled with a normal and empirical distribution. The results obtained from the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) values are that the Extreme Value Theory Modified Lee-Carter empirical distribution model gives the smallest MAPE value of 12.156%. Meanwhile, the Extreme Value Theory Modified Lee-Carter normal distribution model has a MAPE value of 13.175% and the regular Lee-Carter model is 13.343% in predicting Indonesia's mortality rate in age groups that experience extreme events.

 File Digital: 1

Shelf
 S-Muhammad Sandy Athalla Syach.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : x, 89 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-24242971 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920532555
Cover