Penelitian ini melakukan klasifikasi stadium penyakit Diabetik Retinopati (DR) menjadi 2 hirarki, yaitu Global dan Lokal. Hirarki Global hanya terdiri dari normal (0) dan abnormal (1). Sedangkan klasifikasi lokal terdiri dari 4 kategori yaitu kategori normal (R0), early NPDR (R1), advanced NPDR (R3), dan PDR (R4). Kategori early NPDR adalah stadium mild NPDR, sedangkan advanced NPDR adalah gabungan dari moderate dan severe NPDR.
Secara umum penelitian ini dilakukan untuk menyelesaikan masalah yang timbul akibat adanya kemiripan citra per kenaikan stadium yang tidak bisa dinilai secara kasat mata. Sehingga membutuhkan sebuah penanganan dimana citra retina dapat digolongkan ke dalam kategori yang tepat. Berdasarkan masalah tersebut, dilakukan 2 mekanisme percobaan untuk setiap hirarki, yaitu melalui pendekatan computer vision yang hanya fokus untuk mengolah citra secara keseluruhan dan pendekatan yang dilakukan oleh medis dimana sebelum menentukan kategori citra, terlebih dahulu dilakukan deteksi fitur penanda DR seperti eksudat, mikroaneurisma, dan pembuluh darah. Data yang digunakan ada 2 jenis yaitu data citra dari RSCM Jakarta dan database publik Diaretdb0.
Metode klasifikasi ELM yang diusulkan mampu memberikan performansi yang cukup baik dari sisi waktu dan akurasi, dimana rata-rata klasifikasi menggunakan cross validation mencapai 50% untuk data RSCM dan 60% untuk data DB0. Sedangkan untuk klasifikasi lokal mencapai 50% untuk data RSCM dan 40% untuk data DB0.
This study determined the classification of the stage of disease Diabetic retinopathy (DR) into two hierarchies , namely the Global and the Local . Global hierarchy consisting only of normal (0) and abnormal (1). While local classification consists of 4 categories: normal category (R0), early NPDR (R1), advanced NPDR (R3), and PDR (R4). Categories early stages of NPDR is Mild NPDR, whereas advanced NPDR is a combination of moderate and severe NPDR.In general, this study was conducted to resolve the problems arising from the similarity image that stage increments can not be assessed by naked eye . Thus require a treatment in which the retinal image can be classified into appropriate categories . Based on these issues, conducted 2 experiments for each hierarchy mechanism, namely through the computer vision approach that only focuses on the image of the overall process and the approach taken by a medical before determining which image category , first detection of features such as bookmarks DR exudates, microaneurysms, and blood vessels . The data used there are 2 types of image data from public databases RSCM Jakarta and Diaretdb0.The proposed classification method ELM is able to provide good enough performance in terms of time and accuracy , where the average classification using cross validation to achieve 50 % for data RSCM and 60 % for data DB0. Whereas for the local classification, data RSCM achieve 50 % and 40 % for data DB0.