UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Non Invasive Blood Glucose Measurement Using 940nm Infrared Sensor, Artificial Neural Network, and Multiple Regression = Pengukuran Gula Darah Menggunakan Sensor Infrared 940n, Artificial Neural Network, dan Multiple Regression

Dhonan Lutfi Divanto; Raldi Artono Koestoer, supervisor; Engkos Achmad Kosasih, examiner; Imansyah Ibnu Hakim, examiner (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Pengukuran kadar gula darah merupakan salah satu kebutuhan utama dalam penanganan diabetes. Namun, moda pengukuran kadar gula darah yang umum saat ini, dilakukan secara invasive atau perlu melukai bagian tubuh manusia untuk mendapat nilai kadar gula darahnya. Terdapat metode pengukuran non invasive tanpa melukai manusia, namun metode ini masih belum dapat diandalkan karena banyaknya factor yang mempengaruhi glukosa tersebut. Penelitian ini mencoba untuk menganalisis akurasi dan performa dari pengukuran gula darah secara non invasive menggunakan sensor infrared pada panjang gelombang 940 nm dengan dibantu oleh Artificial Neural Network dan juga untuk mengevaluasi hubungan komponen dasar dari sinyal analog dari sensor yang bersangkutan terhadap kadar gula darah menggunakan Multiple Regression. Akurasi prediksi gula darah dievaluasi menggunakan Clark Grid Error analysis Dalam analisis ini, 81% dari 97 sampel data berada pada zona yang dapat diterima secara klinis, sedangkan sisanya berada pada zona yang tidak. Hal ini belum mencukupi kebutuhan akurasi 95% yang dapat diterima berdasarkan dari standar ISO 15197, maka hasil daripada penelitian ini masih belum memberikan hasil yang baik. Evaluasi menggunakan multiple regression sendiri menghasilkan hubungan yang tidak signifikan antara komponen dari sinyal analog dengan kadar gula darah dengan nilai R-squared sebesar 0.0174, RMSE 66.9, dan P-value keseluruhan sebesar 0.801.

Measuring blood sugar levels is one of the main needs in managing diabetes. However, the current common method of measuring blood sugar levels is carried out invasively or requires injuring parts of the human body to obtain blood sugar levels. There are non-invasive measurement methods without injuring humans, but this method is still not reliable because of the many factors that influence glucose. This research attempts to analyze the accuracy and performance of non-invasive blood sugar measurements using an infrared sensor at a wavelength of 940 nm assisted by an Artificial Neural Network and also to evaluate the relationship of the basic components of the analog signal from the sensor in question to blood sugar levels using Multiple Regression. The accuracy of blood sugar predictions was evaluated using Clark Grid Error analysis. In this analysis, 81% of the 97 data samples were in the clinically acceptable zone, while the rest were in the zone that was not. This does not meet the acceptable 95% accuracy requirement based on the ISO 15197 standard, thus the results of this research still do not provide relatively good results. Evaluation using multiple regression itself produced an insignificant relationship between the components of the analog signal and blood sugar levels with an R-squared value of 0.0174, RMSE 66.9, and an overall P-value of 0.801.

 File Digital: 1

Shelf
 S-Dhonan Lutfi Divanto.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : eng
Sumber Pengatalogan : LibUI eng rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 49 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-67280791 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920538158
Cover