UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Pengaruh Besar Kecepatan Angin Terhadap Estimasi Curah Hujan Berdasarkan Radar Cuaca Melalui Pendekatan Machine Learning = The Impact of Wind Speed on Rainfall Estimation Based on Weather Radar through Machine Learning Approach

Rofifah Kurniasari Aldianny; Djati Handoko, supervisor; Maulana Putra, supervisor; Adhi Harmoko Saputro, examiner; Martarizal, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstract

Radio Detection and Ranging (Radar) cuaca merupakan instrumen meteorologi yang umum digunakan dalam mengidentifikasi curah hujan menggunakan prinsip kerja pulsa Doppler. Produk radar berupa data reflektifitas (Z) dengan satuan [dBZ] diyakini memiliki hasil yang sebanding dengan data tampungan air hujan oleh tipping bucket. Namun, hal ini dapat berbanding terbalik oleh adanya pengaruhi dari kecepatan angin yang berhembus secara horizontal, dimana dapat membawa sejumlah droplet hujan sehingga tidak bisa terekam oleh tipping bucket. Pada penelitian ini, dilakukan pengukuran curah hujan dan kecepatan angin pada Stasiun Meteorologi Kelas I Djalaluddin, Gorontalo, Indonesia pada bulan Desember 2021 sampai Februari 2022. Pengolahan data berbasis Machine Learning dengan jenis algoritma berupa Decision Tree, Random Forest, AdaBoost, dan Gradient Boosting. Pengolahan data menggunakan data reflektivitas radar dan data besar kecepatan angin sebagai input, serta data curah hujan oleh tipping bucket digunakan sebagai data target. Dalam penelitian ini digunakan metriks evaluasi untuk mengetahui nilai algoritma yang paling baik dengan nilai matriks kesalahan RMSE, MSE, dan MAE yang relatif rendah dan hasil Rooted Squared Error (R-squared) yang mendekati 1. Hasil penelitian ini digunakan untuk mengetahui pengaruh kecepatan angin terhadap estimasi curah hujan di Gorontalo, Indonesia, serta mengetahui jenis algoritma yang paling baik untuk mengestimasinya.

Weather Radio Detection and Ranging (Radar) is a meteorological instrument used in identifying rainfall using the working principle of Doppler pulses. Radar products in the form of reflectivity (Z) data with units of [dBZ] are believed to have comparable results with rainwater storage data by tipping buckets. However, this can be inversely affected by the horizontal wind speed, which can carry the rain droplets that cannot be recorded by the tipping bucket. In this study, rainfall and wind speed measurements were taken at the Djalaluddin Class I Meteorological Station, Gorontalo, Indonesia from December 2021 to February 2022. Based on Machine Learning data processing with algorithm types such as Decision Tree, Random Forest, AdaBoost, and Gradient Boosting. Data processing uses radar reflectivity data and wind speed data as input, and rainfall data by tipping bucket is used as target data. In this study, an evaluation metric is used to determine the best algorithm value with relatively low RMSE, MSE, and MAE error matrix values and Rooted Squared Error (R-squared) results. The results of this study are used to determine the effect of wind speed on rainfall estimation in Gorontalo, Indonesia, and to determine the best type of algorithm to estimate it.

 Digital Files: 1

Shelf
 S-Rofifah Kurniasari Aldianny.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Cataloguing Source LibUI ind rda
Content Type text
Media Type computer
Carrier Type online resource
Physical Description xiv, 52 pages : illustration + appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-pdf 14-24-89002022 TERSEDIA
Review:
No review available for this collection: 9999920540213
Cover