Pada penelitian ini berkaitan dengan penerapan kemajuan kecerdasan artifisial dengan menggunakan algoritma You Only Look Once (YOLO) dalam tugas deteksi dan segmentasi pada bidang geologi yaitu untuk identifikasi mineral dengan menggunakan data petrografi. Data yang digunakan untuk proses pelatihan model deteksi dan segmentasi berjumlah 500 gambar sayatan tipis batuan beku. 500 gambar sayatan tipis, dilakukan proses anotasi secara manual dan membagi data tersebut ke dalam set pelatihan, set validasi, dan set prediksi. Pada 3 set tersebut, jumlah kelas mineral yang teranotasi adalah 6 yaitu kelas mineral plagioklas, biotit, horblend, piroksen, alkali-feldspar, dan kuarsa. Teknik augmentaasi yang diterapkan untuk mengatasi keterbatasan dataset pada penelitian ini adalah augmentasi geometri (model 1) dan mosaik (model 2). Model dengan augmentasi mosaik, menjadikan model dengan kinerja yang baik dalam tugas deteksi dan segmentasi mineral, dikarenakan augmentasi mosaik menghasilkan 1 image patch memiliki 4 variasi gambar sayatan tipis, sehingga model tersebut memiliki nilai mAP = 82.3% sedangkan model dengan augmentasi geometri nilai mAP 67.5%. Empat kelas mineral yang memiliki nilai mAP diatas 70% pada mode pelatihan dan validasi adalah mineral plagioklas, biotit, alkali-feldspar, dan piroksen. Diharapkan dari penelitian ini dapat membantu identifikasi mineral dalam sayatan tipis dengan lebih efisien dan akurat.
This research is related to the application of advances in artificial intelligence using the You Only Look Once (YOLO) algorithm in detection and segmentation tasks in the field of geology, namely for mineral identification using petrographic data. The data used for the detection and segmentation model training process consisted of 500 thin section images of igneous rock. 500 thin section images were annotated manually and divided the data into a training set, validation set and prediction set. In these 3 sets, the number of annotated mineral classes is 6, namely the mineral classes plagioclase, biotite, horblend, pyroxene, alkali-feldspar, and quartz. The augmentation techniques applied to overcome the limitations of the dataset in this research are geometric augmentation (model 1) and mosaic (model 2). The model with mosaic augmentation is a model with good performance in mineral detection and segmentation tasks, because mosaic augmentation produces 1 image patch with 4 variations of thin section images, so the model has a mAP value = 82.3% while the model with geometric augmentation has a mAP value of 67.5%. The four mineral classes that have mAP values above 70% in training and validation mode are the minerals plagioclase, biotite, alkali-feldspar, and pyroxene. It is hoped that this research can help identify minerals in thin sections more efficiently and accurately.