Polusi udara terjadi ketika campuran gas beserta partikel lainnya mencapai konsentrasi berbahaya baik yang terjadi di dalam maupun luar ruangan. Polusi udara juga menjadi penyebab kematian di beberapa negara dengan tingkat polusi yang parah. Salah satu polutan yang berbahaya adalah Partikulat halus (PM
2.5/ Particulate Matter
2.5), dimana dengan diameter kurang dari 2,5 μm, kira-kira 3% dari diameter rambut manusia, partikulat halus ini menjadi perhatian utama dalam pengamatan kualitas udara, dikarenakan PM
2.5 dianggap sebagai agen pembunuh utama yang menyebabkan penyakit kardiovaskular, pernapasan dan kanker. Jakarta dinyatakan sebagai kota dengan tingkat polusi udara yang sangat signifikan, isu pencemaran udara menjadi topik pembicaraan banyak pihak, terutama kondisi kualitas udara di ibu kota. Dalam pengukuran kualitas udara di Provinsi DKI Jakarta jaringan pengamatan observasinya masih sangat terbatas. Sehingga dibutuhkan pemodelan dalam andil untuk melakukan pengukuran kualitas udara dalam hal ini adalah PM
2.5. Pemodelan menggunakan algoritma pemebelajaran mesin atau machine learning random forest digunakan dalam penelitian ini dengan memanfaatkan metode regresi spasial. Adapun variabel yang digunakan berupa unsur meteorologi, partikulat dan gas yang diperoleh dengan memanfaatkan penginderaan jauh. Didapatkan variabel yang paling berpengaruh pada pemodelan spatial temporal PM
2.5 ini adalah NO2 dan CO serta dengan fungsi berkebalikan pada variabel curah hujan dan Ozon. Dalam pemodelan yang telah dilakukan ini didapatkan nilai 0,90 dalam korelasi hasil prediksi dengan nilai observasi, dengan nilai ini maka prediksi yang dilakukan oleh Machine Learning Random Forest terbilang baik, serta nilai RMSE sebesar 7,83 µg/m3 juga memberikan gambaran yang baik bagi model yang dibentuk, serta nilai R
2 sebesar 0,825 mengisyaratkan akurasi variabel yang digunakan mencapai 82,5 persen. Adapun pasial yang terbentuk dalam pemodelan spasial ini mengikuti pola musim hujan dan musim kemarau, dimana nilai tertinggi dari pola spasial parameter PM
2.5 berada pada bulan JJA (Juni, Juli dan Agustus), serta mulai menurun di bulan SON (September, Oktober, dan November), dan pada akhirnya berada di nilai terendah pada bulan DJF (Desember, Januari dan Februari).
Air pollution occurs when a mixture of gases and other particles reach dangerous concentrations both indoors and outdoors. Air pollution is also a cause of death in some countries with severe pollution levels. One of the harmful pollutants is fine particulate matter (PM2.5), which is less than 2.5 μm in diameter, approximately 3% of the diameter of a human hair. This fine particulate matter is a major concern in air quality observations, as PM2.5 is considered a major killer agent that causes cardiovascular, respiratory diseases and cancer. Jakarta is declared as a city with a very significant level of air pollution, the issue of air pollution has become a topic of conversation for many parties, especially the condition of air quality in the capital city. In measuring air quality in DKI Jakarta Province, the observation network is still very limited. So that modeling is needed in order to measure air quality, in this case PM2.5. Modeling using machine learning algorithms or machine learning random forest is used in this study by utilizing the spatial regression method. The variables used are meteorological elements, particulates and gases obtained by utilizing remote sensing. It was found that the most influential variables in the spatial temporal modeling of PM2.5 were NO2 and CO and with the opposite function in the rainfall and Ozone variables. In the modeling that has been done, a value of 0.90 is obtained in the correlation of the predicted results with the observed values, with this value, the prediction carried out by Machine Learning Random Forest is fairly good, and the RMSE value of 7.83 µg/m3 also provides a good description of the model formed, and the R2 value of 0.825 implies that the accuracy of the variables used reaches 82.5 percent. The spatial pattern formed in this spatial modeling follows the pattern of the rainy season and dry season, where the highest value of the spatial pattern of the PM2.5 parameter is in the JJA month (June, July and August), and begins to decrease in the SON month (September, October and November), and finally at the lowest value in the DJF month (December, January and February).