UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Analisis Kinerja Model Support Vector Machine dalam Mengklasifikasi Tingkat Keparahan Penyakit Pestalotiopsis sp. pada Data Citra Daun Karet Menggunakan Fitur Warna dan Jumlah Bintik = Performance Analysis of Support Vector Machine Model in Classifying the Severity of Pestalotiopsis sp. Disease on Rubber Leaf Image Data Using Color and Number of Spots Features

Muhammad Nur Ichsan; Alhadi Bustamam, supervisor; Devvi Sarwinda, supervisor; Suryadi, examiner; Siti Aminah, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Saat ini, Indonesia menempati peringkat kedua sebagai produsen karet terbesar di dunia, menyumbang sekitar 29,8% dari kebutuhan global. Namun, produksi karet di Indonesia mengalami penurunan dari tahun ke tahun, salah satu faktornya adalah serangan penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. Pada tahun 2021, luas perkebunan karet yang terkena penyakit mencapai 30.328,84 hektar dan tanaman yang terinfeksi oleh penyakit tersebut mengalami penurunan produksi lateks hingga 30%. Penyakit ini menyerang daun dengan gejala pembentukan bercak berukuran 0,5-2 cm yang menyebabkan nekrosis dan gugur. Penklasifikasian tingkat keparahan penyakit Pestalotiopsis sp. secara morfologi melalui pengamatan jumlah bintik dan warna pada daun karet membutuhkan waktu dan tenaga besar, terutama karena luasnya perkebunan yang terinfeksi. Oleh karena itu, penggunaan metode machine learning diusulkan untuk mengurangi waktu dan usaha yang dibutuhkan dalam menklasifikasi penyakit gugur daun akibat jamur Pestalotiopsis sp. Pada penelitian ini, model machine learning digunakan untuk mengklasifikasi 5 kelas tingkat keparahan penyakit Pestalotiopsis sp. yaitu tingkat 0 (sehat), tingkat 1 (terinfeksi ringan), tingkat 2 (terinfeksi sedang), tingkat 3 (terinfeksi parah), dan tingkat 4 (terinfeksi sangat parah). Dataset yang digunakan adalah citra daun tanaman karet yang diperoleh dari Pusat Penelitian Karet Sembawa. Model machine learning menerima input data citra daun tanaman karet, lalu citra disegmentasi menggunakan k-mean clustering. Data yang telah tersegmentasi kemudian diekstraksi dengan fitur warna hue, saturation, dan value (HSV) dan fitur jumlah bintik dengan metode contour detection menggunakan Suzuki’s contour algorithm. Selanjutnya, fitur-fitur ini diklasifikasikan menggunakan Support Vector Machine (SVM) tipe one vs rest multiclass classification dan Grid Search Cross Validation dengan 5 fold untuk menemukan hyperparameter terbaik untuk SVM. Hyperparameter terbaik adalah kernel radial basis function dengan C=100. Berdasarkan hasil percobaan sebanyak 5 kali, diperoleh kesimpulan bahwa model dengan akurasi tertinggi adalah model yang menggunakan fitur warna dan jumlah bintik dengan nilai rata-rata akurasi sebesar 81,86% dan nilai rata-rata Cohen’s kappa statistic sebesar 0,77 yang artinya model mampu mengklasifikasi data citra daun tanaman karet dengan cukup baik.

Currently, Indonesia ranks as the second largest rubber producer in the world, contributing about 29.8% of global demand. However, rubber production in Indonesia has decreased from year to year, one of the factors is the attack of leaf fall disease caused by the fungus Pestalotiopsi sp. In 2021, the area of rubber plantations affected by the disease reached 30,328.84 hectares with infected plants have a 30% decrease in latex production. The disease attacks the leaves with symptoms of spot formation measuring 0.5-2 cm which causes necrosis and fall. Detecting the severity of Pestalotiopsis sp. morphologically through the observation of the number of spots and colors on rubber leaves requires a lot of time and energy, especially due to the large area of infected plantations. Therefore, the use of machine learning methods is proposed to reduce the time and effort required in classifying leaf fall disease caused by the fungus Pestalotiopsis sp. In this study, a machine learning model is used to classify 5 classes of Pestalotiopsis sp. disease severity, namely level 0 (healthy), level 1 (mild infected), level 2 (moderate infected), level 3 (severe infected), and level 4 (very severe infected).  The dataset used is an image of rubber plant leaves obtained from the Sembawa Rubber Research Center. The machine learning model received input data of rubber plant leaf images, then the image is segmented using k-mean clustering. The segmented data will then be extracted with hue, saturation, and value (HSV) color features and the number of spots feature with the contour detection method using Suzuki’s contour algorithm.  In this study, the performance evaluation used is accuracy and Cohen's kappa statistic. Furthermore, these features are classified using Support Vector Machine (SVM) type one vs rest multiclass classification and Grid Search Cross Validation with 5 folds to find the best hyperparameter for SVM. The best hyperparameter is the radial basis function kernel with C=100. Based on the results of 5 experiments, it is concluded that the model with the highest accuracy is a model that uses color and the number of spots features with an average accuracy value of 81.86% and an average Cohen's kappa statistic value of 0.77, which means that the model is able to classify rubber plant leaf image data quite well.

 File Digital: 1

Shelf
 S-Muhammad Nur Ichsan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 59 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-19654227 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920541380
Cover