Curah hujan mempunyai dampak yang signifikan terhadap berbagai sektor kehidupan dan lingkungan. Misalnya, curah hujan membantu meningkatkan produktivitas pertanian, menjamin cadangan pangan dan air. Selain itu, curah hujan juga mempengaruhi kekeringan dan siklus air tanah. Oleh karena itu, mengetahui cara memperkirakan curah hujan di suatu daerah secara akurat sangat penting. Salah satu cara memperkirakan curah hujan adalah dengan menggunakan radar cuaca yang mengukur nilai reflektivitas, kemudian menggunakan persamaan Z-R untuk menghitung curah hujan yang terjadi. Namun, beberapa penelitian sebelumnya telah menggunakan model estimasi curah hujan kuantitatif dengan machine learning dari data radar hujan karena dapat memberikan prediksi yang lebih akurat dibandingkan persamaan Z-R. penelitian lain menyatakan bahwa gradient boosting menghasilkan estimasi curah hujan yang lebih akurat dibandingkan beberapa algoritma lainnya. Pada penelitian ini, estimasi curah hujan dilakukan pada satu wilayah dengan tipe curah hujan lokal di Kota Gorontalo. Estimasi ini dilakukan dengan membandingkan keakuratan dua metode: persamaan Z-R dan algoritma machine learning. Persamaan Z-R yang digunakan adalah persamaan Z-R oleh Marshall-Palmer (ð´ = 200, ð = 1.6) dan Rosenfeld (ð´ = 250, ð = 1.2), sedangkan algoritma machine learning yang digunakan adalah gradient boosting. Hasil perbandingan menunjukkan bahwa gradient boosting memberikan estimasi yang lebih akurat dibandingkan dengan kedua persamaan Z-R tersebut. Hasil estimasi algoritma gradient boosting memberikan nilai RMSE, MAE, dan R 2 masing-masing sebesar 0,61, 0,17, dan 0,86. Persamaan Marshall-Palmer Z-R menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,14, 3,66, dan -0,19. Estimasi persamaan Z-R Rosenfeld menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,18, 3,71, dan -0,20. Dari ketiga metrik tersebut, dapat disimpulkan bahwa gradient boosting memberikan estimasi yang paling akurat untuk curah hujan di wilayah dengan tipe hujan lokal di Kota Gorontalo.
Rainfall has a significant impact on various sectors of life and the environment. For example, rainfall helps increase productivity in agriculture, ensuring food reserves and water. In addition, rainfall also affects drought and the soil water cycle. Therefore, knowing how to estimate rainfall in an area accurately is essential. One way to estimate rainfall is to use a weather radar that measures reflectivity values, then use the Z-R equation to calculate the rainfall that occurs. However, Several previous studies have used machine learning quantitative rainfall estimation models from rain radar data because it can provide more accurate predictions than the Z-R equation. Another study state that gradient boosting provides more accurate rainfall estimation than several other algorithms. In this study, rainfall estimation was carried out in an area with local rainfall types in Gorontalo City. This estimation is done by comparing the accuracy of two methods: the Z-R equation and machine learning algorithms. The Z-R equation used is the Z-R Equation by Marshall-Palmer (ð´ = 200, ð = 1.6) and Rosenfeld (ð´ = 250, ð = 1.2), while the machine learning algorithm used is gradient boosting. The comparison results show that gradient boosting provides a more accurate estimation than the two ZR equations. The gradient boosting algorithm estimation results provide RMSE, MAE, and R 2 values of 0.61, 0.17 and 0.86, respectively. The Marshall-Palmer Z-R equation obtained RMSE, MAE, and R 2 values of 8.14, 3.66, and -0.19. The estimation of Rosenfeld's Z-R equation resulted in RMSE, MAE, and R 2 values of 8.18, 3.71, and - 0.20. From these three metrics, it is concluded that gradient boosting provides the most accurate estimate for rainfall in areas with localized rainfall types in Gorontalo City.