https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Penerapan Machine Learning dalam Memproyeksikan Konsumsi Bio Solar Subsidi di Indonesia = Machine Learning Applications in Projecting Bio Solar Consumption in Indonesia

Atiq Mujtaba; Komarudin, supervisor; Zulkarnain, examiner; Armand Omar Moeis, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Paper ini mengeksplorasi penerapan teknik machine learning (ML) untuk memproyeksikan konsumsi energi biosolar di Indonesia di masa depan, yang bertujuan untuk memberikan informasi dan memandu pengambilan kebijakan di sektor energi. Transisi ke sumber energi terbarukan sangat penting bagi pembangunan berkelanjutan, terutama di negara-negara berkembang seperti Indonesia, yang telah menunjukkan peningkatan minat terhadap energi biosolar. Metode penelitian ini menggunakan Penelitian Kuantitatif dengan pendekatan Regresi Linier dan Sarima. Kami menggunakan beberapa model ML, menggunakan Phyton yang menganalisis dengan Multiple Linear Regression, Lasso Regression, dan Sarima, untuk menganalisis data historis mengenai konsumsi energi, indikator ekonomi, perubahan demografi, dan kemajuan teknologi. Temuan kami menunjukkan bahwa model ml dapat secara efektif memprediksi tren konsumsi biosolar, menyoroti pengaruh pertumbuhan ekonomi, urbanisasi, dan inovasi teknologi terhadap adopsi energi terbarukan. Model-model tersebut menunjukkan adanya peningkatan konsumsi biosolar, didorong oleh insentif kebijakan, kemajuan teknologi, dan meningkatnya kesadaran akan isuisu lingkungan. Keakuratan prediksi ml bergantung pada ketersediaan dan kualitas data. Selain itu, proyeksi tersebut mungkin tidak memperhitungkan perubahan ekonomi atau teknologi yang tidak terduga. Penelitian di masa depan harus fokus pada penggabungan sumber data yang lebih dinamis dan mengeksplorasi dampak perubahan kebijakan terhadap penerapan energi terbarukan. Kesimpulannya, pemanfaatan pembelajaran mesin untuk proyeksi kebijakan menawarkan pendekatan yang menjanjikan untuk mendukung pertumbuhan konsumsi biosolar di Indonesia. Studi ini memberikan landasan untuk penelitian di masa depan dan menyoroti potensi ml dalam menyusun kebijakan energi yang terinformasi dan efektif.

This paper explores the application of machine learning (ML) techniques to project the future consumption of bio solar energy in indonesia, aiming to inform and guide policy decisions in the energy sector. The transition to re-newable energy sources is crucial for sustainable development, especially in emerging economies like indonesia, which has shown a growing interest in bio solar energy. This research method uses Quantitative Research with Linear Regression and Sarima approaches. We employed several ML models, using Phyton which analyse with Multiple Linear Regression, Lasso Regres- sion and Sarima, to analyze historical data on energy consumption, economic indicators, demographic changes, and technological advancements. Our findings indicate that ml models can effectively predict bio solar consumption trends, highlighting the influence of economic growth, urbanization, and technological innovation on renewable energy adoption. The models suggest an increasing trajectory in bio solar consumption, driven by policy incentives, technological advancements, and a growing awareness of environmental is- sues. The accuracy of ml predictions is contingent upon the availability and quality of data. Furthermore, the projections may not account for unforeseen economic or technological changes. Future research should focus on incor- porating more dynamic data sources and exploring the impact of policy changes on renewable energy adoption. In conclusion, leveraging machine learning for policy projection offers a promising approach to support the growth of bio solar consumption in indonesia. This study provides a foundation for future research and highlights the potential of ml in crafting informed, effective energy policies.

 File Digital: 1

Shelf
 T-Atiq Mujtaba.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Jakarta: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xi, 38 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-32468637 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920543776
Cover