https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Implementasi Sistem Klasifikasi Penyakit Paru-Paru Dari Data Screening Menggunakan Metode Support Vector Machine Dan Ensemble Bagging Gaussian Naive Bayes = Implementation Of A Lung Disease Classification System Using The Support Vector Machine And Ensemble Bagging Gaussian Naïve Bayes Methods.

Ricco Yhandy Fernando; Abdul Halim, supervisor; Mia Rizkinia, examiner; Siti Fauziyah Rahman, examiner; Mohammad Ikhsan, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Penyakit pada paru-paru merupakan gangguan yang cukup serius dimana dapat menyerang sistem pernapasan manusia dan bisa berakibat fatal jika tidak ditangani dengan serius. Pada saat ini deteksi penyakit pada paru-paru masih dilakukan secara manual oleh para dokter ahli, namun proses secara manual memakan waktu lama. Oleh karena itu, dalam penelitian ini dibuat sistem yang dapat mendeteksi dan mengklasifikasi penyakit paru-paru dengan otomatis. Dalam penelitian ini akan digunakan dua metode yaitu Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes . Data yang digunakan dalam penelitian ini adalah data screening yang berjumlah seratus data pasien, data di dapatkan dari salah satu sumber yang memiliki data primer yaitu salah satu rumah sakit di Yogyakarta. Penelitian ini menggunakan dua belas gejala paru-paru dan diklasifikasikan kedalam lima kelas penyakit paru-paru yaitu tuberkulosis, penyakit paru obstruktif kronis, pneumonia, asma bronkial, kanker paru. Sistem klasifikasi akan di implementasikan menggunakan bahasa pemrograman PHP. Pengujian kinerja klasifikasi menggunakan Confusion Matrix dan aplikasi diuji dengan menggunakan System Usability Scale. Penelitian ini menghasilkan sistem klasifikasi penyakit paru-paru dengan menggunakan metode Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes, dari hasil pengujian akurasi Confusion Matrix pada algoritma Support Vector Machine mendapatkan hasil akurasi 93,9% , recall 92%, precison 79%, dan f1 score 54%, sedangkan pada Ensemble Bagging Gausian Naïve Bayes mendapatkan hasil akurasi 88,9 % recall 92%, precision 79%, f1 score 54%, serta pengujian sistem menggunakan metode System Usability Scale nilai yang diperolah sebesar 73 atau mendapatkan grade B.

Lung disease is a serious disorder that can attack the human respiratory system and can be fatal if not treated seriously. Currently, lung disease detection is still done manually by expert doctors, but the manual process takes a long time. Therefore, in this research a system was created that can detect and classify lung diseases automatically. In this research, two methods will be used, namely Support Vector Machine and Ensemble Bagging Gaussian Naïve Bayes. The data used in this research is screening data consisting of one hundred patient data, the data was obtained from one source that has primary data, namely one of the hospitals in Yogyakarta. This study used twelve lung symptoms and classified them into five classes of lung disease, namely tuberculosis, chronic obstructive pulmonary disease, pneumonia, bronchial asthma, lung cancer. The classification system will be implemented using the PHP programming language. Classification performance testing uses the Confusion Matrix and the application is tested using the System Usability Scale. This research produces a lung disease classification system using the Support Vector Machine method and Ensemble Bagging Gaussian Naïve Bayes, from the results of Confusion Matrix accuracy testing on the Support Vector Machine algorithm, the results are 93.9% accuracy, 92% recall, 79% precision, and f1 score was 54%, while Ensemble Bagging Gausian Naïve Bayes obtained accuracy results of 88.9%, recall 92%, precision 79%, f1 score 54%, and system testing using the System Usability Scale method obtained a score of 73 or got grade B.  

 File Digital: 1

Shelf
 T-Ricco Yhandy Fernando.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : 64 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-24475639 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920543893
Cover