UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Optimasi Performa Model Penggabungan Multiple Instance Learning dan Semi Supervised Learning Pada Klasifikasi Kanker Prostat Menggunakan ProGleason-GAN = Optimizing the Performance of a Model Coupling Multiple Instance Learning and Semi Supervised Learning in Prostate Cancer Classification Using ProGleason-GAN

Ahmad Fahrezi; Ajib Setyo Arifin, supervisor; Muhamad Asvial, examiner; Catur Apriono, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Kanker prostat merupakan salah satu penyakit yang menjadi penyebab kematian utama di kalangan pria. Deteksi dini melalui pemindaian medis dapat membantu dalam pengobatan dan penanganan yang efektif. Namun, interpretasi dari pemindaian ini seringkali sulit dan memerlukan keahlian klinis yang tinggi oleh para ahli patologi. Selain itu keterbatasan dataset publik dengan bentuk biopsi H&E dengan anotasi level biopsy hinggal level patch yang tersedia terbatas jumlahnya sehingga menyebabkan pelatihan machine learning menjadi lebih sulit. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan dataset dengan model machine learning yang dapat membantu mengimprove model machine learning pengklasifikasi kanker prostat. Model machine learning yang digunakan untuk mengembangkan dataset dalam penelitian ini adalah conditional Progressive Growing GAN (ProGleason-GAN), sebuah jenis jaringan saraf tiruan yang dapat digunakan untuk mempelajari dan menghasilkan gambar sintetis dari pemindaian prostat yang telah menunjukkan hasil yang menjanjikan dalam generasi gambar sintetis beresolusi tinggi. Dataset yang ditambahkan dengan hasil gambar sintesis ProGleason-GAN digunakan untuk melatih model klasifikasi kanker prostat yaitu Semi Supervised Learning yang di gabungkan dengan Multiple Instance Learning. Dataset yang yang berisikan dataset SICAPv2 yang ditambahkan dengan hasil augmentasi ProGleason-GAN dinamakan SICAPv2 augmented. Penulis juga mengembangkan model klasifikasi dengan penambahan batch normalization yang dimana memungkinkan setiap batch data yang diberikan ke jaringan untuk dinormalisasi terlebih dahulu sebelum diolah lebih lanjut oleh jaringan. Ketika model klasifikasi ditambahkan dengan batch normalization serta dilatih dengan SICAPv2 augmented , maka nilai accuracy yang dihasilkan sebesar 76% lebih tinggi 4% model acuan.

Prostate cancer is a disease that is the main cause of death among men. Early detection through medical scanning can help in effective treatment and management. However, interpretation of these scans is often difficult and requires a high degree of clinical skill by pathologists. In addition, the limited number of available public datasets in the form of H&E biopsies with biopsy level to patch level annotations makes machine learning training more difficult. Therefore, this research aims to develop a dataset with a machine learning model that can help improve machine learning models for prostate cancer classification. The machine learning model used to develop the dataset in this research is Conditional Progressive Growing GAN (ProGleason-GAN), a type of artificial neural network that can be used to learn and generate synthetic images from prostate scans which has shown promising results in the generation of high-resolution synthetic images. tall. The dataset added with the ProGleason-GAN synthetic image results is used to train a prostate cancer classification model, namely Semi Supervised Learning combined with Multiple Instance Learning. The dataset containing the SICAPv2 dataset added with the results of ProGleason-GAN augmentation is called SICAPv2 augmented. The author also developed a classification model with the addition of batch normalization, which allows each batch of data given to the network to be normalized first before being further processed by the network. When the classification model was added with batch normalization and trained with augmented SICAPv2, the resulting accuracy value was 76%, 4% higher than the reference model.

 File Digital: 1

Shelf
 S-Ahmad Fahrezi.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LIbUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 65 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-04849901 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920543961
Cover