https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Penggunaan Algoritma Clustering K-Means, DBScan, LDA, dan Kombinasi K-Means dengan DBScan untuk Menentukan Trending Topic pada Media Sosial X = Use of K-Means Clustering, DBScan, LDA, and Combination of K-Means with DBScan to Determine Trending Topic on Social Media X

Dwie Putri Donnaro; Dadang Gunawan, supervisor; Muhammad Suryanegara, examiner; Ajib Setyo Arifin, examiner; Catur Apriono, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstrak

Masyarakat Indonesia sangat sering menggunakan media sosial twitter dan sekarang lebih dikenal dengan X untuk berbagi foto, video atau membuat tweet tentang topic yang sedang trend. Namun tidak banyak dari masyarakat Indonesia yang memanfaatkan trending topic ini untuk membuat konten dalam memasarkan produk barunya. Pada penelitian ini telah dilakukan pengelompokkan trending topic dengan menggunakan 3 algoritma clustering yaitu K-Means, DBScan dan LDA dengan menggunakan 2 kondisi yaitu Menggunakan Kata Kunci dan Tanpa Menggnakan kata Kunci, untuk kategori cluster telah ditentukan yaitu Cluster Politik, Cluster Ekonomi dan Cluster Pendidikan. Hasil penelitian ini adalah K-Means dengan menggunakan kata kunci lebih baik dari pada semuanya yaitu dengan nilai validitas 0,5810 sedangkan diposisi kedua yang termasuk baik adalah DBScan menggunakan kata kunci dengan nilai validitas 0,4656. Oleh karena itu karena hasilnya masih dalam tingkatan 2 yaitu struktur cluster masih dalam kategori baik, maka peneliti melakukan kombinasi antara K-Means dan DBScan dengan menggunakan kata kunci. Dan hasilnya struktur yang terbentuk masuk dalam tingkatan 1 yaitu dalam kategori kuat, nilai validitas yang dihasilkan yaitu 0,7864, sehingga antar trending topic dalam masing-masing cluster memiliki keterkaitan.

Indonesians very often use social media twitter and now better known as X to share photos, videos or make tweets about trending topics. However, not many Indonesians utilize this trending topic to create content to market their new products. In this study, clustering of trending topics has been carried out using 3 clustering algorithms namely K-Means, DBScan and LDA using 2 conditions namely Using Keywords and Without Using Keywords, for cluster categories have been determined namely Political Cluster, Economic Cluster and Education Cluster. The results of this study are K-Means using keywords is better than all of them with a validity value of 0.5810 while in second place which is good is DBScan using keywords with a validity value of 0.4656. Therefore, because the results are still in level 2, namely the cluster structure is still in the good category, the researchers conducted a combination of K-Means and DBScan using keywords. And the result is that the structure formed is in level 1, which is in the strong category, the resulting validity value is 0.7864, so that between trending topics in each cluster have a relationship.

 File Digital: 1

Shelf
 T-Dwie Putri Donnaro.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 73 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-11097044 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920544471
Cover