Kebutuhan baja berkualitas tinggi dengan harga yang kompetitif serta biaya pemeliharaan yang rendah semakin meningkat dalam mendukung pembangunan infrastruktur di Indonesia. Salah satu solusi dalam mengatasi permasalahan tersebut adalah penggunaan baja tahan korosi atmosfer yang dapat diaplikasikan dalam kondisi tidak dicat sehingga dapat memberikan kontribusi penting dalam menurunkan biaya pemeliharaan. Oleh karena itu penelitian ini difokuskan pada optimalisasi penggunaan elemen paduan yaitu Cu 0,25-0,35wt%, Ni 0,10-0,20wt%, Cr 0,35-0,55wt%, P 0,09-0,11wt% dan Nb 0,005-0,015wt% serta penerapan Thermo Mechanical Control Process untuk menghasilkan produk baja berkualitas secara efisien. Hasil penelitian menunjukan bahwa baja yang dikembangkan telah memenuhi standar spesifikasi JIS G3125 SPAH dengan atmospheric corrosion index sebesar 7,95 yang mengindikasikan ketahanan baja terhadap korosi atmosfer di atas standar. Selain itu, mikrostruktur yang dihasilkan adalah polygonal ferrite dan 10,35% pearlite yang seragam dengan ukuran butir 5,1-6,5 µm dimana butir halus tersebut dapat meningkatkan ketahanan korosi karena aktivitas pelarutan Fe menjadi Fe2+ membentuk γ-FeOOH dan α-FeOOH meningkat. Jika dibandingkan dengan baja karbon biasa, baja yang dikembangkan memiliki ketahanan korosi lebih baik dikarenakan pembentukan lapisan karat amorphous ferric oxyhydroxide yang mengandung Cu, P, Cr serta goethite, lepidocrocite dan Fe3O4. Selain itu kehadiran Si dalam baja tersebut secara efektif dapat mengisi dan memperbaiki lapisan karat yang lemah.
The demand for high-quality steel with competitive prices and low maintenance costs is increasing to support infrastructure development in Indonesia. The use of atmospheric corrosion resistant steel that can be applied without painting is one of the best solutions to reduce maintenance costs. Therefore, this research is focused on optimizing the use of micro alloying elements such as Cu 0.25-0.35wt%, Ni 0.10-0.20wt%, Cr 0.35-0.55wt %, P 0.09-0.11wt% and Nb 0.005-0.015wt% and implementing the Thermo Mechanical Control Process so that it can produce a quality steel efficiently. The results of this research showed that the developed steel complies with the JIS G3125 SPAH with atmospheric corrosion index is 7.95, which is higher than standard. Thus, the microstructure of the product is uniform polygonal ferrite with 10.35% pearlite, with an average grain 5.1-6.5 µm classified as very fine grain. The fine grain microstructure can increase corrosion resistance because the increasing of the electrochemical dissolution of Fe into Fe2+ resulting γ-FeOOH and α-FeOOH. In addition, the developed steel has better corrosion resistance than the ordinary carbon steel due to a layer of amorphous ferric oxyhydroxide rust formation containing Cu, P, Cr as well as goethite, lepidocrocite and Fe3O4. Moreover, the presence of Si in the steel can effectively fill and repair weak rust layers.