Cadangan gas alam berkualitas rendah didefinisikan sebagai ladang gas yang mengandung lebih dari 2% CO2, 4% N2 dan 4 bagian per juta (ppm) hidrogen sulfida (H2S). CO2, H2S dan gas asam lainnya, harus dihilangkan dari gas alam karena dengan adanya air, pengotor ini dapat membentuk asam yang menimbulkan korosi pada jaringan pipa dan peralatan lainnya, sehingga perlu dilakukannya pemisahan gas. Pemisahan membran lebih menjanjikan sebagai pengganti yang menjanjikan dengan emisi dan efisiensi energi yang lebih baik. Dengan diperkenalkannya kerangka logam-organik (MOFs), pemisahan gas berbasis membran telah menjadi pilihan yang lebih terjangkau. Evaluasi dilakukan terhadap membran Zr-fum100-fcu-MOF dan Zr-fum67-mes33-fcu-MOF dengan program Quantum ESPRESSO, LAMMPS. Simulasi dilakukan dengan memvariasikan suhu (300K, 325K, 350K, 425K). Hasil simulasi menunjukkan bahwa muatan pada Zr-fum100-fcu-MOF memengaruhi koefisien difusi CH4 sebesar 0,08 A²/ps, CO2 sebesar 0,21 A²/ps, dan N2 sebesar 0,00063 A²/ps. Penggunaan medan gaya UFF dan UFF4MOF tidak menunjukkan perbedaan. Variasi suhu mempengaruhi peningkatkan koefisien difusi molekul hingga 0-0,5 A²/ps. Zr-fum67-mes33-fcu-MOF menunjukkan selektivitas yang lebih tinggi dan kinerja difusi yang lebih baik pada suhu yang lebih tinggi dibandingkan dengan Zr-fum100-fcu-MOF, dengan struktur yang lebih kompleks memberikan efisiensi dalam saluran difusi molekul gas. Metode yang digunakan masih memiliki hasil yang kurang akurat, sehingga dibutuhkan metode lain, yaitu CGD-MD dan NEMD.
Low-quality natural gas reserves are defined by containing more than 2% CO2, 4% N2, and 4 parts per million (ppm) of hydrogen sulfide (H2S). CO2, H2S, and other acidic gases must be removed from natural gas to prevent acid formation in the presence of water, which can cause corrosion in pipelines and equipment, necessitating gas separation. Membrane separation offers a promising alternative with improved emissions and energy efficiency. With the introduction of metal-organic frameworks (MOFs), membrane-based gas separation has become a more affordable option. Evaluation was conducted on Zr-fum100-fcu-MOF and Zr-fum67-mes33-fcu-MOF membranes using Quantum ESPRESSO and LAMMPS programs. The simulations were conducted by varying the temperature (300K, 325K, 350K, 425K). Simulation results indicate that the charge on Zr-fum100-fcu-MOF affects the diffusion coefficients of CH4 by 0.08 A²/ps, CO2 by 0.21 A²/ps, and N2 by 0.00063 A²/ps. The use of UFF and UFF4MOF force fields showed no differences. Temperature variation influences molecular diffusion coefficients by up to 0.5 A²/ps. Zr-fum67-mes33-fcu-MOF exhibits higher selectivity and better diffusion performance at higher temperatures compared to Zr-fum100-fcu-MOF, benefiting from a more complex structure that enhances molecular gas diffusion efficiency. However, the current methods have limitations in accuracy, warranting the exploration of alternative methods such as CGD-MD and NEMD.