Indonesia merupakan produsen tepung tapioka terbesar kedua di Asia dengan ekspor mencapai 122 juta USD pada tahun 2021. Pertumbuhan industri ini meningkatkan masalah limbah cair, yang turut dihasilkan saat produksi tepung tapioka dilakukan. Limbah cair dapat mencapai 15-21 m³ per ton singkong dengan kadar sianida mencapai 44,40 mg/L. Berbagai teknologi telah digunakan untuk mendegradasi sianida dalam limbah cair tapioka, namun masih ada kekurangan dari segi teknis maupun ekonomi. Microbial Fuel Cell (MFC) adalah teknologi alternatif yang dapat mengatasi kekurangan ini. MFC dapat mendegradasi limbah sekaligus memproduksi listrik. Penelitian ini mengeksplorasi potensi degradasi sianida dalam limbah cair tapioka menggunakan MFC kompartemen ganda dengan variasi konsentrasi awal sianida dan jenis larutan elektrolit. Hasil menunjukkan degradasi sianida terbesar terjadi pada konsentrasi 20,50 mg/L sebesar 53,17 ± 14,85% dan degradasi terkecil pada konsentrasi 41,50 mg/L sebesar 23,13% ± 4,12%. Perbedaan degradasi disebabkan oleh keracunan bakteri oleh sianida. Produksi listrik bervariasi, pada variasi konsentrasi awal didapatkan tegangan maksimum 96,45 mV dan densitas daya 2048,82 μW/m² pada konsentrasi 20,50 mg/L. Sedangkan, pada variasi larutan elektrolit tegangan maksimum adalah 64,81 mV dengan densitas daya 925,04 μW/m² pada KMnO4. Hasil penelitian ini dapat digunakan untuk mengembangkan teknologi yang lebih efisien dalam mendegradasi sianida pada limbah cair tapioka.
Indonesia is the second-largest producer of tapioca starch in Asia, exporting 122 million USD in 2021. The industry's growth has led to an increase in wastewater production, reaching 15-21 m³ per ton of cassava used dan cyanide levels up to 44.40 mg/L. Various technologies have been applied to degrade cyanide in tapioca wastewater, dan still encountered technical dan economic limitations. A microbial fuel cell (MFC) offers an alternative technology that addresses the issues of waste degradation dan simultaneous production of electricity. This study investigates cyanide degradation in tapioca wastewater using a dual-chamber MFC, with variations in the initial cyanide concentration dan types of electrolyte solutions. The highest cyanide degradation occurred at the concentration of 20.50 mg/L, with a 53.17 ± 14.85%. In contrast, the lowest cyanide degradation was observed at 41.50 mg/L, with degradation percentage reaching 23.13% ± 4.12%. These differences of degradation are attributed to cyanide poisoning of the bacteria. The electricity produced varied within variation. At a cyanide concentration of 20.50 mg/L, the maximum voltage was 96.45 mV with a power density of 2048.82 μW/m². In contrast, with KMnO4 as the electrolyte, the maximum voltage was 64.81 mV with a power density of 925.04 μW/m². These findings may contribute to the development of a more efficient cyanide degradation technologies for tapioca wastewater.