Eceng gondok sebagai gulma air berkembang dengan sangat pesat dalam perairan tawar. Ia sangat potensial untuk dikembangkan sebagai energi terbarukan. Dengan tingginya kandungan karbon dan lignin, ia dapat dimanfaatkan untuk pembuatan biochar sebagai elektroda superkapasitor. Superkapasitor terdiri atas elektroda, elektrolit berupa KOH, binder berupa PVA, crosslinking agent berupa asam sitrat, dan separator berupa kertas saring. Elektroda dengan impregnasi nikel akan dijadikan sebagai superkapasitor simetris, sedangkan untuk superkapasitor asimetris digunakan hasil impregnasi nikel sebagai anoda dan hasil impregnasi Fe2O3 sebagai katoda. Dalam penelitian ini, digunakan 3 variabel bebas berupa persentase berat impregnasi logam, waktu aktivasi, dan konsentrasi elektrolit. Setelah dirangkai menjadi superkapasitor, hasil sampel dari seluruh variasi diuji dengan multimeter digital untuk mengetahui nilai kapasitansinya. Sampel yang berhasil memperoleh nilai kapasitansi tertinggi (146,72 F/g) adalah sampel 26, yaitu superkapasitor asimetris dengan 15% bahan impregnasi pada setiap sisi elektrodanya, waktu aktivasi selama 90 menit, dan elektrolit KOH sebesar 6 M. Hal tersebut menunjukkan bahwa terdapat efek sinergis dari penggunaan bahan impregnasi yang berbeda pada kedua elektroda, serta terdapat pengaruh dari adanya variasi ketiga variabel bebas tersebut. Hasil SEM EDX menunjukkan permukaan biochar dengan distribusi pori yang banyak. Hasil XRF menunjukkan komposisi biochar dan akurasi proses impregnasi yang baik. Hasil FTIR menunjukkan adanya intensitas gugus fungsional yang lebih tinggi dengan adanya peningkatan persentase bahan impregnasi. Hasil band gap energy menunjukkan sampel 26 memiliki sifat semikonduktor dengan band gap energy sebesar 1,0793 eV. Oleh karena itu, seluruh hasil karakterisasi menunjukkan bahwa biochar eceng gondok hasil pirolisis, impregnasi, dan aktivasi dapat berfungsi sebagai penyimpan energi yang baik.
Water hyacinth as a water weed grows very rapidly in fresh waters. It has great potential to be developed as renewable energy. With its high carbon and lignin content, it can be used to make biochar as a supercapacitor electrode. The supercapacitor circuit consists of electrodes, KOH electrolyte, PVA as binder, citric acid as crosslinking agent, and filter paper as separator. Electrodes with nickel impregnation will be used as symmetric supercapacitors, while for asymmetric supercapacitors the nickel impregnation is used as anode and Fe2O3 impregnation as cathode. In this research, 3 independent variations were used, including the weight percentage of metal impregnation, activation time, and electrolyte concentration. After being assembled as a supercapacitor, the sample results from all variations were tested with a digital multimeter to determine the capacitance value. The sample with highest capacitance value (146,72 F/g) was sample 26, which was an asymmetric supercapacitor with 15% impregnation material on each side of the electrode, an activation time of 90 minutes, and a KOH electrolyte of 6 M. This shows that there is a synergistic effect from the use of different impregnation materials on both electrodes, and there is an influence from variations in the 3 independent variables. SEM EDX results show the biochar surface with a large distribution of pores. XRF results show the biochar composition and good accuracy of the impregnation process. FTIR results show a higher intensity of functional groups with an increase in the percentage of impregnating material. Band gap energy results show that sample 26 has semiconductor properties with a band gap energy of 1.0793 eV. Therefore, all the characterization results show that water hyacinth biochar resulting from pyrolysis, impregnation, and activation can function as a good energy storage.