https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Prediksi Distribusi Dosis Radiasi Teknik VMAT pada Kanker Otak Menggunakan Model Support Vector Regression (SVR) = Prediction Of Radiation Dose Distribution with VMAT Technique in Brain Cancer Using Support Vector Regression Model (SVR)

Mutiatul Husni; Dwi Seno Kuncoro Sihono, supervisor; Prawito Prajitno, supervisor; Akbar Azzi, examiner; Djarwani Soeharso Soejoko, examiner; Supriyanto, examiner (Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Penelitian ini bertujuan untuk memprediksi dosis radiasi pada kanker otak menggunakan model Support Vector Regression (SVR) dan membandingkan hasilnya dengan dosis radiasi klinis, kemudian menghitung perbedaan dari kedua nilai tersebut. Data yang digunakan merupakan 178 data perencanaan radioterapi yang meliputi file DICOM yang berisi citra CT simulator dan citra kontur CT simulator. Data diekstraksi menggunakan 3D Slicer yang memberikan informasi mengenai data radiomik dan dosiomik pada setiap OAR (mata, saraf optik, lensa mata, dan batang otak) dan PTV. Data dosiomik dinormalisasi terhadap volume PTV dan dosis preskripsi dari masing-masing pasien. Data radiomik dan dosiomik yang telah dinormalisasi akan menjadi input data untuk model SVR. Pada model SVR digunakan kernel radial basis function (RBF) dengan 2 parameter yaitu epsilon dan C. Dalam penelitian ini didapatkan nilai parameter yang optimal dengan menggunakan gridsearch yaitu epsilon = 0,01 dan C = 1, dengan k-fold validasi bernilai 5. Hasil yang didapatkan pada PTV D98% dan HI menunjukkan nilai p value < 0,05 yang artinya terdapat perbedaan yang signifikan antara nilai klinis dengan nilai prediksi SVR. Sedangkan pada nilai CI, OAR, PTV D2%, dan PTV D50% didapatkan nilai p value > 0,05 yang artinya tidak terdapat perbedaan nilai yang signifikan.

This study aims to predict the radiation dose for brain cancer using the SVR model and compare it with the clinical radiation dose, then calculate the difference between the two values. The data used consists of 178 radiotherapy planning datasets, including DICOM files containing CT simulator images and CT simulator contour images. The data is extracted using 3D Slicer, which provides information on radiomic and dosiomic data for each OAR (eyes, optic nerves, lenses, and brainstem) and PTV. The dosiomic data is normalized against the PTV volume and each patient's prescription dose. The normalized radiomic and dosiomic data will serve as input data for the SVR model. The SVR model uses a radial basis function (RBF) kernel with two parameters, epsilon and C. The study found the optimal parameter values using gridsearch, which are epsilon = 0.01 and C = 1, with a k-fold validation value of 5. The results for PTV D98% and HI showed a p value < 0.05, indicating a significant difference between the clinical values and the SVR model predictions. For CI, OAR, PTV D2%, and PTV D50%, the p value was > 0.05, indicating no significant difference between the values.

 File Digital: 1

Shelf
 T-Mutiatul Husni.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : Ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdacarries)
Deskripsi Fisik : xii, 40 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-41823814 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920546744
Cover