UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Perbandingan Model Deep Learning dan Model Machine Learning dalam Kasus Analisis Sentimen pada Ulasan Pengguna Traveloka = Comparison of Deep Learning and Machine Learning Models in the Case of Sentiment Analysis of Traveloka User Reviews

Timotius Victory; Setiadi Yazid, supervisor; Adila Alfa Krisnadhi, examiner; Indra Budi, examiner; Amril Syalim, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2024)

 Abstrak

Pengguna media sosial di Indonesia merupakan salah satu yang terbanyak di dunia. Hal ini mendorong pemilik produk atau layanan menggunakan media sosial sebagai saluran utama untuk penjualan dan layanan pelanggan. Masyarakat Indonesia cenderung mencari ulasan online sebelum memutuskan pembelian, sehingga ulasan pengguna sangat mempengaruhi keputusan pembelian dan keberhasilan bisnis. Oleh karena itu, pemilik produk dan layanan harus cepat tanggap terhadap sentimen ulasan pengguna untuk mempertahankan reputasi dan menghindari penurunan penjualan. Analisis sentimen adalah salah satu cara untuk mengetahui sentimen terhadap produk atau layanan. Terdapat pendekatan machine learning dan deep learning dalam analisis sentimen. Penggunaan machine learning pada analisis sentimen ulasan pengguna berbahasa Indonesia telah banyak dilakukan, namun eksplorasi dalam bidang deep learning masih jarang ditemukan. Penelitian ini menggunakan model CNN-BiLSTM dan BiLSTM-CNN yang dibandingkan dengan logistic regression, support vector machine, dan naïve bayes. Pada skenario pertama, analisis ulasan pengguna di Traveloka menunjukkan model BiLSTM-CNN dengan Precision tertinggi 85% dan AUC 82.14%, serta model Support Vector Machine (SVM) dengan Accuracy 83.25% dan F1-Score 86.53%. Pada skenario kedua, analisis ulasan pengguna provider telekomunikasi menunjukkan SVM sebagai yang terbaik dengan Accuracy 78.15%, Precision 68.78%, F1-Score 76.33%, dan AUC 77.36%. Dari hasil ini, model machine learning lebih unggul dibandingkan deep learning.

Social media users in Indonesia are among the largest in the world. This drives product or service owners to use social media as the main channel for sales and customer service. Indonesian consumers tend to look for online reviews before making a purchase decision, so user reviews greatly influence purchasing decisions and business success. Therefore, product and service owners must quickly respond to user review sentiments to maintain reputation and avoid sales decline. Sentiment analysis is one way to understand the sentiment towards a product or service. There are machine learning and deep learning approaches in sentiment analysis. The use of machine learning in sentiment analysis of user reviews in Indonesian has been widely conducted, but exploration in the field of deep learning is still rarely found. This study uses CNN-BiLSTM and BiLSTM-CNN models compared to logistic regression, support vector machine, and naïve bayes. In the first scenario, analysis of user reviews on Traveloka shows the BiLSTM-CNN model with the highest Precision of 85% and AUC of 82.14%, and the Support Vector Machine (SVM) model with an Accuracy of 83.25% and F1-Score of 86.53%. In the second scenario, analysis of user reviews of telecommunications providers shows SVM as the best with an Accuracy of 78.15%, Precision of 68.78%, F1-Score of 76.33%, and AUC of 77.36%. From these results, machine learning models outperform deep learning models.

 File Digital: 1

Shelf
 T-Timotius Victory.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
Bahasa : Ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdacarries)
Deskripsi Fisik : xiii, 110 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-25-53660399 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920548008
Cover