UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Studi Komparasi Algoritma Machine Learning untuk Prediksi Kategori Hujan di Bandara Jenderal Ahmad Yani menggunakan Data Automatic Weather Observing System (AWOS) = Comparative Study of Machine Learning Algorithms for Predicting Rain Categories at Jenderal Ahmad Yani Airport using Automatic Weather Observing System (AWOS)

Siti Shafa Adilah; Djati Handoko, supervisor; Maulana Putra, supervisor; Prawito Prajitno, examiner; Lingga Hermanto, examiner (Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Moda transportasi udara sangat bergantung pada keadaan dan perubahan cuaca, baik saat lepas landas, mengudara, maupun saat pendaratan, dengan lebih dari 50% kecelakaan pesawat diakibatkan oleh cuaca. Curah hujan yang tinggi dapat mengganggu aktivitas penerbangan dengan menurunkan visibilitas, meningkatkan massa pesawat, mengurangi akurasi instrumen pengukuran, serta menyebabkan turbulensi. Oleh karena itu, penting bagi manajemen bandara untuk memastikan kondisi cuaca aman bagi operasi pesawat. Penelitian ini bertujuan untuk mengembangkan model prediksi kategori hujan berdasarkan curah hujan untuk 1 jam, 3 jam, dan 9 jam ke depan, menggunakan data dari AWOS di Bandara Jenderal Ahmad Yani, Semarang. Algoritma yang digunakan adalah Random Forest dengan 100 pohon dan K-Nearest Neighbor (KNN) dengan k sebesar 5. Hasil analisis menunjukkan bahwa model KNN dan Random Forest memiliki performa yang cukup baik, dengan prediksi terbaik untuk periode 1 jam ke depan. Model KNN memiliki performa terbaik dengan akurasi 0,86, presisi 086, recall 0,86, F1-score 0,85, dan MCC 0,83.

Air transportation is highly dependent on weather conditions and changes, both during takeoff, flight, and landing, with more than 50% of aircraft accidents caused by weather. Heavy rainfall can disrupt flight activities by reducing visibility, increasing aircraft mass, decreasing the accuracy of onboard measurement instruments, and causing turbulence. Therefore, it is crucial for airport management to ensure that weather conditions are safe for aircraft operations. This study aims to develop a model to predict rain categories based on rainfall for 1 hour, 3 hours, and 9 hours ahead, using data from AWOS at Jenderal Ahmad Yani Airport, Semarang. The algorithms used are Random Forest with 100 trees and K-Nearest Neighbor (KNN) with k set to 5. The analysis results show that the KNN and Random Forest models perform reasonably well, with the best predictions made for the 1-hour ahead period. The KNN model demonstrated the best performance with an accuracy of 0.86, precision of 0.86, recall of 0.86, F1-score of 0.86, and MCC of 0.86.

 File Digital: 1

Shelf
 S-Siti Shafa Adilah.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xi, 50 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-07397725 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920548137
Cover