UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pembentukan Distribusi Kumaraswamy Generalized Inverse Lomax = Formulation of the Kumaraswamy Generalized Inverse Lomax Distribution

Manurung, Andrew Bony Nabasar; Siti Nurrohmah, supervisor; Ida Fithriani, supervisor; Hendri Murfi, examiner; Sindy Devila, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Data waktu survival adalah data waktu dimana suatu objek pada penelitian bertahan hingga mengalami kejadian yang tertarik untuk diamati. Dalam perkembangan ilmu statistika, telah banyak distribusi yang dikembangkan untuk memodelkan waktu survival. Distribusi-distribusi tersebut pun memiliki beberapa karakteristik yang cocok untuk beberapa tipe objek dan kejadian yang spesifik. Salah satu karakteristik yang dapat ditinjau ialah fungsi hazard di mana fungsi ini memiliki fleksibilitas yang lebih jika dibandingkan dengan kuantitas distribusi yang lainnya, dapat monoton naik, monoton turun, berbentuk bathtub, dan lain sebagainya. Salah satu distribusi yang dianggap memiliki keunggalan dalam memodelkan bentuk hazard ialah distribusi Inverse Lomax. Distribusi ini telah dipakai untuk memodelkan kejadian pada bidang keilmuan tertentu, seperti ekonomi dan geografi. Distribusi ini dianggap unggul karena dapat memodelkan hazard yang berbentuk nonmonoton. Namun, semakin beragamnya fenomena yang terjadi pada kehidupan manusia membuat bidang keilmuan statistika harus mengembangkan distribusi yang dapat lebih fleksibel dalam memodelkan hazard. Untuk menghasilkan bentuk hazard yang lebih fleksibel, sebuah distribusi dapat dimodifikasi dengan distribusi lainnya sehingga membentuk keluarga distribusi, contohnya keluarga distribusi Kumaraswamy Generalized. Keluarga distribusi ini diperkenalkan oleh Cordeiro dkk. Keluarga distribusi Kumaraswamy Generalized berasal dari distribusi Kumaraswamy. Distribusi Kumaraswamy memiliki keunggulan yaitu bentuk fungsi distribusi (CDF) dan fungsi kepadatan probabilitasnya (PDF) memiliki bentuk yang sederhana dan tidak melibatkan fungsi khusus yang rumit. Oleh karena itu, distribusi ini dianggap cocok untuk menjadi ‘alat’ bagi distribusi Inverse Lomax untuk meningkatkan fleksibilitasnya dalam memodelkan hazard. Skripsi ini membahas mengenai pembentukan distribusi Kumaraswamy Generalized Inverse Lomax yang memiliki empat parameter. Selain itu, dibahas pula mengenai penaksiran parameter dari distribusi ini menggunakan metode maximum likelihood. Pada bagian akhir juga diberikan ilustrasi data berupa data waktu survival hingga terjadinya kematian pada pasien penderita kanker tenggorokan berdasarkan penelitian di Northern Carolina, Amerika Serikat. Data tersebut dimodelkan menggunakan distribusi Kumaraswamy Generalized Inverse Lomax dengan distribusi Inverse Lomax sebagai pembanding. Hasil pemodelan menunjukan bahwa distribusi Kumaraswamy Generalized Inverse Lomax merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga terjadinya kematian pada pasien kanker tenggorokan.

Lifetime data is a type of data that consists of a waiting time until an event occurs. Numerous distributions have been developed to model lifetime data. These distributions also have various characteristics suitable for some specific types of objects and events. One of the characteristics or quantities that is interesting to be studied is the hazard function of a distribution due to this function having more flexibility compared to other quantities of distribution. The hazard function can appear in different forms from monotonically increasing, monotonically decreasing, and bathtub. One of the distributions that is considered to have advantages in modeling the hazard shape is the Inverse Lomax distribution. This distribution has been used in certain scientific fields, such as economics and geography. This distribution has been extended in several ways to address the problem of non-monotone hazard which is often encountered in real life data. However, the increasingly diverse phenomenons that occur in human life make the need for the scientific field of statistics to develop distributions that can be more flexible in modeling hazards. To produce a more flexible form of hazard, a distribution can be extended with other distributions to form a family of distribution, for example the Kumaraswamy Generalized family of distribution. This family of distribution was introduced by Cordeiro et al. The Kumaraswamy Generalized family of distribution was originally developed from the Kumaraswamy distribution. This distribution has a simple form of distribution function (CDF) and probability density function (PDF). It does not involve complicated special functions, such as the beta function. Therefore, this family of distribution is considered suitable to be a 'tool' for the Inverse Lomax distribution to increase its flexibility in modeling hazards. This thesis studies how to generate the Kumaraswamy Generalized Inverse Lomax distribution which has four parameters. Furthermore, it also studies the parameter estimation of this distribution using the maximum likelihood method. At the end of this thesis, data illustrations will also be given in the form of survival time data until the death of head-and-neck cancer patients occurs based on a study conducted in Northern Carolina, USA. The data is modeled using the Kumaraswamy Generalized Inverse Lomax distribution with the Inverse Lomax distribution as a comparison. The modeling results show that the Kumaraswamy Generalized Inverse Lomax distribution is the most suitable distribution for modeling waiting time data until the death of head-and-neck cancer patients occurs.

 File Digital: 1

Shelf
 S-Andrew Bony Nabasar Manurung.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xxv, 85 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-63836943 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920551525
Cover