UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pengembangan Metode Kuantitatif dalam Identifikasi Artefak Cincin pada Citra SPECT = Development of Quantitative Methods for identifying a ring artifact in SPECT imaging

Aldiman Bakhti; Deni Hardiansyah, supervisor; Djarwani Soeharso Soejoko, supervisor; Lubis, Lukmanda Evan, examiner; Siregar, Syahril, examiner; Yessie Widya Sari, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025)

 Abstrak

Alzheimer’s Disease (AD) merupakan penyakit degeneratif pada organ otak yang dapat menyebabkan penurunan kognitif, sehingga mempengaruhi kualitas hidup dan perilaku penderita. Diagnosis secara dini dan akurat dari AD, termasuk mengindentifikasi tahap awal dari penyakit ini yang disebut sebagai mild cognitive impairment (MCI), merupakan hal yang penting untuk melakukan intervensi terhadap penyakit ini. Fluorodeoxyglucose Positrons Emission Tomography (FDG-PET) adalah modalitas pencitraan molekuler fungsional yang dapat digunakan untuk membantu memahami perubahan secara anatomis dan perubahan secara neural pada otak yang berhubungan dengan AD. Keberhasilan model Convolutional Neural Network (CNN) terutama dalam klasifikasi citra, kami mengembangkan sebual model CNN yang dilatih menggunakan data citra dari FDG-PET dari Alzheimer’s Disease Neuroimaging Initiative (ADNI) untuk dapat mengklasifikasikan antara citra dengan kondisi AD, MCI, dan Cognitive Normal (CN). Metode Gradient-weighted Class Activation Mapping (Grad-CAM) digunakan untuk meningkatkan interpretabiltas model, menunjukkan daerah-daerah penting dari prediksi dan membuat model menjadi lebih transparan dan dapat dijelaskan. Model multiclass yang dikembangkan memperoleh akurasi (97%), presisi (99%), recall (99%), dan F1-Score (99%). Heatmap yang dihasilkan dari Grad-CAM memberikan informasi visual terhadap proses pembuatan keputusan dari model, yang dapat membantu dalam memahami daerah-daerah penting pada citra yang diklasifikasi. Berdasarkan penelitan ini, model yang dikembangkan selain memiliki kapabilitas dalam melakukan klasifikasi penyakit Alzheimer serta tahap awal dari penyakit, model juga memberikan informasi visual yang berpotensi untuk memajukan perangkat diagnostik dalam bidang kesehatan.

Alzheimer’s disease (AD) is a brain degenerative disorder can cause cognitive decline, impacting daily life and behaviour of the patient. Early and accurate diagnosis of AD, including identifying its prodromal stage (mild cognitive impairment (MCI), is crucial for effective intervention of the disease. Fluorodeoxyglucose Positrons Emission Tomography (FDG-PET) is a functional molecular imaging modality, that can be used to help understand the anatomical and neural changes of brain related to AD. With the success of Convolutional Neural Network (CNN) especially in image classification, we develop a CNN model trained on FDG-PET images from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to discern between AD, MCI, and Cognitive Normal (CN) states. Incorporating Gradient-weighted Class Activation Mapping (Grad-CAM) enhances model interpretability, highlighting crucial image regions for disease prediction and to enhance our model interpretability and make our model more transparent and explainable. Our multiclass model achieves accuracy (97%), precision (99%), recall (99%), and F1 scores (99%). Grad-CAM-generated heatmaps give insight into the model’s decision-making process, aiding in understanding important classification regions within images. Based on our findings, not only demonstrate the model’s capability in classifying Alzheimer’s disease and its prodromal stage but it also provides visual insights that showcase its potential to advance diagnostic tools in healthcare.

 File Digital: 1

Shelf
 T-Aldiman Bakhti.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xi, 39 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-25-93193740 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920561525
Cover