UI - Tesis Membership :: Back

UI - Tesis Membership :: Back

Pengembangan Model Klasifikasi Multi-kelas dan Multi-label Anomali Tuberkulosis dengan Arsitektur SwinTransformer = Development of a Multi-Class and Multi-Label Classification Model of Tuberculosis Anomalies Using SwinTransformer Architecture

Rizka Yulvina; Mia Rizkinia, supervisor; Katili, Puspita Anggraini, examiner; Basari, examiner; Mohammad Ikhsan, examiner (Fakultas Teknik Universitas Indonesia, 2024)

 Abstract

Tuberkulosis (TB), yang disebabkan oleh Mycobacterium tuberculosis, terus menjadi salah satu penyebab utama kematian di dunia. Deteksi TB dapat dilakukan melalui analisis citra X-Ray dada (CXR), dan berbagai penelitian telah memanfaatkan kecerdasan buatan (AI) untuk mengotomasi serta meningkatkan proses diagnostik. Namun, pendekatan yang ada sering kali hanya berfokus pada deteksi lesi secara parsial atau tidak lengkap, tanpa menyediakan solusi komprehensif untuk klasifikasi multi-label dan multi-kelas dari seluruh spektrum anomali yang terkait TB. Penelitian ini mengembangkan model Artificial Intelligence (AI) dengan arsitektur SwinTransformer Tiny untuk klasifikasi multi-kelas dan multi-label 14 anomali terkait TB secara lebih efisien. Data yang digunakan terdiri dari 133 citra CXR dari RSUPN Dr. Cipto Mangunkusumo (RSCM) dan 360 citra dari dataset National Institutes of Health (NIH). Ketidakseimbangan data diatasi dengan teknik augmentasi data dan penggunaan customized focal loss. Model ini berhasil mencapai AUC sebesar 0.57, Binary Accuracy 0.869, nilai Loss 0.068, dan nilai Hamming Score 0.514. Dibandingkan dengan beberapa arsitektur lainnya seperti Hybrid CNN & ViT, ConvNeXt Tiny, dan EfficientNetB0, model ini menunjukkan performa AUC terbaik. Dalam kasus klasifikasi multi-label dan multi-kelas seperti ini, AUC menjadi metrik utama yang lebih relevan untuk mengevaluasi keberhasilan model. Mengingat kompleksitas dalam menangani data multi-label dan multi-kelas dengan sampel yang terbatas serta ketidakseimbangan data, skor AUC ini mencerminkan tantangan yang ada dalam tugas ini, bukan kekurangan dari model itu sendiri. Dengan mengklasifikasikan label-label TB yang paling spesifik dalam satu studi AI, penelitian ini menyoroti potensi AI untuk meningkatkan akurasi dan efisiensi dalam mendeteksi anomali terkait TB. Selain itu, model ini dilengkapi dengan penerapan Saliency Map sebagai metode Explainable AI (XAI), yang memberikan interpretasi medis yang lebih jelas terhadap prediksi model.

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains one of the leading causes of death worldwide. TB detection can be performed through Chest X-Ray (CXR) analysis, and various studies have leveraged artificial intelligence (AI) to automate and enhance the diagnostic process. However, existing approaches often focus only on partial or incomplete lesion detection, lacking a comprehensive solution for multi-label and multi-class classification of the full spectrum of TB-related anomalies. This study developed an AI model using the SwinTransformer Tiny architecture for efficient multi-class and multi-label classification of 14 TB-related anomalies. The dataset consisted of 133 CXR images from RSUPN Dr. Cipto Mangunkusumo and 360 images from the NIH dataset. Data imbalance was addressed using data augmentation techniques and customized focal loss. The model achieved an AUC of 0.57, an accuracy of 0.869, a Loss value of 0.068, and Hamming Score value 0.514. Compared to other architectures such as Hybrid CNN & ViT, ConvNeXt Tiny, and EfficientNetB0, this model demonstrated the best AUC performance. In multi-label and multi-class classification tasks like this, AUC is the primary metric for evaluating model performance. Given the complexity of handling multi-label and multi-class data with limited and imbalanced samples, the AUC score reflects the challenging nature of this task rather than any shortcomings of the model itself. By classifying the most specific TB-related labels in a single AI study, this research highlights the potential of AI to improve the accuracy and efficiency of detecting TB-related anomalies. Furthermore, the model is equipped with the implementation of Saliency map as an Explainable AI (XAI) method, providing clearer medical interpretations of the model's predictions.

 Digital Files: 1

Shelf
 T-Rizka Yulvina.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Tesis Membership
Call Number : T-pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Jakarta: Fakultas Teknik Universitas Indonesia, 2024
Cataloguing Source LibUI ida rda
Content Type text
Media Type computer
Carrier Type online resource
Physical Description xiii, 128 pages : illustration
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
T-pdf 15-25-94374915 TERSEDIA
Review:
No review available for this collection: 9999920564475
Cover