MODELISASI STRUKTUR SOLID AXISYMMETRI DENGAN METODE ELEMEN HINGGA

SKRIPSI

Oleh <u>RIRIT APRILIN S</u> 0405210395

DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS INDONESIA GENAP 2007/2008

Modelisasi struktur..., Ririt A S, FT UI, 2008

MODELISASI STRUKTUR SOLID AXISYMMETRI DENGAN METODE ELEMEN HINGGA

SKRIPSI INI DIAJUKAN UNTUK MELENGKAPI SEBAGIAN PERSYARATAN MENJADI SARJANA TEKNIK

DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS INDONESIA GENAP 2007/2008

MODELISATION OF AXISYMMETRIC SOLID USING FINITE ELEMENT METHOD

BACHELOR THESIS

By <u>RIRIT APRILIN S</u> 0405210395

THIS BACHELOR THESIS IS MADE TO COMPLETE CERTAIN REQUIREMENT TO GET A BACHELOR DEGREE IN ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING UNIVERSITY OF INDONESIA ACADEMIC YEAR 2007/2008

PERNYATAAN KEASLIAN SKRIPSI

Saya menyatakan dengan sesungguhnya bahwa skripsi dengan judul :

MODELISASI STRUKTUR SOLID AXISYMMETRI DENGAN METODE ELEMEN HINGGA

yang dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik pada Program Studi Teknik Sipil Departemen Teknik Sipil Fakultas Teknik Universitas Indonesia, sejauh yang saya ketahui merupakan ide dari Dosen Pembimbing Skripsi dan bukan merupakan tiruan atau duplikasi dari skripsi yang sudah dipublikasikan dan atau pernah dipakai untuk mendapatkan gelar kesarjanaan di lingkungan Universitas Indonesia maupun di Perguruan Tinggi atau Instansi manapun, kecuali bagian yang sumber informasinya dicantumkan sebagaimana mestinya. Semua hasil yang menjadi akibat pekerjaan skripsi ini menjadi milik dan hak sepenuhnya dari Dosen Pembimbing saya.

Depok, 9 Juli 2008

<u>Ririt Aprilin S</u> NPM 0405210395

AUTHENTICATION

I state truly that this bachelor thesis titled :

MODELISATION OF AXISYMMETRIC SOLID USING FINITE ELEMENT METHOD

is made to complete certain requirements to get a Bachelor Degree in Engineering majoring in Civil Engineering from the Department of Civil Engineering, Faculty of Engineering University of Indonesia. As far as I know, it is the idea of my supervisor and not a copy or duplication from other bachelor thesis which has ever been published or used to get a bachelor degree either at the University of Indonesia or other College and Institution ever, except some parts of the information is stated as its function. All the content and assignment done in this bachelor thesis is handed fully rights and ownership by my supervisor.

Depok, July 9th, 2008

<u>Ririt Aprilin S</u> NPM 0405210395

PENGESAHAN

Skripsi dengan judul :

MODELISASI STRUKTUR SOLID AXISYMMETRI DENGAN METODE ELEMEN HINGGA

dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik pada Program Studi Teknik Sipil Departemen Teknik Sipil Fakultas Teknik Universitas Indonesia. Skripsi ini telah diujikan pada sidang ujian skripsi pada tanggal 9 Juli 2008 dan dinyatakan memenuhi syarat atau sah sebagai skripsi pada Departemen Teknik Sipil Fakultas Teknik Universitas Indonesia.

> Depok, 9 Juli 2008 Dosen Pembimbing

Prof. Dr. Ir. Irwan KATILI, DEA NIP 131 599 289

AUTHORIZATION

This bachelor thesis titled :

MODELISATION OF AXISYMMETRIC SOLID USING FINITE ELEMENT METHOD

is made to complete certain requirements to get a Bachelor Degree majoring in Civil Engineering from the Department of Civil Engineering, Faculty of Engineering University of Indonesia. This bachelor thesis has been examined in the bachelor thesis session in July 9th, 2008 and authorized as a bachelor thesis in Department of Civil Engineering, Faculty of Engineering University of Indonesia.

Depok, July 9th, 2008

Supervisor

Prof. Dr. Ir. Irwan KATILI, DEA NIP 131 599 289

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada :

Bapak Prof. Dr. Ir. Irwan KATILI, DEA

selaku dosen pembimbing yang telah bersedia memberikan topik skripsi serta meluangkan begitu banyak waktu untuk memberikan pengarahan, diskusi dan bimbingan serta persetujuan sehingga skripsi ini dapat selesai dengan baik.

KATA PENGANTAR

all all all and

Assalammu'alaikum Wr. Wb.

Segala puji bagi Allah SWT yang telah mencurahkan segala rahmat dan karunia-Nya sehingga kami masih dapat melaksanakan segala aktivitas dan ibadah dengan penuh rasa syukur. Shalawat dan salam kami haturkan kepada suri tauladan terbaik Nabi Muhammad SAW, yang atas segala pengorbanannya kami dapat merasakan nikmatnya Islam dan insya Allah akan setia berpegang teguh hingga husnul khotimah. Amin...

Skripsi dengan judul "Modelisasi Struktur Solid Axisymmetri dengan Metode Elemen Hingga" ini dibuat atas ide dari dosen pembimbing yang telah memberikan banyak ilmu dan kesempatan kepada saya untuk menggali lebih dalam tentang topik tersebut. Selain itu saya ingin menghaturkan ucapan terima kepada semua pihak yang telah memberikan dukungan dan masukan sehingga skripsi ini dapat selesai dengan baik, diantaranya yaitu kepada :

- 1. Bapak Prof. Dr. Ir. Irwan KATILI, DEA selaku Ketua Departemen Teknik Sipil, yang telah memberikan kesempatan kepada saya untuk menimba ilmu di Teknik Sipil
- 2. Orang tua terhormat yang tak akan pernah bisa terbalas jasanya dan telah begitu banyak berdoa dan memberikan segala bentuk dukungannya, begitu pula kepada adikku yang telah memberikan semangat untuk selalu fokus menyelesaikan skripsi
- 3. Bapak Prof. Dr. Ir. Irwan KATILI, DEA yang telah bersedia memberikan topik skripsi untuk saya, serta dengan baik hati dan sabar memberikan bimbingan kepada saya. Terima kasih untuk segala waktu, kesempatan dan nilai yang telah diberikan kepada saya, mohon maaf atas segala kekurangan dan ketidaksempurnaan dalam diri saya baik berupa sikap, perkataan maupun pemikiran. Bapak baik banget, saya tidak bisa membalas apa yang sudah bapak berikan pada saya, hanya Allah SWT yang bisa membalasnya. Mohon doanya selalu ya Pak
- 4. Dosen-dosen penguji yang telah bersedia menguji saya pada sidang seminar dan sidang skripsi Pak Iwan Renadi, Pak Josia I Rastandi, Ibu Mulia Orientilize, dan Ibu Essy Ariyuni yang telah memberikan banyak masukan pada saat sidang. Terima kasih
- 5. Teman terbaik yang pernah ada (*my twin sister Ririn*), atas segala doanya dan support yang luar biasa besar. Terima kasih untuk semua sms penyemangat menemani harihari kerja keras. Ingatlah bahwa kita belum sampai *rumah*, saat tiba di*rumah* sebenarnya yakinlah semuanya indah dan manis di akhir perjalanan.

BERSABARLAH... karena segala usaha tak ada yang sia-sia di mata Allah SWT. Semangat...!!!

- 6. Teman-teman dalam sebuah lingkaran, yang tak hentinya memberikan doa dengan segala ketulusan hati dan keyakinan. Semoga Allah SWT mempererat tali ukhuwah kita dan membalas dengan yang terbaik untuk kalian semua saudariku
- 7. Teman-teman Sipil (alfisah, yeni, firna, pipit, nourma, afifa, ika, ichsan, eko, habib, salim, dll yang terlupa untuk disebutkan) yang dengan tulusnya mendukung saat aku tak lagi yakin bahwa aku bisa, justru kalian lah yang memberikan keyakinan bahwa aku bisa. Untuk segala doa yang kalian panjatkan dan bantuan yang diberikan setiap kali aku membutuhkan, termasuk yang bersedia membawakan PC dari rumah saat sidang. Sungguh teman yang tak tergantikan sepanjang hidup. Untuk semua hari yang telah dijalani bersama, insya Allah penuh dengan manfaat dan kenangan
- 8. Untuk komputer yang alhamdulillah selalu *on* berikut lagu dan murottalnya yang senantiasa bersenandung menemani hari-hari begadang menginput data. Untuk semua keadaan dan situasi yang mendukung kenyamanan mengerjakan skripsi ini
- 9. Untuk semua buku referensi yang telah membuat aku membaca, untuk semua komik dan novel yang telah memberikan warna berbeda pada hari-hari yang berat, untuk semua film kartun khususnya Chibi Maruko Chan yang telah membuat rileks pikiran

Saya berharap banyak manfaat yang bisa diambil dari skripsi ini. Walaupun begitu saya menyadari banyak kekurangan dalam skripsi ini, baik berupa penulisan ataupun pengembangan ide dan kerangka pemikiran, sehingga saya akan sangat berterima kasih jika pembaca bersedia memberikan masukan yang berharga atas segala kekurangan yang ada. Semoga Allah SWT memberikan nilai ibadah dalam skripsi ini. Amin.

Penulis

Ririt Aprilin S NPM 0405210395 Departemen Teknik Sipil Dosen Pembimbing : Prof. Dr. Ir. Irwan KATILI, DEA

MODELISASI STRUKTUR SOLID AXISYMMETRI DENGAN METODE ELEMEN HINGGA

ABSTRAK

Suatu bidang dua dimensi yang berputar atau berevolusi pada suatu sumbu axis dikatakan sebagai solid axisymmetri. Dalam penulisan ini, modelisasi struktur solid axisymmetri dilakukan dengan Metode Elemen Hingga. Di mana kita mendiskritisasi struktur menjadi elemen-elemen yang lebih kecil dengan bentuk elemen triangular maupun quadrilateral.

Diskritisasi struktur menggunakan elemen triangular 3 nodal dan elemen quadrilateral 4 nodal. Elemen triangular 3 nodal berarti titik nodal hanya berada pada sudut elemen. Pengertian yang sama juga berlaku untuk elemen quadrilateral 4 nodal. Nilai *displacement* dan tegangan yang diperoleh bergantung pada jumlah elemen yang digunakan dan bentuk diskritisasi strukturnya. Semakin banyak dan halus jaringan, idealnya akan memberikan nilai yang mendekati solusi eksak.

Struktur solid axisymmetri dapat diaplikasikan pada *thick wall cylinder, water tank, belleville spring* atau pada tiang pancang tunggal. Modelisasi struktur solid axisymmetri dengan Metode Elemen Hingga dilakukan dengan menggunakan alat bantu komputer dan memanfaatkan *software* MATLAB versi 7.1. Selain itu menggunakan *commercial software* lainnya semisal ANSYS ED 10.1 *student version* untuk menetapkan bentuk diskritisasi struktur yang baik.

Pada problem struktur yang memiliki solusi eksak, analisis numerik dengan mengaplikasikan *software* yang ada memperoleh hasil yang baik dilihat dari adanya korelasi antara jumlah elemen yang digunakan dan nilai solusi eksak. Sedangkan pada problem struktur yang tidak memiliki solusi eksak, hasil yang baik ditunjukkan dengan hasil berupa grafik asimtotik, sehingga dapat diperkirakan besarnya nilai peralihan dan tegangan yang terjadi.

Kata Kunci : Solid Axisymmetri, Triangular 3 Nodal, Quadrilateral 4 Nodal, Peralihan, Tegangan, MATLAB

Ririt Aprilin S NPM 0405210395 Department of Civil Engineering Supervisor : Prof. Dr. Ir. Irwan KATILI, DEA

MODELISATION OF AXISYMMETRIC SOLID USING FINITE ELEMENT METHOD

ABSTRACT

An axisymmetric solid structure is a two-dimensional plane problem which is rotated or revolved under an axis. This bachelor thesis discusses about axisymmetric solid structure modelisation using Finite Element Method. By using Finite Element Method, we divide the structure into smaller discrete number of elements such as triangular element and quadrilateral element.

Discretization of structure makes use of 3-node-triangular element and 4-nodequadrilateral element. Three-node-triangular element means that the nodes are only available at the corner of the element. The same explanation is valid for the 4-nodequadrilateral element. Value of displacement and stresses depends on the element that we use and also the type of the discretization which is applied to the structure. The more element and finer discretization applied, ideally the closer value to the exact solution got.

Axisymmetric solid structures can be applied to the thick wall cylinder, water tank, Belleville spring, or single driven pile. Modelisation of axisymmetric solid using Finite Element Method is performed by making use of the computer and software, which is MATLAB version 7.1. Besides, we also use other commercial software such as ANSYS ED 10.1 student version to help us considering the best discretization made.

For the structural problem which has the exact solution, the numerical analysis by applying the software shows that the results is good which is seen from the good correlation between the number of elements used and the exact solution value. While the structural problem which has no exact solution, good result shows from the asymptotic curve, then we may predict the magnitude of the displacement and stresses value occurred.

Keywords

: Axisymmetric Solid, 3-Node-Triangular, 4-Node-Quadrilateral, Displacement, Stress, MATLAB

DAFTAR ISI

	Halaman
HALAMAN JUDUL	i
PERNYATAAN KEASLIAN SKRIPSI	iv
AUTHENTICATION	v
LEMBAR PENGESAHAN	vi
AUTHORIZATION	vii
UCAPAN TERIMA KASIH	viii
KATA PENGANTAR	ix
ABSTRAK	xi
ABSTRACT	xii
DAFTAR ISI	xiii
DAFTAR GAMBAR	xvii
DAFTAR TABEL	xxiv
DAFTAR NOTASI	xxvii
DATAR SINGKATAN	xxviii
BAB I. PENDAHULUAN	1
1.1 Latar Belakang Penulisan	1
1.2 Tujuan Penulisan	1
1.3 Ruang Lingkup Pembahasan	2
1.4 Studi Literatur	2
BAB II. DASAR TEORI	3
2.1 Definisi dan Deskripsi Umum	3
2.2 Metode Elemen Hingga untuk Solid Axisymmetri	5
2.2.1 Vektor Posisi dan Koordinat Silinder	5
2.2.2 Peralihan Virtuil dan Deformasi Virtuil	7
2.2.3 Peralihan Riil dan Deformasi Riil	9
2.2.4 Tegangan dan Persamaan Keseimbangan	10
2.2.5 Hubungan Tegangan Regangan pada Solid Axisymmetri	11
2.2.6 Prinsip Kerja Virtuil	12
2.2.7 Tipe Elemen untuk Solid Axisymmetri	13
2.2.8 Elemen Triangular 3 Nodal	13
2.2.9 Elemen Quadrilateral 4 Nodal	15

	2.3	Gaya	Nodal	17
		2.3.1	Gaya Nodal Akibat Regangan Awal	17
		2.3.2	Gaya Bodi Merata	17
		2.3.3	Gaya Nodal Akibat Beban Permukaan (Surface Traction)	18
	2.4	Perhit	ungan dengan Integrasi Numerik Gauss dan Hammer	19
BA	B II	I. PRO	GRAMASI ELEMEN HINGGA DENGAN MATLAB	23
	3.1	Deskr	ipsi Umum	23
	3.2	Varia	bel dan Operasi Matematika dalam MATLAB	23
	3.3	Fungs	si Matrik dalam MATLAB	25
	3.4	Perula	angan dan Kondisional – Control Flow	25
		3.4.1	Perulangan atau Iterasi (Looping)	26
		3.4.2	Kondisional atau Percabangan	27
	3.5	Aplik	asi Metode Elemen Hingga dengan MATLAB	27
	3.6	Aspel	c Programasi	28
	3.7	Diskr	itisasi Struktur	28
	3.8	Input	Data	29
	3.9	Subru	tin untuk Membuat Sebuah Fungsi	30
	3.1	0Meng	umpulkan Elemen ke dalam Matrik dan Vektor	31
	3.1	1Diagr	am Alir Penyelesaian Solusi	31
BA	ΒI	v. st	JBRUTIN DAN MAIN PROGRAM UNTUK MODELISASI	32
		ST	FRUKTUR SOLID AXISYMMETRI	
5	4.1	Subru	tin yang Digunakan untuk Modelisasi Struktur Solid	32
		Axisy	mmetri	
		4.1.1	Subrutin Array Matrik Elemen yang Terkait dengan DOF-nya	32
		4.1.2	Subrutin untuk Menyatukan Matrik Elemen-elemen	33
		4.1.3	Subrutin untuk Aplikasi DOF = 0 pada Persamaan Matrik	33
		4.1.4	Subrutin Matrik Jacobian	34
		4.1.5	Subrutin Titik Integrasi Gauss dan Faktor Pemberat untuk	35
			Integrasi Numerik Gauss 1D	
		4.1.6	Subrutin Titik Integrasi Gauss dan Faktor Pemberat untuk	36
			Integrasi Numerik Gauss 2D	
		4.1.7	Subrutin Shape Function dan Turunannya terhadap ξ dan η	37
			untuk Elemen Quadrilateral 4 Nodal	
		4.1.8	Subrutin Turunan Shape Function terhadap Koordinat Silinder r	38
			dan z	

	4.1.9	Subrutin Array Matrik [B]	39
	4.1.10) Subrutin Array Matrik Hooke [H]	40
4.2	Main	Program Modelisasi Struktur Solid Axisymmetri	41
	4.2.1	Elemen Triangular 3 Nodal	41
	4.2.2	Elemen Quadrilateral 4 Nodal	48
BAB V	. UJI N	IUMERIK DAN ANALISA HASIL	55
5.1	Open	-Ended Cylinder	55
	5.1.1	Solusi Eksak untuk Open-Ended Cylinder	56
	5.1.2	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	57
		5.1.2.1 Diskritisasi Struktur Adaptif 18 Elemen	58
		5.1.2.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	60
	5.1.3	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	64
		5.1.3.1 Diskritisasi Struktur Adaptif 7 Elemen	64
		5.1.3.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	66
5.2	Close	-ended Cylinder yang Diberi Tekanan dari Dalam	71
	5.2.1	Solusi Eksak untuk Close-Ended Cylinder	72
	5.2.2	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	73
		5.2.2.1 Diskritisasi Struktur Adaptif 28 Elemen	73
		5.2.2.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	75
	5.2.3	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	78
	1	5.2.3.1 Diskritisasi Struktur Adaptif 20 Elemen	78
-		5.2.3.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	80
5.3	Close	d-ended Cylinder yang Diberi Beban Aksial	84
	5.3.1	Solusi Eksak	85
	5.3.2	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	85
		5.3.2.1 Diskritisasi Struktur Adaptif 28 Elemen	85
		5.3.2.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	87
	5.3.3	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	90
		5.3.3.1 Diskritisasi Struktur Adaptif 20 Elemen	90
		5.3.3.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	92
5.4	Bellev	ville Spring	95
	5.4.1	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	96
		5.4.1.1 Diskritisasi Struktur Adaptif 12 Elemen	96
		5.4.1.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	98
	5.4.2	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	100

		5.4.2.1 Diskritisasi Struktur Adaptif 51 Elemen	100
		5.4.2.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	102
5.5	Circul	ar Pad Hydrostatic Bearing	105
	5.5.1	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	106
		5.5.1.1 Diskritisasi Struktur Adaptif 16 Elemen	106
		5.5.1.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	108
	5.5.2	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	110
		5.5.2.1 Diskritisasi Struktur Adaptif 20 Elemen	111
		5.5.2.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	112
5.6	Cup-S	Shaped Steel Die Block	116
	5.6.1	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	117
		5.6.1.1 Diskritisasi Struktur Adaptif 17 Elemen	117
		5.6.1.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	119
	5.6.2	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	121
		5.6.2.1 Diskritisasi Struktur Adaptif 13 Elemen	121
		5.6.2.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	123
5.7	Circul	lar Water Tank	127
	5.7.1	Diskritisasi Struktur dengan Elemen Triangular 3 Nodal	128
		5.7.1.1 Diskritisasi Struktur Adaptif 20 Elemen	128
		5.7.1.2 Analisa Hasil dengan Elemen Triangular 3 Nodal	130
	5.7.2	Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal	132
-		5.7.2.1 Diskritisasi Struktur Adaptif 16 Elemen	133
-	4.	5.7.2.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal	135
BAB V	I. KES	IMPULAN	138
DAFTA	AR RE	FERENSI	140

DAFTAR GAMBAR

		Halaman
Gambar 2.1	Elemen cincin axisymmetri	3
Gambar 2.2	Problem Axisymmetri	4
Gambar 2.3	Volume dasar struktur Solid Axisymmetri	4
Gambar 2.4	Deformasi pada volume dasar struktur Solid Axisymmetri	5
Gambar 2.5	Koordinat silinder r, θ , dan z	5
Gambar 2.6	Vektor posisi <i>p</i> pada permukaan silinder	6
Gambar 2.7	Peralihan virtuil u^* , v^* , dan w^* pada koordinat silinder	7
Gambar 2.8	Vektor dx^* dan dy^*	8
Gambar 2.9	Komponen Tensor Cauchy [σ]	10
Gambar 2.10	(a) Elemen triangular 3 nodal	13
	(b) Elemen quadrilateral 4 nodal	13
Gambar 2.11	Elemen isoparametrik triangular 3 nodal	14
Gambar 2.12	Elemen isoparametrik quadrilateral 4 nodal	15
Gambar 2.13	Surface Traction	18
Gambar 2.14	(a) Titik integrasi Hammer untuk orde 1	19
-	(b) dan (c) Titik integrasi Hammer untuk orde 2;	19
	(d) Titik integrasi Gauss untuk orde 3	19
Gambar 3.1	Diskritisasi struktur solid axisymmetri dengan elemen	28
	triangular 3 nodal	
Gambar 4.1	Problem CST Struktur Solid Axisymmetri	41
Gambar 4.2	Problem Q4 Struktur Solid Axisymmetri	48
Gambar 5.1	(a) Open-ended Cylinder yang dibebani tekanan dari dalam	55
	(b) Model struktur simetris	55
Gambar 5.2	Open-ended Cylinder	56
Gambar 5.3	Diskritisasi adaptif dengan 18, 28, 38, 114, 360, 588 dan 850	57
	elemen	
Gambar 5.4	Deformasi struktur dan kontur tegangan arah radial, aksial,	59
	circumferential, dan tegangan geser radial-aksial	
Gambar 5.5	Grafik konvergensi elemen untuk peralihan radial pada	60
	koordinat nodal (34,0)	
Gambar 5.6	Grafik konvergensi elemen untuk peralihan radial pada	60

koordinat nodal (34,200)

- **Gambar 5.7** Grafik konvergensi elemen untuk tegangan rata-rata arah 61 radial pada koordinat nodal (34,0)
- **Gambar 5.8** Grafik konvergensi elemen untuk tegangan rata-rata arah 61 radial pada koordinat nodal (34,200)
- **Gambar 5.9** Grafik konvergensi elemen untuk tegangan rata-rata arah 62 aksial pada koordinat nodal (34,0)
- **Gambar 5.10** Grafik konvergensi elemen untuk tegangan rata-rata arah 62 aksial pada koordinat nodal (34,200)
- **Gambar 5.11** Grafik konvergensi elemen untuk tegangan rata-rata arah 63 *circumferential* pada koordinat nodal (34,0)
- Gambar 5.12 Grafik konvergensi elemen untuk tegangan rata-rata arah 63 *circumferential* pada koordinat nodal (34,200)
- Gambar 5.13 Diskritisasi adaptif dengan 7, 13, 45, 114, 310, 489 dan 800 64 elemen
- **Gambar 5.14** Deformasi struktur dan kontur tegangan arah radial, aksial, 66 *circumferential*, dan tegangan geser radial-aksial
- **Gambar 5.15** Grafik konvergensi elemen untuk peralihan radial pada 66 koordinat nodal (34,0)
- **Gambar 5.16** Grafik konvergensi elemen untuk peralihan radial pada 67 koordinat nodal (34,200)
- **Gambar 5.17** Grafik konvergensi elemen untuk tegangan rata-rata arah 67 radial pada koordinat nodal (34,0)
- Gambar 5.18 Grafik konvergensi elemen untuk tegangan rata-rata arah 68 radial pada koordinat nodal (34,200)
- **Gambar 5.19** Grafik konvergensi elemen untuk tegangan rata-rata arah 68 aksial pada koordinat nodal (34,0)
- Gambar 5.20 Grafik konvergensi elemen untuk tegangan rata-rata arah 69 aksial pada koordinat nodal (34,200)
- **Gambar 5.21** Grafik konvergensi elemen untuk tegangan rata-rata arah 69 *circumferential* pada koordinat nodal (34,0)
- Gambar 5.22 Grafik konvergensi elemen untuk tegangan rata-rata arah 70 *circumferential* pada koordinat nodal (34,200)
- Gambar 5.23(a) Close-ended cylinder yang diberi tekanan dari dalam71(b) Model struktur simetris71

Gambar 5.24	Close-ended cylinder	72
Gambar 5.25	Diskritisasi adaptif dengan 28, 44, 136, 260, 582 dan 764	73
	elemen	
Gambar 5.26	Deformasi struktur dan kontur tegangan arah radial, aksial,	75
	circumferential, dan tegangan geser radial-aksial	
Gambar 5.27	Grafik konvergensi elemen untuk peralihan radial pada	75
	koordinat nodal (34,220)	
Gambar 5.28	Grafik konvergensi elemen untuk peralihan aksial pada	76
	koordinat nodal (34,220)	
Gambar 5.29	Grafik konvergensi elemen untuk tegangan rata-rata arah	76
	radial pada koordinat nodal (34, 220)	
Gambar 5.30	Grafik konvergensi elemen untuk tegangan rata-rata arah	77
	aksial pada koordinat nodal (34,220)	
Gambar 5.31	Grafik konvergensi elemen untuk tegangan rata-rata arah	77
	circumferential pada koordinat nodal (34,220)	
Gambar 5.32	Diskritisasi adaptif dengan 20, 58, 102, 316 dan 517 elemen	78
Gambar 5.33	Deformasi struktur dan kontur tegangan arah radial, aksial,	80
	circumferential, dan tegangan geser radial-aksial	
Gambar 5.34	Grafik konvergensi elemen untuk peralihan radial pada	80
-	koordinat nodal (34,220)	4
Gambar 5.35	Grafik konvergensi elemen untuk peralihan aksial pada	81
-	koordinat nodal (34,220)	Ê.
Gambar 5.36	Grafik konvergensi elemen untuk tegangan rata-rata arah	81
C.	radial pada koordinat nodal (34,220)	
Gambar 5.37	Grafik konvergensi elemen untuk tegangan rata-rata arah	82
	aksial pada koordinat nodal (34,220)	
Gambar 5.38	Grafik konvergensi elemen untuk tegangan rata-rata arah	82
	circumferential pada koordinat nodal (34,220)	
Gambar 5.39	(a) Close-ended cylinder yang diberi beban aksial	84
	(b) Model struktur simetris	84
Gambar 5.40	Diskritisasi adaptif dengan 28, 44, 136, 260, 582 dan 764	85
	elemen	
Gambar 5.41	Deformasi struktur dan kontur tegangan arah radial, aksial,	87
	circumferential, dan tegangan geser radial-aksial	
Gambar 5.42	Grafik konvergensi elemen untuk peralihan radial pada	87

koordinat nodal (34,220)

- Gambar 5.43 Grafik konvergensi elemen untuk peralihan aksial pada 88 koordinat nodal (34,220)
- Gambar 5.44 Grafik konvergensi elemen untuk tegangan rata-rata arah 88 radial pada koordinat nodal (34, 220)
- **Gambar 5.45** Grafik konvergensi elemen untuk tegangan rata-rata arah 89 aksial pada koordinat nodal (34, 220)
- Gambar 5.46 Grafik konvergensi elemen untuk tegangan rata-rata arah 89 *circumferential* pada koordinat nodal (34, 220)
- Gambar 5.47 Diskritisasi adaptif dengan 20, 58, 102, 316 dan 517 elemen 90
- Gambar 5.48 Deformasi struktur dan kontur tegangan arah radial, aksial, 91 *circumferential*, dan tegangan geser radial-aksial
- Gambar 5.49 Grafik konvergensi elemen untuk peralihan radial pada 92 koordinat nodal (34,220)
- Gambar 5.50 Grafik konvergensi elemen untuk peralihan aksial pada 92 koordinat nodal (34,220)
- Gambar 5.51 Grafik konvergensi elemen untuk tegangan rata-rata arah 93 radial pada koordinat nodal (34, 220)
- **Gambar 5.52** Grafik konvergensi elemen untuk tegangan rata-rata arah 93 aksial pada koordinat nodal (34, 220)
- **Gambar 5.53** Grafik konvergensi elemen untuk tegangan rata-rata arah 94 *circumferential* pada koordinat nodal (34, 220)
- Gambar 5.54(a) Belleville spring95(b) Model struktur simetris dengan perletakan rol95
- Gambar 5.55 Diskritisasi adaptif dengan 12, 76, 114, 314, 648 dan 872 96 elemen
- Gambar 5.56 Deformasi struktur dan kontur tegangan arah radial, aksial, 97 *circumferential*, dan tegangan geser radial-aksial
- Gambar 5.57 Grafik konvergensi elemen untuk peralihan aksial pada 98 koordinat nodal (10,16; 5,08)
- **Gambar 5.58** Grafik konvergensi elemen untuk tegangan rata-rata arah 98 radial pada koordinat nodal (10,16; 5,08)
- **Gambar 5.59** Grafik konvergensi elemen untuk tegangan rata-rata arah 99 aksial pada koordinat nodal (10,16; 5,08)
- Gambar 5.60 Grafik konvergensi elemen untuk tegangan rata-rata arah 99

circumferential pada koordinat nodal (10,16; 5,08)

- Gambar 5.61 Diskritisasi adaptif dengan 51, 104, 301, 522 dan 770 elemen 100
- **Gambar 5.62** Deformasi struktur dan kontur tegangan arah radial, aksial, 101 *circumferential*, dan tegangan geser radial-aksial
- **Gambar 5.63** Grafik konvergensi elemen untuk peralihan aksial pada 102 koordinat nodal (10,16 ; 5,08)
- **Gambar 5.64** Grafik konvergensi elemen untuk tegangan arah radial pada 102 koordinat nodal (10,16; 5,08)
- **Gambar 5.65** Grafik konvergensi elemen untuk tegangan arah aksial pada 103 koordinat nodal (10,16; 5,08)
- Gambar 5.66 Grafik konvergensi elemen untuk tegangan arah 103 *circumferential* pada koordinat nodal (10,16 ; 5,08)
- Gambar 5.67(a) Circular pad hydrostatic bearing105(b) Model struktur simetris105
- Gambar 5.68 Diskritisasi adaptif dengan 16, 47, 108, 297, 572 dan 769 106 elemen
- Gambar 5.69 Deformasi struktur dan kontur tegangan arah radial, aksial, 107 *circumferential*, dan tegangan geser radial-aksial
- **Gambar 5.70** Grafik konvergensi elemen untuk peralihan radial pada 108 koordinat nodal (25,0)
- **Gambar 5.71** Grafik konvergensi elemen untuk peralihan aksial pada 108 koordinat nodal (25,0)
- **Gambar 5.72** Grafik konvergensi elemen untuk tegangan rata-rata arah 109 radial pada koordinat nodal (25,0)
- Gambar 5.73 Grafik konvergensi elemen untuk tegangan rata-rata arah 109 aksial pada koordinat nodal (25,0)
- Gambar 5.74 Grafik konvergensi elemen untuk tegangan rata-rata arah 110 *circumferential* pada koordinat nodal (25,0)
- Gambar 5.75 Diskritisasi adaptif dengan 20, 46, 99, 278, 514 dan 755 110 elemen
- **Gambar 5.76** Deformasi struktur dan kontur tegangan arah radial, aksial, 112 *circumferential*, dan tegangan geser radial-aksial
- Gambar 5.77 Grafik konvergensi elemen untuk peralihan radial pada 112 koordinat nodal (25,0)
- Gambar 5.78 Grafik konvergensi elemen untuk peralihan aksial pada 113

koordinat nodal (25,0)

Gambar 5.79 Grafik konvergensi elemen untuk tegangan arah radial pada 113 koordinat nodal (25,0) Grafik konvergensi elemen untuk tegangan arah aksial pada Gambar 5.80 114 koordinat nodal (25,0) Gambar 5.81 Grafik konvergensi elemen untuk 114 tegangan arah circumferential pada koordinat nodal (25,0) (a) Cup-Shaped Steel Die Block Gambar 5.82 116 (b) Model struktur simetris 116 Gambar 5.83 Diskritisasi adaptif dengan 17, 53, 111, 323, 624 dan 870 117 elemen Gambar 5.84 Deformasi struktur dan kontur tegangan arah radial, aksial, 118 circumferential, dan tegangan geser radial-aksial Gambar 5.85 Grafik konvergensi elemen untuk peralihan radial pada 119 koordinat nodal (160,320) Gambar 5.86 Grafik konvergensi elemen untuk peralihan aksial pada 119 koordinat nodal (160,320) Gambar 5.87 Grafik konvergensi elemen untuk tegangan rata-rata arah 120 radial pada koordinat nodal (160,320) Gambar 5.88 Grafik konvergensi elemen untuk tegangan rata-rata arah 120 aksial pada koordinat nodal (160,320) Gambar 5.89 Grafik konvergensi elemen untuk tegangan rata-rata arah 121 circumferential pada koordinat nodal (160,320) Diskritisasi adaptif dengan 13, 42, 102, 296, 525 dan 792 Gambar 5.90 121 elemen Gambar 5.91 Deformasi struktur dan kontur tegangan arah radial, aksial, 123 circumferential, dan tegangan geser radial-aksial Gambar 5.92 Grafik konvergensi elemen untuk peralihan radial pada 123 koordinat nodal (160,320) Gambar 5.93 Grafik konvergensi elemen untuk peralihan aksial pada 124 koordinat nodal (160,320) Gambar 5.94 Grafik konvergensi elemen untuk tegangan arah radial pada 124 koordinat nodal (160,320) Gambar 5.95 Grafik konvergensi elemen untuk tegangan arah aksial pada 125 koordinat nodal (160,320)

Gambar 5.96	Grafik konvergensi elemen untuk tegangan arah	125
	circumferential pada koordinat nodal (160,320)	
Gambar 5.97	(a) Circular Water Tank	127
	(b) Model struktur simetris	127
Gambar 5.98	Diskritisasi adaptif dengan 20, 53, 116, 284, 542 dan 744	128
	elemen	
Gambar 5.99	Deformasi struktur dan kontur tegangan arah radial, aksial,	129
	circumferential, dan tegangan geser radial-aksial	
Gambar 5.100	Grafik konvergensi elemen untuk peralihan radial pada	130
	koordinat nodal (3750,4000)	
Gambar 5.101	Grafik konvergensi elemen untuk peralihan aksial pada	130
	koordinat nodal (3750,4000)	
Gambar 5.102	Grafik konvergensi elemen untuk tegangan rata-rata arah	131
	radial pada koordinat nodal (3750,4000)	
Gambar 5.103	Grafik konvergensi elemen untuk tegangan rata-rata arah	131
	aksial pada koordinat nodal (3750,4000)	
Gambar 5.104	Grafik konvergensi elemen untuk tegangan rata-rata arah	132
	circumferential pada koordinat nodal (3750,4000)	
Gambar 5.105	Diskritisasi adaptif dengan 16, 36, 119, 278, 439 dan 578	132
	elemen	6
Gambar 5.106	Deformasi struktur dan kontur tegangan arah radial, aksial,	134
	circumferential, dan tegangan geser radial-aksial	1
Gambar 5.107	Grafik konvergensi elemen untuk peralihan radial pada	135
VL.	koordinat nodal (3750,4000)	
Gambar 5.108	Grafik konvergensi elemen untuk peralihan aksial pada	135
	koordinat nodal (3750,4000)	
Gambar 5.109	Grafik konvergensi elemen untuk tegangan arah radial pada	136
	koordinat nodal (3750,4000)	
Gambar 5.110	Grafik konvergensi elemen untuk tegangan arah aksial	136
	pada koordinat nodal (3750,4000)	
Gambar 5.111	Grafik konvergensi elemen untuk tegangan arah	137
	circumferential pada koordinat nodal (3750,4000)	

xxiii

DAFTAR TABEL

]	Halaman
Tabel 2.1	Koordinat Titik Gauss dan Faktor Bobot untuk Integrasi Numerik	20
	Gauss untuk 1D	
Tabel 2.2	Integrasi Numerik Formula Hammer untuk Triangular	21
Tabel 3.1	Operasi Matematika dalam MATLAB	24
Tabel 3.2	Fungsi Matematika Umum dalam MATLAB	24
Tabel 3.3	Fungsi Dasar Matrik dalam MATLAB	25
Tabel 3.4	Perintah Logis dan Iterasi	26
Tabel 3.5	Daftar beberapa Keyword yang digunakan dalam operasi Solid	29
	Axisymmetri	
Tabel 4.1	Perbandingan Hasil Nilai Peralihan dengan SAP v.8	47
Tabel 4.2	Perbandingan Hasil Nilai Peralihan dengan SAP v.8	54
Tabel 5.1	Nilai Solusi Eksak untuk Peralihan dan Tegangan	57
Tabel 5.2	Peralihan radial pada koordinat nodal (34,0)	60
Tabel 5.3	Peralihan radial pada koordinat nodal (34,200)	60
Tabel 5.4	Tegangan rata-rata arah radial pada koordinat nodal (34,0)	61
Tabel 5.5	Tegangan rata-rata arah radial pada koordinat nodal (34,200)	61
Tabel 5.6	Tegangan rata-rata arah aksial pada koordinat nodal (34,0)	62
Tabel 5.7	Tegangan rata-rata arah aksial pada koordinat nodal (34,200)	62
Tabel 5.8	Tegangan rata-rata arah circumferential	63
-	pada koordinat nodal (34,0)	
Tabel 5.9	Tegangan rata-rata arah circumferential	63
	pada koordinat nodal (34,200)	
Tabel 5.10	Peralihan radial pada koordinat nodal (34,0)	66
Tabel 5.11	Peralihan radial pada koordinat nodal (34,200)	67
Tabel 5.12	Tegangan rata-rata arah radial pada koordinat nodal (34,0)	67
Tabel 5.13	Tegangan rata-rata arah radial pada koordinat nodal (34,200)	68
Tabel 5.14	Tegangan rata-rata arah aksial pada koordinat nodal (34,0)	68
Tabel 5.15	Tegangan rata-rata arah aksial pada koordinat nodal (34,200)	69
Tabel 5.16	Tegangan rata-rata arah circumferential	69
	pada koordinat nodal (34,0)	
Tabel 5.17	Tegangan rata-rata arah circumferential	70

pada koordinat nodal (34, 200)

Tabel 5.18	Nilai Solusi Eksak untuk Peralihan dan Tegangan	73
Tabel 5.19	Peralihan radial pada koordinat nodal (34,220)	75
Tabel 5.20	Peralihan aksial pada koordinat nodal (34,220)	76
Tabel 5.21	Tegangan rata-rata arah radial pada koordinat nodal (34,220)	76
Tabel 5.22	Tegangan rata-rata arah aksial pada koordinat nodal (34,220)	77
Tabel 5.23	Tegangan rata-rata arah circumferential	77
	pada koordinat nodal (34,220)	
Tabel 5.24	Peralihan radial pada koordinat nodal (34,220)	80
Tabel 5.25	Peralihan aksial pada koordinat nodal (34,220)	81
Tabel 5.26	Tegangan rata-rata arah radial pada koordinat nodal (34,220)	81
Tabel 5.27	Tegangan rata-rata arah aksial pada koordinat nodal (34,220)	82
Tabel 5.28	Tegangan rata-rata arah aksial pada koordinat nodal (34,220)	82
Tabel 5.29	Nilai Solusi Eksak untuk Peralihan dan Tegangan	85
Tabel 5.30	Peralihan radial pada koordinat nodal (34,220)	87
Tabel 5.31	Peralihan aksial pada koordinat nodal (34,220)	88
Tabel 5.32	Tegangan rata-rata arah radial pada koordinat nodal (34,220)	88
Tabel 5.33	Tegangan rata-rata arah aksial pada koordinat nodal (34,220)	89
Tabel 5.34	Tegangan rata-rata arah circumferential	89
	pada koordinat nodal (34,220)	4
Tabel 5.35	Peralihan radial pada koordinat nodal (34,220)	92
Tabel 5.36	Peralihan aksial pada koordinat nodal (34,220)	92
Tabel 5.37	Tegangan rata-rata arah radial pada koordinat nodal (34,220)	93
Tabel 5.38	Tegangan rata-rata arah aksial pada koordinat nodal (34,220)	93
Tabel 5.39	Tegangan rata-rata arah circumferential	94
	pada koordinat nodal (34,220)	
Tabel 5.40	Peralihan aksial pada koordinat nodal (10,16; 5,08)	98
Tabel 5.41	Tegangan rata-rata arah radial pada koordinat nodal (10,16 ; 5,08)	98
Tabel 5.42	Tegangan rata-rata arah aksial pada koordinat nodal (10,16; 5,08)	99
Tabel 5.43	Tegangan rata-rata arah circumferential	99
	pada koordinat nodal (10,16 ; 5,08)	
Tabel 5.44	Peralihan aksial pada koordinat nodal (1; 0,09487)	102
Tabel 5.45	Tegangan arah radial pada koordinat nodal (10,16 ; 5,08)	102
Tabel 5.46	Tegangan arah aksial pada koordinat nodal (10,16; 5,08)	103
Tabel 5.47	Tegangan arah circumferential pada koordinat nodal (10,16; 5,08)	103

Tabel 5.48	Peralihan radial pada koordinat nodal (25,0)	108
Tabel 5.49	Peralihan aksial pada koordinat nodal (25,0)	108
Tabel 5.50	Tegangan rata-rata arah radial pada koordinat nodal (25,0)	109
Tabel 5.51	Tegangan rata-rata arah aksial pada koordinat nodal (25,0)	109
Tabel 5.52	Tegangan rata-rata arah circumferential	110
	pada koordinat nodal (25,0)	
Tabel 5.53	Peralihan radial pada koordinat nodal (25,0)	112
Tabel 5.54	Peralihan aksial pada koordinat nodal (25,0)	113
Tabel 5.55	Tegangan arah radial pada koordinat nodal (25,0)	113
Tabel 5.56	Tegangan arah aksial pada koordinat nodal (25,0)	114
Tabel 5.57	Tegangan arah circumferential pada koordinat nodal (25,0)	114
Tabel 5.58	Peralihan radial pada koordinat nodal (160,320)	119
Tabel 5.59	Peralihan aksial pada koordinat nodal (160,320)	119
Tabel 5.60	Tegangan rata-rata arah radial pada koordinat nodal (160,320)	120
Tabel 5.61	Tegangan rata-rata arah aksial pada koordinat nodal (160,320)	120
Tabel 5.62	Tegangan rata-rata arah circumferential	121
	pada koordinat nodal (160,320)	
Tabel 5.63	Peralihan radial pada koordinat nodal (160,320)	123
Tabel 5.64	Peralihan aksial pada koordinat nodal (160,320)	124
Tabel 5.65	Tegangan arah radial pada koordinat nodal (160,320)	124
Tabel 5.66	Tegangan arah aksial pada koordinat nodal (160,320)	125
Tabel 5.67	Tegangan arah <i>circumferential</i> pada koordinat nodal (160,320)	125
Tabel 5.68	Peralihan radial pada koordinat nodal (3750,4000)	130
Tabel 5.69	Peralihan aksial pada koordinat nodal (3750,4000)	130
Tabel 5.70	Tegangan rata-rata arah radial pada koordinat nodal (3750,4000)	131
Tabel 5.71	Tegangan rata-rata arah aksial pada koordinat nodal (3750,4000)	131
Tabel 5.72	Tegangan rata-rata arah circumferential	132
	pada koordinat nodal (3750,4000)	
Tabel 5.73	Peralihan radial pada koordinat nodal (3750,4000)	135
Tabel 5.74	Peralihan aksial pada koordinat nodal (3750,4000)	135
Tabel 5.75	Tegangan arah radial pada koordinat nodal (3750,4000)	136
Tabel 5.76	Tegangan arah aksial pada koordinat nodal (3750,4000)	136
Tabel 5.77	Tegangan arah circumferential pada koordinat nodal (3750,4000)	137

DAFTAR NOTASI

~	= menyatakan vektor (contoh : \underline{x})
*	= menyatakan suatu kuantitas virtuil (contoh : u^*)
\forall	= berlaku untuk setiap
≡	= identik dengan
∂	= diferensial
ſ	= integral
{ }	= vektor kolom
[]	= matriks (juga digunakan untuk menyatakan referensi)
$\begin{bmatrix} B \end{bmatrix}^T$	= transpos dari matriks [B]
$\begin{bmatrix} J \end{bmatrix}^{-1}$	= invers matriks[J]
$ a_1 $	= nilai absolut dari q_1 atau biasa digunakan sebagai simbol determinan
	matriks
$\left\langle \boldsymbol{D}^{*} \right\rangle = \left\{ \boldsymbol{D}^{*} \right\}^{T}$	= matrik baris (transpos dari vektor $\{D^*\}$)
A	= luas penampang
$dr, d\theta, dz$	= panjang diferensial arah sumbu radial, <i>circumferential</i> , dan aksial
ε _r	= regangan normal arah sumbu <i>r</i>
Ε	= Modulus Young atau Modulus Elastisitas
f_{r_1}	= gaya nodal dalam arah radial pada nodal 1
[<i>k</i>]	= matriks kekakuan elemen
ω	= faktor pemberat (<i>weighting factor</i>)
Ni	= fungsi bentuk pada nodal <i>i</i> elemen
N _{i,r}	= diferensial pertama dari fungsi bentuk terhadap koordinat r
П	= energi potensial total
σ_r	= tegangan normal arah sumbu radial r
W	= kerja virtuil

DAFTAR SINGKATAN

Degree of Freedom (derajat kebebasan = d.k.) DOF Prinsip Kerja Virtuil PKV Matrix Laboratory MATLAB GUI Graphical User Interface CST Constant Strain Triangle (digunakan juga untuk menyatakan elemen triangular 3 nodal) T3 Triangular 3 Nodal Q4 Quadrilateral 4 Nodal SE Solusi Eksak

xxviii

BAB I

PENDAHULUAN

1.1 LATAR BELAKANG PENULISAN

Semakin beragamnya struktur dan konfigurasinya, memberikan pemikiran baru dalam solusi perhitungan. Penyelesaian struktur riil selalu dimulai dengan melakukan modelisasi untuk mempermudah logika perhitungan. Penyelesaian suatu model struktur dapat menggunakan cara klasik atau dengan metode numerik. Metode numerik yang paling dikenal luas adalah dengan menggunakan Metode Elemen Hingga.

Penggunaan Metode Elemen Hingga untuk modelisasi struktur solid axisymmetri dapat diaplikasikan dalam Teknik Sipil, salah satunya untuk problem tiang pancang. Pengaruh tegangan dari pukulan *hammer* terhadap tiang pancang dapat dimodelkan sebagai solid axisymmetri. Besarnya tegangan dapat dihitung dengan terlebih dahulu memperkirakan luas pengaruh pukulan pada tiang pancang.

Pemahaman terhadap modelisasi struktur solid axisymmetri dengan menggunakan Metode Elemen Hingga dapat memberikan pengetahuan tentang solusi numerik yang dapat menjadi pilihan selain melakukan solusi analitis atau eksperimental. Hal ini dikarenakan tidak semua problem struktur solid axisymmetri memiliki solusi eksak. Dengan memanfaatkan Metode Elemen Hingga akan dapat diperkirakan besarnya peralihan dan tegangan pada struktur yang tidak memiliki solusi eksak.

1.2 TUJUAN PENULISAN

Secara umum penulisan skripsi ini bertujuan untuk memberikan pengetahuan kepada penulis tentang topik pembahasan yang berkaitan dengan keteknikan. Sedangkan secara khusus penulis ingin mengetahui secara jelas dan dalam tentang aplikasi modelisasi struktur solid axisymmetri dengan Metode Elemen Hingga yang sangat berkaitan dengan solusi numerik yang sedang berkembang saat ini dalam dunia Teknik Sipil.

Struktur solid axisymmetri sangat bervariasi bentuk dan pembebanannya. Terdapat beberapa problem struktur solid axisymmetri yang memiliki solusi eksak untuk mengetahui besarnya peralihan dan tegangan yang terjadi. Tetapi banyak pula problem struktur yang tidak memiliki solusi eksak, sehingga disinilah Metode Elemen Hingga memiliki manfaat yang besar. Pada problem struktur yang memiliki solusi eksak, nilai peralihan dan tegangan menjadi pegangan untuk mengetahui saat melakukan diskritisasi struktur, yaitu bahwa semakin memperbanyak jumlah elemen, seharusnya memberikan hasil yang semakin mendekati solusi eksak. Sedangkan pada problem struktur yang tidak memiliki solusi eksak, maka Metode Elemen Hingga bermanfaat untuk mengetahui besarnya nilai peralihan dan tegangan dengan cara memperbanyak jumlah elemen.

Selain itu, penyelesaian solusi numerik dengan menggunakan Metode Elemen Hingga yang memanfaatkan program tertentu seperti MATLAB, dapat memberikan pengetahuan yang sangat bermanfaat bagi penulis. Pemahaman dasar tentang kondisi batas yang tepat sangat mempengaruhi solusi, selain juga mempersingkat waktu perhitungan.

1.3 RUANG LINGKUP PEMBAHASAN

Dalam penulisan skripsi ini, ruang lingkup pembahasan yang coba dikemukan adalah :

- Model struktur solid axisymmetri dua dimensi (2D) dengan menggunakan Metode Elemen Hingga, di mana alasan modelisasi struktur menjadi problem 2D akan dibahas kemudian
- b. Penyelesaian solusi numerik menggunakan bantuan program komputer MATLAB
- c. *Sub-routine* dan *main program* yang digunakan berdasarkan pada *handbook* yang tersedia, sedangkan input yang dilakukan dapat dimodifikasi sesuai dengan kebutuhan problem struktur.
- d. Pembanding untuk menguji kebenaran output program, maka digunakan pula *commercial software* ANSYS ED 10.1. Selain itu, *commercial software* yang digunakan berguna untuk penulis menentukan bentuk diskritisasi struktur yang baik, serta jumlah elemen yang digunakan.

1.4 STUDI LITERATUR

Penulisan skripsi ini tidak lepas dari berbagai buku pegangan dan tulisan-tulisan berupa jurnal ataupun info yang terkait dengan pembahasan. Diantaranya adalah Metode Elemen Hingga untuk Analisis Tegangan, *Finite Elements for Structural Analysis, Concepts and Applications of Finite Element Analysis, The Finite Element Method using* MATLAB, *Introduction to Finite Elements in Engineering* dan buku-buku serta tulisan pendukung lainnya. Selain itu, penulis juga mendapatkan bimbingan berharga dari Dosen pembimbing yang telah memberikan bantuan yang besar tentang topik bahasan ini.

BAB II

DASAR TEORI

2.1 DEFINISI DAN DESKRIPSI UMUM

Struktur solid axisymmetri (*solid of revolution*) dibentuk dari suatu bidang yang berputar pada suatu sumbu axis. Sumbu yang terkait pada struktur solid axisymmetri adalah sumbu radial (*r*), *circumferential* (θ), dan aksial (*z*). Struktur ini biasa dimodelkan secara tiga dimensi menjadi sebuah elemen cincin axisymmetri (*axisymmetric ring element*). Sehingga deformasi struktur akibat beban dapat dianalisa, baik pada arah radial (sumbu *r*), *circumferential* (sumbu θ) maupun aksial (sumbu *z*). [W1]

Penampang melintang model Elemen Hingga untuk struktur solid axisymmetri memiliki nodal lingkaran bukan nodal titik. Hal ini dikarenakan bentuk elemen berupa elemen cincin dimana nodal titik sangat berdekatan, sehingga membentuk nodal lingkaran. Jika suatu struktur solid axisymmetri dikaitkan sebagai struktur solid umum maka akan timbul kesulitan dalam menghubungkannya. [C1]

Gambar 2.1 Elemen cincin axisymmetri

Modelisasi struktur solid axisymmetri dalam permasalahan teknik memberikan kemudahan untuk menganalisa suatu bentuk struktur riil yang menerima pembebanan dalam arah aksial, radial maupun *circumferential* (keliling). Struktur solid identik dengan

model tiga dimensi (3D), tetapi modelisasi struktur solid axisymmetri dapat menjadi problem matematis dua dimensi (2D) jika terpenuhi beberapa hal berikut :

- a. Sifat material struktur adalah isotropis dan homogen
- b. Geometri struktur adalah axisymmetris
- c. Pembebanan pada struktur berasal dari arah axial dan radial (*axially symmetric loaded*)
- d. Kondisi perletakan independen terhadap sumbu *circumferential* (sumbu θ)

Oleh karena itu, problem solid axisymmetri sesuai dengan keterangan diatas memiliki kesamaan prosedur analisa untuk problem statik pada *plane stress* ataupun *plane strain*. Dengan kondisi tersebut maka dapat diketahui bahwa *displacement* dan tegangan yang terjadi adalah pada arah aksial dan radial, sedangkan pada arah *circumferential* adalah nol (w = 0).

Dengan memperhatikan bentuk deformasi pada elemen volume, maka akan dapat diketahui bahwa pada keadaan axisymmetris, semua peralihan dalam arah radial secara otomatis akan menyebabkan regangan pada arah *circumferential*, dan tegangannya adalah tidak nol. Sehingga komponen tegangan yang harus diperhitungkan ada empat buah [Z1]

Gambar 2.3 Volume dasar struktur Solid Axisymmetri

Gambar 2.4 Deformasi pada volume dasar struktur Solid Axisymmetri

2.2 METODE ELEMEN HINGGA UNTUK SOLID AXISYMMETRI

2.2.1 Vektor Posisi dan Koordinat Silinder

Sebuah struktur solid axisymmetri yang terletak pada sistem koordinat silinder (r, θ, z) memiliki variabel-variabel a_1, a_2, a_3 sebagai vektor arah (r, θ, z) [B1]. Di mana vektor posisi <u>x</u> pada koordinat silinder yaitu :

$$x = \begin{cases} x(r,\theta,z) \\ y(r,\theta,z) \\ z(r,\theta,z) \end{cases} = \begin{cases} r\cos\theta \\ r\sin\theta \\ z \end{cases} ; \quad r = \xi ; \quad \theta \equiv \eta ; \quad z = \zeta$$
(2.1)

Gambar 2.5 Koordinat silinder r, θ , dan z

 a_1, a_2, a_3 adalah cosinus arah dari sumbu (r, θ, z)

$$\underline{a}_{1} = \begin{cases} \cos \theta \\ \sin \theta \\ 0 \end{cases} \quad ; \quad \underline{a}_{2} = \begin{cases} -r \sin \theta \\ r \cos \theta \\ 0 \end{cases} \quad ; \quad \underline{a}_{3} = \begin{cases} 0 \\ 0 \\ 1 \end{cases}$$
(2.2)

Dalam hal ini, vektor $\underline{a}_1, \underline{a}_2, \underline{a}_3$ adalah orthogonal tetapi bukanlah merupakan vektor satuan $(|\underline{a}_1| = |\underline{a}_3| = 1 \text{ dan } |\underline{a}_2| = r)$

Sehingga vektor differensialnya adalah :

$$d_{x}^{x} = a_{1} dr + a_{2} d\theta + a_{3} dz$$
(2.3)

Maka komponen $\langle dx \rangle$ dalam sistem koordinat silinder adalah :

$$dx \rangle = \langle dx \quad dy \quad dz \rangle \quad ; \quad \langle d\xi \rangle = \langle dr \quad d\theta \quad dz \rangle \tag{2.4}$$

$$dx\} = \left[F_{\xi}\right] \left\{d\xi\right\} = \left[J\right]^{T} \left\{d\xi\right\}$$

$$(2.5)$$

$$\begin{bmatrix} F_{\xi} \end{bmatrix} = \begin{bmatrix} a_1 & \vdots & a_2 & \vdots & a_3 \end{bmatrix} = \begin{bmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(2.6)

$$\{d\xi\} = \left[F_{\xi}\right]^{-1} \{dx\} = \left[J\right]^{-T} \{dx\} \quad ; \quad \det[J] = r$$

$$\left[J\right]^{-1} = \left[F_{\xi}\right]^{-T} = \left[a_{1} \quad \vdots \quad \frac{1}{r^{2}}a_{2} \quad \vdots \quad a_{3} \right]$$

$$(2.7)$$

Jika struktur merupakan problem dua dimensi maka, sebuah vektor posisi x yang terletak pada permukaan silinder seperti gambar dibawah ini :

Gambar 2.6 Vektor posisi p pada permukaan silinder

Sehingga vektor posisi x dapat dinyatakan sebagai :

$$\begin{aligned}
\begin{aligned}
x &= \begin{cases} x(\xi, \eta) \\ y(\xi, \eta) \\ z(\xi, \eta) \end{cases} = \begin{cases} R\cos\theta \\ R\sin\theta \\ z \end{cases}
\end{aligned}$$
(2.8)

Di mana $\theta \equiv \xi$ dan $z \equiv \eta$ (*R* adalah konstan)

Vektor tangen pada p adalah :

$$\langle a_1 \rangle = \langle -R\sin\theta \ R\cos\theta \ 0 \rangle \ ; \ \langle a_2 \rangle = \langle 0 \ 0 \ 1 \rangle$$
 (2.9)

Elemen permukaan adalah : $d\underline{S} = \underline{n} \ dS$; $\langle n \rangle = \langle \cos \theta \ \sin \theta \ 0 \rangle$

$$dS = \det \begin{bmatrix} F_0 \end{bmatrix} d\xi \ d\eta = R \ d\theta \ dz$$

Di mana :
$$\begin{bmatrix} F_0 \end{bmatrix} = \begin{bmatrix} a_1 & \vdots & a_2 & \vdots & n \end{bmatrix} = \begin{bmatrix} -R\sin\theta & 0 & \cos\theta \\ R\cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \end{bmatrix}$$
(2.10)

2.2.2 Peralihan Virtuil dan Deformasi Virtuil

Pada koordinat silinder, peralihan virtuil u^*, v^*, w^* menurut r, θ, z adalah [B1]: $\underline{u}^* = u^*(r, \theta, z)\underline{t}_1 + v^*(r, \theta, z)\underline{t}_2 + w^*(r, \theta, z)k$ (2.11)

Gambar 2.7 Peralihan virtuil u^* , v^* , dan w^* pada koordinat silinder

Pada sistem koordinat silinder, fungsi komponen u^*, v^*, w^* dapat diturunkan dengan

$$\left\{dx^*\right\} = \left[I\right]\left\{dx\right\} + \left[L^*\right]\left\{dx\right\}$$
(2.12)

$$\left\{dx^*\right\} = \left\{F^*\right\}\left\{dx\right\} \tag{2.13}$$

Di mana :

[I] adalah matrik satuan berorde 3×3

$$\begin{bmatrix} F^* \end{bmatrix} = \begin{bmatrix} I + u_{,r}^* \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} + \begin{bmatrix} L^* \end{bmatrix}$$
(2.14)
$$\begin{bmatrix} L^* \end{bmatrix} = \begin{bmatrix} u_{,r}^* \end{bmatrix}$$
(2.15)

Gambar 2.8 Vektor $d\underline{x}^*$ dan $d\underline{u}^*$

 $\begin{bmatrix} F^* \end{bmatrix}$ adalah komponen peralihan virtuil. Fungsi komponen dalam sistem kordinat silinder u^*, v^*, w^* dapat diperoleh, yaitu :

$$\begin{bmatrix} F^* \end{bmatrix} = \begin{bmatrix} 1 + u_{,r}^* & \frac{1}{r} \left(v_{,r}^* + u_{,\theta}^* - v^* \right) & u_{,z}^* \\ v_{,r}^* & 1 + \frac{1}{r} \left(v_{,\theta}^* + u^* \right) & v_{,z}^* \\ w_{,r}^* & w_{,\theta}^* & 1 + w_{,z}^* \end{bmatrix}$$
(2.16)
$$\begin{bmatrix} L^* \end{bmatrix} = \begin{bmatrix} u_{,r}^* & \frac{1}{r} \left(v_{,r}^* + u_{,\theta}^* - v^* \right) & u_{,z}^* \\ v_{,r}^* & \frac{1}{r} \left(v_{,\theta}^* + u^* \right) & v_{,z}^* \\ w_{,r}^* & w_{,\theta}^* & w_{,z}^* \end{bmatrix}$$
(2.17)

Matrik $\begin{bmatrix} L^* \end{bmatrix}$ dipecah menjadi matrik simetris $\begin{bmatrix} D^* \end{bmatrix}$ dan matrik anti simetris $\begin{bmatrix} W^* \end{bmatrix}$. Matrik $\begin{bmatrix} D^* \end{bmatrix}$ merupakan komponen deformasi virtuil dan matrik $\begin{bmatrix} W^* \end{bmatrix}$ adalah komponen rotasi virtuil [B1, K1]

$$\begin{bmatrix} L^* \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} L^* \end{bmatrix} + \begin{bmatrix} L^* \end{bmatrix}^T \right) + \frac{1}{2} \left(\begin{bmatrix} L^* \end{bmatrix} - \begin{bmatrix} L^* \end{bmatrix}^T \right) = \begin{bmatrix} D^* \end{bmatrix} + \begin{bmatrix} W^* \end{bmatrix}$$
(2.18)

Sehingga dapat diketahui :

$$\begin{bmatrix} D^* \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} L^* \end{bmatrix} + \begin{bmatrix} L^* \end{bmatrix}^T \right)$$
(2.19)
$$\begin{bmatrix} D^* \end{bmatrix} = \begin{bmatrix} u_{,r}^* & \frac{1}{2} \left(v_{,r}^* + \frac{1}{r} u_{,\theta}^* - \frac{1}{r} v^* \right) & \frac{1}{2} \left(u_{,z}^* + w_{,r}^* \right) \\ & \frac{1}{r} \left(v_{,\theta}^* + u^* \right) & \frac{1}{2} \left(v_{,z}^* + \frac{1}{r} w_{,\theta}^* \right) \\ sym & & w_{,z}^* \end{bmatrix}$$
(2.20)

Atau dalam bentuk vektor :

Karena u^* independen terhadap θ (axisymmetri), maka

$$\begin{bmatrix} D^* \end{bmatrix} = \begin{bmatrix} u_{,r}^* & \frac{1}{2} \left(v_{,r}^* - \frac{1}{r} v^* \right) & \frac{1}{2} \left(u_{,z}^* + w_{,r}^* \right) \\ & \frac{1}{r} u^* & \frac{1}{2} v_{,z}^* \\ sym & & w_{,z}^* \end{bmatrix}$$
(2.22)

$$\left\langle D^{*} \right\rangle = \left\langle D_{rr}^{*} \quad D_{\theta\theta}^{*} \quad D_{zz}^{*} \quad 2D_{r\theta}^{*} \quad 2D_{rz}^{*} \quad 2D_{\theta z}^{*} \right\rangle$$

$$= \left\langle u_{,r}^{*} \quad \frac{1}{r}u^{*} \quad w_{,z}^{*} \quad v_{,r}^{*} - \frac{1}{r}v^{*} \quad u_{,z}^{*} + w_{,r}^{*} \quad v_{,z}^{*} \right\rangle$$

$$(2.23)$$

Karena sifat axisymmetri maka $2D_{r\theta}^* = 2D_{\theta z}^* = 0$, sehingga :

$$\left\langle \boldsymbol{D}^* \right\rangle = \left\langle \boldsymbol{D}_{rr}^* \quad \boldsymbol{D}_{\theta\theta}^* \quad \boldsymbol{D}_{zz}^* \quad 2\boldsymbol{D}_{rz}^* \right\rangle$$

$$= \left\langle \boldsymbol{u}_{,r}^* \quad \frac{1}{r} \boldsymbol{u}^* \quad \boldsymbol{w}_{,z}^* \quad \boldsymbol{u}_{,z}^* + \boldsymbol{w}_{,r}^* \right\rangle$$

$$(2.24)$$

Selanjutnya penulisan notasi $\langle D^* \rangle$ akan digantikan dengan $\langle \varepsilon^* \rangle$

$$\left\langle \boldsymbol{\varepsilon}^{*} \right\rangle = \left\langle \boldsymbol{\varepsilon}_{r}^{*} \quad \boldsymbol{\varepsilon}_{\theta}^{*} \quad \boldsymbol{\varepsilon}_{z}^{*} \quad \boldsymbol{\gamma}_{rz}^{*} \right\rangle = \left\langle \boldsymbol{u}_{,r}^{*} \quad \frac{1}{r} \boldsymbol{u}^{*} \quad \boldsymbol{w}_{,z}^{*} \quad \boldsymbol{u}_{,z}^{*} + \boldsymbol{w}_{,r}^{*} \right\rangle \tag{2.25}$$

2.2.3 Peralihan Riil dan Deformasi Riil

Jika suatu struktur solid axisymmetri merupakan problem matematis dua dimensi, maka dapat ditentukan beberapa hal berikut [W1]

Displacement pada tiap nodal memiliki dua derajat kebebasan (2 DOF)

$$\underbrace{u}_{i} = \{u, v, w\} ; v = 0
 \underbrace{u}_{i} = \{u, w\}
 (2.26)$$

Komponen regangan yang mempunyai nilai tidak nol ada empat buah

$$\langle \varepsilon \rangle = \langle \varepsilon_r \quad \varepsilon_\theta \quad \varepsilon_z \quad \gamma_{rz} \rangle \tag{2.27}$$

Maka, hubungan regangan - peralihan pada struktur solid axisymmetri adalah :

$$\begin{bmatrix} \varepsilon_{r} \\ \varepsilon_{\theta} \\ \varepsilon_{z} \\ \gamma_{rz} \end{bmatrix} = \begin{cases} \frac{\partial u}{\partial r} \\ \frac{2\pi(r+u)-2\pi r}{2\pi r} \\ \frac{\partial w}{\partial z} \\ \frac{\partial w}{\partial z} \\ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \end{cases} = \begin{cases} \frac{\partial u}{\partial r} \\ \frac{u}{r} \\ \frac{\partial w}{\partial z} \\ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \end{cases} = \begin{cases} u_{,r} \\ \frac{u}{r} \\ w_{,z} \\ u_{,z} + w_{,r} \end{cases}$$
(2.28)

2.2.4 Tegangan dan Persamaan Keseimbangan

.

Tensor tegangan $\left[\sigma(r,\theta,z)\right]$ adalah, dengan $\sigma_{r\theta} = \sigma_{\theta r}; \sigma_{rz} = \sigma_{zr}$ dan $\sigma_{z\theta} = \sigma_{\theta z}$:

$$\begin{bmatrix} \boldsymbol{\sigma} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\sigma}_{rr} & \boldsymbol{\sigma}_{r\theta} & \boldsymbol{\sigma}_{rz} \\ \boldsymbol{\sigma}_{r\theta} & \boldsymbol{\sigma}_{\theta\theta} & \boldsymbol{\sigma}_{\thetaz} \\ \boldsymbol{\sigma}_{rz} & \boldsymbol{\sigma}_{\thetaz} & \boldsymbol{\sigma}_{zz} \end{bmatrix}$$
(2.29)

Dan vektor $\langle \sigma \rangle$ adalah : $\langle \sigma \rangle = \langle \sigma_{rr} \quad \sigma_{\theta\theta} \quad \sigma_{zz} \quad \sigma_{r\theta} \quad \sigma_{rz} \quad \sigma_{\theta z} \rangle$

Dengan memahami sifat axisymmetri, maka $\sigma_{r\theta} = \sigma_{\theta z} = 0$

Sehingga vektor
$$\langle \sigma \rangle$$
 adalah $\langle \sigma \rangle = \langle \sigma_{rr} \quad \sigma_{\theta\theta} \quad \sigma_{zz} \quad \sigma_{rz} \rangle$

Gambar 2.9 Komponen Tensor Cauchy $[\sigma]$

Dalam koordinat silinder (r, θ, z) persamaan keseimbangan ditulis, dengan memperhitungkan gaya akibat percepatan [B1]

$$\sigma_{rr,r} + \frac{1}{r} \sigma_{r\theta,\theta} + \sigma_{rz,z} + \frac{1}{r} (\sigma_{rr} - \sigma_{\theta\theta}) + f_r = \rho \ddot{x}_r$$

$$\sigma_{r\theta,r} + \frac{1}{r} \sigma_{\theta\theta,\theta} + \sigma_{\theta z,z} + \frac{2}{r} \sigma_{r\theta} + f_{\theta} = \rho \ddot{x}_{\theta}$$

$$\sigma_{rz,r} + \frac{1}{r} \sigma_{\theta z,\theta} + \sigma_{zz,z} + \frac{1}{r} \sigma_{rz} + f_z = \rho \ddot{z}$$
(2.30)

 $\ddot{x}_r, \ddot{x}_{\theta}$ dan \ddot{z} adalah komponen akselerasi menurut $r, \theta, \text{ dan } z$ dan $f_r(r, \theta, z), f_{\theta}(r, \theta, z), f_z(r, \theta, z)$ gaya bodi mengikuti r, θ, z

2.2.5 Hubungan Tegangan Regangan pada Solid Axisymmetri

Dengan mengetahui bahwa modelisasi struktur solid axisymmetri adalah problem matematis dua dimensi, maka sifat material struktur adalah isotropis dan homogen [K1,W1], sehingga matriks sifat bahan [H] adalah :

$$[H] = \begin{bmatrix} (1-\upsilon) & \upsilon & \upsilon & 0 & 0 & 0 \\ \upsilon & (1-\upsilon) & \upsilon & 0 & 0 & 0 \\ \upsilon & \upsilon & (1-\upsilon) & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(1-2\upsilon)}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(1-2\upsilon)}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(1-2\upsilon)}{2} \end{bmatrix}$$
(2.31)

Karena matrik [H] mengikuti hubungan tegangan – regangan, maka pada kasus solid axisymmetri komponen matrik [H] yang muncul hanyalah yang terkait dengan deformasi yang terjadi pada struktur solid axisymmetri. Sehingga :

$$[H] = \frac{E}{(1+\upsilon)(1-2\upsilon)} \begin{bmatrix} (1-\upsilon) & \upsilon & \upsilon & 0\\ \upsilon & (1-\upsilon) & \upsilon & 0\\ \upsilon & \upsilon & (1-\upsilon) & 0\\ 0 & 0 & 0 & \frac{(1-2\upsilon)}{2} \end{bmatrix}$$
(2.32)

Maka, hubungan tegangan – regangan pada solid axisymmetri dapat dibangun sebagai : $\{\sigma\} = [H] \{\varepsilon\}$ (2.33)

$$\begin{cases} \sigma_r \\ \sigma_{\theta} \\ \sigma_z \\ \tau_{rz} \end{cases} = \frac{E}{(1+\upsilon)(1-2\upsilon)} \begin{bmatrix} (1-\upsilon) & \upsilon & \upsilon & 0 \\ \upsilon & (1-\upsilon) & \upsilon & 0 \\ \upsilon & \upsilon & (1-\upsilon) & 0 \\ 0 & 0 & 0 & \frac{(1-2\upsilon)}{2} \end{bmatrix} \begin{cases} \varepsilon_r \\ \varepsilon_{\theta} \\ \varepsilon_z \\ \varepsilon_{rz} \end{cases}$$
(2.34)

2.2.6 Prinsip Kerja Virtuil

Dengan memahami prinsip energi potensial, maka akan lebih mudah untuk menurunkan rumus Prinsip Kerja Virtuil untuk menyelesaikan persamaan keseimbangan pada struktur solid axisymmetri. [B1,K1]

Ekspresi PKV dalam koordinat silinder adalah :

$$W = \int_{V} \langle \varepsilon \rangle \{\sigma\} \, dV - \int_{V} \langle u^{*} \rangle \{f_{v}\} \, dV - \int_{S_{f}} \langle u^{*} \rangle \{f_{s}\} \, dS + \int_{V} \langle u^{*} \rangle \rho \{\ddot{x}\} \, dV = 0$$
(2.35)

$$\forall \left\{ u^{*} \right\} \operatorname{di} \operatorname{mana} \left\{ u^{*} \right\} = \left\{ 0 \right\} \operatorname{pada} S_{u}$$

$$\left\langle u^{*} \right\rangle = \left\langle u^{*} \quad v^{*} \quad w^{*} \right\rangle \quad \left(\operatorname{arah} r, \theta, z \right) \quad ; \quad \left\langle \vec{x} \right\rangle = \left\langle \vec{x}_{r} \quad \vec{x}_{\theta} \quad \vec{z} \right\rangle$$

$$\left\langle \varepsilon^{*} \right\rangle = \left\langle u^{*}_{,r} \quad \frac{1}{r} u^{*} \quad w^{*}_{,z} \quad u^{*}_{,z} + w^{*}_{,r} \right\rangle \qquad (2.36)$$

Dengan :

$$\begin{array}{l} \langle \sigma \rangle = \langle \sigma_{rr} & \sigma_{\theta\theta} & \sigma_{zz} & \sigma_{rz} \rangle \\ \langle f_{v} \rangle = \langle f_{r} & f_{\theta} & f_{z} \rangle & ; \quad \langle f_{s} \rangle = \langle f_{sr} & f_{s\theta} & f_{sz} \rangle \\ dV = r \ dr \ d\theta \ dz \end{array}$$

Dengan mempertimbangkan volume dasar struktur solid axisymmetri, maka persamaan energi potensial dapat dibentuk sebagi berikut [C1]:

$$\Pi = \frac{1}{2} \int_0^{2\pi} \int_A \sigma^T \varepsilon \, r \, dA \, d\theta - \int_0^{2\pi} \int_A u^T f \, r \, dA \, d\theta - \int_0^{2\pi} \int_L u^T \, T \, r \, dl \, d\theta - \sum_i u_i^T P_i \tag{2.37}$$

Di mana $r \ dl \ d\theta$ adalah luas permukaan dasar struktur solid axisymmetri, dan P_i merepresentasikan beban garis yang terdistribusi di sekeliling lingkaran. Semua variabel yang berada di dalam integral adalah independen terhadap θ , sehingga persamaan energi potensial dapat disederhanakan menjadi :

$$\prod = 2\pi \left(\frac{1}{2} \int_{A} \sigma^{T} \varepsilon \ r \ dA - \int_{A} u^{T} f \ r \ dA - \int_{L} u^{T} \ T \ r \ dl \right) - \sum_{i} u_{i}^{T} P_{i}$$
(2.38)

2.2.7 Tipe Elemen untuk Solid Axisymmetri

Modelisasi untuk struktur solid axisymmetri dengan Metode Elemen Hingga, tergantung dari tipe elemen yang digunakan pada saat proses diskritisasi struktur. Dalam penulisan ini akan dibahas modelisasi elemen hingga dengan menggunakan tipe elemen dua dimensi triangular 3 nodal dan elemen quadrilateral 4 nodal.

Gambar 2.10 (a) Elemen triangular 3 nodal (b) Elemen quadrilateral 4 nodal

Elemen dengan bentuk yang tidak beraturan, membuat perhitungan sulit dilakukan karena batasan integral menjadi tidak jelas. Untuk itulah, diperlukan suatu elemen referensi yang mewakili bentuk dari elemen tersebut. Sistem koordinat yang digunakan dalam elemen referensi tersebut menggunakan sistem koordinat parametrik. Sehingga elemen referensi tersebut disebut juga sebagai elemen isoparametrik. Untuk menghubungkan koordinat pada sistem koordinat parametrik dan sistem sumbu global diperlukan fungsi interpolasi atau fungsi bentuk *N*. Suatu elemen dikatakan sebagai elemen isoparametrik yaitu jika fungsi bentuk *N* mampu mendefiniskan fungsi geometri dan fungsi peralihan sekaligus. Karena elemen adalah elemen isoparametrik, maka nodal geometri dan nodal interpolasi adalah berhimpit. [K1,W1]

2.2.8 Elemen Triangular 3 Nodal

Elemen triangular 3 nodal dengan dua derajat kebebasan tiap nodal memiliki fungsi displacement linear. Jika elemen riil ditransformasi ke dalam sistem koordinat parametrik kita akan memerlukan fungsi interpolasi untuk menghubungkannya dengan sistem sumbu global. Maka fungsi interpolasi (*shape function*) sebagai berikut [K1]:

Gambar 2.11 Elemen isoparametrik triangular 3 nodal

$$\langle N \rangle = \langle N_1 \ N_2 \ N_3 \rangle$$
; $N_1 = 1 - \xi - \eta$; $N_2 = \xi$; $N_3 = \eta$ (2.39)

1.00

Atau dalam sistem koordinat silinder, kita dapat mendefinisikan fungsi bentuk sebagai

$$N_{1} = \frac{1}{2A} \left(r_{2}z_{3} - r_{3}z_{2} + z_{23}\overline{r} + r_{32}\overline{z} \right)$$

$$N_{2} = \frac{1}{2A} \left(r_{3}z_{1} - r_{1}z_{3} + z_{31}\overline{r} + r_{13}\overline{z} \right)$$

$$N_{3} = \frac{1}{2A} \left(r_{1}z_{2} - r_{2}z_{1} + z_{12}\overline{r} + r_{21}\overline{z} \right)$$
(2.40)

Matrik Jacobian untuk elemen triangular 3 nodal

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} r_{21} & z_{21} \\ r_{31} & z_{31} \end{bmatrix} ; \quad \det \begin{bmatrix} J \end{bmatrix} = 2A = r_{21}z_{31} - r_{31}z_{21}$$
(2.41)

Di mana :

21 H

$$r_{21} = r_2 - r_1$$
; $r_{31} = r_3 - r_1$; $z_{21} = z_2 - z_1$; $z_{31} = z_3 - z_1$ (2.42)

Invers matrik Jacobian

$$[j] = \frac{1}{2A} \begin{bmatrix} z_{31} & -z_{21} \\ -r_{31} & r_{21} \end{bmatrix}$$
(2.43)

Hubungan regangan - peralihan dapat dinyatakan dalam bentuk matrik sebagai :

$$\{\varepsilon\} = [B]\{u_n\}$$
(2.44)

di mana
$$\begin{bmatrix} B \\ (4 \times 6) \end{bmatrix} = \frac{1}{2A} \begin{bmatrix} z_{23} & 0 & z_{31} & 0 & z_{12} & 0 \\ 0 & r_{32} & 0 & r_{13} & 0 & r_{21} \\ \frac{2AN_1}{\overline{r}} & 0 & \frac{2AN_2}{\overline{r}} & 0 & \frac{2AN_3}{\overline{r}} & 0 \\ r_{32} & z_{23} & r_{13} & z_{31} & r_{21} & z_{12} \end{bmatrix}$$
 (2.45)

Term r pada matrik [B], menandakan r yang dihitung pada pusat elemen triangular. Sehingga pada pusat elemen diketahui bahwa [C1]:

$$N_1 = N_2 = N_3 = \frac{1}{3}$$
 dan $\overline{r} = \frac{r_1 + r_2 + r_3}{3}$ (2.46)

Sehingga matrik kekakuan untuk elemen triangular 3 nodal pada kasus solid axisymmetri

$$[k] = 2\pi \iint_{A} [B]^{T} [H] [B] r dr dz$$
(2.47)

$$[k] = 2\pi \overline{r} [B]^{T} [H] [B] |J| \omega_{i} = 2\pi \overline{r} A [\overline{B}]^{T} [H] [\overline{B}]$$
(2.48)

Sedangkan persamaan beban nodal ekuivalen akibat gaya bodi menjadi

$$f_n = 2\pi \iint_A [N]^T \{f_b\} \ r \ dr \ dz \tag{2.49}$$

$$f_n = 2\pi \overline{r} \left[N \right]^T \left\{ f_b \right\} \left| J \right| \omega_i$$
(2.50)

Di mana :

 $f_n =$ gaya nodal ekuivalen

 $[N] = N_i$ = fungsi bentuk elemen triangular 3 nodal

 $\{f_b\}$ = gaya luar yang berupa gaya bodi merata

2.2.9 Elemen Quadrilateral 4 Nodal

Elemen quadrilateral 4 nodal dengan dua derajat kebebasan pada tiap nodalnya memiliki fungsi displacement bilinear. Elemen riil ditransformasi kedalam sistem koordinat parametrik, sehingga *shape function* dapat diperoleh sebagai berikut [K1]:

Gambar 2.12 Elemen isoparametrik quadrilateral 4 nodal

$$\langle N \rangle = \langle N_1 \quad N_2 \quad N_3 \quad N_4 \rangle$$

$$N_1 = \frac{1}{4} (1 - \xi) (1 - \eta) \qquad ; \qquad N_2 = \frac{1}{4} (1 + \xi) (1 - \eta) \qquad (2.51)$$

$$N_3 = \frac{1}{4} (1 + \xi) (1 + \eta) \qquad ; \qquad N_4 = \frac{1}{4} (1 - \xi) (1 + \eta)$$

Matrik Jacobian untuk elemen quadrilateral 4 nodal

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{\partial N_i}{\partial \xi} r_i & \frac{\partial N_i}{\partial \xi} z_i \\ \frac{\partial N_i}{\partial \eta} r_i & \frac{\partial N_i}{\partial \eta} z_i \end{bmatrix} ; \quad \det \begin{bmatrix} J \end{bmatrix} = r_{\xi} z_{\eta} - z_{\xi} r_{\eta} = J_{11} J_{22} - J_{12} J_{21}$$
(2.52)

Invers matrik Jacobian

$$\begin{bmatrix} j \end{bmatrix} = \begin{bmatrix} J \end{bmatrix}^{-1} = \begin{bmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{bmatrix} = \frac{1}{J_{11}J_{22} - J_{12}J_{21}} \begin{bmatrix} J_{22} & -J_{12} \\ -J_{21} & J_{11} \end{bmatrix}$$
(2.53)

Hubungan regangan - peralihan dapat dinyatakan dalam bentuk matrik sebagai :

$$\{\varepsilon\} = [B]\{u_n\}$$

dimana $\begin{bmatrix} B \\ (4\times8) \end{bmatrix} = \begin{bmatrix} \dots & N_{i,r} & 0 & \dots \\ 0 & N_{i,z} & \dots \\ \dots & \frac{N_i}{r} & 0 & \dots \\ \dots & N_{i,z} & N_{i,r} & \dots \end{bmatrix}_{i=1\dots4}$
 $N_{i,r} = j_{11}N_{i,\xi} + j_{12}N_{i,\eta}$ (2.54)

$$N_{i,z} = j_{21}N_{i,\xi} + j_{22}N_{i,\eta}$$

Matrik kekakuan untuk elemen quadrilateral 4 nodal pada kasus solid axisymmetri :

$$[k] = 2\pi \int_{A} [B]^{T} [H] [B] r \, dA \tag{2.55}$$

$$[k] = 2\pi r \sum_{i=1}^{N} [B]^{i} [H][B] \omega_{i} \omega_{j} |J(\xi_{i}, \eta_{i})|$$

$$(2.56)$$

Sedangkan persamaan beban nodal ekuivalen menjadi

$$f_{n} = 2\pi \int_{A} [N]^{T} \{f_{b}\} r \, dA$$

$$f_{n} = 2\pi r \sum_{i=1}^{n} [N]^{T} \{f_{b}\} \omega_{i} \omega_{j} \left| J(\xi_{i}, \eta_{i}) \right|$$
(2.57)
$$(2.58)$$

Di mana :

 $f_n =$ gaya nodal ekuivalen

 $[N] = N_i$ = fungsi bentuk elemen quadrilateral 4 nodal

 $\{f_b\}$ = gaya luar yang berupa gaya bodi merata

Term r pada matrik [B] dan [k], dihitung dengan menggunakan persamaan berikut [W1]

$$r = \sum_{i=1}^{4} N_i r_i$$
 (2.59)

2.3 GAYA NODAL

Dalam problem dua dimensi untuk solid axisymmetri, penting diketahui bahwa beban eksternal yang bekerja yang berupa beban nodal ataupun beban permukaan akan memiliki efek sepanjang arah *circumferential* pada lingkaran yang terbentuk dari nodal elemen-elemen yang saling berhimpitan. Hal ini sangat penting diperhatikan untuk ekspresi kekakuan elemennya, sehingga integrasi pun harus dihasilkan untuk seluruh cincin. [Z1]

Jika \overline{R} menunjukkan komponen gaya pada arah radial per unit panjang arah *circumferential* sebuah nodal pada radius *r*, beban eksternal yang akan dimasukkan dalam perhitungan adalah :

$$2\pi r \overline{R}$$

Pada arah axial kita juga akan memperoleh hal yang sama yaitu :

$$2\pi r \overline{Z}$$

Untuk menunjukkan efek kombinasi dari gaya aksial

2.3.1 Gaya Nodal Akibat Regangan Awal

Gaya akibat regangan awal biasanya bekerja akibat adanya perubahan suhu. Dengan menggunakan pendekatan regangan awal ε_0 sebelum terjadi perubahan suhu, maka persamaan gaya nodal dapat deibentuk seperti berikut ini [Z1; W1]:

$$\left\{f^{e}\right\} = -2\pi \int \left[B\right]^{T} \left[H\right] \left\{\varepsilon_{0}\right\} dr dz$$
(2.62)

(2.60)

(2.61)

Jika ε_0 adalah konstan, maka

$$\left\{f_{\text{int}}^{e}\right\} = -2\pi \left(\int [B]^{T} r \, dr \, dz\right) [H] \left\{\varepsilon_{0}\right\}$$
(2.63)

Sehingga ekspresi pendekatan dengan menggunakan nilai pusat adalah :

$$\left\{f_{\text{int}}^{e}\right\} = -2\pi \left[B\right]^{T} \left[H\right] \left\{\varepsilon_{0}\right\} \overline{r} \Delta$$
(2.64)

2.3.2 Gaya Bodi Merata

Gaya bodi merata, salah satunya berupa gaya gravitasi yang bekerja sepanjang sumbu *z*. Gaya tersebut ditunjukkan sebagai :

$$b = \begin{cases} b_r \\ b_z \end{cases}$$
(2.65)

per unit volume material pada arah r dan z. Maka secara umum persamaannya adalah

$$f_{\text{int}}^{e} = -2\pi \int [I] [N_{i}] \begin{cases} b_{r} \\ b_{z} \end{cases} r \, dr \, dz \tag{2.66}$$

jika gaya bodi adalah konstan maka

$$f_{\rm int}^{e} = -2\pi \left\{ \begin{array}{c} b_r \\ b_z \end{array} \right\} \frac{\overline{r}\Delta}{3} \tag{2.67}$$

2.3.3 Gaya Nodal Akibat Beban Permukaan (Surface Traction)

Gaya nodal akibat beban permukaan dimana beban bekerja pada bidang yang vertikal dapat dihitung dengan cara sederhana seperti berikut ini :

$$\begin{cases} f_{r_1} \\ f_{r_2} \end{cases}^{BNE} = \frac{2\pi l_{1-2}}{2} \{f\}$$
(2.68)

Sedangkan jika beban permukaan bekerja pada bidang yang tidak vertikal, maka gaya nodal tidak lagi dapat dihitung dengan cara mudah seperti diatas. Untuk beban merata yang bekerja pada bidang yang tidak vertikal, komponen gaya nodal pada arah radial dan aksial dapat dihitung dengan cara berikut [C2,S1]:

Gambar 2.13 Surface Traction

Dengan memahami gambar diatas, maka dapat diturunkan persamaan beban nodal ekuivalen pada sisi yang tidak vertikal yaitu :

$$\begin{cases} f_{r_1} \\ f_{z_1} \\ f_{r_2} \\ f_{z_2} \end{cases}^{BNE} = 2\pi l_{1-2} \begin{cases} a f_r \\ a f_z \\ b f_r \\ b f_z \end{cases}$$
(2.69)

Di mana :

$$a = \frac{2r_1 + r_2}{6}$$
 dan $b = \frac{r_1 + 2r_2}{6}$ (2.70)

2.4 PERHITUNGAN DENGAN INTEGRASI NUMERIK GAUSS DAN HAMMER

Dengan beragamnya bentuk tipe elemen, maka proses integrasi untuk mendapatkan matrik kekakuan [k] dan beban nodal ekuivalen akan menjadi sulit dilakukan. Pada model struktur solid axisymmetri, setelah kita melakukan transformasi elemen dari sistem koordinat silinder ke sistem koordinat parametrik akan mempermudah proses integrasi, walaupun solusi akan melalui jalan yang lebih panjang. Salah satu proses integrasi yang dilakukan yaitu dengan menggunakan integrasi *Gauss*. Di mana terdapat beberapa titik integrasi sesuai dengan tipe elemen dan jumlah nodal yang ada pada sistem koordinat silinder. Selanjutnya akan diberikan dalam bentuk Tabel Integrasi *Gauss* untuk elemen quadrilateral dan *Hammer* untuk elemen triangular [W1].

Solusi perhitungan dengan Integrasi Numerik *Gauss* melibatkan matrik *Jacobian*, di mana diperlukan determinan dari matrik *Jacobian*. Bentuk integrasi *Gauss* yaitu :

$$I = \int_{-1-1}^{+1+1} f\left(\xi_i, \eta_i\right) \left| J\left(\xi_i, \eta_i\right) \right| d\xi d\eta$$

$$I = \sum_{i=1}^{n} f\left(\xi_i, \eta_i\right) \omega_i \left| J\left(\xi_i, \eta_i\right) \right|$$
(2.72)

Jumlah titik integrasi yang diperlukan dalam solusi perhitungan, dapat dipilih berdasarkan orde persamaan polinomial yang terdapat pada fungsi bentuk.

Gambar 2.14 : (a) Titik integrasi *Hammer* untuk orde 1 (b) dan (c) Titik integrasi *Hammer* untuk orde 2 ; (d) Titik integrasi *Gauss* untuk orde 3

т	ξ_i atau η_i	ω_i	р
1	0	2	1
2	$\pm 0,577350269189626(\pm 1/\sqrt{3})$	1	3
3	0 ± 0,774596669241483(± $\sqrt{3/5}$)	0,88888888888 (8/9) 0,5555555555 (5/9)	5
4	$\pm 0,339981043584856 \left(\pm \sqrt{\frac{3 - 2\sqrt{6/5}}{7}} \right)$ $\pm 0,861136311594053 \left(\pm \sqrt{\frac{3 + 2\sqrt{6/5}}{7}} \right)$	$0,652145154862546\left(\frac{1}{2} + \frac{1}{6\sqrt{6/5}}\right)$ $0,347854845137454\left(\frac{1}{2} - \frac{1}{6\sqrt{6/5}}\right)$	7
5	0 $\pm 0,538469310105512 \left(\pm \frac{1}{3}\sqrt{5 - 4\sqrt{5/14}} \right)$ $\pm 0,906179845938664 \left(\pm \frac{1}{3}\sqrt{5 + 4\sqrt{5/14}} \right)$	0,56888888888888888888888888888888888888	9
6	$\pm 0,23861918603197$ $\pm 0,66120986466265$ $\pm 0,932469514203152$	0,467913934572691 0,360761573040129 0,171324492379000	11
7	$\begin{array}{c} 0 \\ \pm \ 0,405845151377397 \\ \pm \ 0,741551185599394 \\ \pm \ 0,945127912342759 \end{array}$	0,417959183673469 0,381830050505119 0,27970539148927 0,129484966168870	13

Tabel 2.1 Koordinat Titik Gauss dan Faktor Bobot untuk Integrasi Numerik Gauss untuk 1D

$$\int_{-1}^{+1} f(\xi) \, d\xi = \sum_{i=1}^{m} f(\xi_i) \, \omega_i \quad \text{atau} \quad \int_{-1}^{+1} f(\eta) \, d\eta = \sum_{j=1}^{m} f(\eta_j) \, \omega_j$$

Di mana

- m =jumlah titik integrasi
- ξ_i = lokasi titik *Gauss*
- ω_i = faktor bobot
- *p* = pangkat tertinggi fungsi polinomial yang dapat diintegrasi numerik secara akurat

	p (orde)	<i>m</i> (Jumlah Titik)	ξi	η _i	ω_i (Faktor Bobot)
	1	1	1/3	1/3	1/2
	2	3	1/2 0 1/2	1/2 1/2 0	1/6
	2	3	1/6 2/3 1/6	1/6 1/6 2/3	1/6
	3	4	1/3 1/5 3/5 1/5	1/3 1/5 1/5 3/5	27/96
	4 a = 0,445 b = 0,091	6 948490915965 576213509771	a 1-2a a b 1-2b b	a a 1-2a b b 1-2b	0,111690794839005 0,054975871827661
$\begin{bmatrix} 1/3 & 1/3 & 9/80 \\ a & a \\ 1-2a & a \\ 1-2a & a \\ a & 1-2a \\ b & b \\ b = 0,101286507323456 \end{bmatrix} = 0,0661970763942530$					
$\int_{0}^{1} \int_{0}^{1-\xi} f(\xi, \eta) d\xi d\eta \approx \sum_{i=1}^{m} f(\xi_i, \eta_i) \omega_i$ Formula integrasi eksak dari polynomial $\xi^i \eta^j$ orde p (dengan $i + j \le p$)					

Tabel 2.2 Integrasi Numerik Formula Hammer untuk Triangular

Matrik kekakuan elemen dengan menggunakan elemen triangular 3 nodal untuk problem solid axisymmetri adalah :

$$\left[k \right] = \alpha \begin{bmatrix} \left(1 - v \right) z_{21}^{1} + v \frac{4AN}{r} z_{21} + \left(1 - v \right) \frac{4A^{2}N_{1}^{2}}{r^{2}} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{2AN}{2} \right) z_{2}z_{21} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{12}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2}^{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(\frac{1 - 2v}{2} \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{13}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} z_{2} \\ w_{21}z_{21} + v \frac{2AN}{r} z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ w_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} \\ w_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} \\ w_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} \\ w_{21}z_{21} \\ w_{21}z_{21} + v \frac{2AN}{r} z_{21} + \left(1 - 2v \right) z_{2} \\ z_{21}z_{21} \\ w_{21}z_{21} \\ w_{21}z_{21} \\ w_{21}z_{21} \\ w_{$$

BAB III

PROGRAMASI ELEMEN HINGGA DENGAN MATLAB

3.1 DESKRIPSI UMUM

Berbagai bahasa pemrograman telah berkembang dengan pesatnya, sehingga memungkinkan pengguna untuk memilih sesuai dengan kebutuhannya. Salah satu bahasa pemrograman yang banyak digunakan untuk perhitungan numerik keteknikan, komputasi simbolik, visualisasi, grafis, analisis data matematis, statistika, simulasi, permodelan, dan desain GUI (*Graphical User Interface*) adalah dengan menggunakan MATLAB [H1]

MATLAB merupakan singkatan dari *Matrix Laboratory*. MATLAB merupakan bahasa pemrograman level tinggi (tetapi tidak berarti sulit dalam penggunaannya) yang dikhususkan untuk komputasi teknis. MATLAB memberikan sistem interaktif yang menggunakan konsep *array* (matrik) sebagai standar variabel elemennya tanpa perlu mendeklarasikan *array* seperti pada bahasa program lainnya [A1].

Secara umum dapat diketahui bahwa MATLAB merupakan bahasa pemrograman yang didasarkan pada matrik, sehingga sangat berguna untuk perhitungan dengan basis vektor dan matrik. MATLAB merupakan bahasa pemrograman yang lebih menarik dan relatif lebih mudah dipahami. Selain itu penggunaan MATLAB tidak memerlukan pemahaman yang mendalam tentang prinsip pengoperasi program komputer seperti menyusun (*compiling*) dan menghubungkannya dengan bahasa pemrograman yang lain [K2].

Dalam penulisan ini program MATLAB yang digunakan adalah MATLAB versi 7.1, di mana *syntax* yang ada relatif sama dengan beberapa versi sebelumnya yaitu dimulai dari MATLAB versi 4 sampai dengan versi 6.

3.2 VARIABEL DAN OPERASI MATEMATIKA DALAM MATLAB

Tipe data yang digunakan dalam pemrograman MATLAB hanya dua macam yaitu *numeric* dan *string*. Tidak seperti bahasa pemrograman yang lain, dalam pemrograman MATLAB tidak dibutuhkan deklarasi eksplisit yang menyatakan tipe data, karena MATLAB memiliki kemampuan tersendiri dalam mengenali tipe data yang dimasukkan oleh pemrogram pada setiap variabelnya, dan dapat secara dinamis mengganti tipe data tersebut pada waktu yang relatif bersamaan tanpa adanya kesalahan. Namun ada beberapa hal yang perlu diperhatikan dalam penulisan *syntax*, yaitu :

- 1. Penamaan variabel bersifat *case sensitive*, artinya MATLAB akan membedakan adanya huruf besar dan kecil dalam penamaan
- 2. Panjang nama variabel tidak dapat melebihi 31 karakter
- 3. Penamaan varibel harus selalu diawali dengan huruf, tidak boleh dengan bilangan, simbol dan lainnya [A1].

Operasi matematika yang digunakan dalam pemrograman MATLAB sama halnya dengan kalkulator biasa. Berikut adalah tabel operator matematika yang digunakan dalam pemrograman MATLAB.

Simbol	Deskripsi		
+	Operasi penjumlahan		
	Operasi pengurangan		
*	Operasi perkalian		
/ atau \	Operasi pembagian		
^	Operasi perpangkatan		
•	Operasi transpose matrik		

Tabel 3.1 Operasi Matematika dalam MATLAB

Selain operasi matematika terdapat juga beberapa fungsi matematika umum yang terdaapat dalam pustaka fungsi MATLAB, diantaranya yaitu :

	Fungsi Matematika	Deskripsi
	acos	Invers kosinus
	acosh	Invers hiperbola kosinus
1	acot	Invers kotangen
	acoth	Invers hiperbola kotangen
	acsc	Invers kosekan
	csch	Invers hiperbola kosekan
	asec	Invers sekan
	asech	Invers hiperbola sekan
	asin	Invers sinus
	asinh	Invers hiperbola sinus
	atan	Invers tangen

Tabel 3.2 Fungsi Matematika Umum dalam MATLAB

	atanh	Invers hiperbola tangen
	COS	Kosinus
	cosh	Kosinus hiperbola
	cot	Kotangen
	coth	Kotangen hiperbola
	CSC	Kosekan
	csch	Kosekan hiperbola
	sec	Sekan
	sech	Sekan hiperbola
	sin	Sinus
. 6	sinh	Sinus hiperbola
	tan	Tangen
1	tanh	Tangen hiperbola
	pi	3,14
	exp	Eksponensial
	log	Logaritma natural
-	log10	Logaritma basis 10
	log2	Logaritma basis 2
	sqrt	Akar pangkat

3.3 FUNGSI MATRIK DALAM MATLAB

Manipulasi matrik merupakan perangkat kunci dari fungsi-fungsi MATLAB. Oleh karena itu MATLAB merupakan *tools* untuk manipulasi data berupa matrik dan vektor. Beberapa fungsi dasar matrik yang terdapat dalam MATLAB yaitu [K2]:

Tabel 3.3 Fungsi Dasar Matrik dalam MATLAB		
Fungsi	Deskripsi	
inv	Invers matrik	
det	Determinan matrik	
eye(n)	Matrik identitas berukuran (n × n)	
zeros(n,m) Matrik yang bernilai nol berukuran (n		

3.4 PERULANGAN DAN KONDISIONAL – CONTROL FLOW

Dalam membuat sebuah program, MATLAB memiliki *syntax* untuk mengatur aliran proses program. Pengontrol aliran proses program (*control flow*) terdiri dari 2 jenis

yaitu perulangan atau iterasi (*loop*) dan kondisional [A1]. Dalam pustaka MATLAB terdapat beberapa pernyataan untuk perulangan dan kondisional, diantaranya adalah [K2]:

Simbol	Deskripsi
for	Perintah iterasi yang digunakan juga pada bahasa program lainnya
while	Perintah untuk iterasi yang dikombinasikan dengan perintah kondisional
if	Perintah untuk menghasilkan pernyataan kondisional
else , elseif	Perintah yang berhubungan erat dengan perintah kondisional if
break	Perintah untuk menghentikan iterasi jika kondisi yang dibuat sudah terpenuhi
	Pernyataan bahwa dua buah kondisi adalah sama (setara)
~=	Pernyataan bahwa dua buah kondisi adalah tidak sama
<= atau >=	Satu kondisi lebih besar sama dengan atau lebih kecil sama dengan kondisi lainnya
< atau >	Satu kondisi lebih besar dari atau lebih kecil dari kondisi lainnya
&	Operator dan – dimana dua kondisi cocok
~	Operator bukan
	Operator atau – sehingga kondisi yang lain lebih dipilih

3.4.1 Perulangan atau Iterasi (Looping)

Perulangan atau iterasi adalah jenis pengontrol yang berguna untuk mengefisienkan penulisan skrip program, khususnya untuk program-program yang membutuhkan proses berulang-ulang [A1; K2]. Jenis iterasi ada dua macam yaitu :

1. Iterasi terbatas (for ... end)

Syntax iterasi ini digunakan untuk melakukan pengulangan proses yang telah diketahui jumlahnya. Cara penulisannya yaitu :

2. Iterasi terkondisi (while ... end)

Syntax iterasi ini digunakan untuk melakukan pengulangan proses tanpa diketahui jumlah pengulangannya. Iterasi jenis ini hanya berhenti melakukan pengulangan ketika mencapai syarat tertentu. Cara penulisannya adalah sebagai berikut :

```
while syarat
perintah-perintah
end
```

3.4.2 Kondisional atau Percabangan

Kondisional adalah pengontrol yang berguna untuk mengalihkan program ke proses tertentu. Biasanya digunakan untuk menyelesaikan program yang memiliki banyak proses tetapi dalam kesempatan eksekusi hanya menjalankan satu atau lebih proses pilihan berdasarkan syarat tertentu. Salah satu jenis kondisional adalah kondisional nilai relatif [A1]. *Syntax* kondisional ini dapat digunakan untuk syarat yang berada dalam nilai interval tertentu maupun absolut, baik numerik maupun string. Cara penulisannya adalah sebagai berikut :

3.5 APLIKASI METODE ELEMEN HINGGA DENGAN MATLAB

Modelisasi struktur dengan Metode Elemen Hingga mempunyai dasar perhitungan dengan menggunakan matrik. Model struktur yang besar dapat didiskritisasi menjadi bagian-bagian yang kecil sehingga penggunaan matrik akan membutuhkan ketelitian yang lebih. Oleh karena itu, penggunaan program akan memberikan solusi untuk mempercepat dan mempermudah perhitungan.

MATLAB sebagai salah satu program yang memiliki solusi perhitungan dengan basis matrik akan memberikan beberapa keuntungan dalam proses untuk menyelesaikan modelisasi struktur dengan Metode Elemen Hingga. Di antara beberapa kelebihan penggunaan MATLAB adalah sebagai berikut :

- a. Kelebihan utama penggunaan MATLAB yaitu kode-kode yang digunakan lebih simpel dan mewakili
- b. Perangkat yang memiliki basis perhitungan dengan menggunakan matrik, di mana hal tersebut memiliki kesamaan dengan basis perhitungan jika menggunakan Metode Elemen Hingga
- c. Karena memiliki kesamaan dalam basis perhitungan maka pengguna tidak perlu melakukan prosedur yang panjang untuk mendapatkan solusi
- d. MATLAB mempunyai cara yang lebih interaktif dalam aplikasi untuk menyelesaikan solusi sehingga dapat mengurangi waktu yang terbuang
- e. MATLAB menyediakan banyak toolbox untuk aplikasi-aplikasi khusus

3.6 ASPEK PROGRAMASI

Sebelum memulai programasi untuk elemen hingga, sebaiknya kita mengerti tentang kerangka analisa perhitungan elemen hingga. Beberapa prosedur utama untuk menganalisa elemen hingga dengan menggunakan MATLAB yaitu :

- 1. Melakukan diskritisasi terhadap struktur yang akan dianalisa, serta menentukan kondisi batas secara tepat sehingga tidak terjadi kesalahan pada saat input data
- 2. Membaca input data dan menyusun sesuai dengan urutan
- 3. Menghitung matrik elemen dan vektor untuk tiap elemen
- 4. Menyusun matrik dan vektor elemen kedalam sistem matrik dan vektor
- 5. Menetapkan bagian struktur yang dikekang (*constraint*) atau kondisi batas kedalam sistem matrik dan vektor
- 6. Menyelesaikan persamaan matrik untuk variabel-variabel nodal utama
- 7. Menghitung variabel-variabel sekunder
- 8. Menampilkan dan atau mencetak hasil yang diinginkan

3.7 DISKRITISASI STRUKTUR

Diskritisasi struktur dilakukan dengan menggunakan bantuan *commercial* software ANSYS ED 10.1 student version, sehingga dapat ditentukan bentuk diskritisasi struktur yang baik sampai mencapai jumlah elemen tertentu sehingga diperoleh hasil solusi yang baik. Dari hasil diskritisasi ANSYS, kita akan memperoleh data koordinat nodal, konektivitas, nodal-nodal yang di-*restraint*, serta nodal-nodal yang menerima beban.

Elemen axisymmetri tiga dimensi

Gambar 3.1. Diskritisasi struktur solid axisymmetri dengan elemen triangular 3 nodal

Sebagai contoh kita gunakan struktur solid axisymmetri diatas, di mana kita menggunakan tipe elemen triangular 3 nodal dengan 2 derajat kebebasan tiap nodalnya (u, w). Jenis perletakan yang terdapat pada struktur merupakan input yang akan

digunakan untuk mengetahui titik-titik nodal mana sajakah yang akan dikekang, sehingga dapat ditentukan derajat kebebasan yang bernilai nol. Perhatikan pula beban yang bekerja pada struktur tersebut sehingga deformasi struktur dapat diketahui perubahan bentuknya. Hal ini sangat penting untuk menetapkan kondisi batasnya. Selain itu prinsip konektivitas pada sebuah elemen harus benar, sesuai dengan tipe elemen yang digunakan.

3.8 INPUT DATA

Dalam melakukan modelisasi struktur dengan Metode Elemen Hingga perlu diketahui beberapa parameter penting yang diperlukan, diantaranya :

- 1. Jumlah total nodal dalam sebuah struktur
- 2. Jumlah total elemen dalam sebuah struktur
- 3. Material properties dari struktur yang ada
- 4. Data koordinat nodal dalam sistem koordinat global
- 5. Tipe elemen yang digunakan
- 6. Konektivitas tiap-tiap elemen pada struktur setelah diskritisasi
- 7. Informasi mengenai kondisi batas
- 8. Beban yang diterima struktur baik berupa surface loads maupun point loads
- 9. Koefisien-koefisien yang diperlukan

Dalam memasukkan data-data diatas sebaiknya kita menggunakan *syntax* yang berbeda dengan yang telah tersedia di MATLAB. Karena jika menggunakan *keyword* yang sama dengan *syntax* yang tersedia di MATLAB maka program tidak akan melaksanakan perintah yang telah kita susun. Perintah yang digunakan untuk input data dalam penulisan skripsi ini diantaranya :

Tabel 3.5 Daftar Keyword yang digunakan dalam operasi Solid Axisymmetri

Keyword	Fungsi
k	Menunjukkan matrik elemen
f	Menunjukkan vektor elemen
kk	Menunjukkan sistem matrik elemen
ff	Menunjukkan sistem vektor elemen
disp	Sistem vektor dari peralihan nodal
eldisp	Vektor peralihan nodal dalam elemen
stress	Komponen matrik tegangan
strain	Komponen matrik regangan
nel	Identifikasi jumlah elemen dalam struktur
nnel	Identifikasi jumlah nodal dalam tiap elemen
ndof	Identifikasi jumlah derajat kebebasan dalam tiap nodal

nnode	Identifikasi jumlah nodal dalam sistem struktur		
sdof	Identifikasi jumlah total derajat kebebasan dalam sistem struktur		
edof	Identifikasi jumlah derajat kebebasan dalam sebuah elemen		
emodule	Identifikasi nilai Modulus Elastisitas		
poisson	Identifikasi nilai Poisson's ratio		
nglx	Identifikasi jumlah titik integrasi Gauss dalam arah x		
ngly	Identifikasi jumlah titik integrasi Gauss dalam arah y		
nglxy	Identifikasi jumlah titik integrasi Gauss dalam sebuah elemen		
gcoord(i,j)	Identifikasi koordinat nodal. Contoh : gcoord (1,1)=0.0 berarti data koordinat nodal 1		
	adalah (0,0) pada arah x		
nodes(i,j)	Identifikasi konektivitas nodal pada tiap elemen. Contoh : nodes (1,2)=2 berarti		
	konektivitas no. 2 untuk elemen 1 nodal 2		
bcdof (nodal)	Identifikasi nodal yang dikekang . Contoh : bcdof (1) berarti nodal 1 dikekang		
bcval (nodal)	Identifikasi nilai derajat kebebasan adalah nol untuk nodal yang dikekang		
area	Identifikasi luas area elemen		
xcenter	Identifikasi titik pusat elemen pada arah x		
ycenter	Identifikasi titik pusat elemen pada arah y		
shape (i)	Identifikasi shape function		

3.9 SUBRUTIN UNTUK MEMBUAT SEBUAH FUNGSI

Dalam MATLAB sebuah fungsi dibuat dengan menggunakan sebuah subrutin. Subrutin dalam MATLAB berbentuk file *m* (*function1.m*), sehingga kita harus memisahkan penulisannya dengan *main program* yang telah kita buat untuk menyelesaikan suatu problem. Subrutin bermanfaat untuk perhitungan berulang (*looping*) dengan fungsi yang sama, sehingga dapat mempersingkat penulisan perintah dalam *main program*.

Subrutin akan otomatis membuat nama file sesuai dengan nama fungsi yang kita buat, sehingga kita tidak perlu membuat nama file baru untuk subrutin yang berisi fungsi yang kita buat. Berikut ini adalah contoh penulisan subrutin dan hasil file yang terbentuk :

```
function [shapeq4,dhdrq4,dhdsq4] = feisoq4(rvalue,svalue)
% shape function
...
dhdsq4(4) = 0.25*(1-rvalue)
```

Maka penulisan subrutin diatas akan otomatis tersimpan sebagai feisoq4.m

3.10 MENGUMPULKAN ELEMEN KE DALAM MATRIK DAN VEKTOR

Pada proses ini, kita memasukkan semua informasi mengenai persamaan yang akan digunakan dalam solusi elemen hingga. Persamaan berupa matrik *Jacobian*, matrik [B] yang tersusun dari matrik fungsi bentuk [N], serta persamaan lain yang diperlukan dalam menyelesaikan perhitungan. Penentuan koordinat nodal, konektivitas, *nodal restraint*, dan lainnya dilakukan dengan menggunakan bantuan ANSYS, seperti telah disebutkan sebelumnya pada proses diskritisasi untuk kemudian kita input.

Setelah semua data tersusun, maka kita mulai menyusun matrik untuk tiap elemen dengan menggunakan perintah-perintah for sehingga akan terbentuk suatu *loop* dimana program akan menghitung secara berulang. Sedangkan untuk menghitung sistem matrik struktur, digunakan fungsi dalam MATLAB yang akan menyusun matrik elemen kedalam sistem matrik struktur.

3.11 DIAGRAM ALIR PENYELESAIAN SOLUSI

BAB IV

SUBRUTIN DAN *MAIN PROGRAM* UNTUK MODELISASI STRUKTUR SOLID AXISYMMETRI

4.1 SUBRUTIN YANG DIGUNAKAN UNTUK MODELISASI STRUKTUR SOLID AXISYMMETRI

Pada penulisan skripsi ini terdapat beberapa subrutin yang digunakan untuk menghasilkan solusi dari sebuah problem dalam sebuah *main program*. Subrutin biasa digunakan untuk membuat suatu fungsi persamaan dimana solusi bersifat perulangan (iterasi). Dalam modelisasi struktur solid axisymmetri, fungsi yang dibuat antara lain formulasi matrik *Jacobian*, matrik [B], *shape function*, titik integrasi *Gauss* dan lainnya. Berikut ini adalah subrutin yang digunakan dalam penulisan skripsi ini :

4.1.1 Subrutin Array Matrik Elemen yang terkait dengan DOF-nya

```
function [index] = feeldof(nd,nnel,ndof)
% Purpose :
% Compute system dofs associated with each element
% Synopsis :
% [index] = feeldof(nd,nnel,ndof)
% Variable Description :
% index - sytem dof vector associated with element iel
% nd = element node numbers whose system dofs are to be determined
% nnel - number of nodes per element
% ndof - number of dofs per node
8 -----
        -----
edof = nnel*ndof;
k = 0;
for i = 1:nnel
    start = (nd(i)-1)*ndof;
    for j = 1:ndof
        k = k+1;
        index(k) = start +j;
    end
end
```

Subrutin diatas tersimpan sebagai file m bernama : feeldof.m

Keterangan :

Subrutin diatas digunakan untuk mengaplikasikan derajat kebebasan pada masing-masing elemen pada struktur solid axisymmetri sesuai dengan diskritisasi struktur yang telah ditetapkan. Perhitungan berulang dari jumlah dof sama dengan satu sampai dengan jumlah dof yang ada pada masing-masing elemen yang akan dihitung (for i = 1:nnel).

4.1.2 Subrutin untuk Menyatukan Matrik Elemen-elemen

```
function [kk] = feasmbl1(kk,k,index)
                                                      _____
% Purpose :
% Assembly of element matrices into the system matrix
8
% Synopsis :
% [kk] = feasmbl1(kk,k,index)
% Variable Description :
% kk - system matrix
% k - element matrix
% index - dof vector associated with an element
≥ ____
         _____
2
edof = length(index);
for i = 1:edof
   ii = index(i);
    for j = 1:edof
       jj = index(j);
       kk(ii,jj) = kk(ii,jj) + k(i,j);
    end
end
```

Subrutin diatas tersimpan sebagai file m bernama : feasmbl1.m

Keterangan :

Subrutin feasmbl1(kk,k,index) digunakan untuk proses *assembling* matrik kekakuan struktur setelah mengaplikasikan matrik kekakuan elemen, di mana derajat kebebasan telah diaplikasikan pada matrik kekakuan elemen. Pada proses ini akan melakukan perhitungan berulang dari jumlah jumlah derajat kebebasan struktur sama dengan satu sampai dengan jumlah derajat kebebasan struktur keseluruhan (for i = 1:edof).

4.1.3 Subrutin untuk Aplikasi DOF = 0 pada Persamaan Matrik

```
function [kk,ff] = feaplyc2(kk,ff,bcdof,bcval)
% Purpose :
% Apply constraints to matrix equation [kk]x = ff
% Synopsis :
% [kk,ff] = feaplyc2(kk,ff,bcdof,bcval)
2
% Variable Description :
% kk - system matrix before applying constraints
% ff - system vector before applying constraints
% bcdof - a vector containing constrained value
% For example, there are constraints at dof = 2 and 10 and their
% constrained values are 0.0 and 2.5, respectively. Then, bcdof(1) = 2 and
% bcdof(2) = 10; and bcval(1) = 0.0 and bcval(2) = 2.5.
        _____
% _____
n = length(bcdof);
sdof = size(kk);
for i = 1:n
    c = bcdof(i);
    for j = 1:sdof
        kk(c,j) = 0;
    end
    kk(c,c) = 1;
    ff(c) = bcval(i);
```

Keterangan :

Subrutin feaplyc2(kk,ff,bcdof,bcval) diaplikasikan untuk memasukkan nilai derajat kebebasan bernilai nol untuk nodal-nodal yang dikekang pada persamaan matrik kekakuan struktur. Pada persamaan ini MATLAB akan membaca input dari bcdof dan bcval untuk mengaplikasi derajat kebebasan sama dengan nol pada persamaan matrik kekakuan struktur.

4.1.4 Subrutin Matrik Jacobian

```
function [jacob2] = fejacob2(nnel,dhdr,dhds,xcoord,ycoord)
% Purpose :
% determine the Jacobian for two-dimensional mapping
% Synopsis :
% [jacob2] = fejacob2(nnel,dhdr,dhds,xcoord,ycoord)
% Variable Description
% jacob2 - Jacobian for one-dimension
% nnel - number of nodes per element
% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% xcoord - x axis coordinate values of nodes
% ycoord - y axis coordinate values of nodes
jacob2 = zeros(2,2);
2
for i = 1:nnel
    jacob2(1,1) = jacob2(1,1)+dhdr(i)*xcoord(i);
    jacob2(1,2) = jacob2(1,2)+dhdr(i)*ycoord(i);
    jacob2(2,1) = jacob2(2,1)+dhds(i)*xcoord(i);
    jacob2(2,2) = jacob2(2,2)+dhds(i)*ycoord(i);
end
```

Subrutin diatas tersimpan sebagai file m bernama : fejacob2.m

Keterangan :

Subrutin fejacob2(nne1,dhdr,dhds,xcoord,ycoord) memiliki ekuivalensi dengan teori dasar metode elemen hingga untuk menghitung matrik Jacobian pada elemen quadrilateral 4 nodal yang memiliki ukuran matrik (2×2)

Ekuivalensi simbol dengan teori MEH
$J_{11} = N_{i,\xi} \times \text{koordinat titik arah } r$
$J_{21} = N_{i,\xi} \times \text{koordinat titik arah } z$
$J_{22} = N_{i,\xi} \times \text{koordinat titik arah } r$
$J_{22} = N_{i,\xi} \times$ koordinat titik arah z

Subrutin diatas akan melakukan perulangan sampai dengan jumlah d.k. pada masingmasing elemen terpenuhi (for i = 1:nnel).

4.1.5 Subrutin Titik Integrasi *Gauss* dan Faktor Pemberat untuk Integrasi Numerik *Gauss* 1D

```
function [point1,weight1] = feglqd1(ngl)
8 ____
% Purpose :
% determine the integration points and weighting coefficients of Gauss
% -Legendre quadrature for one dimensional integration
% Synopsis :
% [point1,weight1] = feglqd1(ngl)
% Variable Description :
% ngl - number of integration points
% point1 = vector containing integration points
% weight1 = vector containing weighting coefficients
% initialization
point1 = zeros(ngl,1);
weight1 = zeros(ngl,1);
% find corresponding integration points and weights
if ngl == 1
                                                           % 1-point quadrature rule
   point1(1) = 0.0;
   weight1(1) = 2.0;
    2
else if ngl == 2
                                                           % 2-point quadrature rule
        point1(1) = -0.577350269189626;
        point1(2) = - point1(1);
        weight1(1) = 1.0;
        weight1(2) = weight1(1);
    else if ngl == 3
                                                           % 3-point quadrature rule
           point1(1) = -0.774596669241483;
            point1(2) = 0.0
            point1(3) = - point1(1);
            weight1(1) = 0.55555555555556;
          else if ngl == 4
                                                           % 4-point quadrature rule
                point1(1) = -0.861136311594053;
                point1(2) = -0.339981043584856;
                point1(3) = - point1(2);
               point1(4) = - point1(1);
weight1(1) = 0.347854845137454;
                weight1(2) = 0.652145154862546;
                weight1(3) = weight1(2);
                weight1(4) = weight1(1);
            else
                                                           % 5-point quadrature rule
                point1(1) = -0.906179845938664;
                point1(2) = -0.538469310105683;
                point1(3) = 0.0;
                point1(4) = - point1(2);
point1(5) = - point1(1);
                weight1(1) = 0.236926885056189;
                weight1(2) = 0.478628670499366;
                weight1(3) = 0.568888888888888889;
                weight1(4) = weight1(2);
                weight1(5) = weight1(1);
            end
           °
```


Subrutin diatas tersimpan sebagai file m bernama : feqlqd1.m

Keterangan :

Subrutin diatas berisi koordinat titik integrasi *Gauss* dan faktor pemberat yang akan digunakan pada perhitungan integrasi numerik *Gauss* 1D. Subrutin ini akan terkait dengan feglqd2(nglx,ngly), di mana titik integrasi *Gauss* yang akan digunakan akan ditentukan setelah kita menentukan jumlah titik integrasi yang diinginkan.

Keyword dalam MATLAB	Ekuivalensi simbol dengan teori MEH
point1	Koordinat titik integrasi Gauss pada arah ξ atau arah η
weight1	Faktor pemberat ω pada arah ξ atau arah η

4.1.6 Subrutin Titik Integrasi *Gauss* dan Faktor Pemberat untuk Integrasi Numerik *Gauss* 2D

```
function [point2,weight2] = feglqd2(nglx,ngly)
% Purpose :
% determine the integration points and weighting coefficients of
 Gauss-Legendre quadrature for two-dimensional integration
%
% Synopsis :
% [point2,weight2] = feglqd2(nglx,ngly)
% Variable Description :
% nglx - number of integration points in the x-axis
% ngly - number of integration points in the y-axis
% point2 - vector containing integration points
% weight2 - vector containing weighting coefficients
% -------
°
2
% determine the largest one between nglx and ngly
if nglx>ngly
    ngl = nglx;
else
    ngl = ngly;
end
Ŷ
% initialization
2
point2 = zeros(ngl,2);
weight2 = zeros(ngl,2);
ŝ
% find corresponding integration points and weights
ŝ
[pointx,weightx] = feglqd1(nglx); [pointy,weighty] = feglqd1(ngly);
% quadrature for two-dimension
for intx = 1:nglx point2(intx,1)=pointx(intx);
    weight2(intx,1) = weightx(intx);
end
for inty = 1:ngly point2(inty,2)=pointy(inty);
    weight2(inty,2) = weighty(inty);
```

Subrutin diatas tersimpan sebagai file m bernama : feglqd2.m

Keterangan :

Subrutin feglqd2(nglx,ngly)digunakan untuk menentukan jumlah titik integrasi Gauss yang digunakan pada perhitungan numerik *Gauss* 2D. Di mana koordinat titik integrasi pada arah ξ maupun η akan diambil dari subrutin feglqdl(ngl). Begitu pula dengan faktor pemberat ω yang akan digunakan akan diperoleh dari subrutin yang sama.

4.1.7 Subrutin Shape Function dan Turunannya terhadap ξ dan η untuk Elemen Quadrilateral 4 Nodal

```
function [shapeq4,dhdrq4,dhdsq4] = feisoq4(rvalue,svalue)
% Purpose :
% compute isoparametric four-node quadrilateral shape functions and their
% derivatives at the selected (integration) point in terms of the natural
% coordinate
%
% Synopsis :
% [shapeq4,dhdrq4,dhdsq4] = feisoq4(rvalue,svalue)
% Variable Description :
% shapeq4 - shape functions for four-node element
% dhdrq4 - derivatives of the shape functions w.r.t. r
% dhdsq4 - derivatives of the shape functions w.r.t. s
% rvalue - r coordinate value of the selected point
% svalue - s coordinate value of the selected point
% Notes :
% 1st node at (-1,-1), 2nd node at (1,-1)
\ 3rd node at (1,1), 4th node at (-1,1)
2
% shape functions
shapeq4(1) = 0.25*(1-rvalue)*(1-svalue);
shapeq4(2) = 0.25*(1+rvalue)*(1-svalue);
shapeq4(3) = 0.25*(1+rvalue)*(1+svalue);
shapeq4(4) = 0.25*(1-rvalue)*(1+svalue);
% derivatives
dhdrq4(1) = -0.25*(1-svalue);
dhdrq4(2) = 0.25*(1-svalue);
dhdrq4(3) = 0.25*(1+svalue);
dhdrq4(4) = -0.25*(1+svalue);
dhdsq4(1) = -0.25*(1-rvalue);
dhdsq4(2) = -0.25*(1+rvalue);
dhdsq4(3) = 0.25*(1+rvalue);
dhdsq4(4) = 0.25*(1-rvalue);
2
```

Subrutin diatas tersimpan sebagai file m bernama : feisoq4.m

Keterangan :

Subrutin ini berisi fungsi turunan *shape function* terhadap ξ dan η untuk elemen quadrilateral 4 nodal. Sehingga kita dapat melihat ekuivalensi simbol dalam fungsi yang digunakan dalam MATLAB dengan simbol pada teori MEH.

Keyword dalam MATLAB	Ekuivalensi simbol dengan teori MEH
<pre>shapeq4(1) = 0.25*(1-rvalue)*(1-svalue) shapeq4(2) = 0.25*(1+rvalue)*(1-svalue) shapeq4(3) = 0.25*(1+rvalue)*(1+svalue) shapeq4(4) = 0.25*(1-rvalue)*(1+svalue)</pre>	$N_{1} = \frac{1}{4} (1 - \xi) (1 - \eta)$ $N_{2} = \frac{1}{4} (1 + \xi) (1 - \eta)$ $N_{3} = \frac{1}{4} (1 + \xi) (1 + \eta)$ $N_{4} = \frac{1}{4} (1 - \xi) (1 + \eta)$
<pre>dhdrq4(1) = -0.25*(1-svalue) dhdrq4(2) = 0.25*(1-svalue) dhdrq4(3) = 0.25*(1+svalue) dhdrq4(4) = -0.25*(1+svalue)</pre>	$N_{1,\xi} = -\frac{1}{4} (1 - \eta)$ $N_{2,\xi} = \frac{1}{4} (1 - \eta)$ $N_{3,\xi} = \frac{1}{4} (1 + \eta)$ $N_{4,\xi} = -\frac{1}{4} (1 + \eta)$
<pre>dhdsq4(1) = -0.25*(1-rvalue) dhdsq4(2) = -0.25*(1+rvalue) dhdsq4(3) = 0.25*(1+rvalue) dhdsq4(4) = 0.25*(1-rvalue)</pre>	$N_{1,\eta} = -\frac{1}{4} (1 - \xi)$ $N_{2,\eta} = -\frac{1}{4} (1 + \xi)$ $N_{3,\eta} = \frac{1}{4} (1 + \xi)$ $N_{4,\eta} = \frac{1}{4} (1 - \xi)$

4.1.8 Subrutin Turunan Shape Function terhadap Koordinat Silinder r dan z

```
function [dhdx,dhdy] = federiv2(nnel,dhdr,dhds,invjacob)
```

```
0/0
 Purpose :
% determine derivatives of 2-D isoparametric shape functions with respect
% to physical coordinate system
% Synopsis :
% [dhdx,dhdy] = federiv2(nnel,dhdr,dhds,invjacob)
% Variable Description :
% dhdx - derivative of shape function w.r.t. physical coordinate r
% dhdy - derivative of shape function w.r.t. physical coordinate z
% nnel - number of nodes per element
% dhdr - derivative of shape functions w.r.t natural coordinate r
% dhds - derivative of shape functions w.r.t natural coordinate s
% invjacob - inverse of 2-D Jacobian matrix
%
%
for i = 1:nnel
    dhdx(i) = invjacob(1,1)*dhdr(i)+invjacob(1,2)*dhds(i);
    dhdy(i) = invjacob(2,1)*dhdr(i)+invjacob(2,2)*dhds(i);
end
2
ŝ
```

Subrutin diatas tersimpan sebagai file m bernama : federiv2.m

Keterangan :

Subrutin federiv2(nnel,dhdr,dhds,invjacob) merupakan turunan *shape function* terhadap sistem koordinat silinder. Ekuivalensi simbol antara MATLAB dan teori MEH dapat dilihat berikut ini :

Keyword dalam MATLAB	Ekuivalensi simbol dengan teori MEH
<pre>dhdx(i) = invjacob(1,1)*dhdr(i)+invjacob(1,2)*dhds(i) dhdy(i) = invjacob(2,1)*dhdr(i)+invjacob(2,2)*dhds(i)</pre>	$N_{i,r} = j_{11}N_{i,\xi} + j_{12}N_{i,\eta}$ $N_{i,z} = j_{21}N_{i,\xi} + j_{22}N_{i,\eta}$

Iterasi perhitungan akan dilakukan dari jumlah dof sama dengan 1 sampai dengan jumlah dof yang terdapat pada masing-masing elemen (for i = 1:nnel).

4.1.9 Subrutin Array Matrik [B]

```
function [kinmtxax] = fekineax(nnel,dhdx,dhdy,shape,radist)
8 ------
% Purpose :
% determine kinematic equations between strains and displacements for
% axisymmetric solids
2
% Synopsis :
% [kinmtxax] = fekineax(nnel,dhdx,dhdy,shape,radist)
% Variable Description :
% nnel - number of nodes per element
% shape - shape functions
% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to y
% radist - radial distance of integration point or central point for hoop
% strain component
2
for i = 1:nnel
   i1 = (i-1)*2+1;
    i2 = i1+1;
    kinmtxax(1,i1) = dhdx(i);
    kinmtxax(2,i1) = shape(i)/radist;
    kinmtxax(3,i2) = dhdy(i);
    kinmtxax(4,i1) = dhdy(i);
    kinmtxax(4,i2) = dhdx(i);
end
%
```

Subrutin diatas tersimpan sebagai file m bernama : fekineax.m

Keterangan :

Subrutin fekineax(nnel,dhdx,dhdy,shape,radist) merupakan subrutin yang digunakan untuk membangun matrik [B], yang diperlukan untuk menghitung matrik kekakuan struktur. Dalam subrutin tersebut, kita dapat melihat ekuivalensi dari simbol yang digunakan dalam MATLAB dengan simbol teori MEH untuk proses perhitungan yang sama. Proses iterasi perhitungan dilakukan dengan membentuk matrik [B] untuk masing-masing elemen terlebih dahulu, baru kemudian di-*assemble* untuk memperoleh matrik [B] struktur setelah dof diaplikasikan.

Keyword dalam MATLAB	Ekuivalensi symbol dengan teori MEH
<pre>kinmtxax(1,i1) = dhdx(i) kinmtxax(2,i1) = shape(i)/radist kinmtxax(3,i2) = dhdy(i) kinmtxax(4,i1) = dhdy(i) kinmtxax(4,i2) = dhdx(i)</pre>	$\begin{bmatrix} B \\ (4 \times 8) \end{bmatrix} = \begin{bmatrix} \dots & N_{i,r} & 0 & \dots \\ \dots & \frac{N_i}{r} & 0 & \dots \\ \dots & 0 & N_{i,z} & \dots \\ \dots & N_{i,z} & N_{i,r} & \dots \end{bmatrix}_{i=1\dots4}$

4.1.10 Subrutin Array Matrik Hooke [H]

```
function [matmtx] = fematiso(iopt,elastic,poisson)
8 --
% Purpose :
% determine the constitutive equation for isotropic material
2
% Synopsis :
% [matmtx] = fematiso(iopt,elastic,poisson)
% Variable Description :
% elastic - elastic modulus
% poisson - Poisson's ratio
% iopt = 1 - plane stress analysis
% iopt = 2 - plane strain analysis
% iopt = 3 - axisymmetric analysis
% iopt = 4 - three dimensional analysis
% -
2
if iopt == 1
                                                                         % plane stress
   matmtx = elastic/(1-poisson*poisson)*...
       [1 poisson 0;...
       poisson 1 0;...
       0 0 (1-poisson)/2];
   0/0
elseif iopt == 2
                                                                         % plane strain
        matmtx = elastic/((1+poisson)*(1-2*poisson))*...
            [(1-poisson) poisson 0;...
            poisson (1-poisson) 0;...
            0 0 (1-2*poisson)/2];
        %
    elseif iopt == 3
                                                                          % axisymmetry
        matmtx = elastic/((1+poisson)*(1-2*poisson))*..
            [(1-poisson) poisson poisson 0;...
            poisson (1-poisson) poisson 0;...
            poisson poisson (1-poisson) 0;...
            0 0 0 (1-2*poisson)/2];
else
                                                                      % three-dimension
    matmtx = elastic/((1+poisson)*(1-2*poisson))*...
        [(1-poisson) poisson poisson 0 0 0;...
        poisson (1-poisson) poisson 0 0 0;...
        poisson poisson (1-poisson) 0 0 0;...
        0 0 0 (1-2*poisson)/2 0 0;...
        0 0 0 0 (1-2*poisson)/2 0;...
        0 0 0 0 0 (1-2*poisson)/2];
end
2
                                                   ------
°
```

Subrutin diatas tersimpan sebagai file m bernama : *fematiso.m*

Keterangan :

Subrutin fematiso(iopt,elastic,poisson)digunakan untuk membangun matrik *Hooke*, di mana pilihan untuk problem solid axisymmetri diidentifikasi jika kita memilih iopt == 3. Dari fungsi yang digunakan dalam MATLAB untuk membangun matrik *Hooke*, dapat kita lihat ekuivalensi simbol yang digunakan didalamnya dengan simbol pada teori MEH.

Keyword dalam MATLAB	Ekuivalensi simbol dengan teori MEH
<pre>matmtx = elastic/((1+poisson)*(1-2*poisson))* [(1-poisson) poisson poisson 0; poisson (1-poisson) poisson 0; poisson poisson (1-poisson) 0; 0 0 0 (1-2*poisson)/2];</pre>	$[H] = \frac{E}{(1+\upsilon)(1-2\upsilon)} \begin{bmatrix} (1-\upsilon) & \upsilon & \upsilon & 0\\ \upsilon & (1-\upsilon) & \upsilon & 0\\ \upsilon & \upsilon & (1-\upsilon) & 0\\ 0 & 0 & 0 & \frac{(1-2\upsilon)}{2} \end{bmatrix}$

4.2 MAIN PROGRAM MODELISASI STRUKTUR SOLID AXISYMMETRI

4.2.1 Elemen Triangular 3 Nodal

Ŷ % Example 4.2.1 % axisymmetric analysis of a solid subjected to an internal pressure using % linear triangular elements % (see Fig. 4.1 for the finite element mesh) ŝ % Variable descriptions % k = element matrix % f = element vector % kk = system matrix % ff = system vector % disp = system nodal displacement vector % eldisp = element nodal displacement vector % stress = matrix containing stresses % strain = matrix containing strains % gcoord = coordinate values of each node % nodes = nodal connectivity of each element % index = a vector containing system dofs associated with each element

```
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary conditions values associated with
% the dofs in bcdof
8 _____
                          _____
2
8
% Input data for control parameters
§ _____
nel = 10;
                                                           % number of elements
nnel = 3;
                                                  % number of nodes per element
ndof = 2i
                                                      % number of dofs per node
nnode = 12i
                                               % total number of nodes in system
sdof = nnode*ndof;
                                                            % total system dofs
edof = nnel*ndof;
                                                % degrees of freedom per element
                                                              % elastic modulus
emodule = 28e6;
poisson = 0.25i
                                                              % Poisson's ratio
           _____
% _--
% Input data for nodal coordinate value
gcoord(i,j) where i -> node no. and j -> x or y
% _____
              _____
gcoord = [10. 0.; 10. 1.; 11. 0.; 11. 1.; 12. 0.; 12. 1.; 13. 0.; 13. 1.; 14. 0.;
14. 1.; 15. 0.; 15. 1.];
2 ___
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
nodes = [1 3 4; 1 4 2; 3 5 6; 3 6 4; 5 7 8; 5 8 6; 7 9 10; 7 10 8; 9 11 12; 9 12
101;
00
       ------
% _____
% Input data for boundary conditions
2
bcdof = [2 4 6 8 10 12 14 16 18 20 22 24];
                                                     % axial motion constrained
bcval = [0 0 0 0 0 0 0 0 0 0 0];
                                                      % constrained value are 0
§ _____
% Initialization of matrices and vectors
8 -----
ff = zeros(sdof, 1);
                                                          % system force vector
kk = zeros(sdof,sdof);
                                                                % system matrix
disp = zeros(sdof,1);
                                                   % system displacement vector
eldisp = zeros(edof,1);
                                                  % element displacement vector
stress = zeros(nel,4);
                                           % matrix containing stress components
strain = zeros(nel,4);
                                           % matrix containing strain components
index = zeros(edof,1);
                                                               % index vector
                                                             % kinematic matrix
kinmtxax = zeros(4,edof);
                                                          % constitutive matrix
matmtx = zeros(4, 4);
%
8 -----
% Force vector
% _--
pi = 4.0*atan(1);
                                                                % pi = 3.141592
ff(1) = 2e3*pi*2*10;
                                             % force applied at node 1 in x-axis
ff(3) = 2e3*pi*2*10;
                                             % force applied at node 2 in x-axis
§ _____
% Compute element matrices and vectors, and assemble
% ___
matmtx = fematiso(3,emodule,poisson);
                                                          % constitutive matrix
ŝ
for iel = 1:nel
                                         % loop for the total number of elements
    °
   nd(1) = nodes(iel,1);
                                                 % 1st node for (iel)-th element
   nd(2) = nodes(iel, 2);
                                                 % 2nd node for (iel)-th element
   nd(3) = nodes(iel,3);
                                                % 3rd node for (iel)-th element
   x1 = gcoord(nd(1),1); y1 = gcoord(nd(1),2);
                                                     % coord values of 1st node
   x^{2} = gcoord(nd(2), 1); y^{2} = gcoord(nd(2), 2);
                                                     % coord values of 2nd node
   x3 = gcoord(nd(3),1); y3 = gcoord(nd(3),2);
                                                    % coord values of 3rd node
```

```
index = feeldof(nd,nnel,ndof);
                                           % extract system dofs for the element
    8 -
    % Find the derivatives of shape functions
    § _____
    area = 0.5*(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2);
                                                               % area of triangle
   area2 = area*2;
   xcenter = (x1+x2+x3)/3;
                                                          % x-centroid of triangle
   ycenter = (y1+y2+y3)/3;
                                                          % v-centroid of triangle
   shape(1) = ((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter)/area2;
   shape(2) = ((x3*y1-x1*y3)+(y3-y1)*xcenter+(x1-x3)*ycenter)/area2;
    shape(3) = ((x1*y2-x2*y1)+(y1-y2)*xcenter+(x2-x1)*ycenter)/area2;
   dhdx = (1/area2)*[(y2-y3) (y3-y1) (y1-y2)];
                                                           % derivatives w.r.t. x
   dhdy = (1/area2)*[(x3-x2) (x1-x3) (x2-x1)];
                                                           % derivatives w.r.t. y
   kinmtxax = fekineax(nnel,dhdx,dhdy,shape,xcenter);
                                                                % kinematic matrix
   k = 2*pi*xcenter*area*kinmtxax'*matmtx*kinmtxax;
                                                                  % element matrix
   kk = feasmbl1(kk.k.index);
                                                       % assemble element matrices
                                        % end of loop for total number of elements
end
8 -
% Apply boundary conditions
[kk,ff] = feaplyc2(kk,ff,bcdof,bcval);
%
    % ---
% Solve the matrix equation
disp = kk \ ff;
 _____
% Element stress computation (post-computation)
% -
              -----
for ielp = 1:nel
                                           % loop for the total number of elements
   2
                                                  % 1st node for (iel)-th element
   nd(1) = nodes(ielp,1);
                                                   % 2nd node for (iel)-th element
% 3rd node for (iel)-th element
   nd(2) = nodes(ielp, 2);
   nd(3) = nodes(ielp,3);
   x1 = gcoord(nd(1),1); y1 = gcoord(nd(1),2);
                                                       % coord values of 1st node
   x2 = gcoord(nd(2),1); y2 = gcoord(nd(2),2);
x3 = gcoord(nd(3),1); y3 = gcoord(nd(3),2);
                                                       % coord values of 2nd node
% coord values of 3rd node
    2
   index = feeldof(nd,nnel,ndof);
                                            % extract system dofs for the element
        %
    % Extract element displacement vector
    2 ___
    for i = 1:edof
       eldisp(i) = disp(index(i));
    end
    Ŷ
    area = 0.5*(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2);
                                                                % area of triangle
    area2 = area*2;
                            xcenter = (x1+x2+x3)/3;
                                                          % x-centroid of triangle
   ycenter = (y1+y2+y3)/3;
                                                          % y-centroid of triangle
   shape(1) = ((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter)/area2;
    shape(2) = ((x3*y1-x1*y3)+(y3-y1)*xcenter+(x1-x3)*ycenter)/area2;
   shape(3) = ((x1*y2-x2*y1)+(y1-y2)*xcenter+(x2-x1)*ycenter)/area2;
    2
   dhdx = (1/area2)*[(y2-y3) (y3-y1) (y1-y2)];
                                                           % derivatives w.r.t. x
   dhdy = (1/area2)*[(x3-x2) (x1-x3) (x2-x1)];
                                                           % derivatives w.r.t. y
   kinmtxax = fekineax(nnel,dhdx,dhdy,shape,xcenter);
                                                                % kinematic matrix
    estrain = kinmtxax*eldisp;
                                                                 % compute strains
   estress = matmtx*estrain;
                                                                % compute stresses
    2
   for i =1:4
```

°

2

% 2

strain(ielp,i) = estrain stress(ielp,i) = estress	(i); (i);	<pre>% store for each element % store for each element</pre>
end		
90 10		
end		
8		
% Print fem solutions		
8		
<pre>num = 1:1:sdof;</pre>		
displace = [num' disp]	8	print nodal displacements
oto		
for i = 1:nel		
<pre>stresses = [i stress(i,:)]</pre>		% print stresses
end		
oto	5 () () () () () () () () () (
ç		

Output berupa hasil peralihan yang diperoleh adalah sebagai berikut :

u	Isplace -		
	1.000000000000000	0.00392100545980	<pre>% radial displacement of node 1</pre>
	2.00000000000000	0.00000000000000	% axial displacement of node 1
	3.000000000000000	0.00393355504266	% radial displacement of node 2
	4.000000000000000	-0.00000000000000	<pre>% axial displacement of node 2</pre>
	5.00000000000000	0.00370540789205	% radial displacement of node 3
	6.00000000000000	0.00000000000000	<pre>% axial displacement of node 3</pre>
	7.00000000000000	0.00370780853458	% radial displacement of node 4
	8.00000000000000	-0.00000000000000	<pre>% axial displacement of node 4</pre>
	9.00000000000000	0.00353489632266	% radial displacement of node 5
	10.00000000000000	-0.00000000000000	<pre>% axial displacement of node 5</pre>
	11.000000000000000	0.00353439191535	% radial displacement of node 6
	12.000000000000000	0.0000000000000	<pre>% axial displacement of node 6</pre>
	13.000000000000000	0.00340086905204	% radial displacement of node 7
	14.000000000000000	-0.00000000000000	<pre>% axial displacement of node 7</pre>
	15.00000000000000	0.00339937848429	<pre>% radial displacement of node 8</pre>
	16.000000000000000	-0.00000000000000	% axial displacement of node 8
	17.000000000000000	0.00329632576384	% radial displacement of node 9
	18.00000000000000	0.0000000000000	<pre>% axial displacement of node 9</pre>
	19.00000000000000	0.00329370377129	<pre>% radial displacement of node 10</pre>
	20.00000000000000	0	<pre>% axial displacement of node 10</pre>
	21.000000000000000	0.00321631946137	% radial displacement of node 11
	22.000000000000000	0	% axial displacement of node 11
ŝ	23.00000000000000	0.00321053039742	<pre>% radial displacement of node 12</pre>
1	24.00000000000000	0	<pre>% axial displacement of node 12</pre>

Keterangan :

diamlaga -

Main program untuk problem solid axisymmetri dengan menggunakan elemen triangular 3 nodal menggunakan subrutin yang lebih sedikit, dikarenakan semua fungsi yang digunakan merupakan fungsi konstan. Sehingga subrutin yang digunakan dapat disertakan langsung dalam *main program*, dimana menngandung proses iterasi perhitungan untuk mendapatkan nilai peralihan dan tegangan. Dalam *main program* ini akan tampak beberapa fungsi yang memiliki ekuivalensi symbol dengan teori metode elemen hingga yang digunakan. Berikut penjelasan proses numerisasi dari problem solid axisymmetri dengan menggunakan elemen triangular 3 nodal :

 Pada tahap awal sebelum melakukan input data ke dalam MATLAB, terlebih dahulu dilakukan modelisasi struktur dengan menggunakan bantuan ANSYS ED 10.1 *student version*. Sehingga setelah melakukan modeling dan diskritisasi akan
diperoleh output ANSYS berupa data koordinat nodal, konektivitas nodal, jumlah elemen yang digunakan, dof tiap nodal, nodal yang yang mengalami pengekangan, serta data nodal yang menerima beban baik berupa beban merata maupun beban terpusat pada nodal.

Keyword dalam MATLAB	Deskripsi MEH		
nel	Jumlah Elemen dalam sebuah struktur		
nnel	Jumlah nodal per elemen		
ndof	Jumlah dof per nodal		
nnode	Jumlah nodal dalam sebuah struktur		
emodule	Modulus Elastisitas		
poisson	Poisson's ratio		
gcoord	Data koordinat nodal (<i>r</i> , <i>z</i>)		
nodes	Konektivitas elemen		
bcdof	Data nodal yang dikekang pada arah <i>r</i> atau <i>z</i>		
bcval	Nilai nodal yang dikekang adalah 0		
<pre>ff = zeros(sdof,1)</pre>	Vektor gaya nodal atau beban yang dikerjakan pada nodal		
<pre>kk = zeros(sdof,sdof)</pre>	Matrik kekakuan struktur		
<pre>disp = zeros(sdof,1)</pre>	Vektor peralihan struktur		
<pre>eldisp = zeros(edof,1)</pre>	Vektor peralihan elemen		
<pre>stress = zeros(nel,4)</pre>	Komponen matrik tegangan		
<pre>strain = zeros(nel,4)</pre>	Komponen matrik regangan		
<pre>index = zeros(edof,1)</pre>	Matrik kekakuan elemen		
kinmtxax = zeros(4,edof)	Matrik [B]		
<pre>matmtx = zeros(4,4)</pre>	Matrik [H]		

- Assembling persamaan-persamaan matrik untuk membangun matrik kekakuan struktur dari data-data yang telah diinput sebelumnya. Sehingga akan diperoleh nilai peralihan tiap nodal pada arah r dan z.
 - Menghitung matrik *Hooke* dengan mengaplikasikan subrutin fematiso (3,emodule,poisson),di mana kasus solid axisymmetri akan dipilih iopt == 3
 - Membangun matrik kekakuan elemen dengan terlebih dahulu menyusun koordinat nodal dari masing-masing elemen sesuai dengan konektivitasnya. Proses dilakukan berulang-ulang hingga semua elemen selesai disortir koordinat nodalnya.
 - Membangun matrik [B] sesuai dengan fungsi yang ditulis, di mana dapat kita lihat adanya ekuivalensi simbol antara MATLAB dan teori MEH

Keyword dalam MATLAB	Ekuivalensi simbol dengan teori MEH
area = 0.5*(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2) area2 = area*2	A (luas dari segitiga) 2A (determinan Jacobian)
<pre>xcenter = (x1+x2+x3)/3 ycenter = (y1+y2+y3)/3</pre>	$\overline{r} = \frac{r_1 + r_2 + r_3}{3}$ $\overline{z} = \frac{z_1 + z_2 + z_3}{3}$
<pre>shape(1) = ((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter)/area2 shape(2) = ((x3*y1-x1*y3)+(y3-y1)*xcenter+(x1-x3)*ycenter)/area2 shape(3) = ((x1*y2-x2*y1)+(y1-y2)*xcenter+(x2-x1)*ycenter)/area2</pre>	$N_{1} = \frac{1}{2A} \left(r_{2}z_{3} - r_{3}z_{2} + z_{23}\overline{r} + r_{32}\overline{z} \right)$ $N_{2} = \frac{1}{2A} \left(r_{3}z_{1} - r_{1}z_{3} + z_{31}\overline{r} + r_{13}\overline{z} \right)$ $N_{3} = \frac{1}{2A} \left(r_{1}z_{2} - r_{2}z_{1} + z_{12}\overline{r} + r_{21}\overline{z} \right)$

Iterasi perhitungan dilakukan untuk membentuk matrik [B] tiap elemen dengan mengaplikasikan subrutin fekineax(nnel,dhdx,dhdy,shape,xcenter). Kemudian matrik kekakuan elemen dihitung dengan menggunakan rumus k = 2*pi*xcenter*area*kinmtxax'*matmtx*kinmtxax. Setelah itu kita dapat membangun matrik kekakuan struktur setelah matrik kekakuan elemen selesai dihitung. Matrik kekakuan struktur diperoleh dengan mengaplikasikan subrutin feasmbl1(kk,k,index).

- Mengaplikasikan derajat kebebasan sama dengan nol pada persamaan matrik kekakuan struktur dengan menggunakan subrutin feaplyc2(kk,ff,bcdof,bcval).
- Menyelesaikan persamaan matrik kekakuan struktur dengan relasi invers untuk memperoleh nilai peralihan tiap nodal (disp = kk\ff).
- Proses selanjutnya yaitu *assembling* persamaan-persamaan matrik untuk menghitung nilai tegangan yang terjadi. Untuk elemen triangular 3 nodal, tegangan yang diperoleh di semua titik pada elemen adalah konstan. Pada tahap ini akan dilakukan prosedur awal yang sama dengan saat menghitung matrik kekakuan struktur
 - Membentuk vektor peralihan elemen dari hasil perhitungan sebelumnya
 - Membangun matrik kekakuan elemen dengan terlebih dahulu menyusun koordinat nodal dari masing-masing elemen sesuai dengan konektivitasnya.
 - Membangun matrik [B] sesuai dengan fungsi yang ditulis
 - Menghitung matrik regangan dengan rumus estrain = kinmtxax*eldisp
 - Menghitung matrik tegangan dengan rumus estress = matmtx*estrain
- Cetak hasil peralihan dan 4 komponen tegangan yang terjadi pada problem solid axisymmetri

	Displacement	MATLAB	SAP	Deviasi (%)
	<i>u</i> ₁	392,1005 × 10 ⁻⁵	0,003917	0,10225
	<i>w</i> ₁	0	0	0
	<i>u</i> ₂	393,3555 × 10 ⁻⁵	0,00393	0,09046
	<i>w</i> ₂	0	0	0
	<i>u</i> ₃	370,5408×10 ⁻⁵	0,003702	0,09206
	<i>w</i> ₃	0	0	0
	u ₄	370,7809 × 10 ⁻⁵	0,003705	0,07582
1	w ₄	0	0	0
	<i>u</i> ₅	353,4896 × 10 ⁻⁵	0,003532	0,08199
	<i>w</i> ₅	0	0	0
	u ₆	353,4392 × 10 ⁻⁵	0,003531	0,09606
	w ₆	0	0	0
	<i>u</i> ₇	340,0869 × 10 ⁻⁵	0,003398	0,08443
	w ₇	0	0	0
	u ₈	339,9378 × 10 ⁻⁵	0,003397	0,07000
	w ₈	0	0	0
	<i>u</i> ₉	329,6326 × 10 ⁻⁵	0,003294	0,07061
1	<i>w</i> ₉	0	0	0
	<i>u</i> ₁₀	329,3704 × 10 ⁻⁵	0,003291	0,08216
JE.	<i>w</i> ₁₀	0	0	0
	<i>u</i> ₁₁	321,6319×10 ⁻⁵	0,003214	0,07215
	<i>w</i> ₁₁	0	0	0
	<i>u</i> ₁₂	321,0530×10 ⁻⁵	0,003208	0,07887
	w ₁₂	0	0	0

Tabel 4.1 Perbandingan Hasil Nilai Peralihan dengan SAP v.8

4.2.2 Elemen Quadrilateral 4 Nodal


```
\ nodes(i,j) where i -> element no. and j -> connected nodes
nodes = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & 3 & 5 & 6 & 4 \\ 2 & 5 & 7 & 8 & 6 \\ 3 & 7 & 9 & 10 & 8 \\ 3 & 9 & 11 & 12 & 10 \\ \end{bmatrix};
2
§ _____
% Input data for boundary conditions
8 ------
bcdof = [2 4 6 8 10 12 14 16 18 20 22 24];
                                                         % axial motion constrained
bcval = [0 0 0 0 0 0 0 0 0 0 0 0];
                                                         % constrained values are 0
Ŷ
ŝ
% Initialization of matrices and vectors
8 ---
ff = zeros(sdof,1);
                                                              % system force vector
kk = zeros(sdof,sdof);
                                                                    % system matrix
                                                       % system displacement vector
disp = zeros(sdof,1);
eldisp = zeros(edof,1);
                                                      % element displacement vector
stress = zeros(nglxy,4);
                                              % matrix containing stress components
strain = zeros(nglxy,4);
                                              % matrix containing strain components
index = zeros(edof,1);
                                                                     % index vector
                                                                % kinematic matrix
kinmtxax = zeros(4,edof);
matmtx = zeros(4,4);
                                                              % constitutive matrix
8 -----
% Force vector
2 ___
pi = 4.0*atan(1.0);
                                                                    % pi = 3.141592
ff(1) = 2e3*2*pi*10;
                                                % force applied at node 1 in x-axis
ff(3) = 2e3*2*pi*10;
                                                % force applied at node 2 in x-axis
2
% Compute element matrices and vectors, and assemble
                                             ----
[point2,weight2] = feglqd2(nglx,ngly);
                                                      % sampling points and weights
matmtx = fematiso(3,emodule,poisson);
                                                              % constitutive matrix
for iel = 1:nel
                                            % loop for the total number of elements
    for i = 1:nnel
        nd(i) = nodes(iel,i);
                                               % extract nodes for (iel)-th element
        xcoord(i) = gcoord(nd(i),1);
                                                      % extract x value of the node
        ycoord(i) = gcoord(nd(i),2);
                                                      % extract y value of the node
    end
    2
                                                 % initialization of element matrix
    k = zeros(edof,edof);
                 -----
    % _____
    % Numerical integration
    %
    for intx = 1:nglx
                                                         % sampling point in x-axis
        x = point2(intx, 1);
        wtx = weight2(intx,1);
                                                                 % weight in x-axis
        for inty = 1:ngly
            y = point2(inty, 2);
                                                         % sampling point in y-axis
            wty = weight2(inty,2);
                                                                 % weight in y-axis
            8
            [shape,dhdr,dhds] = feisoq4(x,y);
                                                      % compute shape functions and
                                                    % derivatives at sampling point
            jacob2 = fejacob2(nnel,dhdr,dhds,xcoord,ycoord);
                                                               % compute Jacobian
            detjacob = det(jacob2);
                                                          % determinant of Jacobian
                                                       % inverse of Jacobian matrix
            invjacob = inv(jacob2);
            [dhdx,dhdy] = federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
                                                             % physical coordinate
            xcenter = 0;
            for i = 1:nnel
                                     % x-coordinate value of the integration point
                xcenter = xcenter+shape(i)*xcoord(i);
            end
            ŝ
            kinmtxax = fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix
```

```
8 -
           % Compute element matrix
           8 _____
           k = k+2*pi*xcenter*kinmtxax'*matmtx*kinmtxax*wtx*wty*detjacob;
                                                                      % element
                                                                       % matrix
           %
       end
   end
                                             % end of numerical integration loop
   index = feeldof(nd,nnel,ndof);
                                           % extract system dofs for the element
   kk = feasmbl1(kk,k,index);
                                                    % assemble element matrices
    ÷
end
                                    ▲ % end of loop for total number of elements
%
8 ____
% Apply boundary conditions
8 -----
[kk,ff] = feaplyc2(kk,ff,bcdof,bcval);
%
% _____
% Solve the matrix equation
°
disp = kk \ fi;
2
num = 1:1:sdof;
displace = [num' disp]
                                                    % print nodal displacements
%
§ _____
% Element stress computation
for ielp = 1:nel
                                         % loop for the total number of elements
   %
   for i = 1:nnel
       nd(i) = nodes(ielp,i);
                                           % extract nodes for (iel)-th element
       xcoord(i) = gcoord(nd(i),1);
                                                  % extract x value of the node
       ycoord(i) = gcoord(nd(i),2);
                                                  % extract y value of the node
   end
   8
   8 -----
   % Numerical integration
    og _____
   intp = 0;
    for intx = 1:nglx
                                                      % sampling point in x-axis
       x = point2(intx, 1);
       wtx = weight2(intx,1);
                                                             % weight in x-axis
       for inty = 1:ngly
         y = point2(inty, 2);
                                                       sampling point in y-axis
           wty = weight2(inty,2);
                                                             % weight in y-axis
           intp = intp+1;
           [shape,dhdr,dhds] = feisoq4(x,y);
                                                  % compute shape functions and
                                                % derivatives at sampling point
           jacob2 = fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
           detjacob = det(jacob2);
                                                    📕 % determinant of Jacobian
           invjacob = inv(jacob2);
                                                   % inverse of Jacobian matrix
           [dhdx,dhdy] = federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
                                                           % physical coordinate
           %
           xcenter = 0;
           for i = 1:nnel
                                   % x-coordinate value of the integration point
               xcenter = xcenter+shape(i)*xcoord(i);
           end
           kinmtxax = fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix
           index = feeldof(nd,nnel,ndof); % extract system dofs for the element
           ≗ ___
                     _____
           % Extract element displacement vector
```

```
for i = 1:edof
                eldisp(i) = disp(index(i));
            end
            %
            estrain = kinmtxax*eldisp;
                                                                   % compute strains
            estress = matmtx*estrain;
                                                                  % compute stresses
            ŝ
            for i = 1:4
                strain(intp,i) = estrain(i);
                                                            % store for each element
                stress(intp,i) = estress(i);
                                                            % store for each element
            end
            8
        end
    end
    °
    for j = 1:nglxy
        stresses = [ielp stress(j,:)]
                                                                    % print stresses
    end
    8
end
                                         % end of loop for total number of elements
%
```

Output berupa hasil peralihan yang diperoleh adalah sebagai berikut :

displace =		
1.00000000000000	0.00392280737994	<pre>% radial displacement of node 1</pre>
2.00000000000000	0.00000000000000	<pre>% axial displacement of node 1</pre>
3.00000000000000	0.00392280737994	% radial displacement of node 2
4.00000000000000	0.00000000000000	<pre>% axial displacement of node 2</pre>
5.00000000000000	0.00370264862788	<pre>% radial displacement of node 3</pre>
6.00000000000000	0.0000000000000	<pre>% axial displacement of node 3</pre>
7.00000000000000	0.00370264862788	% radial displacement of node 4
8.00000000000000	-0.0000000000000	<pre>% axial displacement of node 4</pre>
9.00000000000000	0.00353103224150	% radial displacement of node 5
10.000000000000000000000000000000000000	-0.00000000000000	<pre>% axial displacement of node 5</pre>
11.00000000000000000	0.00353103224150	% radial displacement of node 6
12.00000000000000000	0.00000000000000	<pre>% axial displacement of node 6</pre>
13.000000000000000	0.00339676853153	% radial displacement of node 7
14.0000000000000000	0.00000000000000	% axial displacement of node 7
15.0000000000000000	0.00339676853153	% radial displacement of node 8
16.000000000000000	-0.00000000000000	<pre>% axial displacement of node 8</pre>
17.000000000000000	0.00329186092783	% radial displacement of node 9
18.000000000000000	-0.00000000000000	<pre>% axial displacement of node 9</pre>
19.000000000000000	0.00329186092783	<pre>% radial displacement of node 10</pre>
20.00000000000000	0	<pre>% axial displacement of node 10</pre>
21.000000000000000	0.00321044301520	<pre>% radial displacement of node 11</pre>
22.00000000000000	0	<pre>% axial displacement of node 11</pre>
23.000000000000000	0.00321044301520	<pre>% radial displacement of node 12</pre>
24.0000000000000000	0	<pre>% axial displacement of node 12</pre>

Keterangan :

Main program untuk problem solid axisymmetri dengan menggunakan elemen quadrilateral 4 nodal menggunakan lebih banyak subrutin untuk melakukan perhitungan. Hal ini dikarenakan integrasi numerik yang dilakukan cukup banyak dengan menggunakan 4 buah titik integrasi. Selain itu, penggunaan subrutin berfungsi untuk memperpendek penulisan perintah pada *main program*. Berikut penjelasan proses perhitungan untuk problem solid axisymmetri dengan menggunakan elemen quadrilateral 4 nodal : Pada tahap awal sebelum melakukan input data ke dalam MATLAB, terlebih dahulu dilakukan modelisasi struktur dengan menggunakan bantuan ANSYS ED 10.1 *student version*. Hal ini sama dengan proses yang dilakukan pada saat menghitung dengan menggunakan elemen triangular 3 nodal. Sehingga setelah melakukan modeling dan diskritisasi akan diperoleh output ANSYS berupa data koordinat nodal, konektivitas nodal, jumlah elemen yang digunakan, dof tiap nodal, nodal yang yang mengalami pengekangan, serta data nodal yang menerima beban baik berupa beban merata maupun beban terpusat pada nodal. Input lainnya yaitu jumlah titik integrasi Gauss yang ingin digunakan pada saat integrasi numerik untuk memperoleh nilai peralihan dan tegangan. Ekuivalensi beberapa symbol sama dengan yang terdapat pada elemen triangular 3 nodal.

Keyword dalam MATLAB	Deskripsi MEH
nglx	Jumlah titik <i>Gauss</i> yang digunakan pada arah r
ngly	Jumlah titik $Gauss$ yang digunakan pada arah z
nglxy	Jumlah titik Gauss keseluruhan dalam sebuah elemen Q4

- Assembling persamaan-persamaan matrik untuk membangun matrik kekakuan struktur dari data-data yang telah diinput sebelumnya. Sehingga akan diperoleh nilai peralihan tiap nodal pada arah r dan z.
 - Menghitung matrik *Hooke* dengan mengaplikasikan subrutin fematiso (3,emodule,poisson), di mana kasus solid axisymmetri akan dipilih iopt == 3
 - Membangun matrik kekakuan elemen berukuran (edof×edof) dengan terlebih dahulu menyusun koordinat nodal dari masing-masing elemen sesuai dengan konektivitasnya. Proses dilakukan berulang-ulang hingga semua elemen selesai disortir koordinat nodalnya.
 - Perhitungan dengan menggunakan integrasi numerik *Gauss* dimulai dengan menghitung *shape function* dan turunannya terhadap ξ dan η untuk elemen quadrilateral 4 nodal. Hal ini dilakukan dengan mengaplikasikan subrutin feisoq4(x,y). Kemudian dilakukan perhitungan matrik Jacobian dengan mengaplikasikan subrutin fejacob2(nnel,dhdr,dhds,xcoord,ycoord), setelah diketahui nilai matrik Jacobian dapat pula dihitung besarnya invers matrik Jacobian dan determinan matrik Jacobian pada tiap-tiap titik integrasi.
 - Membangun matrik [B] dengan terlebih dahulu menghitung turunan *shape function* terhadap koordinat silinder *r* dan *z* dilakukan dengan mengaplikasikan

subrutin federiv2(nnel,dhdr,dhds,invjacob). Terdapat ekuivalensi symbol pada fungsi MATLAB dengan teori MEH untuk membangun matrik [B]

Keyword dalam MATLAB	Deskripsi MEH
<pre>xcenter = xcenter+shape(i)*xcoord(i)</pre>	$r = \sum_{i=1}^{4} N_i r_i$

Matrik [B] merupakan perhitungan iterasi, yang dibangun dengan mengaplikasikan subrutin fekineax(nnel,dhdx,dhdy,shape,xcenter). Setelah matrik [B] diselesaikan, persamaan matrik kekakuan elemen dibentuk dengan rumus k = k+2*pi*xcenter*kinmtxax'*matmtx*kinmtxax*wtx*wty*detjacob. Dan assembling matrik kekakuan elemen dilakukan dengan mengaplikasikan subrutin feeldof(nd,nnel,ndof). Setelah matrik kekakuan elemen dihitung, maka kita dapat menyusun matrik kekakuan struktur dengan mengaplikasikan subrutin feesmbl1(kk,k,index).

- Mengaplikasikan derajat kebebasan sama dengan nol pada persamaan matrik kekakuan struktur dengan menggunakan subrutin feaplyc2(kk,ff,bcdof,bcval).
- Menyelesaikan persamaan matrik kekakuan struktur dengan relasi invers untuk memperoleh nilai peralihan tiap nodal (disp = kk\ff).
- Assembling persamaan-persamaan matrik untuk menghitung nilai tegangan yang terjadi pada elemen quadrilateral 4 nodal dihitung pada nodal-nodal sudut pada tiaptiap elemen. Pada tahap ini akan dilakukan prosedur awal yang sama dengan saat menghitung matrik kekakuan struktur
 - Membangun matrik kekakuan elemen berukuran (edof×edof) dengan terlebih dahulu menyusun koordinat nodal dari masing-masing elemen sesuai dengan konektivitasnya.
 - Perhitungan integrasi numerik Gauss
 - Membangun matrik [B] untuk elemen dilakukan dengan terlebih dahulu menghitung turunan *shape function* terhadap koordinat silinder r dan z dilakukan dengan mengaplikasikan subrutin federiv2(nnel,dhdr,dhds,invjacob).
 - Menghitung matrik regangan dengan rumus estrain = kinmtxax*eldisp
 - Menghitung matrik tegangan dengan rumus estress = matmtx*estrain
- Cetak hasil peralihan dan 4 komponen tegangan yang terjadi pada problem solid axisymmetri

	Displacement	MATLAB	SAP	Deviasi (%)
	<i>u</i> ₁	392,2807 × 10 ⁻⁵	0,003923	0,00492
	w ₁	0	0	0
	<i>u</i> ₂	392,2807 × 10 ⁻⁵	0,003923	0,00492
	<i>w</i> ₂	0	0	0
F	<i>u</i> ₃	370,2649 × 10 ⁻⁵	0,003703	0,00948
	<i>w</i> ₃	0	0	0
	u ₄	370,2649 × 10 ⁻⁵	0,003703	0,00948
1	<i>w</i> ₄	0	0	0
	u ₅	353,1032 × 10 ⁻⁵	0,003531	0,00091
	<i>w</i> ₅	0	0	0
	u ₆	353,1032 × 10 ⁻⁵	0,003531	0,00091
	w ₆	0	0	0
-	u ₇	339,6769 × 10 ⁻⁵	0,003397	0,00680
1	w ₇	0	0	0
1	u ₈	339,6769 × 10 ⁻⁵	0,003397	0,00680
	w ₈	0	0	0
	u ₉	329,1861 × 10 ⁻⁵	0,003292	0,00422
	w ₉	0	0	0
	<i>u</i> ₁₀	329,1861 × 10 ⁻⁵	0,003292	0,00422
≤ 1	<i>w</i> ₁₀	0	0	0
	<i>u</i> ₁₁	321,0443×10 ⁻⁵	0,00321	0,01380
	<i>w</i> ₁₁	0	0	0
-	<i>u</i> ₁₂	321,0443×10 ⁻⁵	0,00321	0,01380
	<i>w</i> ₁₂	0	0	0

Tabel 4.2 Perbandingan Hasil Nilai Peralihan dengan SAP v.8

BAB V

UJI NUMERIK DAN ANALISA HASIL

5.1 OPEN-ENDED CYLINDER

Sebuah silinder terbuka yang diberi tekanan dari dalam sebesar 1 MPa. Dengan menggunakan data dibawah ini akan dihitung besarnya peralihan dan tegangan yang terjadi pada koordinat nodal (34,0) dan (34,200)

Gambar 5.1 (a) Open-ended Cylinder yang dibebani tekanan dari dalam (b) Model struktur simetris

5.1.1 Solusi Eksak untuk Open-ended Cylinder

Fenomena mekanika akan lebih mudah dijelaskan dalam bentuk persamaan aljabar, differensial ataupun persaman integral. Solusi eksak dari sebuah masalah mekanika merupakan solusi jawab yang diperoleh dengan menyelesaikan problem mekanika tersebut dengan menggunakan model matematika. [K1]

Gambar 5.2 Open-ended Cylinder

Pada model struktur solid axisymmetri untuk kasus *open-ended cylinder* yang diberi beban axisymmetri, rumus solusi eksak untuk peralihan radial *u* yang digunakan yaitu : [B2]

$$u_{\text{(open-ended)}} = \frac{r}{E(b^2 - a^2)} \left[(1 - \upsilon) (p_1 a^2 - p_2 b^2) + \frac{(1 + \upsilon) a^2 b^2}{r^2} (p_1 - p_2) \right]$$
(5.1)

Selain itu rumus solusi eksak untuk menghitung tegangan normal pada arah radial, *circumferential*, dan aksial, yaitu dengan menggunakan rumus berikut ini : [B2]

$$\sigma_{rr} = \frac{p_1 a^2 - p_2 b^2}{b^2 - a^2} - \frac{a^2 b^2}{r^2 (b^2 - a^2)} (p_1 - p_2)$$
(5.2)

$$\sigma_{\theta\theta} = \frac{p_1 a^2 - p_2 b^2}{b^2 - a^2} + \frac{a^2 b^2}{r^2 (b^2 - a^2)} (p_1 - p_2)$$
(5.3)

$$\sigma_{zz} = \frac{p_1 a^2 - p_2 b^2}{b^2 - a^2} + \frac{P}{\pi (b^2 - a^2)} = \text{konstan}$$
(5.4)

$$\sigma_{rr} + \sigma_{\theta\theta} = \frac{2\left(p_1 a^2 - p_2 b^2\right)}{b^2 - a^2} = \text{konstan}$$
(5.5)

Rumus diatas digunakan dengan tidak memperhitungkan adanya perubahan temperatur pada struktur ($\Delta T = 0$). Sehingga untuk kasus diatas dapat dihitung nilai solusi eksaknya, yaitu :

	u (mm)	$\sigma_{rr}\left(N/mm^2\right)$	$\sigma_{\theta\theta}\left(N/mm^2\right)$	$\sigma_{zz} \left(N / mm^2 \right)$
Koordinat nodal (34,0)	$5,1344 \times 10^{-4}$	- 1	2,72024	0,86012
Koordinat nodal (34,200)	$5,1344 \times 10^{-4}$	-1	2,72024	0,86012

Tabel 5.1 Nilai Solusi Eksak untuk Peralihan dan Tegangan

5.1.2 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 7 tipe.

Gambar 5.3 (kiri ke kanan) Diskritisasi adaptif dengan 18, 28, 38, 114, 360, 588 dan 850 elemen

Pada bab ini hanya akan ditampilkan input dan output program sebanyak 1 buah tipe diskritisasi struktur, yaitu untuk tipe 18 elemen. Selebihnya input dan output akan diberikan dalam bentuk *softcopy*.

5.1.2.1 Diskritisasi Struktur Adaptif 18 Elemen

Input yang dilakukan adalah sebagai berikut :

```
% ---
     _____
% Input data for control parameters
8 __
     _____
°
nel = 18;
                                                                   % number of elements
nnel = 3;
                                                          % number of nodes per element
ndof = 2;
                                                              % number of dofs per node
nnode = 18;
                                                     % total number of nodes in system
                                                                    % total system dofs
sdof = nnode*ndof;
edof = nnel*ndof;
                                                      % degrees of freedom per element
emodule = 2e5;
                                                                      % elastic modulus
poisson = 0.3;
                                                                       % Poisson's ratio
8 ---
% Input data for nodal coordinate value
\ gcoord(i,j) where i -> node no. and j -> x or y
2
gcoord = [34. 0.; 50. 0.; 50. 200.; 34. 200.; 50. 16.; 50. 56.; 50. 88.; 50. 120.; 50. 152.; 50. 184.; 34. 184.; 34. 144.; 34. 112.; 34. 80.; 34. 48.; 34. 16.; 42.
8.; 42. 192.];
% -
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
%
nodes = [3 18 10; 10 18 11; 18 4 11; 3 4 18; 16 17 5; 5 17 2; 17 1 2; 16 1 17; 9
12 8; 11 12 9; 8 13 7; 12 13 8; 7 14 6; 13 14 7; 6 15 5; 14 15 6; 16 5 15; 10 11
91;
% --
              ------
% Input data for boundary conditions
                    _ _ _ _ _ .
bcdof = [2 4 6 8];
                                                             % axial motion constrained
bcval = [0 \ 0 \ 0 \ 0];
                                                              % constrained value are 0
% Force vector
%
  _____
pi = 4.0*atan(1.0);
                                                                         % pi = 3.141592
ff(7) = 1*pi*34*(200-184)*1;
                                                    % force applied at node 4 in x-axis
ff(21) = (1*pi*34*(200-184)*1)+(1*pi*34*(184-144)*1);
                                                   % force applied at node 11 in x-axis
ff(23) = (1*pi*34*(184-144)*1)+(1*pi*34*(144-112)*1);
                                                   % force applied at node 12 in x-axis
ff(25) = (1*pi*34*(144-112)*1)+(1*pi*34*(112-80)*1);
                                                   % force applied at node 13 in x-axis
ff(27) = (1*pi*34*(112-80)*1)+(1*pi*34*(80-48)*1);
                                                   % force applied at node 14 in x-axis
ff(29) = (1*pi*34*(80-48)*1)+(1*pi*34*(48-16)*1);
                                                   % force applied at node 15 in x-axis
ff(31) = (1*pi*34*(48-16)*1)+(1*pi*34*(16-0)*1);
                                                   % force applied at node 16 in x-axis
ff(1) = 1*pi*34*(16-0)*1;
                                                    % force applied at node 1 in x-axis
```

Output yang diperoleh yaitu :

displace =

1.00000000000000	0.00048553001420	<pre>% radial displacement of node 1</pre>
2.00000000000000	0.00000000000000	<pre>% axial displacement of node 1</pre>
3.00000000000000	0.00039375409582	<pre>% radial displacement of node 2</pre>
4.00000000000000	-0.00000000000000	<pre>% axial displacement of node 2</pre>
5.00000000000000	0.00039496893297	<pre>% radial displacement of node 3</pre>
6.00000000000000	-0.00000000000000	<pre>% axial displacement of node 3</pre>
7.000000000000000	0.00049443353094	<pre>% radial displacement of node 4</pre>
8.00000000000000	0.00000000000000	<pre>% axial displacement of node 4</pre>

```
stresses =
 Columns 1 through 2
  3.000000000000 -0.50918802627078
 Columns 3 through 4
  2.59292880596841
                     0.58062026656453
 Column 5
  0.00856943792024
stresses =
  Columns 1 through 2
  4.000000000000 -0.45109564872757
 Columns 3 through 4
                     0.52139765581723
  2.11930843045149
  Column 5
  0.11756215409997
stresses =
  Columns 1 through 2
  7.000000000000 -0.36793460775310
  Columns 3 through 4
  2.10930351727836 0.48824438960307
  Column 5
  -0.12311055691598
stresses =
  Columns 1 through 2
  8.0000000000000 -0.63342742828038
  Columns 3 through 4
                     0.60298377894128
  2.54874196595678
  Column 5
  0.01888577809917
```

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 18 elemen adalah sebagai berikut :

Gambar 5.4 (*kiri ke kanan*) Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

5.1.2.2	Analisa	Hasil	dengan	Elemen	Triangul	ar 3	Nodal
---------	---------	-------	--------	--------	----------	------	-------

Jumlah	ANGVG	маті ар	Solusi	Deviasi %	Deviasi %	Deviasi %
Elemen	ANDIS	MAILAD	Eksak	(Ansys – Matlab)	(Ansys – SE)	(Matlab – SE)
18	$4,8553 \times 10^{-4}$	4,85530×10 ⁻⁴		0,00000	5,43597	5,43597
28	$4,7784 \times 10^{-4}$	$4,77843 \times 10^{-4}$		0,00072	6,93371	6,93304
38	$4,8126 \times 10^{-4}$	4,81264 × 10 ⁻⁴		0,00088	6,26762	6,26679
114	$4,8466 \times 10^{-4}$	4,84660×10 ⁻⁴	$5,1344 \times 10^{-4}$	0,00007	5,60542	5,60535
360	4,8673×10 ⁻⁴	$4,86729 \times 10^{-4}$	1	0,00024	5,20225	5,20249
588	$4,8678 \times 10^{-4}$	4,86871×10 ⁻⁴	1	0,01879	5,19252	5,17471
850	$4,8700 \times 10^{-4}$	4,86878×10 ⁻⁴		0,04605	5,14967	5,19334

Tabel 5.2 Peralihan radial pada koordinat nodal (34,0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
18	$4,9443 \times 10^{-4}$	$4,9443 \times 10^{-4}$		0,00071	3,70257	3,70188
28	$4,7310 \times 10^{-4}$	$4,73097 \times 10^{-4}$		0,00067	7,85689	7,85752
38	$4,7738 \times 10^{-4}$	4,77384×10 ⁻⁴	5,1344 × 10 ⁻⁴	0,00079	7,02330	7,02257
114	$4,8490 \times 10^{-4}$	4,84896×10 ⁻⁴		0,00086	5,55867	5,55949
360	$4,8671 \times 10^{-4}$	4,86733×10 ⁻⁴		0,00464	5,20615	5,20175
588	$4,8684 \times 10^{-4}$	4,86841 × 10 ⁻⁴		0,00023	5,18083	5,18061
850	4,8701 × 10 ⁻⁴	$4,87007 \times 10^{-4}$		0,00064	5,14772	5,14832

Tabel 5.3]	Peralihan	radial	pada	koordinat	nodal	(34,200)
I GOOL CIC I	CI CI IIIIIII	I the content	putter	moor annav	110 4441	(0 1, 200)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
18	- 0,50068	- 0,50068		0,00020	49,932	49,93190
28	- 0,48705	- 0,48705		0,00008	51,29500	51,29496
38	- 0,61110	- 0,61110		0,00045	38,89000	38,89028
114	- 0,64687	- 0,64686	- 1	0,00121	35,31300	35,31378
360	- 0,83950	- 0,83948		0,00175	16,05050	16,05197
588	- 0,84604	- 0,84605	2004	0,00117	15,39600	15,39501
850	- 0,86844	- 0,86848	10	0,00486	13,15650	13,15228

Tabel 5.4 Tegangan rata-rata arah radial pada koordinat nodal (34,0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
18	- 0,48015	- 0,48014	4	0,00066	51,9855	51,98582
28	- 0,50252	- 0,50252	1000	0,00032	49,74800	49,74816
38	- 0,65400	- 0,65400	10	0,00080	34,60050	34,59998
114	- 0,68612	- 0,68604	- 1	0,01091	31,38850	31,39598
360	- 0,79887	- 0,79889		0,00299	20,11300	20,11061
588	- 0,84258	- 0,84251		0,00755	15,74250	15,74886
850	- 0,86867	-0,86869	10	0,00286	13,13350	13,13102

→ Deviasi % (Ansys - Solusi Eksak) → Deviasi % (Matlab - Solusi Eksak)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
18	0,54561	0,54561		0,00075	36,56576	36,56528
28	0,58736	0,58735		0,00021	31,71236	31,71250
38	0,58025	0,58025		0,00024	32,53841	32,53825
114	0,55198	0,55197	0,86012	0,00129	35,82574	35,82657
360	0,53583	0,53580		0,00578	37,70281	37,70641
588	0,53460	0,53460	200	0,00056	37,84639	37,84605
850	0,53161	0,53194		0,06247	38,19344	38,15483

Tabel 5.6 Tegangan rata-rata arah aksial pada koordinat nodal (34,0)

Fabel 5.7	Tegangan ra	ata-rata arah	aksial pada	koordinat	nodal (34,200)	
-----------	-------------	---------------	-------------	-----------	----------------	--

Jumlah	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlah)	Deviasi %	Deviasi % (Matlah – SF)
Elemen			LASAK	(Ansys – Matab)	(Allsys – 5E)	(Matian – SE)
18	0,55101	0,55101		0,00019	35,93794	35,93806
28	0,57915	0,57915	110	0,00053	32,66630	32,66594
38	0,56918	0,56918		0,00016	33,82602	33,82592
114	0,55036	0,55033	0,86012	0,00529	36,01351	36,01689
360	0,53756	0,53741		0,02617	37,50226	37,51861
588	0,53555	0,53554	7	0,00105	37,73594	37,73660
850	0,53136	0,53106		0,05620	38,22251	38,25722

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
18	2,32900	2,32902		0,00098	14,38249	14,38166
28	2,28910	2,28906		0,00160	15,84928	15,85063
38	2,39910	2,39910		0,00011	11,80551	11,80541
114	2,44510	2,44508	2,72024	0,00065	10,11449	10,11507
360	2,59285	2,59280		0,00190	4,68298	4,68479
588	2,59965	2,59965	100	0,00018	4,43300	4,43282
850	2,61895	2,61779		0,04421	3,72350	3,76607

Tabel 5.8 Tegangan rata-rata arah circumferential pada koordinat nodal (34, 0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
18	2,35610	2,35612		0,00079	13,38626	13,38557
28	2,27745	2,27739	1	0,00278	16,27755	16,27987
38	2,37690	2,37690		0,00017	12,62162	12,62177
114	2,46775	2,46775	2,72024	0,00019	9,28184	9,28201
360	2,56290	2,56294		0,00142	5,78398	5,78265
588	2,59995	2,59998		0,00107	4,42197	4,42094
850	2,61865	2,61860		0,00199	3,73453	3,73645

Tabel 5.9 Tegangan rata-rata arah circumferential pada koordinat nodal (34,200)

Gambar 5.12 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34, 200)

5.1.3 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 7 tipe.

Gambar 5.13 (kiri ke kanan) Diskritisasi adaptif dengan 7, 13, 45, 114, 310, 489 dan 800 elemen

Sama halnya dengan diskritisasi struktur dengan elemen triangular diatas, maka input dan output program hanya akan ditampilkan untuk 1 buah tipe diskritisasi, yaitu untuk tipe 7 elemen. Selebihnya input dan output akan diberikan dalam bentuk *softcopy*.

5.1.3.1 Diskritisasi Struktur Adaptif 7 Elemen

Input yang dilakukan adalah sebagai berikut :

```
% -
                           ----
% Input data for control parameters
8 -----
                         _____
nel = 7;
                                                            % number of elements
nnel = 4;
                                                   % number of nodes per element
                                                       % number of dofs per node
ndof = 2;
                                                % total number of nodes in system
nnode = 16;
sdof = nnode*ndof;
                                                             % total system dofs
edof = nnel*ndof;
                                                 % degrees of freedom per element
emodule = 2e5;
                                                               % elastic modulus
poisson = 0.3;
                                                               % Poisson's ratio
nglx = 2; ngly = 2;
                                                 % 2x2 Gauss-Legendre quadrature
nglxy = nglx*ngly;
                                          % number of sampling points per element
ŝ
8 _____
% Input data for nodal coordinate values
gcoord(i,j) where i -> node no. and j -> x or y
8 -
gcoord = [34. 0.; 50. 0.; 50. 200.; 34. 200.; 50. 16.; 50. 56.; 50. 88.; 50. 120.;
50. 152.; 50. 184.; 34. 184.; 34. 144.; 34. 112.; 34. 80.; 34. 48.; 34. 16.];
°
```

```
8 -
% Input data for nodal connectivity for each element
\ nodes(i,j) where i -> element no. and j -> connected nodes
% _____
         _____
nodes = [12 9 10 11; 13 8 9 12; 16 5 6 15; 5 16 1 2; 4 11 10 3; 7 8 13 14; 6 7 14
15];
÷
§ _____
% Input data for boundary conditions
8 –
bcdof = [2 4 6 8];
                                                % axial motion constrained
bcval = [0 0 0 0];
                                                % constrained values are 0
ò
% _____
% Force vector
8 ____
                                                          % pi = 3.141592
pi = 4.0*atan(1.0);
ff(7) = 1*pi*34*(200-184)*1;
                                         % force applied at node 4 in x-axis
ff(21) = ((1*pi*34*(200-184)*1)+(1*pi*34*(184-144)*1));
                                        % force applied at node 11 in x-axis
ff(23) = ((1*pi*34*(184-144)*1)+(1*pi*34*(144-112)*1));
                                        % force applied at node 12 in x-axis
ff(25) = ((1*pi*34*(144-112)*1)+(1*pi*34*(112-80)*1));
                                        % force applied at node 13 in x-axis
ff(27) = ((1*pi*34*(112-80)*1)+(1*pi*34*(80-48)*1));
ff(31) = ((1*pi*34*(48-16)*1)+(1*pi*34*(16-0)*1));
                                        % force applied at node 16 in x-axis
ff(1) = 1*pi*34*(16-0)*1;
                                         % force applied at node 1 in x-axis
```

Output yang dihasilkan yaitu :

displace =

1.00000000000000	0.00046663990430	% radial «	displacement	of	node	1
2.00000000000000	0.0000000000000	% axial «	displacement	of	node	1
3.00000000000000	0.00037557390756	% radial «	displacement	of	node	2
4.00000000000000	-0.00000000000000	% axial «	displacement	of	node	2
5.00000000000000	0.00037969767129	% radial «	displacement	of	node	3
6.00000000000000	-0.00000000000000	% axial (displacement	of	node	3
7.00000000000000	0.00046881503903	% radial «	displacement	of	node	4
8.00000000000000	-0.00000000000000	% axial o	displacement	of	node	4

stresses =	
Columns 1 through	2
4.0000000000000000	-0.09227376887361
Columns 3 through	4
2.58223162115229	0.74931138222882
Column 5	
-0.01211636354275	1111
stresses =	
a 1 1 1 1	
Columns 1 through	2
5.000000000000000	2 -0.12009198256952
5.0000000000000 Columns 3 through	2 -0.12009198256952 4
Columns 1 through 5.00000000000000 Columns 3 through 2.60025981018526	2 -0.12009198256952 4 0.75519781152436
Columns 1 through 5.00000000000000 Columns 3 through 2.60025981018526 Column 5	2 -0.12009198256952 4 0.75519781152436

Deformasi struktur akibat beban dan kontur tegangannya untuk diskritisasi struktur dengan 7 elemen adalah sebagai berikut :

Gambar 5.14 (kiri ke kanan) Deformasi struktur dan kontur tegangan arah radial, aksial, circumferential, dan tegangan geser radial-aksial

5.1.3.2	Analisa	Hasil	dengan	Elemen	Quadrilateral	4 Nodal
---------	---------	-------	--------	--------	---------------	---------

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	4,8010×10 ⁻⁴	$4,66640 \times 10^{-4}$		2,80360	6,49354	9,11509
13	$4,7747 \times 10^{-4}$	$4,60467 \times 10^{-4}$		3,56098	7,00577	10,31728
45	4,8631×10 ⁻⁴	$4,85001 \times 10^{-4}$		0,26915	5,28405	5,53898
114	$4,8628 \times 10^{-4}$	$4,84926 \times 10^{-4}$	$5,1344 \times 10^{-4}$	0,27848	5,28990	5,55365
310	$4,8683 \times 10^{-4}$	$4,86347 \times 10^{-4}$		0,09931	5,18278	5,27694
498	$4,8689 \times 10^{-4}$	$4,8653 \times 10^{-4}$		0,07210	5,17109	5,23947
800	$4,8701 \times 10^{-4}$	$4,8820 \times 10^{-4}$		0,24368	5,14772	4,91659

label 5.10 Peralihan radial pada koordinat nodal (34,	(34,0)
---	--------

Gambar 5.15 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (34,0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	$4,7854 \times 10^{-4}$	4,68815×10 ⁻⁴		2,03221	6,79738	8,69145
13	$4,8089 \times 10^{-4}$	$4,74501 \times 10^{-4}$		1,32856	6,33968	7,58401
45	4,8631×10 ⁻⁴	4,85001 × 10 ⁻⁴		0,26915	5,28405	5,53898
114	4,86333×10 ⁻⁴	$4,85049 \times 10^{-4}$	$5,1344 \times 10^{-4}$	0,26331	5,28016	5,52957
310	4,8683×10 ⁻⁴	4,86352×10 ⁻⁴		0,09827	5,18278	5,27595
498	$4,8690 \times 10^{-4}$	$4,86569 \times 10^{-4}$		0,06796	5,16914	5,23359
800	4,8701×10 ⁻⁴	4,87039×10 ⁻⁴		0,00594	5,14772	5,14208

Tabel 5.11 Peralihan radial pada koordinat nodal (34,200)

Gambar 5.16 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (34,200)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	- 0,56095	- 0,09227	1 and the second	83,55045	43,90500	90,77262
13	- 0,51825	- 0,08671		83,26777	48,17500	91,32852
45	- 0,82376	- 0,63260	1.10	23,20560	17,62400	36,73984
114	- 0,81576	- 0,61684	- 1	24,38513	18,42400	38,31641
310	- 0,89014	- 0,76815		13,70504	10,98600	23,18540
498	- 0,91641	- 0,82276		10,21936	8,35900	17,72412
800	- 0,92980	- 0,85064		8,51367	7,02000	14,93601

Fabel 5.12 '	Tegangan	rata-rata	arah radial	pada	koordinat	nodal ((34,0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	- 0,54888	- 0,12009		78,12054	45,11200	87,99080
13	- 0,59298	- 0,62026		4,60075	40,70200	37,97385
45	- 0,82376	- 0,83439		1,29023	17,62400	16,56116
114	- 0,82780	- 0,83845	- 1	1,28625	17,22000	16,15524
360	- 0,89014	- 0,90031		1,14213	10,98600	9,96934
498	- 0,91639	- 0,92524	2004	0,96591	8,36100	7,47585
800	- 0,92980	- 0,93773	1	0,85299	7,02000	6,22689

Tabel 5.13 Tegangan rata-rata arah radial pada koordinat nodal (34,200)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	0,35302	0,74931	đ	112,25749	58,95684	12,88283
13	0,34740	0,74105		113,31259	59,61024	13,84356
45	0,43655	0,62199		42,47875	49,24540	27,68548
114	0,43343	0,62617	0,86012	44,46871	49,60814	27,19953
310	0,46450	0,58422	diame.	25,77433	45,99585	32,07664
498	0,47617	0,56812		19,31021	44,63906	33,94875
800	0,48236	0,55349	10	14,74720	43,91939	35,64907

Tabel 5.14 Tegangan rata-rata arah aksial pada koordinat nodal (34,0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	0,34198	0,75520		120,83099	60,24039	12,19846
13	0,35292	0,32254		8,60878	58,96847	62,50079
45	0,43655	0,42020		3,74432	49,24540	51,14581
114	0,43817	0,42175	0,86012	3,74837	49,05705	50,9668
310	0,46454	0,45208		2,68252	45,99120	47,43999
498	0,47620	0,46588	1.000	2,16639	44,63557	45,83498
800	0,48236	0,46910	10	2,74876	43,91939	45,46091

Tabel 5.15 Tegangan rata-rata arah aksial pada koordinat nodal (34,200)

Gambar 5.20 Grafik konvergensi elemen untuk tegangan rata-rata arah aksial pada koordinat nodal (34, 200)

Jumlah	ANSYS	ANSYS MATLAB	Solusi	Deviasi %	Deviasi %	Deviasi %
Elemen			Eksak	(Ansys – Matlab)	(Ansys – SE)	(Matiab - SE)
7	2,442820	2,58223		5,47470	10,00053	5,07332
13	2,42790	2,58328	9.0	6,39980	10,74678	5,03476
45	2,62480	2,70590		3,08994	3,50845	0,52691
114	2,62050	2,70505	2,72024	3,22662	3,66652	0,55821
310	2,66260	2,71561		1,99082	2,11886	0,17022
498	2,67640	2,71696	1	1,54546	1,61155	0,12052
800	2,68400	2,72482		1,52095	1,33217	0,16853

Tabel 5.16 Tegangan rata-rata arah *circumferential* pada koordinat nodal (34,0)

Gambar 5.21 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34,0)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
7	2,42760	2,60026		7,11237	10,75781	4,41058
13	2,44750	1,61953		33,82925	10,02626	40,46370
45	2,62480	2,23507		14,84803	3,50845	17,83554
114	2,62700	2,24458	2,72024	14,55719	3,42757	17,48580
310	2,66260	2,40725		9,59006	2,11886	11,50572
498	6,67650	2,47806	2024	7,41421	1,60788	8,90288
800	2,68400	2,51604	1	6,25752	1,33217	7,50632

Tabel 5.17 Tegangan rata-rata arah circumferential pada koordinat nodal (34, 200)

Gambar 5.22 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34, 200)

Modelisasi struktur *open-ended cylinder* yang diberi tekanan dari dalam sebesar 1 *MPa* dengan menggunakan elemen triangular 3 nodal memberikan hasil peralihan yang mendekati solusi eksak, dengan deviasi sebesar \pm 5% dengan menggunakan 850 elemen. Selain itu hasil perhitungan dengan menggunakan MATLAB dan ANSYS memberikan hasil yang relatif sama di mana deviasi yang terjadi antara keduanya adalah 0%. Hal yang sama pun berlaku untuk hasil tegangan yang terjadi.

Sedangkan modelisasi struktur dengan menggunakan elemen quadrilateral 4 nodal memberikan hasil peralihan yang semakin mendekati nilai solusi eksak, walaupun pada saat jumlah elemen sedikit deviasi yang terjadi cukup besar tetapi setelah diskritisasi struktur dengan 800 elemen diperoleh deviasi \pm 5%. Deviasi yang terjadi antara hasil MATLAB dan ANSYS relatif sama setelah jumlah elemen mencukupi jumlahnya. Sedangkan hasil tegangan yang terjadi memberikan hasil yang bervariasi, walaupun pada akhirnya memberikan deviasi yang semakin kecil jika elemen semakin diperbanyak.

Hasil yang baik dari modelisasi struktur dengan menggunakan dua tipe elemen tersebut dapat pula dilihat dalam bentuk grafik asimtotik seiring dengan jumlah elemen yang diperbanyak, sehingga solusi dengan Metode Elemen Hingga dapat digunakan selain menggunakan solusi eksak yang telah tersedia.

5.2 CLOSE-ENDED CYLINDER YANG DIBERI TEKANAN DARI DALAM

Sebuah silinder tertutup yang diberi tekanan dari dalam sebesar 1 MPa. Dari data dibawah ini akan dihitung besarnya peralihan radial pada koordinat nodal (34,220)

Gambar 5.23 (a) Close-ended cylinder yang diberi tekanan dari dalam (b) Model struktur simetris

5.2.1 Solusi Eksak untuk Close-ended Cylinder

Gambar 5.24 Close-ended Cylinder

Pada model struktur solid axisymmetri untuk kasus *close-ended cylinder* yang diberi beban axisymmetri seperti gambar diatas, rumus solusi eksak untuk peralihan radial *u* yang digunakan yaitu : [B2]

$$u_{\text{(close-ended)}} = \frac{r}{E(b^2 - a^2)} \left[(1 - 2\upsilon) (p_1 a^2 - p_2 b^2) + \frac{(1 + \upsilon) a^2 b^2}{r^2} (p_1 - p_2) - \upsilon \frac{P}{\pi} \right]$$
(5.6)

Selain itu rumus solusi eksak untuk menghitung tegangan normal pada arah radial, *circumferential*, dan aksial sama dengan pada kasus *open-ended cylinder*, yaitu dengan menggunakan rumus berikut ini : [B2]

$$\sigma_{rr} = \frac{p_1 a^2 - p_2 b^2}{b^2 - a^2} - \frac{a^2 b^2}{r^2 (b^2 - a^2)} (p_1 - p_2)$$

$$\sigma_{\theta\theta} = \frac{p_1 a^2 - p_2 b^2}{b^2 - a^2} + \frac{a^2 b^2}{r^2 (b^2 - a^2)} (p_1 - p_2)$$

$$\sigma_{zz} = \frac{p_1 a^2 - p_2 b^2}{b^2 - a^2} + \frac{P}{\pi (b^2 - a^2)} = \text{konstan}$$

$$\sigma_{rr} + \sigma_{\theta\theta} = \frac{2(p_1 a^2 - p_2 b^2)}{b^2 - a^2} = \text{konstan}$$

Rumus diatas digunakan dengan tidak memperhitungkan adanya perubahan temperatur pada struktur ($\Delta T = 0$). Sehingga untuk kasus diatas dapat dihitung nilai solusi eksaknya, yaitu :

	u (mm)	$\sigma_{rr}\left(N/mm^2\right)$	$\sigma_{\theta\theta}\left(N/mm^2\right)$	$\sigma_{zz} \left(N / mm^2 \right)$
Koordinat nodal (34,220)	$4,69574 \times 10^{-4}$	- 1	2,72024	0,86012

Tabel 5.18 Nilai Solusi Eksak untuk Peralihan dan Tegangan

5.2.2 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 6 tipe.

Gambar 5.25 (kiri ke kanan) Diskritisasi adaptif dengan 28, 44, 136, 260, 582 dan 764 elemen

5.2.2.1 Diskritisasi Struktur Adaptif 28 Elemen

Input yang dilakukan adalah sebagai berikut :

```
%
% Input data for control parameters
§ _____
%
nel = 28;
                                                              % number of elements
nnel = 3;
                                                     % number of nodes per element
ndof = 2;
                                                         % number of dofs per node
nnode = 28;
                                                 % total number of nodes in system
sdof = nnode*ndof;
                                                               % total system dofs
edof = nnel*ndof;
                                                  % degrees of freedom per element
emodule = 2e5;
                                                                 % elastic modulus
poisson = 0.3;
                                                                 % Poisson's ratio
8 -
% Input data for nodal coordinate value
% gcoord(i,j) where i -> node no. and j -> x or y
% -----
gcoord = [0. 0.; 50. 0.; 50. 20.; 0. 20.; 34. 220.; 34. 20.; 50. 240.; 0. 240.; 0.
220.; 50. 220.; 30. 0.; 34. 204.; 34. 164.; 34. 132.; 34. 100.; 34. 68.; 34. 36.;
```

20. 240.; 50. 40.; 50. 72.; 50. 104.; 50. 136.; 50. 168.; 50. 200.; 18.889 20.; 18.889 220.; 12.222 10.; 9.7222 230.]; 2 % _____ _____ % Input data for nodal connectivity for each element % nodes(i,j) where i -> element no. and j -> connected nodes -----8 ----nodes = [8 28 18; 18 28 26; 28 9 26; 8 9 28; 25 27 11; 11 27 1; 27 4 1; 25 4 27; 16 20 15; 19 20 16; 15 21 14; 20 21 15; 14 22 13; 21 22 14; 23 13 22; 23 24 13; 18 5 7; 11 2 6; 17 19 16; 3 19 17; 24 12 13; 24 10 12; 5 10 7; 3 6 2; 5 12 10; 17 6 3; 6 25 11; 26 5 18]; § _____ % Input data for boundary conditions % ____ bcdof = [1 7 15 17 4 14]; % radial motion constrained bcval = [0 0 0 0 0 0]; % constrained value are 0 2 8 _____ % Force vector 8 pi = 4.0*atan(1.0); % pi = 3.141592 ff(9) = 1*pi*34*(220-204)*1;% force applied at node 5 in x-axis ff(23) = (1*pi*34*(220-204)*1)+(1*pi*34*(204-164)*1); % force applied at node 12 in x-axis ff(25) = (1*pi*34*(204-164)*1)+(1*pi*34*(164-132)*1); % force applied at node 13 in x-axis ff(27) = (1*pi*34*(164-132)*1)+(1*pi*34*(132-100)*1); % force applied at node 14 in x-axis ff(29) = (1*pi*34*(132-100)*1)+(1*pi*34*(100-68)*1);% force applied at node 15 in x-axis ff(31) = (1*pi*34*(100-68)*1)+(1*pi*34*(68-36)*1);% force applied at node 16 in x-axis ff(33) = (1*pi*34*(68-36)*1)+(1*pi*34*(36-20)*1);% force applied at node 17 in x-axis ff(11) = 1*pi*34*(36-20)*1; % force applied at node 6 in x-axis

Output yang dihasilkan adalah sebagai berikut :

```
displace =
   9.00000000000000
                     0.00016494206090
                                                  % radial displacement of node 5
   10.000000000000 -0.00021481646801
                                                   % axial displacement of node 5
stresses =
 Columns 1 through 2
 17.000000000000 -0.05870302688558
 Columns 3 through 4
 -0.04502847656354 0.00911156536034
 Column 5
  0.03261148639476
stresses =
 Columns 1 through 2
  23.000000000000 -0.05281174607676
 Columns 3 through 4
  0.42535408213337 0.41839891928193
 Column 5
  -0.01608033983830
stresses =
 Columns 1 through 2
  25.000000000000 -0.01167110331022
 Columns 3 through 4
  1.12024590782348 -0.13935743051971
 Column 5
 -0.15948614879256
stresses =
  Columns 1 through 2
  28.0000000000000
                    0.83379506437226
 Columns 3 through 4
  0.85261204589536
                    0.15205834531995
 Column 5
  -0.02768360860227
```

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 28 elemen adalah sebagai berikut :

Gambar 5.26 (kiri ke kanan) Deformasi struktur dan kontur tegangan arah radial, aksial, circumferential, dan tegangan geser radial-aksial

5.2.2.2	Analisa	Hasil	dengan	Elemen	Triangular	• 3	Nodal
---------	---------	-------	--------	--------	------------	-----	-------

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	$1,6494 \times 10^{-4}$	$1,64942 \times 10^{-4}$		0,00125	64,87458	64,87414
44	$1,5805 \times 10^{-4}$	$1,58047 \times 10^{-4}$		0,00187	66,34186	66,34249
136	$1,6037 \times 10^{-4}$	$1,60373 \times 10^{-4}$	4.69574×10^{-4}	0,00165	65,84780	65,84724
260	$1,6219 \times 10^{-4}$	$1,62181 \times 10^{-4}$		0,00527	65,46021	65,46203
582	$1,6180 \times 10^{-4}$	$1,61806 \times 10^{-4}$		0,00372	65,54327	65,54198
764	$1,6287 \times 10^{-4}$	$1,62870 \times 10^{-4}$	/ \	0,00012	65,31540	65,31544

Tabel 5.19 Peralihan radial pada koordinat nodal (34,220)

Gambar 5.27 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
28	- 2,1482 × 10 ⁻⁴	$-2,14816 \times 10^{-4}$	0,00164
44	- 2,1997 × 10 ⁻⁴	$-2,19969 \times 10^{-4}$	0,00037
136	- 2,3650 × 10 ⁻⁴	- 2,36493 × 10 ⁻⁴	0,00285
260	- 2,4668 × 10 ⁻⁴	$-2,46682 \times 10^{-4}$	0,00087
582	- 2,5817 × 10 ⁻⁴	$-2,58166 \times 10^{-4}$	0,00141
764	- 2,5862 × 10 ⁻⁴	$-2,58617 \times 10^{-4}$	0,00127

Tabel 5.20 Peralihan aksial pada koordinat nodal (34,220)

Gambar 5.28 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (34,220)

Jumlah	ANEVE	MATLAD	Solusi	Deviasi %	Deviasi %	Deviasi %
Elemen	ANSIS	MAILAD	Eksak	(Ansys – Matlab)	(Ansys – SE)	(Matlab – SE)
28	0,17765	0,17765		0,00068	117,76535	117,76523
44	0,15214	0,15213	1	0,00715	115,21448	115,21339
136	0,28604	0,28607		0,01040	128,60420	128,60717
260	0,50504	0,50471	110	0,06389	150,50364	150,47137
582	0,60660	0,60685	16	0,04164	160,65975	160,68501
764	0,75364	0,75322	1	0,05530	175,36404	175,32237
1000		The second second				

Tabel 5.21 Tegangan rata-rata arah radial pada koordinat nodal (34,220)

Gambar 5.29 Grafik konvergensi elemen untuk tegangan rata-rata arah radial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	0,11005	0,11005		0,00005	87,20493	87,20493
44	0,12317	0,12317	0,86012	0,00150	85,67992	85,67970
136	0,10729	0,10730		0,00432	87,52609	87,52555
260	0,17203	0,17196		0,04272	79,99943	80,00797
582	0,23619	0,23613		0,02250	72,54043	72,54661
764	0,30196	0,30175	1.000	0,06800	64,89352	64,91739

Tabel 5.22 Tegangan rata-rata arah aksial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	0,60182	0,58830	-0	2,24684	77,87628	78,37337
44	0,52710	0,52711	111	0,00334	80,62320	80,62256
136	0,93458	0,93459	2,72024	0,00084	65,64354	65,64325
260	1,03799	1,03799		0,00000	61,84213	61,84213
582	1,15327	1,15329	diameter .	0,00208	57,60408	57,60320
764	1,22573	1,22545		0,02231	54,94053	54,95058

Tabel 5.23 Tegangan rata-rata arah circumferential pada koordinat nodal (34,220)

Gambar 5.31 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34,220)

5.2.3 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 6 tipe.

Gambar 5.32 (kiri ke kanan) Diskritisasi adaptif dengan 20, 58, 102, 316 dan 517 elemen

5.2.3.1 Diskritisasi Struktur Adaptif 20 Elemen

Input yang dilakukan adalah sebagai berikut :

```
% -
% Input data for control parameters
%
nel = 20;
                                                                  % number of elements
nnel = 4;
                                                        % number of nodes per element
ndof = 2;
                                                             % number of dofs per node
nnode = 34;
                                                    % total number of nodes in system
sdof = nnode*ndof;
                                                                   % total system dofs
edof = nnel*ndof;
                                                     % degrees of freedom per element
emodule = 2e5;
                                                                    % elastic modulus
poisson = 0.3;
                                                                     % Poisson's ratio
nglx = 2; ngly = 2;
                                                      % 2x2 Gauss-Legendre quadrature
                                              % number of sampling points per element
nglxy = nglx*ngly;
% _____
% Input data for nodal coordinate values
% gcoord(i,j) where i -> node no. and j -> x or y
8 _ _
gcoord = [0. 0.; 50. 0.; 50. 20.; 0. 20.; 34. 220.; 34. 20.; 50. 240.; 0. 240.; 0.
220.; 50. 220.; 30. 0.; 34. 204.; 34. 164.; 34. 132.; 34. 100.; 34. 68.; 34. 36.; 20. 240.; 50. 40.; 50. 72.; 50. 104.; 50. 136.; 50. 168.; 50. 200.; 18.889 20.;
18.889 220.; 42. 166.25; 42. 134.03; 42. 102.03; 42. 70.033; 36.326 224.24; 37.516
14.320; 42. 46.099; 42. 192.86];
    %
% ____
% Input data for nodal connectivity for each element
\ nodes(i,j) where i -> element no. and j -> connected nodes
8 -
                                               _____
nodes = [21 29 30 20; 15 16 30 29; 22 28 29 21; 14 15 29 28; 23 27 28 22; 13 14 28
27; 24 34 27 23; 12 13 27 34; 34 24 5 12; 24 10 31 5; 19 33 17 6; 3 19 6 32; 18 31
10 7; 11 25 4 1; 32 6 25 11; 30 33 19 20; 17 33 30 16; 8 9 26 18; 18 26 5 31; 2 3
32 11];
8 --
% Input data for boundary conditions
```

```
% _
bcdof = [15 17 7 1 4 14];
                                                         % radial motion constrained
bcval = [0 \ 0 \ 0 \ 0 \ 0];
                                                          % constrained values are 0
ŝ
8 _____
% Force vector
8 _____
pi = 4.0*atan(1.0);
                                                                     % pi = 3.141592
ff(9) = 1*pi*34*(220-204)*1;
                                                 % force applied at node 5 in x-axis
ff(23) = ((1*pi*34*(220-204)*1)+(1*pi*34*(204-164)*1));
                                                \ force applied at node 12 in x-axis
ff(25) = ((1*pi*34*(204-164)*1)+(1*pi*34*(164-132)*1));
                                                % force applied at node 13 in x-axis
ff(27) = ((1*pi*34*(164-132)*1)+(1*pi*34*(132-100)*1));
                                                % force applied at node 14 in x-axis
\texttt{ff(29)} = ((1*\texttt{pi}*34*(132-100)*1)+(1*\texttt{pi}*34*(100-68)*1));
                                                % force applied at node 15 in x-axis
ff(31) = ((1*pi*34*(100-68)*1)+(1*pi*34*(68-36)*1));
                                                % force applied at node 16 in x-axis
ff(33) = ((1*pi*34*(68-36)*1)+(1*pi*34*(36-20)*1));
                                                % force applied at node 17 in x-axis
ff(11) = 1*pi*34*(36-20)*1;
                                                 % force applied at node 6 in x-axis
```

Output yang dihasilkan adalah :

displace =		
9.00000000000000		0.00016880798614
10.000000000000000	-	-0.00018745844505
stresses =		
Columns 1 through	2	
9.00000000000000		0.23491438522839
Columns 3 through	4	
1 55011585282579	-	0 36413160524805
Column 5		0.50115100521005
stresses -		
Columna 1 through	2	
	2	0 000000110000007
	_	-0.29623811008657
Columns 3 through	4	0 000000000000000000
0.58753770667023		0.09864616015910
Column 5		and the second second
-0.20691155259845		
stresses =		
Columns 1 through	2	
19.0000000000000		1.30836964252611
Columns 3 through	4	
1.25550223736327		0.39800606991759
Column 5		
0.09535135127132		

% radial displacement of node 5 % axial displacement of node 5 Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 20 elemen adalah sebagai berikut :

Gambar 5.33 (kiri ke kanan) Deformasi struktur dan kontur tegangan arah radial, aksial, circumferential, dan tegangan geser radial-aksial

5.2.3.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	$2,0310 \times 10^{-4}$	$1,68808 \times 10^{-4}$	Jan Star	16,88430	56,74807	64,05085
58	$1,7128 \times 10^{-4}$	$1,63677 \times 10^{-4}$		4,43912	63,52442	65,14361
102	$1,6761 \times 10^{-4}$	1,61311 × 10 ⁻⁴	4.69574×10^{-4}	3,75798	64,30598	65,64735
316	$1,6294 \times 10^{-4}$	$1,61293 \times 10^{-4}$	4,07574×10	1,01100	65,30049	65,65131
517	$1,6164 \times 10^{-4}$	$1,60599 \times 10^{-4}$		0,64410	65,57734	65,79906
732	$1,6094 \times 10^{-4}$	$1,60270 \times 10^{-4}$		0,41661	65,72641	65,86920

Tabel 5.24 Peralihan radial pada koordinat nodal (34,220)

Gambar 5.34 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (34,220)
Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	- 2,2688 × 10 ⁻⁴	- 1,87458 × 10 ⁻⁴	17,37551
58	- 2,6177 × 10 ⁻⁴	$-2,47095 \times 10^{-4}$	5,60601
102	- 2,6478 × 10 ⁻⁴	$-2,52759 \times 10^{-4}$	4,54012
316	- 2,6976 × 10 ⁻⁴	$-2,63024 \times 10^{-4}$	2,49719
517	- 2,7300 × 10 ⁻⁴	- 2,66974 × 10 ⁻⁴	2,20722
732	- 2,7486 × 10 ⁻⁴	$-2,69260 \times 10^{-4}$	2,03755

Tabel 5.25 Peralihan aksial pada koordinat nodal (34,220)

Gambar 5.35 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	- 0,23277	0,41568		278,58312	76,72333	141,56820
58	0,35238	0,38083	6	8,07531	135,23763	138,08318
102	0,43965	0,56060	- 1	27,51174	143,96493	156,06045
316	0,66439	0,48193		27,46220	166,43900	148,19339
517	0,76606	0,54301		29,11590	176,60567	154,30124
732	0,84940	0,62422	d	26,48675	184,94000	162,44216

Tabel 5.26 Tegangan rata-rata arah radial pada koordinat nodal (34,220)

Gambar 5.36 Grafik konvergensi elemen untuk tegangan rata-rata arah radial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	0,06311	0,28693		354,64735	92,66264	66,64090
58	0,00832	0,18912		2173,96514	99,03310	78,01292
102	- 0,01541	0,17663	0.86012	1246,05320	101,79184	79,46450
316	0,11722	0,09111	0,00012	22,27317	86,37216	89,40751
517	0,18752	0,10519	-	43,90454	78,19875	87,77049
732	0,24533	0,18249	- 200 A	25,61596	71,47682	78,78330

Tabel 5.27 Tegangan rata-rata arah aksial pada koordinat nodal (34,220)

Gambar 5.37 Grafik konvergensi elemen untuk tegangan rata-rata arah aksial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	1,28920	1,21113	1	6,05627	52,60697	55,47722
58	1,06650	1,01266	100	5,04863	60,79387	62,77325
102	0,94409	0,98150	2 72024	3,96258	65,29372	63,91846
316	0,72295	1,05632	2,72024	46,11330	73,42332	61,16793
517	0,99384	1,07858	1	8,52665	63,46509	60,34988
732	1,00750	1,13881		13,03368	62,96280	58,13549

Tabel 5.28 Tegangan rata-rata arah aksial pada koordinat nodal (34,220)

Gambar 5.38 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34,220)

Modelisasi struktur *close-ended cylinder* yang diberi tekanan dari dalam sebesar 1 *MPa* dengan menggunakan elemen triangular 3 nodal memberikan hasil peralihan yang kurang mendekati solusi eksak, dengan deviasi sebesar \pm 65% setelah menggunakan 764 elemen. Walaupun hasil perhitungan memberikan deviasi yang cukup besar dengan solusi eksak, tetapi hasil perhitungan dengan menggunakan MATLAB dan ANSYS memberikan hasil yang relatif sama baik untuk nilai peralihan maupun tegangan, di mana deviasi yang terjadi antara keduanya adalah 0%.

Sama halnya dengan modelisasi struktur dengan menggunakan elemen quadrilateral 4 nodal memberikan hasil peralihan yang kurang mendekati nilai solusi eksak, walupun diskritisasi struktur dilakukan dengan 732 elemen diperoleh deviasi ± 65%. Sedangkan hasil berupa nilai peralihan dan tegangan yang terjadi dengan menggunakan MATLAB dan ANSYS memberikan hasil yang relatif sama setelah jumlah elemen mencukupi jumlahnya.

Nilai peralihan dengan menggunakan elemen triangular 3 nodal dan elemen quadrilateral 4 nodal memberikan hasil yang baik, hal ini dapat dilihat dari besarnya nilai peralihan yang semakin konstan sehingga grafik yang ditampilkan pun berupa grafik asimtotik.

5.3 CLOSE-ENDED CYLINDER YANG DIBERI BEBAN AKSIAL

Sebuah silinder tertutup yang diberi beban aksial sebesar 100 *N*. Dengan menggunakan data dibawah ini akan dihitung besarnya peralihan aksial dan tegangan yang terjadi pada koordinat nodal (34,220)

Gambar 5.39 (a) Close-ended cylinder yang diberi beban aksial (b) Model struktur simetris

5.3.1 Solusi Eksak

Dengan menggunakan rumus yang sama untuk *close ended cylinder*, maka dapat diperoleh nilai peralihan dan tegangannya, yaitu :

	u (mm)	$\sigma_{rr}\left(N/mm^2\right)$	$\sigma_{\theta\theta}\left(N/mm^2\right)$	$\sigma_{zz} \left(N / mm^2 \right)$
Koordinat nodal (34,220)	$-1,20787 \times 10^{-6}$	0	0,02368	0

Tabel 5.29 Nilai Solusi Eksak untuk Peralihan dan Tegangan

5.3.2 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 6 tipe.

Gambar 5.40 (kiri ke kanan) Diskritisasi adaptif dengan 28, 44, 136, 260, 582 dan 764 elemen

5.3.2.1 Diskritisasi Struktur Adaptif 28 Elemen

Input yang dilakukan adalah sebagai berikut :

```
% ____
% Input data for control parameters
                _____
                       -----
8 -----
%
nel = 28;
                                                                 % number of elements
                                                        % number of nodes per element
nnel = 3;
ndof = 2;
                                                            % number of dofs per node
                                                    % total number of nodes in system
nnode = 28i
sdof = nnode*ndof;
                                                                  % total system dofs
edof = nnel*ndof;
                                                     % degrees of freedom per element
emodule = 2e5;
                                                                    % elastic modulus
poisson = 0.3;
                                                                    % Poisson's ratio
og _____
% Input data for nodal coordinate value
% gcoord(i,j) where i -> node no. and j -> x or y
                     _____
8 ____
gcoord = [0. 0.; 50. 0.; 50. 20.; 0. 20.; 34. 220.; 34. 20.; 50. 240.; 0. 240.; 0.
220.; 50. 220.; 30. 0.; 34. 204.; 34. 164.; 34. 132.; 34. 100.; 34. 68.; 34. 36.; 20. 240.; 50. 40.; 50. 72.; 50. 104.; 50. 136.; 50. 168.; 50. 200.; 18.889 20.;
18.889 220.; 12.222 10.; 9.7222 230.];
```

```
°
% ____
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
8 -----
                  _____
                               _____
                                         _____
nodes = [8 28 18; 18 28 26; 28 9 26; 8 9 28; 25 27 11; 11 27 1; 27 4 1; 25 4 27;
16 20 15; 19 20 16; 15 21 14; 20 21 15; 14 22 13; 21 22 14; 23 13 22; 23 24 13; 18
5 7; 11 2 6; 17 19 16; 3 19 17; 24 12 13; 24 10 12; 5 10 7; 3 6 2; 5 12 10; 17 6
3; 6 25 11; 26 5 18];
Ŷ
÷
% Input data for boundary conditions
& _____
bcdof = [1 7 15 17 2 4 14];
                                                       % axial motion constrained
bcval = [0 \ 0 \ 0 \ 0 \ 0];
                                                        % constrained value are 0
%
% _____
% Force vector
8 -----
pi = 4.0*atan(1.0);
                                                                  % pi = 3.141592
8
ff(2) = -100;
                                              % force applied at node 1 in z-axis
ff(16) = 100;
                                              % force applied at node 8 in z-axis
```

Output yang dihasilkan adalah :

```
displace =
  9.00000000000000 -0.00000444117341
10.0000000000000 0.0000841886362
stresses =
  Columns 1 through 2
  17.000000000000 -0.00342608826970
  Columns 3 through 4
  0.02248669469310 0.02726383847457
  Column 5
  -0.00952336203189
stresses =
  Columns 1 through 2
  23.000000000000 -0.00372065540130
  Columns 3 through 4
  -0.01660608466279 -0.03631757605385
  Column 5
   0.00597677658379
stresses =
 Columns 3 through 4
-0.00022737701405
  Column 5
  -0.02443539540565
stresses =
  Columns 1 through 2
  28.00000000000000
                      0.03293654629678
  Columns 3 through 4
  -0.01018769950005 -0.02497169234078
 Column 5
  -0.02218410544592
```

% radial displacement of node 5 % axial displacement of node 5 Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 28 elemen adalah sebagai berikut

Gambar 5.41 (*kiri ke kanan*) Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

5.3.2.2 Analisa Hasil dengan Elemen Triangular 3 Nodal

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	- 4,4412 × 10 ⁻⁶	$-4,44117 \times 10^{-6}$		0,00060	267,68786	267,68566
44	$-5,1472 \times 10^{-6}$	$-5,14702 \times 10^{-6}$		0,00353	326,13775	326,12273
136	- 6,1783 × 10 ⁻⁶	$-6,17825 \times 10^{-6}$	-1.20787×10^{-6}	0,00076	411,50273	411,49884
260	- 6,2723 × 10 ⁻⁶	$-6,27261 \times 10^{-6}$	1,20707710	0,00496	419,28501	419,31076
582	- 6,4548 × 10 ⁻⁶	$-6,45464 \times 10^{-6}$		0,00245	434,39422	434,38114
764	$-6,5266 \times 10^{-6}$	- 6,52639×10 ⁻⁶		0,00322	440,33856	440,32118

Tabel 5.30	Peralihan radial	nada koordinat nodal ((34.220)
Lanci Sist	I CI unnun I uunu	paua nooi umat noual	

Gambar 5.42 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
28	0,84189×10 ⁻⁵	0,84189×10 ⁻⁵	0,00043
44	0,83760×10 ⁻⁵	0,83756×10 ⁻⁵	0,00519
136	1,11210×10 ⁻⁵	$1,11208 \times 10^{-5}$	0,00225
260	1,13850×10 ⁻⁵	$1,13850 \times 10^{-5}$	0,00001
582	$1,21300 \times 10^{-5}$	$1,21301 \times 10^{-5}$	0,00070
764	$1,20880 \times 10^{-5}$	$1,20883 \times 10^{-5}$	0,00232

Tabel 5.31 Peralihan aksial pada koordinat nodal (34,220)

Gambar 5.43Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	0,01287	0,01286	1	0,00035	100	100
44	0,01315	0,01314		0,01337	100	100
136	0,02856	0,02857	0	0,01602	100	100
260	0,04263	0,04262		0,01890	100	100
582	0,05620	0,05619	de la compañía de la	0,01807	100	100
764	0,06555	0,06551	-	0,06590	100	100

Tabel 5.32 Tegangan rata-rata arah radial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	0,00278	0,00278		0,00649	88,24617	88,24541
44	0,00857	0,00857		0,01759	63,82470	63,83106
136	0,04165	0,04166	0.02368	0,01167	75,86188	75,88241
260	0,06142	0,06142	0,02000	0,00183	159,32948	159,32473
582	0,07606	0,07605		0,01622	221,14607	221,09398
764	0,08621	0,08618	2014	0,03399	263,99292	263,86919

Tabel 5.33 Tegangan rata-rata arah aksial pada koordinat nodal (34,220)

 Tabel 5.34 Tegangan rata-rata arah circumferential pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
28	- 0,00113	- 0,00113		0,00192	100	100
44	- 0,00099	- 0,00099	10	0,09122	100	100
136	- 0,00521	- 0,00521	0	0,04424	100	100
260	0,00118	0,00118	Ŭ	0,26118	100	100
582	0,00560	0,00423	-	24,53992	100	100
764	0,01004	0,01002	1	0,14853	100	100

Gambar 5.46 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34,220)

5.3.3 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 6 tipe.

5.3.3.1 Diskritisasi Struktur Adaptif 20 Elemen

Input yang dilakukan adalah sebagai berikut :

```
%
% Input data for control parameters
% -
        nel = 20;
                                                                 % number of elements
                                                        % number of nodes per element
nnel = 4;
ndof = 2;
                                                            % number of dofs per node
nnode = 34;
                                                    % total number of nodes in system
sdof = nnode*ndof;
                                                                  % total system dofs
edof = nnel*ndof;
                                                     % degrees of freedom per element
emodule = 2e5;
                                                                    % elastic modulus
% Poisson's ratio
poisson = 0.3;
nglx = 2; ngly = 2;
                                                      % 2x2 Gauss-Legendre quadrature
                                             % number of sampling points per element
nglxy = nglx*ngly;
≗ __
% Input data for nodal coordinate values
gcoord(i,j) where i -> node no. and j -> x or y
8
gcoord = [0. 0.; 50. 0.; 50. 20.; 0. 20.; 34. 220.; 34. 20.; 50. 240.; 0. 240.; 0.
220.; 50. 220.; 30. 0.; 34. 204.; 34. 164.; 34. 132.; 34. 100.; 34. 68.; 34. 36.; 20. 240.; 50. 40.; 50. 72.; 50. 104.; 50. 136.; 50. 168.; 50. 200.; 18.889 20.;
18.889 220.; 42. 166.25; 42. 134.03; 42. 102.03; 42. 70.033; 36.326 224.24; 37.516
14.320; 42. 46.099; 42. 192.86];
2
8 --
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
8 --
nodes = [21 29 30 20; 15 16 30 29; 22 28 29 21; 14 15 29 28; 23 27 28 22; 13 14 28
27; 24 34 27 23; 12 13 27 34; 34 24 5 12; 24 10 31 5; 19 33 17 6; 3 19 6 32; 18 31
10 7; 11 25 4 1; 32 6 25 11; 30 33 19 20; 17 33 30 16; 8 9 26 18; 18 26 5 31; 2 3
32 111;
8 -----
               _____
% Input data for boundary conditions
8 _-
```

Output yang dihasilkan adalah :

```
displace =
  9.0000000000000 -0.0000447345123
10.0000000000000 0.0000860588401
stresses =
  Columns 1 through 2
   9.000000000000 -0.00438056695705
  Columns 3 through 4
  -0.01310061918346 0.02092587456501
 Column 5
  -0.00909026706348
stresses =
  Columns 1 through 2
  10.00000000000000
                       0.01773150494179
 Columns 3 through 4
  -0.00303406557702 0.02744927075854
 Column 5
  -0.00923715317080
stresses =
 Columns 1 through 2
  19.00000000000000
                      0.00945866633789
 Columns 3 through 4
  -0.05005488903694 -0.04227519527705
  Column 5
  -0.03272393394609
```

% radial displacement of node 5
% axial displacement of node 5

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 20 elemen adalah sebagai berikut :

Gambar 5.48 (kiri ke kanan) Deformasi struktur dan kontur tegangan arah radial, aksial, circumferential, dan tegangan geser radial-aksial

	5.3.3.2	Analisa	Hasil	dengan	Elemen	<i>Quadrilateral</i> 4	Nodal
--	---------	---------	-------	--------	--------	------------------------	-------

Jumlah	ANSYS	MATLAB	Solusi	Deviasi %	Deviasi %	Deviasi %
Elemen	111010		Eksak	(Ansys – Matlab)	(Ansys – SE)	(Matlab – SE)
20	- 8,4397 × 10 ⁻⁶	$-4,47345 \times 10^{-6}$		46,99514	598,72451	270,35795
58	- 6,4876×10 ⁻⁶	$-5,95964 \times 10^{-6}$		8,13799	437,10974	393,39983
102	- 6,9556 × 10 ⁻⁶	$-6,42574 \times 10^{-6}$	-1.20787×10^{-6}	7,61773	475,85556	431,98842
316	- 6,8926 × 10 ⁻⁶	$-6,65821 \times 10^{-6}$	200100	3,40066	470,63978	451,23425
517	- 6,6513 × 10 ⁻⁶	$-6,75589 \times 10^{-6}$		1,57247	450,66250	459,32153
732	- 6,9349 × 10 ⁻⁶	$-6,80893 \times 10^{-6}$	1 8	1,81646	474,14180	463,71272

Tabel 5.35 Peralihan radial pada koordinat nodal (34,220)

Gambar 5.49 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (34,220)

Tabel 5.30	6 Peralihan	aksial	nada	koordinat	nodal	(34.22)	0)
Laber 5.50	J I CI annan	ansmar	paua	nooi umat	noual	(J7944	v

Gambar 5.50 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	0,03053	0,00760		75,09866	100	100
58	0,02736	0,01266		53,72949	100	100
102	0,03601	0,03503	0	2,73068	100	100
316	0,05577	0,03379	Ŭ	39,40541	100	100
517	0,06401	0,04049		36,74199	100	100
732	0,07120	0,04824		32,25142	100	100

Tabel 5.37 Tegangan rata-rata arah radial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	0,04214	0,00203		95,17504	77,93450	91,41473
58	0,03071	0,00330	New York	89,26313	29,66699	86,07783
102	0,05941	0,04207	0.02368	29,18257	150,84867	77,64332
316	0,07815	0,03865	0,02308	50,54533	229,98545	63,19322
517	0,08800	0,04777	1	45,72082	271,57511	101,68793
732	0,09573	0,05974		37,58956	304,19238	152,25826

Tabel 5.38 Tegangan rata-rata arah aksial pada koordinat nodal (34,220)

Gambar 5.52 Grafik konvergensi elemen untuk tegangan rata-rata arah aksial pada koordinat nodal (34,220)

Jumlah Elemen	ANSYS	MATLAB	Solusi Eksak	Deviasi % (Ansys – Matlab)	Deviasi % (Ansys – SE)	Deviasi % (Matlab – SE)
20	- 0,05681	- 0,02206		61,16137	100	100
58	- 0,03643	- 0,02766		24,08092	100	100
102	- 0,03011	- 0,00900	0	70,10431	100	100
316	- 0,02141	- 0,01362	Ŭ	36,41917	100	100
517	- 0,01623	- 0,00929		42,73594	100	100
732	- 0,01613	- 0,00466	2004	71,08590	100	100

Tabel 5.39 Tegangan rata-rata arah circumferential pada koordinat nodal (34,220)

Gambar 5.53 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (34,220)

Modelisasi struktur *close-ended cylinder* yang diberi beban aksial sebesar 100 kN dengan menggunakan elemen triangular 3 nodal memberikan hasil peralihan yang tidak mendekati solusi eksak sama halnya dengan kasus *close-ended cylinder* yang diberi tekanan dari dalam, dengan deviasi sebesar \pm 440% setelah menggunakan 764 elemen. Walaupun begitu, tetapi hasil perhitungan dengan menggunakan MATLAB dan ANSYS menunjukkan deviasi yang terjadi antara keduanya adalah 0%.

Sama halnya dengan modelisasi struktur dengan menggunakan elemen quadrilateral 4 nodal memberikan hasil peralihan yang jauh dari nilai solusi eksak, walupun diskritisasi struktur dilakukan dengan 732 elemen diperoleh deviasi \pm 470%. Sedangkan hasil berupa nilai peralihan dan tegangan yang terjadi dengan menggunakan MATLAB dan ANSYS memberikan hasil yang relatif semakin baik jika jumlah elemen semakin ditingkatkan.

Pada problem close-ended cylinder yang diberi beban aksial, hasilnya tidak semakin konstan secara nyata, tetapi hasil perhitungan cukup baik jika dilihat dari grafik yang semakin asimtotik.

5.4 BELLEVILLE SPRING

Belleville spring adalah suatu *conical disk spring*. Diberi beban aksial $\frac{P}{2\pi r}$ sebesar 1 kN melawan gravitasi. Dari gambar dan data berikut ini akan dihitung besarnya peralihan radial dan aksial, serta tegangan yang terjadi pada nodal (10,16; 5,08)

Gambar 5.54 (a) Belleville spring (b) Model struktur simetris dengan perletakan rol

5.4.1 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 6 tipe.

Gambar 5.55 Diskritisasi adaptif dengan 12, 76, 114, 314, 648 dan 872 elemen

5.4.1.1 Diskritisasi Struktur Adaptif 12 Elemen

Input yang dilakukan adalah sebagai berikut :

% _____

```
% Input data for control parameters
% ___
     _____
             _____
%
nel = 12;
                                                               % number of elements
nnel = 3;
                                                      % number of nodes per element
                                                         % number of dofs per node
ndof = 2;
nnode = 12;
                                                  % total number of nodes in system
sdof = nnode*ndof;
                                                                % total system dofs
edof = nnel*ndof;
                                                  % degrees of freedom per element
emodule = 3e7;
                                                                  % elastic modulus
poisson = 0.3;
                                                                 % Poisson's ratio
8 __
% Input data for nodal coordinate value
\ gcoord(i,j) where i -> node no. and j -> x or y
8 -----
gcoord = [0.96838 0.; 1. 0.094870; 0.4 0.2; 0.36838 0.10513; 0.90150 0.11213; 0.70666 0.14627; 0.49850 0.18274; 0.46688 0.087871; 0.66172 0.053732; 0.86988
0.017259; 0.93494 0.056064; 0.43344 0.14394];
8 ____
         _____
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
8 _-
nodes = [3 12 7; 7 12 8; 12 4 8; 3 4 12; 10 11 5; 5 11 2; 11 1 2; 10 1 11; 9 6 7;
9 10 6; 10 5 6; 7 8 9];
°
8 _____
% Input data for boundary conditions
8 –
                  _____
bcdof = [2 5 7];
                                             % axial and radial motion constrained
bcval = [0 0 0];
                                                          % constrained value are 0
% -----
% Force vector
```

pi = 4.0*atan(1.0);	% pi = 3.141592
°ff(6) = −1000;	$\ensuremath{\texttt{\$}}$ force applied at node 3 in z-axis

Output yang dihasilkan adalah :

displace = 5.0000000000000 -0.0 6.0000000000000 -0.0	0000000000000 11318386290264	% radial % axial	displacement displacement	of of	node node	3 3
<pre>stresses = Columns 1 through 2 1.000000000000 -82.3 Columns 3 through 4 -27.93663063566329 5.6 Column 5 24.76644636168263</pre>	0874998339756 66601446209006					
<pre>stresses = Columns 1 through 2 4.000000000000 2.2 Columns 3 through 4 1.29449555035623 1.9 Column 5 18.00005721248016</pre>	22104741081752 01198541076668		シ			

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 12 elemen adalah sebagai berikut :

Gambar 5.56 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	$-1,31830 \times 10^{-2}$	- 1,31839 × 10 ⁻²	0,00655
76	- 1,85020 × 10 ⁻²	- 1,85021 × 10 ⁻²	0,00065
114	- 1,93040 × 10 ⁻²	- 1,93035 × 10 ⁻²	0,00271
314	- 2,04740 × 10 ⁻²	- 2,04738 × 10 ⁻²	0,00091
648	$-2,09320 \times 10^{-2}$	$-2,09330 \times 10^{-2}$	0,00456
872	$-2,10110 \times 10^{-2}$	$-2,10120 \times 10^{-2}$	0,00455

Tabel 5.40 Peralihan aksial pada koordinat nodal (10,16 ; 5,08)

Gambar 5.57 Grafik konvergensi elemen untuk peralihan aksial

pada koordinat nodal (10,16 ; 5,08)

Tabel 5.41 Tegangan rata-rata arah radial pada koordinat nodal (10,16 ; 5,08)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	- 40,04735	- 40,04385	0,00874
76	- 88,15450	- 88,15669	0,00248
114	- 70,17750	- 70,18206	0,00650
314	- 97,09100	- 97,10830	0,01781
648	- 108,99300	- 109,00684	0,01270
872	- 120,26000	- 120,26862	0,00717

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	3,78855	3,78900	0,01188
76	- 10,75155	- 10,75145	0,00093
114	- 12,98600	- 12,99443	0,06490
314	- 27,90750	- 27,93040	0,08205
648	- 39,45750	- 39,48491	0,06947
872	- 54,82000	- 54,91333	0,17025

Tabel 5.42 Tegangan rata-rata arah aksial pada koordinat nodal (10,16 ; 5,08)

Gambar 5.59 Grafik konvergensi elemen untuk tegangan rata-rata arah aksial pada koordinat nodal (10,16 ; 5,08)

Tabel 5.43 Tegangan rata-rata arah *circumferential* pada koordinat nodal (10,16; 5,08)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	- 13,32250	- 13,32107	0,01075
76	- 32,24050	- 32,24138	0,00274
114	- 26,73000	- 26,73453	0,01693
314	- 39,02000	- 39,03199	0,03074
648	- 45,81000	- 45,82001	0,02185
872	- 53,52450	- 53,55427	0,05562

Gambar 5.60 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (10,16 ; 5,08)

5.4.2 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 5 tipe.

Gambar 5.61 Diskritisasi adaptif dengan 51, 104, 301, 522 dan 770 elemen

5.4.2.1 Diskritisasi Struktur Adaptif 51 Elemen

Input yang dilakukan adalah sebagai berikut :

```
% Input data for control parameters
%
nel = 51;
                                                                                 % number of elements
                                                                     % number of nodes per element
nnel = 4i
                                                                          % number of dofs per node
ndof = 2;
nnode = 72i
                                                                % total number of nodes in system
sdof = nnode*ndof;
                                                                                  % total system dofs
edof = nnel*ndof;
                                                                 % degrees of freedom per element
                                                                                     % elastic modulus
emodule = 3e7;
poisson = 0.3;
                                                                                     % Poisson's ratio
nglx = 2; ngly = 2;
                                                                  % 2x2 Gauss-Legendre quadrature
nglxy = nglx*ngly;
                                                        % number of sampling points per element
2
8 -----
% Input data for nodal coordinate values
% gcoord(i,j) where i -> node no. and j -> x or y
8 _____
gcoord = [0.96838 0.; 1. 0.94870E-01; 0.4 0.2; 0.36838 0.10513; 0.97870 0.30970E-
01; 0.98902 0.61939E-01; 0.96581 0.10086; 0.93162 0.10685; 0.89639 0.11302;
0.85655 0.12001; 0.82125 0.12619; 0.78596 0.13237; 0.75067 0.13856; 0.71537
0.14474; 0.68008 0.15093; 0.64478 0.15711; 0.60949 0.16329; 0.57419 0.16948;
0.53890 0.17566; 0.50361 0.18185; 0.46838 0.18802; 0.43419 0.19401; 0.38968
0.16903; 0.37936 0.13806; 0.40257 0.99139E-01; 0.43676 0.93148E-01; 0.47199
0.86976E-01; 0.51183 0.79995E-01; 0.54713 0.73811E-01; 0.58242 0.67627E-01;
0.61771 0.61442E-01; 0.65301 0.55258E-01; 0.68830 0.49074E-01; 0.72360 0.42890E-
01; 0.75889 0.36706E-01; 0.79419 0.30522E-01; 0.82948 0.24338E-01; 0.86477
0.18154E-01; 0.90000 0.11982E-01; 0.93419 0.59908E-02; 0.94455 0.37072E-01;
0.91040 0.43175E-01; 0.87521 0.49462E-01; 0.83845 0.56030E-01; 0.80319 0.62331E-
01; 0.76792 0.68631E-01; 0.73266 0.74932E-01; 0.69740 0.81232E-01; 0.66214
0.87533E-01; 0.62688 0.93833E-01; 0.59162 0.10013; 0.55636 0.10643; 0.52110
0.11273; 0.48285 0.11957; 0.44766 0.12586; 0.41351 0.13196; 0.95487 0.68042E-01;
0.92072 0.74144E-01; 0.88553 0.80432E-01; 0.84728 0.87265E-01; 0.81202 0.93566E-
01; 0.77676 0.99866E-01; 0.74150 0.10617; 0.70624 0.11247; 0.67098 0.11877;
0.63572 0.12507; 0.60046 0.13137; 0.56519 0.13767; 0.52993 0.14397; 0.49317
0.15054; 0.45798 0.15683; 0.42383 0.16293];
8
8 -
       _____
```

```
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
% ____
nodes = [1 5 41 40; 5 6 57 41; 6 2 7 57; 40 41 42 39; 41 57 58 42; 57 7 8 58; 39
42 43 38; 42 58 59 43; 58 8 9 59; 38 43 44 37; 43 59 60 44; 59 9 10 60; 37 44 45
36; 44 60 61 45; 60 10 11 61; 36 45 46 35; 45 61 62 46; 61 11 12 62; 35 46 47 34;
46 62 63 47; 62 12 13 63; 34 47 48 33; 47 63 64 48; 63 13 14 64; 33 48 49 32; 48
64 65 49; 64 14 15 65; 32 49 50 31; 49 65 66 50; 65 15 16 66; 31 50 51 30; 50 66
67 51; 66 16 17 67; 30 51 52 29; 51 67 68 52; 67 17 18 68; 29 52 53 28; 52 68 69
53; 68 18 19 69; 28 53 54 27; 53 69 70 54; 69 19 20 70; 27 54 55 26; 54 70 71 55;
70 20 21 71; 26 55 56 25; 55 71 72 56; 71 21 22 72; 25 56 24 4; 56 72 23 24; 72 22
3 23];
& ____
             _____
% Input data for boundary conditions
% _____
bcdof = [2 5 45 47 7];
                                            % axial and radial motion constrained
bcval = [0 0 0 0 0];
                                                       % constrained values are 0
2
8 _____
% Force vector
8 --
                                                                 % pi = 3.141592
pi = 4.0*atan(1.0);
ff(6) = -1000;
                                              % force applied at node 3 in z-axis
Output yang dihasilkan adalah :
displace =
```

```
1.0e+002 *

0.050000000000 0.00000000000000

0.060000000000 -0.00020202244592

stresses =

Columns 1 through 2

51.000000000000 -99.97967114405523

Columns 3 through 4

-39.38319012818150 -14.50947231709170

Column 5

16.38872130170629
```

% radial displacement of node 3 % axial displacement of node 3

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 51 elemen adalah sebagai berikut :

Gambar 5.62 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
51	$-2,18600 \times 10^{-2}$	$-2,02022 \times 10^{-2}$	7,58351
104	$-2,16860 \times 10^{-2}$	$-2,06832 \times 10^{-2}$	4,62429
301	$-2,13930 \times 10^{-2}$	$-2,10555 \times 10^{-2}$	1,57747
522	$-2,13740 \times 10^{-2}$	$-2,11306 \times 10^{-2}$	1,13876
770	$-2,13610 \times 10^{-2}$	$-2,12036 \times 10^{-2}$	0,73675

Tabel 5.44 Peralihan aksial pada koordinat nodal (1; 0,09487)

Gambar 5.63 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (10,16 ; 5,08)

Tabel 5.45 Tegangan arah radial pada koordinat nodal (10,16; 5,08) Deviasi % Jumlah ANSYS MATLAB (Ansys – Matlab) Elemen 51 - 87,38300 - 99,97967 14,41547 12,07823 104 - 96,08900 - 107,69485 301 - 101,76000 - 115,79940 13,79658 522 - 104,37000 - 120,02551 15,00001 - 122,82889 16,28220 770 - 105,63000

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
51	- 20,17600	- 14,50947	28,08549
104	- 36,92200	- 17,85499	51,64133
301	- 69,85000	- 26,77711	61,66484
522	- 97,30800	- 35,57958	63,43612
770	- 119,03000	- 42,83991	64,00915

Tabel 5.46 Tegangan arah aksial pada koordinat nodal (10,16 ; 5,08)

Tabel 5.47 Tegangan arah circumferential pada koordinat nodal (10,16; 5,08)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
51	- 15,72300	- 39,38319	150,48140
104	- 21,61100	- 41,39711	91,55573
301	- 26,38600	- 45,26170	71,53681
522	- 28,86400	- 48,58687	68,33034
770	- 30,26600	- 51,29220	69,47135

Gambar 5.66 Grafik konvergensi elemen untuk tegangan arah *circumferential* pada koordinat nodal (10,16 ; 5,08)

Modelisasi struktur *Belelville spring* yang tidak memiliki solusi eksak untuk mengetahui besarnya nilai peralihan dan tegangan yang terjadi murni memanfaatkan Metode Elemen Hingga untuk memperoleh nilai-nilai tersebut. Struktur dikenai beban aksial terpusat negatif sebesar 1000 *N*. Diskritisasi struktur dengan menggunakan elemen triangular 3 nodal memberikan hasil peralihan dan tegangan dengan menggunakan MATLAB dan ANSYS menunjukkan deviasi sebesar 0%.

Begitu pun dengan modelisasi struktur yang memanfaatkan elemen quadrilateral 4 nodal, hasil peralihan dan tegangan dengan memanfaatkan MATLAB dan ANSYS memberikan deviasi yang semakin mengecil jika elemen semakin ditingkatkan jumlahnya.

Modelisasi struktur *Belleville spring* dengan menggunakan Metode Elemen Hingga memberikan hasil yang bagus, baik dengan memanfaatkan elemen triangular 3 nodal maupun elemen quadrilateral 4 nodal. Hal ini dapat dilihat, tidak hanya dari angka hasil peralihan yang semakin konstan, tetapi juga kurva yang asimtotik seiring dengan bertambahnya jumlah elemen.

5.5 CIRCULAR PAD HYDROSTATIC BEARING

Sebuah *circular pad hydrostatic bearing* berfungsi untuk mencegah tekanan akibat aliran minyak yang masuk melalui *pad* dan *pocket*. Tekanan yang terjadi pada *pocket* berupa beban merata sejarak 25 *mm* sebesar 12 *MPa*. Sedangkan sisanya berupa beban segitiga. Dari data dibawah ini akan dihitung besarnya peralihan dan tegangan yang terjadi pada koordinat nodal (25,0)

Gambar 5.67 (a) Circular pad hydrostatic bearing (b) Model struktur simetris

105

5.5.1 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 6 tipe.


```
%
ff(14) = 861.49942*2*pi;
ff(20) = 2125.951*2*pi;
ff(12) = 749.04958*2*pi;
ff(4) = 1880.38837*2*pi;
ff(16) = 2536.73572*2*pi;
ff(2) = 863.50807*2*pi;
```

% force applied at node 7	in	z-axis
% force applied at node 10	in	z-axis
<pre>% force applied at node 6</pre>	in	z-axis
<pre>% force applied at node 2</pre>	in	z-axis
<pre>% force applied at node 8</pre>	in	z-axis
% force applied at node 1	in	z-axis

Output yang diperoleh adalah :

displace =		
1.000000000000000	0.00310845881915	<pre>% radial displacement of node 1</pre>
2.000000000000000	0.00558266715866	<pre>% axial displacement of node 1</pre>
atroagoa -	20 A.	
SLIESSES =	2	
	4	
13.00000000000000000	0.46704272545733	
Columns 3 through	4	
18.09285585004887	-9.21742755308764	
Column 5		
0.05199317879803		
stregged =		
Columna 1 through	2	
	4	
14.00000000000000000	1.04126377410978	
Columns 3 through	4	
15.80382162210070	-13.87325318359152	
Column 5		
1.38044651846326		

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 12 elemen adalah sebagai berikut :

Gambar 5.69 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
16	0,26243 × 10 ⁻²	$0,31085 \times 10^{-2}$	18,44907
47	0,25798×10 ⁻²	0,26514×10 ⁻²	2,77430
108	$0,26357 \times 10^{-2}$	0,26828×10 ⁻²	1,78827
297	$0,26857 \times 10^{-2}$	0,27069×10 ⁻²	0,78777
572	$0,26965 \times 10^{-2}$	$0,27069 \times 10^{-2}$	0,41864
769	$0,27063 \times 10^{-2}$	$0,27132 \times 10^{-2}$	0,25543

Tabel 5.48 Peralihan radial pada koordinat nodal (25,0)

Gambar 5.70 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
16	$0,53407 \times 10^{-2}$	$0,55827 \times 10^{-2}$	4,53063
47	0,58133×10 ⁻²	0,58424 × 10 ⁻²	0,50020
108	0,64956×10 ⁻²	0,65140×10 ⁻²	0,28318
297	$0,70643 \times 10^{-2}$	$0,70693 \times 10^{-2}$	0,07049
572	$0,72801 \times 10^{-2}$	0,72818 × 10 ⁻²	0,02348
769	$0,73683 \times 10^{-2}$	$0,73692 \times 10^{-2}$	0,01110

Tabel 5.49 Peralihan aksial pada koordinat nodal (25,0)

Grafik 5.71 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	0,2262	0,75415	233,36866
76	- 1,40967	- 1,29811	7,91336
114	- 1,07708	- 1,01766	5,51614
314	0,35758	0,34483	3,56357
648	0,51061	0,49630	2,80310
872	0,53919	0,53696	0,41407

Tabel 5.50 Tegangan rata-rata arah radial pada koordinat nodal (25,0)

Gambar 5.72 Grafik konvergensi elemen untuk tegangan rata-rata arah radial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	- 12,46800	- 11,54534	7,40022
76	- 10,94465	- 10,78740	1,43674
114	- 11,50685	- 11,37177	1,17391
314	- 11,66200	- 11,50518	1,34473
648	- 11,60650	- 11,48641	1,03472
872	- 11,4975	- 11,42601	0,62177

Tabel 5.51 Tegangan rata-rata arah aksial pada koordinat nodal (25,0)

Jumlah Elemen

Gambar 5.73 Grafik konvergensi elemen untuk tegangan rata-rata arah aksial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
12	13,63900	16,94834	24,26379
76	12,10050	12,56197	3,81362
114	12,98000	13,29579	2,43292
314	16,26150	16,44485	1,12754
648	16,86500	16,97338	0,64265
872	16,91050	16,91050	0,40130

Tabel 5.52 Tegangan rata-rata arah circumferential pada koordinat nodal (25,0)

Gambar 5.74 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (25,0)

5.5.2 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 6 tipe.

Gambar 5.75 Diskritisasi adaptif dengan 20, 46, 99, 278, 514 dan 755 elemen

5.5.2.1 Diskritisasi Struktur Adaptif 20 Elemen

Input yang dilakukan adalah :

stresses =

Column 5

Columns 1 through 2

Columns 3 through 4

2.93892256952352

5.000000000000 -1.94462953482315

11.10614624922675 -12.03718171674287

```
§ _____
% Input data for control parameters
% ___
     _____
nel = 20;
                                                               % number of elements
                                                      % number of nodes per element
nnel = 4i
ndof = 2i
                                                          % number of dofs per node
nnode = 31;
                                                  % total number of nodes in system
sdof = nnode*ndof;
                                                                % total system dofs
edof = nnel*ndof;
                                                   % degrees of freedom per element
                                                                  % elastic modulus
emodule = 2e5;
poisson = 0.3;
                                                                  % Poisson's ratio
nglx = 2; ngly = 2;
                                                    % 2x2 Gauss-Legendre quadrature
nglxy = nglx*ngly;
                                            % number of sampling points per element
§ _____
% Input data for nodal coordinate values
% gcoord(i,j) where i -> node no. and j -> x or y
% _--
gcoord = [25. 0.; 50. 0.; 50. 30.; 15. 30.; 1.5 30.; 1.5 8.; 25. 8.; 34.898 0.;
38.674 0.; 42.449 0.; 50. 7.4492; 50. 14.898; 50. 22.449; 42.449 30.; 30.102 30.; 22.551 30.; 1.5 22.775; 1.5 15.551; 9.8985 8.; 17.449 8.; 32.341 7.0691; 38.730
14.437; 30.767 22.545; 11.837 22.380; 10.389 15.420; 28.599 15.223; 37.677 5.6005;
40.903 8.5002; 39.966 22.235; 21.116 22.513; 19.496 15.438];
%
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
nodes = [22 26 7 21; 22 21 27 28; 22 29 23 26; 29 14 15 23; 21 7 1 8; 23 30 31 26;
31 20 7 26; 30 24 25 31; 25 19 20 31; 30 16 4 24; 23 15 16 30; 29 13 3 14; 22 12
13 29; 28 11 12 22; 25 18 6 19; 24 17 18 25; 4 5 17 24; 28 10 2 11; 27 9 10 28; 21
8 9 27];
2
%
% Input data for boundary conditions
% --
                  _ _ _ _ _ _ _ _ _ _
                           _____
bcdof = [7 8 9 10];
                                              % axial and radial motion constrained
                                                          % constrained values are 0
bcval = [0 0 0 0];
8
% _____
% Force vector
8 -----
                                                                   % pi = 3.141592
pi = 4.0*atan(1.0);
ff(14) = 2*pi*1132.65;
                                                % force applied at node 7 in z-axis
ff(40) = 2*pi*1581.03644;
ff(38) = 2*pi*947.22706;
                                               % force applied at node 20 in z-axis
                                               % force applied at node 19 in z-axis
ff(12) = 2*pi*75.58650;
                                                % force applied at node 6 in z-axis
ff(4) = 2*pi*342.10561;
                                                % force applied at node 2 in z-axis
ff(20) = 2*pi*653.43414;
                                               % force applied at node 10 in z-axis
ff(18) = 2*pi*793.83553;
                                                % force applied at node 9 in z-axis
ff(16) = 2*pi*2080.15137;
                                                % force applied at node 8 in z-axis
ff(2) = 2*pi*1190.78879;
                                                % force applied at node 1 in x-axis
Output yang dihasilkan yaitu :
displace =
   1.000000000000 0.00270609861472
                                                    % radial displacement of node 1
   2.000000000000 0.00609717605166
                                                     % axial displacement of node 1
```

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 20 elemen adalah sebagai berikut :

Gambar 5.76 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

5.5.2.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	$0,27155 \times 10^{-2}$	$0,26017 \times 10^{-2}$	4,19012
46	$0,26694 \times 10^{-2}$	$0,27298 \times 10^{-2}$	2,26187
99	$0,27216 \times 10^{-2}$	$0,27346 \times 10^{-2}$	0,47805
278	$0,27160 \times 10^{-2}$	$0,27083 \times 10^{-2}$	0,28531
514	$0,27213 \times 10^{-2}$	$0,27159 \times 10^{-2}$	0,19719
755	$0,27247 \times 10^{-2}$	0,27210×10 ⁻²	0,13468

Tabel 5.53 Peralihan radial pada koordinat nodal (25,0)

Gambar 5.77 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	0,64678×10 ⁻²	$0,60805 \times 10^{-2}$	5,98823
46	0,71360×10 ⁻²	0,68986×10 ⁻²	3,32612
99	0,73508×10 ⁻²	$0,71707 \times 10^{-2}$	2,45056
278	$0,75479 \times 10^{-2}$	$0,74291 \times 10^{-2}$	1,57423
514	$0,76350 \times 10^{-2}$	$0,75460 \times 10^{-2}$	1,16615
755	$0,76803 \times 10^{-2}$	$0,76069 \times 10^{-2}$	0,95559

Tabel 5.54 Peralihan aksial pada koordinat nodal (25,0)

Gambar 5.78 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	- 0,46844	- 2,38406	408,93650
46	1,12000	- 2,55491	328,11696
99	0,16766	0,51301	205,98453
278	0,29193	0,20029	31,39066
514	0,30580	0,19737	35,45896
755	0,26636	0,19795	25,68153

Tabel 5.55 Tegangan arah radial pada koordinat nodal (25,0)

Jumlah Elemen

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	- 14,84800	- 13,37038	9,95161
46	- 17,07900	- 11,75379	31,17988
99	- 12,51900	- 11,09290	11,39150
278	- 12,14400	- 11,82667	2,61309
514	- 12,10000	- 11,85926	1,98960
755	- 12,05100	- 11,85857	1,59683

Tabel 5.56 Tegangan arah aksial pada koordinat nodal (25,0)

Gambar 5.80 Grafik konvergensi elemen untuk tegangan arah aksial pada koordinat nodal (25,0)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	16,26600	10,23024	37,10663
46	15,52000	10,37943	33,12221
99	17,70600	14,04279	20,68909
278	17,72100	15,56517	12,16540
514	17,83900	16,17708	9,31623
755	17,95900	16,54143	7,89336

Tabel 5.57 Tegangan arah circumferential pada koordinat nodal (25,0)

Gambar 5.81 Grafik konvergensi elemen untuk tegangan arah *circumferential* pada koordinat nodal (25,0)

Modelisasi struktur *circular pad hydrostatic bearing* pun tidak memiliki solusi eksak untuk mengetahui besarnya nilai peralihan dan tegangan yang terjadi, sehingga model struktur ini pun memanfaatkan Metode Elemen Hingga untuk memperoleh nilainilai tersebut. Struktur dikenai beban merata dan beban segitiga sebesar 12 *MPa*. Diskritisasi struktur dengan memanfaatkan elemen triangular 3 nodal memberikan hasil peralihan dan tegangan yang relatif semakin baik jika struktur menggunakan elemen yang semakin banyak, sehingga dapat diketahui bahwa hasil perhitungan dengan menggunakan MATLAB dan ANSYS memiliki deviasi yang semakin kecil.

Hal yang sama terjadi pada modelisasi struktur dengan menggunakan elemen quadrilateral 4 nodal, di mana hasil peralihan dan tegangan yang semakin konstan. Dengan menggunakan ANSYS dan MATLAB diperoleh hasil yang relatif semakin baik terbukti dengan deviasi yang semakin kecil seiring dengan diskritisasi struktur yang semakin halus.

Modelisasi struktur *circular pad hydrostatic bearing* dengan menggunakan Metode Elemen Hingga menunjukkan hasil yang baik. Dengan memanfaatkan elemen triangular 3 nodal maupun elemen quadrilateral 4 nodal, dapat diketahui bahwa tidak hanya angka hasil peralihan yang semakin konstan seiring dengan jumlah elemen yang semakin banyak, tetapi terlihat pula bahwa kurva yang dihasilkan merupakan sebuah kurva asimtotik.

5.6 CUP-SHAPED STEEL DIE BLOCK

Suatu model *cup-shaped* menerima beban merata linear bervariasi seperti tampak pada gambar dibawah ini. Pada struktur ini akan dilakukan modelisasi struktur dengan tidak mengikutsertakan *shrink ring* untuk mendapatkan nilai peralihan radial dan aksial serta tegangan yang terjadi akibat beban pada koordinat nodal (160,320).

Gambar 5.82 (a) Cup-Shaped Steel Die Block (b) Model struktur simetris

116

Modelisasi struktur..., Ririt A S, FT UI, 2008
5.6.1 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 6 tipe.

Gambar 5.83 (kiri ke kanan) Diskritisasi adaptif dengan 17, 53, 111, 323, 624 dan 870 elemen

5.6.1.1 Diskritisasi Struktur Adaptif 17 Elemen

Input yang dilakukan adalah :

```
% ___
% Input data for control parameters
20
nel = 17;
                                                                   % number of elements
                                                         % number of nodes per element
nnel = 3;
ndof = 2;
                                                              % number of dofs per node
                                                      % total number of nodes in system
nnode = 16;
sdof = nnode*ndof;
                                                                    % total system dofs
edof = nnel*ndof;
                                                       % degrees of freedom per element
                                                                       % elastic modulus
emodule = 2e5;
poisson = 0.3;
                                                                       % Poisson's ratio
8 -----
% Input data for nodal coordinate value
% gcoord(i,j) where i -> node no. and j -> x or y
gcoord = [0. 0.; 160. 0.; 160. 320.; 110. 320.; 110. 300.; 110. 100.; 0. 100.;
160. 103.49; 160. 191.69; 160. 270.; 124.29 320.; 110. 280.; 110. 240.; 130.24
300.; 118.63 310.; 67.5 50.];
%
% _____
                                    _____
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
8 -
nodes = [12 14 5; 12 10 14; 6 16 2; 2 16 1; 16 7 1; 6 7 16; 11 15 14; 14 15 5; 15 4 5; 11 4 15; 14 3 11; 10 3 14; 8 6 2; 8 9 6; 9 13 6; 10 13 9; 12 13 10];
8 ------
                           % Input data for boundary conditions
§ _____
bcdof = [1 13 2 4];
                                                 % axial and radial motion constrained
bcval = [0 0 0 0];
                                                              % constrained value are 0
8
8 -----
% Force vector
8 -
pi = 4.0*atan(1.0);
                                                                         % pi = 3.141592
ff(9) = 143550*2*pi;
                                                  % force applied at node 5 in r-axis
ff(23) = 697950*2*pi;
                                                  % force applied at node 12 in r-axis
ff(25) = 5301450*2*pi;
                                                  % force applied at node 13 in r-axis
ff(11) = 4747050*2*pi;
                                                  % force applied at node 6 in r-axis
ff(12) = -4235000*2*pi;
ff(14) = -2117500*2*pi;
                                                  % force applied at node 6 in z-axis
                                                   % force applied at node 7 in z-axis
```

Output yang diperoleh adalah :

displace =	
5.00000000000000	0.34103692707662
6.000000000000000	-0.35952148463148
stresses =	
1.0e+002 *	
Columns 1 through	2
0.1100000000000	-0.41556708166124
Columns 3 through	4
5.41608464868642	-0.22871490318437
Column 5	
-0.57654399873091	
stresses =	
1.0e+002 *	
Columns 1 through	2
0.12000000000000	0.16443502880067
Columns 3 through	4
6.23163440671429	1.18837613807585
Column 5	
-0.78322751936010	

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 17 elemen adalah sebagai berikut :

% radial displacement of node 3
% axial displacement of node 3

Gambar 5.84 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
17	0,29113	0,34104	17,14249
53	0,15143	0,15753	4,02553
111	0,07614	0,08253	8,39004
323	0,04743	0,04937	4,07911
624	0,04053	0,04163	2,70722
870	0,03923	0,03999	1,93625

Tabel 5.58 Peralihan radial pada koordinat nodal (160,320)

Gambar 5.85 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
17	- 0,34241	- 0,35952	4,99737
53	- 0,31660	- 0,31984	1,02290
111	- 0,27267	- 0,27493	0,82736
323	- 0,25332	- 0,25403	0,28130
624	- 0,24707	- 0,24747	0,16288
870	- 0,24541	- 0,24570	0,11616

Tabel 5.59 Peralihan aksial pada koordinat nodal (160,320)

Grafik 5.86 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
17	- 11,8600	- 12,55660	5,87355
53	- 17,01710	- 17,72361	4,15178
111	- 4,58155	- 4,86795	6,25124
323	- 2,80910	- 2,86864	2,11960
624	- 2,78125	- 2,81305	1,14323
870	- 2,62950	- 2,64342	0,52919

Tabel 5.60 Tegangan rata-rata arah radial pada koordinat nodal (160,320)

Gambar 5.87 Grafik konvergensi elemen untuk tegangan rata-rata arah radial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
17	39,56800	47,98306	21,26734
53	3,80600	4,10137	7,76066
111	0,68800	0,96086	39,65941
323	2,04763	2,06729	1,00429
624	1,13576	1,14739	1,02383
870	0,45292	0,45432	0,30992

Tabel 5.61 Tegangan rata-rata arah aksial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
17	500,89500	582,38595	16,26907
53	275,63000	283,63358	2,90374
111	160,08500	168,17756	5,05516
323	98,77850	101,14870	2,39951
624	81,65650	83,01856	1,66803
870	74,48600	75,42570	1,26158

Tabel 5.62 Tegangan rata-rata arah circumferential pada koordinat nodal (160,320)

Gambar 5.89 Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (160,320)

5.6.2 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 6 tipe.

Gambar 5.90 (kiri ke kanan) Diskritisasi adaptif dengan 13, 42, 102, 296, 525 dan 792 elemen

5.6.2.1 Diskritisasi Struktur Adaptif 13 Elemen

Input yang dilakukan adalah :

```
% -----
% Input data for control parameters
% -----
nel = 13;
nnel = 4;
ndof = 2;
```

% number of elements % number of nodes per element % number of dofs per node

```
nnode = 21;
                                                      % total number of nodes in system
sdof = nnode*ndof;
                                                                     % total system dofs
edof = nnel*ndof;
                                                       % degrees of freedom per element
emodule = 2e5;
                                                                       % elastic modulus
poisson = 0.3;
                                                                       % Poisson's ratio
nglx = 2; ngly = 2;
                                                       % 2x2 Gauss-Legendre quadrature
nglxy = nglx*ngly;
                                               % number of sampling points per element
2
% ___
% Input data for nodal coordinate values
% gcoord(i,j) where i -> node no. and j -> x or y
8 -----
gcoord = [0. 0.; 160. 0.; 160. 320.; 110. 320.; 110. 300.; 110. 100.; 0. 100.; 160. 103.49; 160. 191.69; 160. 270.; 124.29 320.; 110. 280.; 110. 260.; 110. 240.;
123.48 226.94; 130.27 245.59; 119.93 255.86; 140.76 224.96; 126.32 280.66; 135.03
286.46; 133.56 163.85];
   %
≥ ____
                                     _____
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
% _____
nodes = [21 18 16 15; 15 14 6 21; 17 13 14 15; 19 17 15 16; 18 20 19 16; 13 17 19
12; 3 11 20 10; 18 9 10 20; 21 8 9 18; 6 7 1 2; 2 8 21 6; 20 11 4 5; 20 5 12 19];
% Input data for boundary conditions
≗ _-
bcdof = [1 13 2 4];
                                                  % axial and radial motion constrained
bcval = [0 \ 0 \ 0 \ 0];
                                                             % constrained values are 0
%
% -----
% Force vector
%
pi = 4.0*atan(1.0);
                                                                          % pi = 3.141592
2
ff(9) = 143550*2*pi;
                                                    % force applied at node 5 in r-axis
ff(23) = 376200*2*pi;
                                                  % force applied at node 12 in r-axis
ff(25) = 554400*2*pi;
                                                   % force applied at node 13 in r-axis
ff(27) = 5068800*2*pi;
                                                   % force applied at node 14 in r-axis
ff(11) = 4747050*2*pi;
                                                    % force applied at node 6 in r-axis
ff(12) = -4235000*2*pi;
                                                    % force applied at node 6 in z-axis
ff(14) = -2117500*2*pi;
                                                    % force applied at node 7 in z-axis
Output yang dihasilkan yaitu :
displace =

        place
        =

        5.0000000000000
        0.39442272086799

        6.0000000000000
        -0.39460996336836

                                                        % radial displacement of node 3
                                                         % axial displacement of node 3
stresses
```

1.0e+002 *

Column 5

Columns 1 through 2

Columns 3 through 4

-0.12889996436223

0.070000000000 0.57686388746186

6.03093690009743 1.41518125102063

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 13 elemen adalah sebagai berikut :

Gambar 5.91 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

5.6.2.2 Analisa Hasil dengan Elemen Quadrilateral 4 Nodal

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
13	0,31874	0,39442	23,74434
42	0,03668	0,05846	59,36910
102	0,03445	0,04215	22,33787
296	0,03478	0,03780	8,69136
525	0,03494	0,03681	5,36297
792	0,03494	0,03631	3,92451

Tabel 5.63 Peralihan radial pada koordinat nodal (160,320)

Gambar 5.92 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
13	- 0,33604	- 0,39461	17,42946
42	- 0,24684	- 0,25980	5,24956
102	- 0,24308	- 0,24879	2,35086
296	- 0,24067	- 0,24300	0,96961
525	- 0,24004	- 0,24206	0,84111
792	- 0,23953	- 0,24114	0,67145

Tabel 5.64 Peralihan aksial pada koordinat nodal (160,320)

Gambar 5.93 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
13	44,25900	57,68639	30,33821
42	21,98500	- 2,3370	110,63317
102	17,52700	- 2,85229	116,27367
296	8,42190	- 0,17482	102,07580
525	5,85930	0,39855	93,19803
792	4,70940	0,34385	92,69873

Tabel 5.65 Tegangan arah radial pada koordinat nodal (160,320)

Gambar 5.94 Grafik konvergensi elemen untuk tegangan arah radial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
13	127,43000	141,51813	11,05558
42	32,34500	28,89616	10,66267
102	19,42900	16,40374	15,57087
296	11,16200	8,20055	26,53155
525	7,52440	5,77774	23,21325
792	6,08790	4,57897	24,78566

Tabel 5.66 Tegangan arah aksial pada koordinat nodal (160,320)

Gambar 5.95 Grafik konvergensi elemen untuk tegangan arah aksial pada koordinat nodal (160,320)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
13	411,49000	603,09369	46,56339
42	80,96700	222,03600	174,23024
102	68,80000	151,91575	120,80777
296	59,55300	106,85623	79,43062
525	55,48600	90,41265	62,94678
792	53,47500	82,26450	53,83731

Tabel 5.67 Tegangan arah circumferential pada koordinat nodal (160,320)

Gambar 5.96 Grafik konvergensi elemen untuk tegangan arah *circumferential* pada koordinat nodal (160,320)

Modelisasi struktur *cup-shaped steel die block* memanfaatkan Metode Elemen Hingga untuk memperoleh nilai peralihan dan tegangan yang terjadi, hal ini dikarenakan bentuk struktur ini tidak memiliki solusi eksak. Struktur dikenai beban merata linier bervariasi pada sisi tegak dan sisi datar struktur simetrisnya. Dengan memanfaatkan elemen triangular 3 nodal, maka diperoleh hasil peralihan dan tegangan antara ANSYS dan MATLAB yang cukup berdekatan, hal ini ditunjukkan dengan deviasi yang semakin kecil seiring dengan jumlah elemen yang semakin banyak.

Begitu pula pada modelisasi struktur dengan menggunakan elemen quadrilateral 4 nodal, di mana hasil peralihan dan tegangan dengan memanfaatkan program ANSYS dan MATLAB menunjukkan deviasi yang semakin kecil saat struktur semakin diperhalus.

Modelisasi struktur *cup-shaped steel die block* dengan menggunakan Metode Elemen Hingga menunjukkan hasil peralihan dan tegangan yang baik. Dengan memanfaatkan elemen triangular 3 nodal maupun elemen quadrilateral 4 nodal pada saat melakukan diskritisasi struktur, hasil yang baik ditunjukkan dengan angka hasil peralihan yang semakin konstan saat jaringan semakin halus. Selain itu kurva asimtotik pun memberikan informasi bahwa hasil perhitungan adalah bagus.

5.7 CIRCULAR WATER TANK

Sebuah bak penampung air terbuat dari baja yang diberikan perletakan rigid pada bagian tengah diameternya sebesar 5 *m*. Tekanan yang terjadi pada bak penampung air tersebut adalah akibat air setinggi 3 *m*. Tekanan yang diperoleh adalah sebesar ρgh , di mana $\rho = 1$ Mg/m^3 dan $g = 9.8 m/s^2$. Dari struktur dibawah ini akan dihitung besarnya peralihan dan tegangan yang terjadi akibat tekanan air pada koordinat nodal (3750,4000).

Gambar 5.97 (a) Steel Water Tank (b) Model struktur simetris

127

Modelisasi struktur..., Ririt A S, FT UI, 2008

5.7.1 Diskritisasi Struktur dengan Elemen Triangular 3 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen triangular 3 nodal sebanyak 6 tipe.

Gambar 5.98 (kiri ke kanan) Diskritisasi adaptif dengan 20, 53, 116, 284, 542 dan 744 elemen

5.7.1.1 Diskritisasi Struktur Adaptif 20 Elemen

Input yang dilakukan adalah :

```
____
%
% Input data for control parameters
% -----
%
nel = 20;
                                                                % number of elements
                                                       % number of nodes per element
nnel = 3i
ndof = 2;
                                                           % number of dofs per node
nnode = 20;
                                                   % total number of nodes in system
sdof = nnode*ndof;
                                                                  % total system dofs
                                                    % degrees of freedom per element
edof = nnel*ndof;
emodule = 2e5;
                                                                   % elastic modulus
poisson = 0.3;
                                                                    % Poisson's ratio
8 _____
                        ____
% Input data for nodal coordinate value
gcoord(i,j) where i -> node no. and j -> x or y
2
gcoord = [0. 0.; 2500. 0.; 4000. 0.; 4000. 4000.; 3750. 4000.; 3711.5 3750.; 3250.
750.; 0. 750.; 750. 0.; 4000. 1585.8; 4000. 2527.7; 4000. 3250.; 4000. 3750.;
3673.1 3500.; 3596.4 3001.5; 3473.7 2204.; 2214.5 750.; 750. 750.; 375. 375.;
3855.8 3875.];
8 -----
% Input data for nodal connectivity for each element
\ nodes(i,j) where i -> element no. and j -> connected nodes
8 -----
nodes = [4 20 13; 13 20 6; 20 5 6; 4 5 20; 8 19 18; 18 19 9; 19 1 9; 8 1 19; 7 2
3; 10 7 3; 2 17 9; 7 17 2; 18 9 17; 10 16 7; 11 16 10; 11 15 16; 12 15 11; 12 14
15; 13 14 12; 6 14 13];
8 --
% Input data for boundary conditions
§ _____
```

```
bcdof = [1 2 17 18 3 4 15];
                                            % axial and radial motion constrained
bcval = [0 0 0 0 0 0 0];
                                                         % constrained value are 0
ŝ
8 -----
% Force vector
8 --
pi = 4.0*atan(1.0);
                                                                    % pi = 3.141592
2
ff(11) = 2*pi*566.34359;
                                               % force applied at node 6 in r-axis
ff(12) = 2*pi*-86.99038;
                                               % force applied at node 6 in z-axis
ff(27) = 2*pi*5012.45645;
                                              % force applied at node 14 in r-axis
ff(28) = 2*pi*-771.07686;
                                              \ force applied at node 14 in z-axis
ff(29) = 2*pi*20356.71864;
                                              % force applied at node 15 in r-axis
ff(30) = 2*pi*-3132.02477;
                                              % force applied at node 15 in z-axis
ff(31) = 2*pi*70802.71395;
                                              % force applied at node 16 in r-axis
ff(32) = 2*pi*-10893.16842;
                                              \ force applied at node 16 in z-axis
ff(13) = 2*pi*53838.70321;
                                               % force applied at node 7 in r-axis
ff(14) = 2*pi*-52500.09952;
                                               % force applied at node 7 in z-axis
ff(34) = 2*pi*-76127.62500;
                                              % force applied at node 17 in z-axis
ff(36) = 2*pi*-32167.93773;
                                              % force applied at node 18 in z-axis
ff(16) = 2*pi*-2756.25000;
                                               % force applied at node 8 in z-axis
```

Output yang diperoleh adalah :

displace =	
9.00000000000000	0.00141833274788
10.00000000000000	-0.00165236486311
stresses =	
Columns 1 through	2
3.00000000000000	-0.00056744574973
Columns 3 through	4
0.07703287850832	-0.00289407291412
Column 5	
-0.00282970098709	
stresses =	
Columns 1 through	2
4.000000000000000	-0.00069671316203
Columns 3 through	4
0.07323889401820	-0.00054646351158
Column 5	
-0.00112890913190	

% radial displacement of node 5
% axial displacement of node 5

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 20 elemen adalah sebagai berikut :

Gambar 5.99 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

 Tabel 5.68 Peralihan radial pada koordinat nodal (3750,4000)

Gambar 5.100 Grafik konvergensi elemen untuk peralihan radial pada koordinat nodal (3750,4000)

		Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matla	b)	
		20	$-0,16092 \times 10^{-2}$	$-0,16524 \times 10^{-2}$	2,68238		
		53	$-0,19578 \times 10^{-2}$	$-0,19604 \times 10^{-2}$	0,13426		
	1	116	$-0,22756 \times 10^{-2}$	$-0,22761 \times 10^{-2}$	0,02356		
		284	$-0,24308 \times 10^{-2}$	$-0,24308 \times 10^{-2}$	0,00064		
		542	$-0,25141 \times 10^{-2}$	$-0,25271 \times 10^{-2}$	0,51702		
		744	$-0,25516 \times 10^{-2}$	$-0,25516 \times 10^{-2}$	0,00012	79	
sial	-1,0E-03	3 3 20 3 A	53 116	i 284 54	2 744		
À	-2,0E-03	3 -	a a				
eraliha	-2,5E-03	3 -	8	<u>A</u>	<u> </u>	— → — MATLAB	
-	-3,0E-03	3					
			Jum	lah Elemen			

Fabel 5.69 Perali	ihan aksial pa	nda koordinat	nodal (37	50,4000)

Gambar 5.101 Grafik konvergensi elemen untuk peralihan aksial pada koordinat nodal (3750,4000)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	- 6,05020 × 10 ⁻⁴	- 6,32079 × 10 ⁻⁴	4,47249
53	$-5,95665 \times 10^{-4}$	$-6,03932 \times 10^{-4}$	1,38781
116	- 9,06640 × 10 ⁻⁴	$-9,12380 \times 10^{-4}$	0,63307
284	$-6,83450 \times 10^{-4}$	- 6,86724 × 10 ⁻⁴	0,47899
542	- 6,01210× 10 ⁻⁴	$-6,12603 \times 10^{-4}$	1,89504
744	- 4,29583 × 10 ⁻⁴	$-4,30801 \times 10^{-4}$	0,28354

Tabel 5.70 Tegangan rata-rata arah radial pada koordinat nodal (3750,4000)

Gambar 5.102 Grafik konvergensi elemen untuk tegangan rata-rata arah radial pada koordinat nodal (3750,4000)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
20	$-1,61684 \times 10^{-3}$	$-1,72027 \times 10^{-3}$	6,39726
53	$-1,41207 \times 10^{-3}$	$-1,43870 \times 10^{-3}$	1,88608
116	- 1,32020 × 10 ⁻³	- 1,33719 × 10 ⁻³	1,28691
284	$-1,08249 \times 10^{-3}$	$-1,09197 \times 10^{-3}$	0,87598
542	$-0,90957 \times 10^{-3}$	$-0,92930 \times 10^{-3}$	2,16954
744	$-0,35602 \times 10^{-3}$	$-0,35691 \times 10^{-3}$	0,25179

Tabel 5.71 Tegangan rata-rata arah aksial pada koordinat nodal (3750,4000)

Gambar 5.103 Grafik konvergensi elemen untuk tegangan rata-rata arah aksial pada koordinat nodal (3750,4000)

Jumlah	ANSYS	MATLAB	Deviasi %	
Elemen			(Ansys – Matlab)	
20	0,07008	0,07514	7,21598	
53	0,05825	0,05954	2,20775	
116	0,03936	0,04017	2,05706	
284	0,03071	0,03111	1,27882	
542	0,02727	0,02799	2,63832	
744	0,02510	0,02525	0,61682	

Tabel 5.72 Tegangan rata-rata arah circumferential pada koordinat nodal (3750,4000)

Gambar 5.104Grafik konvergensi elemen untuk tegangan rata-rata arah *circumferential* pada koordinat nodal (3750,4000)

5.7.2 Diskritisasi Struktur dengan Elemen Quadrilateral 4 Nodal

Penghalusan jaringan adaptif dengan menggunakan elemen quadrilateral 4 nodal sebanyak 6 tipe.

Gambar 5.105 (kiri ke kanan) Diskritisasi adaptif dengan 16, 36, 119, 278, 439 dan 578 elemen

5.7.2.1 Diskritisasi Struktur Adaptif 16 Elemen

Input yang dilakukan adalah :

```
% _____
% Input data for control parameters
8 _-
     _____
nel = 16;
                                                                   % number of elements
nnel = 4i
                                                          % number of nodes per element
ndof = 2;
                                                              % number of dofs per node
nnode = 34;
                                                     % total number of nodes in system
sdof = nnode*ndof;
                                                                    % total system dofs
edof = nnel*ndof;
                                                      % degrees of freedom per element
                                                                       % elastic modulus
emodule = 2e5;
poisson = 0.3;
                                                                       % Poisson's ratio
nglx = 2; ngly = 2;
                                                       % 2x2 Gauss-Legendre quadrature
nglxy = nglx*ngly;
                                               % number of sampling points per element
§ _____
% Input data for nodal coordinate values
% gcoord(i,j) where i -> node no. and j -> x or y
8 -
gcoord = [0. 0.; 2500. 0.; 4000. 0.; 4000. 4000.; 3750. 4000.; 3711.5 3750.; 3250.
750.; 0. 750.; 456.20 0.; 912.41 0.; 1587.6 0.; 2043.8 0.; 3087.6 0.; 3543.8 0.;
4000.0 587.78; 4000.0 1044.0; 4000.0 1500.2; 4000.0 1956.4; 4000.0 2412.6; 4000.0
2868.8; 4000.0 3325.0; 4000.0 3750.0; 3673.1 3500.0; 3607.9 3076.5; 3538.6 2625.6;
3458.1 2102.7; 3388.7 1651.8; 3319.4 1200.9; 2793.8 750.; 2337.6 750.; 1873.6 750.; 1376.4 750.; 912.41 750.; 456.20 750.];
00
                                            . . . . . . . . . . . . .
2
% Input data for nodal connectivity for each element
% nodes(i,j) where i -> element no. and j -> connected nodes
nodes = [7 15 16 28; 16 17 27 28; 7 29 13 14; 29 30 2 13; 31 12 2 30; 10 11 32 33;
33 34 9 10; 8 1 9 34; 32 11 12 31; 7 14 3 15; 18 26 27 17; 18 19 25 26; 19 20 24 25; 20 21 23 24; 21 22 6 23; 22 4 5 6];
2
% Input data for boundary conditions
bcdof = [1 2 17 18 19 20 21 22 23 24 3 4 15];% axial and radial motion constrained
bcval = [0 0 0 0 0 0 0 0 0 0 0 0];
                                                             % constrained values are 0
%
% Force vector
%
                                                                          % pi = 3.141592
pi = 4.0*atan(1.0);
ff(11) = 2*pi*566.34359;
                                                   % force applied at node 6 in r-axis
ff(12) = 2*pi*-86.99038;
                                                   % force applied at node 6 in z-axis
ff(45) = 2*pi*4063.08805;
                                                  % force applied at node 23 in r-axis
                                                  % force applied at node 23 in z-axis
ff(46) = 2*pi*-625.33284;
ff(47) = 2*pi*10597.78132;
                                                  % force applied at node 24 in r-axis
ff(48) = 2*pi*-1629.71374;
                                                  % force applied at node 24 in z-axis
ff(49) = 2*pi*19543.68499;
                                                  % force applied at node 25 in r-axis
ff(50) = 2*pi*-3006.91871;
                                                  % force applied at node 25 in z-axis
ff(51) = 2*pi*26587.15995;
                                                  % force applied at node 26 in r-axis
ff(52) = 2*pi*-4092.57644;
                                                  % force applied at node 26 in z-axis
ff(53) = 2*pi*31395.69249;
                                                  % force applied at node 27 in r-axis
ff(54) = 2*pi*-4828.41693;
                                                  % force applied at node 27 in z-axis
ff(55) = 2*pi*37366.52586;
                                                  % force applied at node 28 in r-axis
ff(56) = 2*pi*-5747.44043;
                                                  % force applied at node 28 in z-axis
ff(13) = 2*pi*20064.67540;
                                                   % force applied at node 7 in r-axis
ff(14) = 2*pi*-23863.41699;
                                                  % force applied at node 7 in z-axis
ff(58) = 2*pi*-37471.22786;
                                                  % force applied at node 29 in z-axis
ff(60) = 2*pi*-31585.40490;
                                                  % force applied at node 30 in z-axis
ff(62) = 2*pi*-26316.92549;
                                                  % force applied at node 31 in z-axis
ff(64) = 2*pi*-19604.24765;
                                                  % force applied at node 32 in z-axis
ff(66) = 2*pi*-12377.19519;
                                                  % force applied at node 33 in z-axis
ff(68) = 2*pi*-6118.79391;
                                                  % force applied at node 34 in z-axis
ff(16) = 2*pi*-1019.78036;
                                                   % force applied at node 8 in z-axis
```

Output yang dihasilkan yaitu :

displace = 9.00000000000000000000 10.0000000000000	0.00077569041279 -0.00207532975938	% radial % axial	displacement displacement	of of	node node	5 5
<pre>stresses = Columns 1 through 16.0000000000000 Columns 3 through 0.04077621518453 Column 5 -0.00044855057712</pre>	2 -0.00023455597216 4 0.00010082406235					

Deformasi struktur akibat beban serta kontur tegangannya untuk diskritisasi struktur dengan 16 elemen adalah sebagai berikut :

Gambar 5.106 Deformasi struktur dan kontur tegangan arah radial, aksial, *circumferential*, dan tegangan geser radial-aksial

ruber 5.7.5 r erunnun ruunur puta Roor unhat notal (5750,4000)						
Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)			
16	$0,02969 \times 10^{-2}$	$0,07757 \times 10^{-2}$	161,27199			
36	$0,01183 \times 10^{-2}$	$0,05287 \times 10^{-2}$	347,12930			
119	$0,03225 \times 10^{-2}$	$0,04386 \times 10^{-2}$	36,02293			
278	$0,03364 \times 10^{-2}$	$0,03718 \times 10^{-2}$	10,54792			
439	$0,03169 \times 10^{-2}$	$0,03624 \times 10^{-2}$	14,36250			
578	$0,03107 \times 10^{-2}$	$0,03628 \times 10^{-2}$	16,76394			

Tabel 5.73 Peralihan radial pada koordinat nodal (3750,4000)

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
16	$-0,26912 \times 10^{-2}$	$-0,20753 \times 10^{-2}$	22,88460
36	$-0,26209 \times 10^{-2}$	$-0,23619 \times 10^{-2}$	9,88044
119	$-0,25710 \times 10^{-2}$	$-0,24885 \times 10^{-2}$	3,20733
278	$-0,26294 \times 10^{-2}$	$-0,25815 \times 10^{-2}$	1,82265
439	$-0,26575 \times 10^{-2}$	$-0,26146 \times 10^{-2}$	1,61451
578	$-0,26693 \times 10^{-2}$	- 0,26294 × 10 ⁻²	1,49397

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
16	$1,75580 \times 10^{-3}$	$-0,23456 \times 10^{-3}$	113,35892
36	$1,92350 \times 10^{-3}$	$-0,40275 \times 10^{-3}$	120,93835
119	$1,66390 \times 10^{-3}$	$-0,60878 \times 10^{-3}$	136,58751
278	$0,83408 \times 10^{-3}$	$-0,44392 \times 10^{-3}$	153,22230
439	$0,53129 \times 10^{-3}$	$-0,33988 \times 10^{-3}$	163,97310
578	$0,73507 \times 10^{-3}$	$-0,26938 \times 10^{-3}$	136,64666

Tabel 5.75 Tegangan arah radial pada koordinat nodal (3750,4000)

Gambar 5.109 Grafik konvergensi elemen untuk tegangan arah radial pada koordinat nodal (3750,4000)

Tabel 5.76	Tegangan	arah aksial	pada	koordinat	nodal	(3750.	4000)
	Secondaria	COL COMA COMMUNATOR		ANO OR GRANESE			,,

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)		
16	$0,75607 \times 10^{-3}$	$0,10082 \times 10^{-3}$	86,66472		
36	$1,34130 \times 10^{-3}$	- 0,59398 × 10 ⁻³	144,28407		
119	$0,50572 \times 10^{-3}$	$-0,85059 \times 10^{-3}$	268,19435		
278	$0,55039 \times 10^{-3}$	$-1,13609 \times 10^{-3}$	306,41560		
439	$0,52741 \times 10^{-3}$	$-0,95816 \times 10^{-3}$	281,67285		
578	$0,47609 \times 10^{-3}$	$-0,88551 \times 10^{-3}$	285,99632		

Jumlah Elemen

Jumlah Elemen	ANSYS	MATLAB	Deviasi % (Ansys – Matlab)
16	0,01978	0,04078	106,11745
36	0,01045	0,02895	177,04718
119	0,02063	0,02398	16,21355
278	0,01951	0,02041	4,63952
439	0,01784	0,01963	10,03528
578	0,01777	0,01982	11,54798

Tabel 5.77 Tegangan arah *circumferential* pada koordinat nodal (3750,4000)

Gambar 5.111 Grafik konvergensi elemen untuk tegangan arah *circumferential* pada koordinat nodal (3750,4000)

Bentuk struktur *circular water tank* merupakan struktur yang tidak memiliki solusi eksak, sehingga digunakanlah Metode Elemen Hingga untuk memperoleh nilai peralihan dan tegangan yang terjadi. Struktur dikenai beban merata berupa tekanan air setinggi 3 *m* pada sisi tegak dan sisi datar struktur simetrisnya. Hasil peralihan dan tegangan antara ANSYS dan MATLAB dengan menggunakan elemen triangular 3 nodal, menunjukkan deviasi yang semakin kecil seiring dengan jaringan yang semakin halus, walaupun besarnya tegangan yang dihasilkan tidak semakin konstan saat elemen semakin diperbanyak jumlahnya.

Sedangkan diskritisasi struktur dengan menggunakan elemen quadrilateral 4 nodal dengan memanfaatkan program ANSYS dan MATLAB menunjukkan deviasi peralihan yang semakin kecil saat struktur semakin diperhalus, walaupun tidak sama dengan yang terjadi pada hasil semua tegangan yang terjadi

Modelisasi struktur *circular water tank* dengan menggunakan Metode Elemen Hingga menunjukkan hasil peralihan yang baik. Hal ini ditunjukkan dengan angka hasil peralihan yang semakin konstan saat jaringan semakin halus, sehingga kurva yang dihasilkan menjadi menjadi semakin konstan mendekati sebuah nilai. Walaupun begitu, tidak sama halnya yang terjadi dengan semua nilai tegangan yang terjadi.

BAB VI

KESIMPULAN

Modelisasi struktur yang dilakukan terhadap beberapa problem struktur solid axisymmetri yang ada dengan menggunakan program yang tersedia, dapat disimpulkan bebarapa hal berikut ini :

- 1. Pada kasus *open-ended cylinder*, nilai peralihan dan tegangan yang dihasilkan mendekati solusi eksak setelah jaringan semakin diperhalus. Dengan menggunakan dua tipe elemen terlihat bahwa elemen quadrilateral 4 nodal dan tiangular 3 nodal memberikan kecepatan konvergensi yang baik.
- 2. Problem *close-ended cylinder* yang menerima tekanan dari dalam memberikan nilai peralihan dan tegangan dengan deviasi yang nyata dengan nilai eksaknya. Walaupun begitu nilai peralihan dan tegangan semakin mendekati nilai tertentu setelah dilakukan diskritisasi yang semakin halus. Kecepatan konvergensi yang baik terlihat dari hasil solusi baik dengan menggunakan elemen quadrilateral 4 nodal maupun triangular 3 nodal.
- 3. Sedangkan problem *close-ended cylinder* yang diberi beban aksial, memberikan deviasi yang besar dengan solusi eksaknya, baik pada nilai peralihan maupun tegangan. Dari kurva yang dihasilkan, dengan menggunakan elemen Q4 dan T3 diketahui bahwa kecepatan konvergensi untuk kedua tipe elemen tersebut cukup baik.
- 4. Pada struktur *Belleville spring*, nilai peralihan dan tegangan didekati dengan menggunakan metode elemen hingga. Nilai peralihan yang terjadi semakin mendekati suatu angka, sehingga dapat diperkirakan nilai peralihan yang terjadi. Dengan menggunakan elemen Q4, kecepatan konvergensi yang baik dapat terlihat dibandingkan dengan elemen T3.
- 5. Problem struktur *circular pad hydrostatic bearing* memberikan nilai peralihan dan tegangan yang mendekati suatu nilai setelah dilakukan diskritisasi struktur dengan jumlah elemen yang banyak. Elemen quadrilateral 4 nodal memberikan kecepatan konvergensi yang lebih baik dibandingkan dengan elemen triangular 3 nodal.
- 6. Pada problem *cup-shaped steel die block* diperoleh hasil peralihan dan tegangan yang semakin mendekati nilai solusinya. Diskritisasi struktur dengan elemen T3 dan Q4 memberikan hasil berupa kecepatan konvergensi yang berbeda, di mana elemen Q4 memberikan kecepatan konvergensi yang lebih baik dibandingkan dengan elemen T3.

- 7. Untuk struktur *circular water tank*, nilai peralihan dan tegangan didekati dengan metode elemen hingga. Solusi akan mendekati suatu nilai setelah struktur dibagi-bagi dalam elemen yang cukup banyak. Walaupun solusi dengan elemen T3 menunjukkan kecepatan konvergensi yang baik, tetapi dengan menggunakan elemen Q4 kecepatan konvergensi akan lebih baik.
- 8. Perbandingan solusi dengan menggunakan *commercial software* yang ada memberikan deviasi yang kecil pada elemen triangular 3 nodal. Sedangkan ketika menggunakan elemen quadrilateral 4 nodal, deviasi terlihat nyata pada saat jumlah elemen belum mencukupi tetapi semakin banyak jumlah elemen yang digunakan maka deviasi pun akan semakin kecil dan cenderung sama dengan perhitungan MATLAB. Deviasi yang terlihat pada hasil elemen quadrilateral 4 nodal dimungkinkan karena tipe elemen yang digunakan pada *commercial software* ANSYS adalah berbeda dengan elemen Q4 standar yang digunakan pada uji numerik dengan MATLAB pada skripsi ini.
- 9. Penting untuk mengetahui riwayat dari penggunaan tipe elemen yang digunakan pada *commercial software* yang tersedia semisal ANSYS, sehingga dapat ditelusuri proses perhitungan yang dilakukan apakah menggunakan formulasi yang sama dengan yang sedang kita pahami atau tidak. Seperti penggunaan formulasi *shape function* atau perhitungan beban nodal ekuivalen jika beban yang bekerja pada struktur berupa beban merata di permukaan (*surface traction*). Jika menggunakan rumusan yang sama, maka sewajarnya diperoleh hasil yang sama dengan modelisasi yang sedang kita lakukan. Jika tidak maka, perlu diketahui pada formulasi yang berbeda pada modelisasi struktur tersebut.

DAFTAR REFERENSI

- [A1] AWAY, G.A., *The Shortcut of MATLAB Programming*, Penerbit INFORMATIKA, Bandung, 2006
- [B1] BATOZ, J.L., DHATT, G., Modélisation des structures par éléments finis, Volume 1: solides élastiques, Hermes, Paris 1990
- [B2] BORESSI, A.P., SCHMIDT, R.J., SIDEBOTTOM, O.M., Advanced Mechanics of Material, John Wiley & Sons, Canada, 1993
- [C1] COOK, R.D., MALKUS, D.S., PLESHA, M.E., Concepts and Applications of Finite Element Analysis, John Wiley & Sons, 1988
- [C2] CHANDRUPATLA, T.R., BELEGUNDU, A.D., Introduction to Finite Elements in Engineering, Prentice Hall, 1997
- [H1] HARTANTO, T.W.D., PRASETYO, T.W.A., Analisis dan Desain Sistem Kontrol dengan MATLAB, Penerbit ANDI, Yogyakarta 2002
- [K1] KATILI, I., Metode Elemen Hingga untuk Analisis Tegangan, UI, Jakarta 2007
- [K2] KWON, Y.W., BANG, H., The Finite Element Method Using MATLAB, CRC Press, 2000
- [W1] WEAVER, W., JOHNSON, P.R., *Finite Elements for Structural Analysis*, Prentice-Hall, New Jersey 1984
- [S1] SEGERLIND, L.J., Applied Finite Element Analysis, John Wiley & Sons, Canada 1984
- [Z1] ZIENKIEWICZ, O.C., *The Finite Element Method*, McGraw-Hill, New York 1977

140