

UNIVERSITAS INDONESIA

ANALISIS PONDASI PILED-RAFT DENGAN MODEL PELAT DAN PEGAS

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

AZMI MULKI 0404010139

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL KEKHUSUSAN GEOTEKNIK DEPOK JULI 2009

Analisis pondasi..., Azmi Mulki, FT UI, 2009

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar

HALAMAN PENGESAHAN

: Azmi Mulki

:

Skripsi ini diajukan oleh	
Nama	
NPM	
Program Studi	
Judul Skripsi	

: 0404010139
: Teknik Sipil
: Analisis Pondasi Piled-Raft Dengan Model Pelat dan Pegas

(

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Indonesia

DEWAN PENGUJI

Pembimbing : Ir. Widjojo Adi Prakoso M.Sc. Ph.D (

Penguji

: Dr.Ir. Damrizal Damoerin M.Sc

Penguji

: Ir. Syahril A. Rahim M.Eng

Ditetapkan di : Depok

Tanggal : 16 Juli 2009

KATA PENGANTAR

Puji syukur saya panjatkan kepada Allah SWT, karena atas rahmat dan hidayah-Nya, saya dapat menyelesaikan skripsi ini. Shalawat dan salam tidak lupa saya haturkan kepada Rasulullah SAW. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu persyaratan akademis untuk mencapai gelar Sarjana Teknik Departemen Teknik Sipil pada Fakultas Teknik Universitas Indonesia. Dalam penyusunan skripsi ini, penulis banyak mendapatkan banyak bantuan dan bimbingan dari berbagai pihak. Oleh karena itu, penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada :

- Ir. Widjojo Adi Prakoso M.Sc. Ph.D, selaku dosen pembimbing saya dalam skripsi ini. Terima kasih atas semua waktu, bantuan, bimbingan serta diskusinya.
- 2. Bapak, Ibu dan adikku tersayang. Terima kasih tak terkira atas segala dukungan baik doa, moral, dan material. Semoga saya dapat memberikan semua kebahagiaan kepada kalian.
- 3. Teman-teman 2004 yang tidak bisa saya sebutkan satu-persatu. Terima kasih atas setiap momen yang pernah kita lewati bersama, ada suka maupun duka, semuanya membuat saya tersenyum setiap mengingatnya. Semoga kita menjadi salah satu generasi terbaik bagi bangsa ini.
- 4. Teman-teman 2003, 2004, 2005, 2006, 2007, dan 2008, atas segala dukungan dan do'anya.

Dan semua pihak yang mendukung dan tak bisa saya sebutkan satu-persatu.

Saya berharap Allah SWT berkenan membalas segala kebaikan semua pihak yang telah membantu. Tentunya masih terdapat banyak kekurangan dalam penulisan skripsi ini. Semoga skripsi ini membawa manfaat bagi pengembangan ilmu pengetahuan.

Depok, 16 Juli 2009 Azmi Mulki

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini :

Nama	: Azmi Mulki	
NPM	: 0403010283	
Program Studi	: Teknik Sipil	
Departemen	: Teknik Sipil	
Fakultas	: Teknik	
Jenis karya	: Skripsi	

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right)** atas karya ilmiah saya yang berjudul :

Analisis Pondasi Piled-Raft Dengan Model Pelat dan Pegas

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebgai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya

> Dibuat di : Depok Pada tanggal : 16 Juli 2009

Yang menyatakan (Azmi Mulki)

v

ABSTRAK

Nama : Azmi Mulki Program Studi : Teknik Sipil Judul : Analisis Kekakuan Pondasi Piled-Raft

Skripsi ini membahas perbandingan permodelan *piled-raft* 3D dalam tesis An Wang *Three Dimensional Finite Element Analysis of Pile Groups and Piled-Rafts* dengan model *piled-raft* 2D yang dibuat dengan SAP2000 10. Ini dilakukan dengan penyederhanakan model tiang dan tanah menjadi *spring*. Output SAP2000 10 berupa *displacement* maksimum, *differential settlement, bending moment*, dan distribusi beban dianalisis balik ke model An Wang. Hasil penelitian membuktikan model SAP2000 10 tidak mampu menandingi keakuratan model An Wang secara kuantitatif namun secara kualitatif memiliki sifat yang sama.

Kata kunci:

Piled-raft, SAP2000, displacement maksimum, differential settlement, bending moment, distribusi beban

ABSTRACT

Name: Azmi MulkiStudy Program: Teknik SipilTitle: Piled-Raft Foundation Analysis With Plate and Spring

This essay discusses the comparison between piled-raft 3D modeling in An Wang's thesis "Three Dimensional Finite Element Analysis of Pile Groups and Piled-Rafts" with piled-raft 2D modeling made with SAP2000 10. This is done by simplification the pile and soil into spring. SAP2000 10 output shows maximum displacement, differential settlement, bending moment, and load distribution which is analyzed back to the An Wang. Results of research prove SAP2000 10 model can't match the accuracy of the An Wang model quantitatively but its nature is same qualitatively

Key words:

Piled-raft, SAP2000, maximum displacement, differential settlement, bending moment, load distribution

DAFTAR ISI

HALAMAN JUDULi
HALAMAN PERNYATAAN ORISINALISTASii
HALAMAN PENGESAHANiii
KATA PENGANTARiv
LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAHv
ABSTRAKvi
DAFTAR ISI
DAFTAR GAMBAR x
DAFTAR TABEL xiv
DAFTAR LAMPIRANxvi
1. PENDAHULUAN1
1.1 Latar Belakang 1
1.2 Maksud dan Tujuan
1.3 Ruang Lingkup Penulisan
1.4 Sistematika Penulisan
2. LANDASAN TEORI
2.1 Program SAP2000
2.2 Teori Pondasi Piled-Raft
2.2.1 Pengenalan
2.2.2 Tiang Single
2.2.3 Raft
2.3 Contoh-Contoh Analisis Pondasi Piled-Raft Yang Berkembang
2.4 Metode Finite Element
2.5 Modulus Young
2.6 Rasio Poisson 16
2.7 Kekakuan Tanah
2.8 Persamaan Mindlin 19
2.9 Persamaan Boussinesa 19
3 METODOLOGI PENELITIAN 21
3.1 Prosedur Analisis 21
3.2 Modelisasi Struktur 23
3.2 Model An Wang 23
3.2.2 Model SAP2000 25
3.3 Input Data 27
3.5 Input Data
1 HASH SIMULASI DAN ANALISIS 31
4. HASH Simulasi DAN ANALISIS 31
4.1 Hash Shhulash
4.1.2 Piled Raft K = 1 (Raft Tanna Grun Tiang) 31
$\tau_{1.2}$ I nou-Kait $K_p = 1$ (Kait Tanpa Orup Tiang)
$\frac{4}{1.2.1}$ Input Spring randin $\mathbf{N}_p = 1$
4.1.2.2 Displacentical Softlamont Makaimum $(z = 1)$
4.1.2.5 Differential Settlement Waksimum $(Z = 1)$
4.1.2.4 DISTITUSI DEHaing MOINTERL ($Z = 1$)
4.1.2.3 Distribusi Bedan Pada Piled-Kalt K_p I

	(Raft Tanpa Grup Tiang) z = 1	42		
	4.1.2.6 Perbandingan SAP2000 Terhadap FE PCG ($z = 1$)	42		
4.1.3	Modifikasi Piled-Raft $K_p = 1$	48		
	4.1.3.1 Displacement Maksimum ($z = 7.5$)	48		
	4.1.3.2 Differential Settlement Maksimum $(z = 7.5)$	50		
	4.1.3.3 Distribusi Bending Moment (z =7.5)	50		
	4.1.3.4 Distribusi Beban Pada Piled-Raft K _n 1			
	(Raft Tanpa Grup Tiang) $z = 7.5$	53		
	4.1.3.5 Perbandingan SAP2000 Terhadap FE PCG ($z = 7.5$)	53		
	4.1.3.6 Kesimpulan Awal $z = 1$ Vs $z = 7.5$	59		
4.1.4	Piled-Raft $K_p = 50$	59		
	4.1.4.1 Input Spring Tanah Dan Tiang	59		
	4.1.4.2 Displacement Maksimum (z = 1)	63		
	4.1.4.3 Differential Settlement Maksimum (z = 1)	64		
	4.1.4.4 Distribusi Bending Moment (z =1)	65		
	4.1.4.5 Distribusi Beban Pada Piled-Raft K _p 50	68		
	4.1.4.6 Perbandingan SAP2000 Terhadap FE PCG (z = 1)	68		
4.1.5	Modifikasi Piled-raft $K_p = 50$	74		
	4.1.5.1 Displacement Maksimum (x 0.48)	74		
	4.1.5.2 Differential Settlement Maksimum (x 0.48)	76		
	4.1.5.3 Distribusi Bending Moment (x 0.48)	77		
	4.1.5.4 Distribusi Beban Pada Piled-Raft Kp 50	80		
	4.1.5.5 Perbandingan SAP2000 Terhadap FE PCG (x 0.48)	80		
	4.1.5.6 Kesimpulan Awal K _p 50 Vs K _p 50 x0.48	85		
4.1.6	Piled-raft $K_p = 1000$	85		
	4.1.6.1 Input Spring Tanah Dan Tiang	85		
	4.1.6.2 Displacement Maksimum (z = 1)	86		
	4.1.6.3 Differential Settlement Maksimum (z = 1)	87		
	4.1.6.4 Distribusi Bending Moment (z =1)	88		
	4.1.6.5 Distribusi Beban Pada Piled-Raft K _p 1000	91		
	4.1.6.6 Perbandingan SAP2000 Terhadap FE PCG ($z = 1$)	91		
4.1.7	Modifikasi Piled-raft K _p = 1000	97		
	4.1.7.1 Displacement Maksimum (x 0.55)	97		
	4.1.7.2 Differential Settlement Maksimum (x 0.55)	99		
	4.1.7.3 Distribusi Bending Moment (x 0.55)	100		
	4.1.7.4 Distribusi Beban Pada Piled-Raft K _p 1000	103		
	4.1.7.5 Perbandingan SAP2000 Terhadap FE PCG (x 0.55)	103		
	4.1.7.6 Kesimpulan Awal K _p 1000 Vs K _p 1000 x0.55	109		
4.2 Analis	is Hasil	. 109		
4.2.1	Displacement Maksimum Piled-Raft	109		
4.2.2	Differential Settlement Maksimum Piled-Raft	. 111		
4.2.3	Distribusi Bending Moment	. 111		
4.2.4	Distribusi Beban Pada Raft dan Tiang	112		
5. KESIMPU	JLAN	. 114		
DAFTAR RE	DAFTAR REFERENSI			

DAFTAR GAMBAR

Gambar 2.2. Grafik I ₀ , R _k , R _h , R _v 7 Gambar 2.3. Faktor interaksi floating pile 9 Gambar 2.4. Faktor koreksi N _h untuk interaksi faktor 10 Gambar 2.5. Contoh jaring mesh yang dibentuk dengan menggunakan metode finite element 13 Gambar 2.6 Grafik tegangan regangan 15
Gambar 2.3.Faktor interaksi floating pile9Gambar 2.4.Faktor koreksi Nh untuk interaksi faktor10Gambar 2.5.Contoh jaring mesh yang dibentuk dengan menggunakan metode finite element13Gambar 2.6.Grafik tegangan regangan15
Gambar 2.4.Faktor koreksi Nh untuk interaksi faktor
Gambar 2.5. Contoh jaring mesh yang dibentuk dengan menggunakan metode finite element
metode finite element
Gambar 2.6 Grafik tegangan regangan 15
Guinour 2.0. Grunne toguingun rogungun
Gambar 2.7. Grafik tegangan regangan pada material besi
Gambar 2.8. Contoh regangan arah X dan Y saat beban bekerja
Gambar 2.9. Grafik E _s vs C _u 18
Gambar 2.10. Skema persamaan Boussinesq
Gambar 3.1. Diagram alir penelitian
Gambar 3.2. Mesh model finite element piled-raft An Wang ¹ / ₄ dari 5x5
struktur piled-raft
Gambar 3.3. Penomoran tiang pada piled-raft An Wang
Gambar 3.4. Penomoran dan posisi nodal serta element shell SAP2000
Gambar 3.5. Tampilan 3-D View Model SAP2000
Gambar 4.1. Jarak tiap titik nodal terhadap nodal 1
Gambar 4.2. Hasil persamaan Mindlin dikombinasikan dengan
persamaan Boussinesq $z = 1$
Gambar 4.3. Hasil displacement per gaya satu satuan semua nodal $z = 1$
Gambar 4.4. Konstanta spring semua nodal $z = 1$
Gambar 4.5. Konstanta spring model $\frac{1}{4}$ bagian $z = 1$
Gambar 4.6. Tampilan 2-D view SAP2000 dilengkapi penomoran nodal
Gambar 4.7. Output run analysis deformed shape dengan kontur
displacement $K_p = 1 K_r = 0.01$
Gambar 4.8. Tampilan 2-D view SAP2000 dilengkapi penomoran nodal
dan penomoran pelat
Gambar 4.9. Output run analysis deformed shape dengan kontur
bending moment $K_p = 1 K_r = 0.01$
Gambar 4.10. Grafik displacement maksimum FE PCG Vs SAP2000
$K_p = 143$
Gambar 4.11. Grafik differential settlement maksimum FE PCG Vs SAP2000
$K_p = 1$
Gambar 4.12. Grafik distribusi bending moment FE PCG Vs SAP2000
$K_p = 1 K_r = 0.01$
Gambar 4.13. Grafik distribusi bending moment FE PCG Vs SAP2000
$K_p = 1 K_r = 0.1$
Gambar 4.14. Grafik distribusi bending moment FE PCG Vs SAP2000
$K_p = 1 K_r = 1$
Gambar 4.15. Grafik distribusi bending moment FE PCG Vs SAP2000
$K_p = 1 K_r = 10$
Gambar 4.16. Grafik distribusi beban tanah SAP2000 $K_p = 1$

Gambar 4.17	. Grafik distribusi beban tanah FE PCG $K_p = 1$	47
Gambar 4.18	Grafik perbandingan beban tiang terhadap total beban $K_p = 1$	48
Gambar 4.19	Output run analysis deformed shape dengan kontur displacement	
	$K_p = 1 K_r = 0.01 z = 7.5$	49
Gambar 4.20	Output run analysis deformed shape dengan kontur	
	bending moment $K_p = 1 K_r = 0.01 z = 7.5$	51
Gambar 4.21	Grafik displacement maksimum FE PCG Vs SAP2000	
	$K_p = 1 \ z = 7.5$	54
Gambar 4.22	Grafik differential settlement maksimum FE PCG Vs SAP2000	
	$K_p = 1 \ z = 7.5$	55
Gambar 4.23	Grafik distribusi bending moment FE PCG Vs SAP2000	
~	$K_p = 1 K_r = 0.01 z = 7.5$	56
Gambar 4.24	Grafik distribusi bending moment FE PCG Vs SAP2000	
G 1 4 9 5	$K_p = 1 K_r = 0.1 z = 7.5$	56
Gambar 4.25.	Grafik distribusi bending moment FE PCG Vs SAP2000	
0 1 100	$K_p = 1 K_r = 1 Z = 7.5$	57
Gambar 4.26	Grafik distribusi bending moment FE PCG Vs SAP2000	
C 1 4 27	$K_p = 1 K_r = 10 z = 7.5$	5/
Gambar 4.27	Grafik distribusi beban tanàn SAP2000 K _p = 1 z = 7.5	58
Gambar 4.28.	. Grafik perbandingan beban tiang ternadap total beban $K_p = 1$	50
Combor 1 20	Z = /.S	28 60
Gambar 4.29	Parak hap title houar ternadap houar hang 1	60 60
Gambar 4.30	Sottlement tions nor gave satu satuan $K = 50$	61
Gambar 4.31	Hasil displacement per gava satu satuan $K_p = 50$	01
Gainoar 4.52.	K = 50	61
Gambar 4 33	$K_p = 50$ Konstanta spring semua nodal tiang $K_{-} = 50$	62
Gambar 4.33	Konstanta spring tanah + spring tiang $K_p = 50$	62 62
Gambar 4 35	Konstanta spring model ¹ / ₄ hagian $K_{r} = 50$ z = 1	62 62
Gambar 4 36	Output run analysis deformed shape dengan kontur displacement	02
	$K_{\rm p} = 50 \ {\rm K_r} = 0.001$	63
Gambar 4.37	Output run analysis deformed shape dengan kontur	02
	bending moment $K_p = 50 K_r = 0.01$	66
Gambar 4.38	Grafik displacement maksimum FE PCG vs SAP2000	
	$K_{\rm p} = 50$	69
Gambar 4.39	Grafik differential settlement maksimum FE PCG vs SAP2000	
	$K_{p} = 50$	70
Gambar 4.40	Grafik distribusi bending moment FE PCG vs SAP2000	
	$K_p = 50 K_r = 0.01$	71
Gambar 4.41	Grafik distribusi bending moment FE PCG vs SAP2000	
	$K_p = 50 K_r = 0.1$	71
Gambar 4.42	. Grafik distribusi bending moment FE PCG vs SAP2000	
	$K_p = 50 K_r = 1$	72
Gambar 4.43	. Grafik distribusi bending moment FE PCG vs SAP2000	
	$K_p = 50 K_r = 10$	72
Gambar 4.44	. Grafik distribusi beban tanah SAP2000 $K_p = 50$	73
Gambar 4.45	. Grafik distribusi beban tanah FE PCG $K_p = 50$	73

Gambar 4.46.	Grafik perbandingan beban tiang terhadap total beban $K_n = 50$	74
Gambar 4.47.	Output run analysis deformed shape dengan kontur displacement $K_p = 50 K_r = 0.001 \times 0.48$.	75
Gambar 4.48.	Output run analysis deformed shape dengan kontur bending moment $K_n = 50 K_n = 0.01 \times 0.48$	78
Gambar 4.49.	Grafik displacement maksimum FE PCG vs SAP2000 $K = 50 \times 0.48$	80
Gambar 4.50.	Grafik differential settlement maksimum FE PCG vs SAP2000 $K = 50 \times 0.48$	81
Gambar 4.51.	Grafik distribusi bending moment FE PCG vs SAP2000 $K = 50 K = 0.01 \times 0.48$	87
Gambar 4.52.	$K_p = 50 \text{ K}_r = 0.01 \text{ x}0.48$ Grafik distribusi bending moment FE PCG vs SAP2000 $K_r = 50 \text{ K}_r = 0.1 \text{ x}0.48$	82
Gambar 4.53.	$K_p = 50 K_r = 0.1 \times 0.48$ Grafik distribusi bending moment FE PCG vs SAP2000 $K_r = 50 K_r = 1 \times 0.48$	83
Gambar 4.54.	Grafik distribusi bending moment FE PCG vs SAP2000 $K = 50 K = 10 \times 0.48$	83
Gambar 4.55.	$K_p = 50 K_r = 10 \times 0.48$ Grafik distribusi beban tiang SAP2000 $K_p = 50 \times 0.48$	84
Combon 4.50.	$K_p = 50 \times 0.48$	84
Gambar 4.57	Subput run analysis deformed shape dengan kontur displacement $K_p = 1000 \text{ K}_r = 0.001$	86
Gambar 4.58.	bending moment $K_p = 1000 \text{ K}_r = 0.01$	89
Gambar 4.59.	Grafik displacement maksimum FE PCG vs SAP2000 $K_p = 1000$	92
Gambar 4.60.	Grafik differential settlement maksimum FE PCG vs SAP2000 $K_p = 1000$	93
Gambar 4.61.	Grafik distribusi bending moment FE PCG vs SAP2000 $K_p = 1000 K_r = 0.01$	94
Gambar 4.62.	Grafik distribusi bending moment FE PCG vs SAP2000 $K_p = 1000 K_r = 0.1$	94
Gambar 4.63.	Grafik distribusi bending moment FE PCG vs SAP2000 $K_p = 1000 K_r = 1$	95
Gambar 4.64.	Grafik distribusi bending moment FE PCG vs SAP2000 $K_p = 1000 K_r = 10$	95
Gambar 4.65. Gambar 4.66.	Grafik distribusi beban tiang SAP2000 $K_p = 1000$ Grafik distribusi beban tiang FE PCG $K_p = 1000$	96 96
Gambar 4.67.	Grafik perbandingan beban tiang terhadap beban total $K_p = 1000$.	97
Gambar 4.68.	Output run analysis deformed shape dengan kontur displacement $K_p = 1000 \text{ K}_r = 0.001 \text{ x} 0.55.$	98
Gambar 4.69.	Output run analysis deformed shape dengan kontur bending moment $K_p = 1000 K_r = 0.01 x 0.55$	01
Gambar 4.70.	Grafik displacement maksimum FE PCG vs SAP2000 $K_p = 1000 \times 0.55$	04
	r	

Gambar 4.71. Grafik differential settlement maksimum FE PCG vs SAP2000	
$K_p = 1000 \text{ x} 0.55.$	105
Gambar 4.72. Grafik distribusi bending moment FE PCG vs SAP2000	
$K_p = 1000 K_r = 0.01 x 0.55$	106
Gambar 4.73. Grafik distribusi bending moment FE PCG vs SAP2000	
$K_p = 1000 K_r = 0.1 x 0.55$	106
Gambar 4.74. Grafik distribusi bending moment FE PCG vs SAP2000	
$K_p = 1000 K_r = 1 \times 0.55$	107
Gambar 4.75. Grafik distribusi bending moment FE PCG vs SAP2000	
$K_p = 1000 K_r = 10 x 0.55$	107
Gambar 4.76. Distribusi beban tiang SAP2000 $K_p = 1000 \times 0.55$	108
Gambar 4.77. Grafik perbandingan beban tiang terhadap beban total	
$K_{\rm p} = 1000 \text{ x}0.55$	108

Universitas Indonesia

xiii

DAFTAR TABEL

Tabel 2.1.	Tabel nilai K _p material	8
Tabel 2.2.	Tabel E _s pada pasir	9
Tabel 3.1	Input permodelan SAP2000 2	9
Tabel 4.1.	Output displacement nodal $K_p = 1 K_r = 0.01$	6
Tabel 4.2.	Output bending moment dari pelat $K_p = 1$ $K_r = 0.01$	0
Tabel 4.3.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.01 \dots 4$	1
Tabel 4.4.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.1 \dots 4$	1
Tabel 4.5.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 1 \dots 4$	1
Tabel 4.6.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 10 \dots 4$	1
Tabel 4.7.	Tabel output displacement maksimum FE PCG Vs SAP2000	
	$K_p = 14$	3
Tabel 4.8.	Tabel output differential settlement FE PCG Vs SAP2000 $K_p = 1 \dots 4$	4
Tabel 4.9	Output bending moment dari pelat $K_p = 1 K_r = 0.01 z = 7.55$	1
Tabel 4.10.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.01$	
	z = 7.5 5	2
Tabel 4.11.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.1$	
	z = 7.5	2
Tabel 4.12.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 1$	
	z = 7.5	2
Tabel 4.13.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 10$	-
	z = 7.5	3
Tabel 4.14.	Tabel output displacement maksimum FE PCG Vs SAP2000 $K_p = 1$	
T 1 1 4 1 5	z = 7.5	4
Tabel 4.15.	Tabel output differential settlement FE PCG Vs SAP2000 $K_p = 1$	_
T 1 1 4 1 C	Z = 1.5	2
Tabel 4.16.	Output displacement nodal $K_p = 50 K_r = 0.001$	5
Tabel 4.17.	Output bending moment dari pelat $K_p = 50 K_r = 0.01$	0
Tabel 4.18.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.01 \dots 6$	7 7
Tabel 4.19.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.1 \dots 0$	7 7
Tabel 4.20.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 10$	7 7
Tabel 4.21.	Tabel output displacement makeimum FE PCG vs SAP2000	/
1 aber 4.22.	K = 50	O
Tabel 4 23	Tabel output differential settlement FE PCG vs $SAP2000 K = 50$.	$\hat{\mathbf{n}}$
Tabel 4 24	Output bending moment pelat K $= 50$ K $= 0.01$ x0.48	8
Tabel 4 25	Output bending moment dari nodal 2 3 4 5 6 $K_r = 50 K_r = 0.01$	0
10001 1.25.	$x_0 48$ 7	9
Tabel 4.26.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.1$	1
	x0.48	9
Tabel 4.27.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 1$	-
	x0.48	9
Tabel 4.28.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_n = 50 K_r = 10$	
	x0.48	9
Tabel 4.29.	Tabel output displacement maksimum FE PCG vs SAP2000	

	$K_p = 50 \text{ x} 0.48$	79
Tabel 4.30.	Tabel output differential settlement FE PCG vs SAP2000	
	$K_p = 50 \text{ x} 0.48$	81
Tabel 4.31.	Output displacement tiap nodal $K_p = 1000 \text{ K}_r = 0.001$	86
Tabel 4.32.	Output bending moment pelat $K_p = 1000 \text{ K}_r = 0.01$	89
Tabel 4.33.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 0.01$	90
Tabel 4.34.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 0.1$	90
Tabel 4.35.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	K _r = 1	90
Tabel 4.36.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 10$	90
Tabel 4.37.	Tabel output displacement maksimum FE PCG vs SAP2000	
	$K_p = 1000$	92
Tabel 4.38.	Tabel output differential settlement FE PCG vs SAP2000	
	$K_p = 1000$	93
Tabel 4.39.	Output bending moment pelat $K_p = 1000 \text{ K}_r = 0.01 \text{ x} 0.55$	101
Tabel 4.40.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 0.01 \ x0.55$	102
Tabel 4.41.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 0.1 \text{ x} 0.55$	102
Tabel 4.42.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 1 \ x0.55$	102
Tabel 4.43.	Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$	
	$K_r = 10 \text{ x} 0.55$	103
Tabel 4.44.	Tabel output displacement maksimum FE PCG vs SAP2000	
	$K_p = 1000 \text{ x}0.55.$	104
Tabel 4.45.	Tabel output differential settlement FE PCG vs SAP2000	
	$K_p = 1000 \text{ x} 0.55$	105

DAFTAR LAMPIRAN

A. SISTEM SUMBU KOORDINAT	
B. KESEPAKATAN TANDA DAN ARAH HASIL HITUNGAN	
C. PERHITUNGAN INPUT SPRING TANAH DAN TIANG	
SERTA TRIAL MODIFIKASI	
D. LANGKAH-LANGKAH SIMULASI DENGAN SAP2000	
E. OUTPUT SAP2000	
F. FINE MESH 10x10	

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Pondasi piled-raft berlaku sebagai konstruksi komposit yang terdiri dari 3 elemen bearing: tiang, slab, dan subsoil. Konsepnya, beban total dari superstruktur dipikul pertama oleh raft melalui kontak dengan tanah dan kemudian sisa beban dipikul tiang melalui sistem skin friction. Sehingga pondasi ini memang akan lebih ekonomis jika dibandingkan pondasi tiang biasa karena tiang dalam kasus ini tidak harus menembus keseluruhan layer tanah jadi dengan kata lain kedalaman tiang bisa dipangkas dan dipasang pada elevasi yang lebih rendah. Umumnya settlement pada pondasi piled-raft akan lebih besar jika dibandingkan pondasi tiang namun lebih kecil dibanding pondasi raft biasa.

Jenis pondasi ini banyak digunakan dengan sukses di wilayah-wilayah dengan deposit clay yang sangat dalam. Gedung-gedung pencakar langit di Jerman khususnya di Frankfurt Main menggunakan pondasi piled-raft di mana lapisa tanah di wilayah tersebut berupa settlement active clay. Adapun gedung-gedung tersebut antara lain:

- Messetorhaus (Fair Gate House), Frankfurt/M.
- Messeturm (Fair Tower), Frankfurt/M.
- American Express High Rise Building, Frankfurt/M.
- Deutsche Postreklame, Frankfurt/M.
- Landeskreditbank Baden-Württemberg
- Südwestdeutsche Landesbank, Stuttgart
- High Rise Building Port of Singapur Authority
- High Rise Building of Trade Centre Landsberger Allee, Berlin
- Westendstr. 1, Frankfurt/M.
- Castor and Pollux, Frankfurt/Main.

Sementara untuk negara lain seperti Amerika Serikat, gedung pencakar langit hotel Four Season di San Francisco menggunakan pondasi serupa. Untuk di Indonesia sendiri, kompleks gedung The Kuningan Place yang terdiri dari

1

apartement, ruko, kantor, dan hall pameran menggunakan pondasi piled-raft dan sampai sekarang masih tahap pengerjaan.

Sampai saat ini belum ada standar yang tersedia untuk mendesain dan menghitung pondasi piled-raft sehingga perlu penelitian tambahan berdasarkan tes permodelan, pengukuran, dan simulasi komputer secara numerik.

Penelitian tentang pondasi piled-raft banyak dikembangkan dengan pendekatan simulasi komputer secara numerik. Program yang digunakan berbasis finite element baik secara 2 dimensi maupun 3 dimensi. Permodelan dan proses analisis di dalamnya terkadang cukup rumit. Penelitian yang dikembangkan dalam skripsi ini tertuju pada permodelan praktis dari permodelan yang sudah ada dengan menggunakan program yang cukup awam di dunia teknik sipil yaitu SAP2000. Hasil yang diharapkan dalam penelitian ini adalah bagaimana kelakuan dan interaksi antara elemen-elemen dalam pondasi yang terdiri atas tiang, slab raft, dan tanah dalam hal kekakuan, settlement, dan distribusi tegangan beban.

1.2 Maksud dan Tujuan

Maksud dari skripsi ini adalah untuk menganalisis balik permodelan praktis yang dibuat dalam SAP2000 Version 10 dibandingkan dengan penelitian An Wang yang ditulis dalam tesisnya "Three Dimensional Finite Element Analysis of Pile Groups and Piled-Rafts" pada bab 6 "Three Dimensional Finite Element Analysis of Piled-Rafts by Preconditioned Conjugate Method".

Tujuan yang ingin dicapai dari penulisan skripsi ini:

- Tujuan utamanya adalah menganalisis kekakuan spring/pegas dari tanah dan tiang sebagai pengganti permodelan tanah dan tiang dari penelitian An Wang dan membandingkan hasil settlement maksimum yang terjadi antara keduanya.
- 2. Tujuan sekundernya adalah:
 - menganalisis differential settlement yang terjadi pada piled-raft
 - menganalisis hasil momen lentur yang terjadi pada piled-raft.
 - distribusi beban pada raft dan tiang.

Yang akan juga dibandingkan dengan hasil analisis An Wang.

1.3 Ruang Lingkup Penulisan

Penelitian ini dibatasi pada permodelan pondasi piled-raft yang dibuat dalam program SAP2000 10 dengan bentuk, asumsi dan parameter yang sama seperti yang diterapkan An Wang pada tesisnya. Analisis juga dibatasi pada bagaimana kekakuan spring/tanah yang akan dipilih dan kekakuan tiang dengan skema yang kurang lebih sama untuk kemudian akan dianalisis balik terhadap permodelan An Wang yang dibuat dalam program finite element dengan metode Preconditioned Conjugate Method (FE PCG). Output diharapkan dapat mendukung analisis ini nantinya.

1.4 Sistematika Penulisan

Tulisan ini terdiri atas tiga bab, dan diharapkan dapat menjelaskan serta memberi gambaran seperti apa permodelan akan dikembangkan serta analisis yang akan diterapkan ke permodelan tersebut. Skripsi ini akan terdiri dari beberapa bagian seperti berikut ini:

- Bab I : Pendahuluan berisi latar belakang, maksud dan tujuan, ruang lingkup, dan sistematika penulisan.
- Bab II : Landasan teori terdiri dari penjelasan mengenai program SAP2000, teori mengenai pondasi piled-raft, analisis-analisis yang berkembang mengenai pondasi piled-raft, teori mengenai metode finite element, variabel penting untuk permodelan yaitu modulus Young dan rasio Poisson, kekakuan tanah, serta persamaan Mindlin dan Boussinesq yang digunakan dalam input permodelan.
- Bab III: Metodologi penelitian akan membahas mengenai prosedur analisis, modelisasi struktur dan variabel analisis yang digunakan dalam penelitian ini.
- Bab IV: Hasil simulasi dan analisa berdasarkan data keluaran program SAP2000 yang berupa displacement maksimum, differential settlement, distribusi bending moment, distribusi beban raft dan tiang dan membandingkannya dengan FE PCG An Wang.
- Bab V : Kesimpulan berisi kesimpulan dari analisis struktur piled-raft SAP2000 dan perbandingannya dengan FE PCG An Wang.

BAB 2 LANDASAN TEORI

Bab ini berisi teori-teori yang digunakan penulis dalam proses modelisasi dan analisis pondasi piled-raft. Bagian awal menceritakan tentang program SAP2000, bagian kedua menjelaskan tentang pondasi piled-raft secara umum dan contoh teori-teori yang berkembang untuk menganalisis sistem pondasi piled-raft, selanjutnya dijelaskan mengenai metode finite element/elemen hingga dan variabel yang penting dalam permodelan pondasi nantinya yaitu modulus Young, rasio Poisson, kekakuan tanah, serta persamaan Mindlin dan Boussinesq yang diperlukan untuk input modelisasi.

2.1. Program SAP2000

Program SAP2000 merupakan pengembangan program SAP yang dibuat oleh Prof. Edward L. Wilson dari University of California at Berkeley, US sekitar tahun 1970. Untuk melayani kebutuhan komersial dari program SAP, pada tahun 1975 dibentuk perusahaan Computer & Structure, Inc. yang dipimpin oleh Ashraf Habibullah di mana perusahaan itu sampai saat ini masih tetap eksis dan terus berkembang.

SAP2000 merupakan program analisis struktur dengan finite element secara statik dan dinamik. Dasar teori penyelesaian statik yang digunakan program SAP2000 adalah matrik kekakuan, di mana suatu persamaan keseimbangan struktur dapat ditulis dalam bentuk matrik sebagai berikut.

 $[K]{\delta} = {F}$ Notasi: (2.1)

- [K] adalah matrik kekakuan yang merupakan formulasi matematik sebagai representasi perilaku mekanik element yang ditinjau.
- $\{\delta\}$ adalah vektor perpindahan atau deformasi (translasi atau rotasi) struktur.
- {F} adalah vektor gaya/momen yang dapat berbentuk beban pada titik nodal bebas atau gaya reaksi tumpuan pada titik nodal yang di-*restraint*.

Formulasi persamaan keseimbangan di atas memperlihatkan bahwa besarnya deformasi berbanding lurus dengan gaya yang diberikan, di mana matrik

[K] adalah sesuatu yang menghubungkan perpindahan (deformasi) dan beban. Lebih tepatnya lagi, matrik [K] adalah besarnya gaya yang diperlukan untuk menghasilkan perpindahan (deformasi) sebesar satu satuan.

2.2. Teori Pondasi Piled-Raft

2.2.1 Pengenalan

Pondasi piled-raft utamanya terdiri dari raft dan tiang dan umumnya diaplikasikan ke area dengan tanah berjenis clay yang dalam. Secara teoritis pondasi ini punya faktor keamanan yang cukup besar terhadap bearing-capacity failure namun settlement-nya akan besar bila hanya terdiri atas raft saja. Keberadaan tiang berfungsi untuk mengontrol settlement yang cukup besar tersebut. Struktur piled-raft secara umum dibagi menjadi 2 komponen yaitu tiang dan pile cap (sebagai unit raft). Berikut adalah penjelasan mengenai 2 komponen tersebut dalam hal settlement-nya.

Gambar 2.1. Pondasi raft dan piled-raft

Sumber: Maharaj, Dilip Kumar. *Three dimensional nonlinear finite element analysis to study the effect of raft and pile stiffness on the load settlement behaviour of piled raft foundations.*

2.2.2. Tiang Single

Dalam analisis elastis, karakteristik utama yang sangat penting dari perilaku tiang adalah settlement. Settlement di kepala tiang dapat dinyatakan

secara akurat dipandang dari segi settlement tiang incompressible di dalam halfspace dengan faktor koreksi untuk efek kompresibilitas tiang yang mana dapat dijelaskan dalam faktor settlement I_p yang diperkenalkan Poulos dan Davis (1968) untuk floating pile:

$$S = \frac{P_p}{dE_s} I_P \tag{2.2}$$

$$I_p = I_0 R_k R_h R_\nu \tag{2.3}$$

Keterangan :

S = settlement bagian kepala tiang

 P_p = beban yang diaplikasikan ke kepala tiang

d = diameter tiang

- $E_s = modulus Young tanah$
- I₀ =faktor pengaruh settlement untuk tiang incompressible di semi-infinite mass untuk v_s=0.5

 R_k = faktor koreksi untuk kompresibilitas tiang

R_h = faktor koreksi untuk kedalaman lapisan pada dasar rigid yang tidak tak terhingga

 R_v = koreksi untuk rasio Poisson tanah v_s

h = kedalaman total lapisan tanah

rumus ini berlaku untuk tanah homogen yang memiliki modulus Young E_s dan rasio Poisson v_s yang konstan.

Gambar 2.2. Grafik I₀, R_k, R_h, R_v Sumber: Poulos, H.G., & Davis, E.H. *Pile foundation analysis and design*.

Gambar I₀ menunjukkan pengurangan settlement tiang pada diameter konstan sementara panjang terus bertambah. Efek pembesaran dasar tiang juga mengurangi settlement. Kompresibilitas tiang juga meningkatkan settlement khususnya pada tiang langsing (L/d >>) seperti yang terlihat di gambar R_K. Efek memiliki kedalaman lapisan tanah tertentu dan tidak tak berhingga ternyata mengurangi settlement. Sementara penurunan v_s dengan tetap mempertahankan nilai E_s berujung pada berkurangnya settlement yang terjadi pada tiang walaupun efeknya relatif kecil

 I_p adalah fungsi rasio kelangsingan tiang yaitu (L/d), faktor kekakuan relatif tiang K_P dan seterusnya yang dihitung berdasarkan teori elastis murni, pada banyak kasus menggunakan persamaan Mindlin (1936). Untuk massa tanah dan diameter tiang yang sudah ditentukan, faktor I_p sebenarnya menyatakan settlement kepala tiang dalam unit beban. Rasio kelangsingan tiang L/d dan faktor kekakuan relatif tiang terhadap tanah K_p merupakan 2 parameter kunci dalam analisis dimana:

$$K_p = \frac{E_p}{E_s} \tag{2.4}$$

Keterangan :

L = panjang tiang

d = diamater tiang

 $E_p = modulus$ Young tiang

nilai-nilai rata-rata Kp untuk tiang ditampilkan dalam tabel berikut:

Tine Tanah	Jenis Material			
Tipe Funan	Besi	Beton	Kayu	
Soft Clay	60.000	6000	3000	
Medium Clay	20.000	2000	1000	
Stiff Clay	3.000	300	150	
Loose Sand	15.000	1500	750	
Dense Sand	5.000	500	250	

Tabel 2.1. Tabel nilai K_p material

Sumber: Poulos, H.G., & Davis, E.H. Pile foundation analysis and design.

Settlement tiang juga dikontrol tegangan geser yang muncul di interface antara tiang dan tanah dan sekitarnya.

$$G_s = \frac{E_s}{2(1+v_s)}$$

Keterangan :

 $G_s = modulus geser tanah$

 $E_s = modulus$ Young tanah

 v_s = rasio Poisson tanah

Semakin besar rasio Poisson v_s , semakin besar modulus G_s sehingga makin kecil faktor settlement I_p .

Tiang memiliki panjang kritis dimana penambahan panjang selanjutnya tidak akan mengurangi settlement. Untuk tiang floating pada tanah homogen, besar panjang kritis bisa dinyatakan dalam:

$$\frac{L_c}{d} = \left(\frac{\pi E_p A_p}{E_s d^2}\right)^{\frac{1}{2}}$$
(2.6)

Keterangan :

 $L_c = panjang kritis$

 A_p = luas penampang tiang

Universitas Indonesia

(2.5)

Settlement pada tiang juga dipengaruhi tiang lain di sekitarnya. Interaksi antartiang ini disebut dalam istilah faktor interaksi α :

$$\alpha = \frac{Settlement tambahan akibat tiang lain}{Settlement pada tiang akibat bebannya sendiri}$$
(2.7)

dengan syarat baik tiang dengan tiang lain didekatnya menanggung beban yang sama.

Faktor interaksi α_F antara 2 floating pile pada homogeneous semi-infinite mass $v_s = 0.5$ ditunjukkan pada Gambar 2.3. Interaksi antartiang semakin kecil seiring kenaikan spacing tiang s. Sementara itu interaksi antartiang semakin besar seiring kenaikan faktor kekakuan tiang K_p.

Gambar 2.3. Faktor interaksi floating pile Sumber: Poulos, H.G., & Davis, E.H. Pile foundation analysis and design.

Solusi faktor interaksi untuk dua tiang incompressible di semi-infinite mass menggunakan faktor koreksi Nh sehingga faktor interaksi yang sebenarnya terjadi adalah:

$$\alpha = \alpha_F N_h \tag{2.8}$$
 Keterangan:

 $\alpha_{\rm F}$ = faktor interaksi untuk semi-infinite mass

 $N_h = faktor interaksi$

Gambar 2.4. Faktor koreksi N_h untuk interaksi faktor Sumber: Poulos, H.G., & Davis, E.H. *Pile foundation analysis and design*.

namun grafik faktor N_h hanya tersedia untuk $K_p \infty$ atau tiang yang sangat kaku sehingga $\alpha = \alpha_F$.

2.2.3. Raft

Untuk suatu besaran beban vertikal yang terdistribusi sempurna, settlement raft dan differential settlementnya tidak hanya tergantung pada dimensi dan properties elastis dari raft namun juga properties dari tanahnya. Maka akan lebih baik jika settlement dan differential settlement dihubungkan kekakuan relatif dari kekakuan relatif uncracked raft K_r atau bisa juga disebut raft-soil stiffness ratio yang digunakan Brown (1969b) (An Wang, 1996, p. 49):

$$K_r = \frac{E_r(1-v_s^2)}{E_s} \left(\frac{t}{R}\right)^3 \tag{2.9}$$

Keterangan:

 E_r = modulus Young raft

 $E_s = modulus$ Young tanah

 v_s = rasio Poisson tanah

t = tebal raft

R = radius raft

Seperti halnya tiang, karakteristik penurunan raft dijelaskan dalam faktor settlement I_r yang didefinisikan sebagai :

$$w = qR \frac{\left(1 - v_s^2\right)}{E_s} I_r \tag{2.10}$$

Keterangan:

w = settlement raft

q = intensitas beban yang diaplikasikan.

Rumusan K_r di atas digunakan untuk raft yang berbentuk lingkaran sehingga untuk raft berbentuk persegi seperti yang dianalisis di tulisan ini maka diperlukan definisi K_r khusus raft persegi. Tidak ada definisi standar untuk kekakuan relatif raft-tanah namun definisi dari Brown (1975) paling populer (Clancy, 1993, p. 4.7):

$$K_r = \frac{4E_r B_r t_r^3 (1 - v_s^2)}{3\pi E_o L_r^4}$$

Keterangan: B_r = lebar raft

 $L_r = panjang raft$

2.3. Contoh-Contoh Analisis Pondasi Piled-Raft Yang Berkembang

Bentuk- bentuk analisis untuk pondasi pile-raft adalah antara lain:

- 1. Metode strip-superposition, dimana solusi untuk pile-strip footings disuperposisi untuk memperoleh besar settlement dari raft. Metode ini tidak membutuhkan penggunaan komputer namun hanya terbatas mencari nilai settlement.
- 2. Analisis "plate on spring", dimana raft dianalisis sebagai pelat menggunakan metode finite-element, dan tiang digantikan oleh suatu pegas yang ditempatkan pada node. Kekakuan dari tiang ini dapat diestimasi dari solusi elastis untuk tiang atau dari analisis pile-raft dari Poulos dan Davis.

Universitas Indonesia

(2.11)

- 3. Metode "plate on springs and continuum". Di sini raft diperlakukan sebagai pelat dan tiang digantikan pegas seperti metode 2; tapi sebagai tambahan, tanah dianggap sebagai elastic continuum.
- 4. Metode "plate on piles and continuum". Metode "plate on piles and continuum" memberikan representasi yang lebih dekat terhadap problem sebenarnya dengan cara memperlakukan tiang seperti pada analisis pilesettlement, raft sebagai pelat, dan tanah sebagai elastic continuum. Interaksi diantara tiang, raft, dan tanah diperhitungkan secara logis. Analisis ini ternyata sukses memprediksi beban dan distribusi settlement pada 2 sistem pile-raft, satu di Mexico City (gedung La Azteca) dan kedua di London (Hyde Park Cavalry Barrack).
- 5. Analisis finite-element; analisis finite-element yang mana pondasi, tiang, dan tanah direpresentasikan sebagai finite element, tanpa melakukan analisis 3 dimensi secara penuh. Salah satu contoh kasus yang dijelaskan peneliti mendekati aksial simetris, dan tiap cincin kosentris tiang disimultankan oleh continuum annulus dengan kekakuan total sama dengan jumlah kekakuaan tiang tunggal. Perlakuan serupa juga dilakukan pada peneliti lain kecuali bahwa barisan tiang dimodelkan sebagai continuous strip. Pendekatan ini di satu pihak menawarkan fleksibilitas karena memperhitungkan beberapa faktor diantaranya seperti keheterogenan tanah namun kurang dalam hal data yang diperlukan cukup banyak dan kesulitan memilih kekakuan yang cocok untuk cincin dan strip yang mensimulasikan tiang, serta dalam menghadapi pile slip.

2.4. Metode Finite Element

Metode finite element/metode elemen hingga (MEH) merupakan salah satu metode teknik yang sangat penting untuk menghasilkan solusi numerik dari suatu masalah kompleks dalam struktur. Dalam MEH, sistem struktur dimodelkan dengan suatu set elemen hingga yang terhubung pada titik yang disebut node. Tiap elemen dapat memiliki properties fisik contohnya, ketebalan, koefisien thermal expansion, densitas, modulus Young, modulus geser, dan rasio Poisson. Beberapa elemen yang umum dipakai antara lain:

- 1. Elemen lurus atau melengkung satu dimensi yang dilengkapi properties fisik seperti kekakuan aksial, bending, dan torsional. Tipe ini cocok untuk memodelkan kabel, rangka, beam, stiffener, dan grid. Elemen lurus biasanya mempunyai 2 node, 1 di tiap ujung elemen, sementara elemen melengkung paling tidak perlu 3 node termasuk node di tiap ujung. Elemen ini ditempatkan pada sumbu centroidal dari member sebenarnya.
- 2. Elemen 2 dimensi untuk membran (bidang tegangan, bidang regangan) dan bending (pelat dan cangkang). Bentuknya bisa bervariasi seperti segitiga datar atau melengkung dan bentuk quadrilateral. Node biasanya berada di sudut elemen dan jika perlu untuk akurasi yang lebih tinggi node bisa diposisikan di sepanjang tepi elemen atau bahkan di dalam elemen. Elemen ini ditempatkan pada bagian tengah permukaan dari layer sebenarnya.

Tiap node memiliki vektor displacement atau derajat kebebasan yang di dalamnya terdapat faktor translasi, rotasi, dan untuk aplikasi yang lebih tinggi, turunan tingkat tinggi dari displacement. Saat node-node berpindah, mereka akan menarik elemen dalam sikap tertentu sesuai formulasi atau dengan kata lain displacement pada tiap titik dalam elemen akan diinterpolasi dari displacement node.

Gambar 2.5. Contoh jaring mesh yang dibentuk dengan menggunakan metode finite element

Sumber: *Finite element method in structural mechanics*. http://en.wikipedia.org/wiki/Finite_element_method_in_structural_mechanics

Jadi secara garis besar metode finite element terdiri dari:

Analisis pondasi..., Azmi Mulki, FT UI, 2009

- 1. Element discretion. Proses memodelan geometri suatu problem dengan cara menyusun area-area kecil yang disebut finite element. Tiap element punya nodal yang didefinisikan pada finite boundary atau di dalam elemen itu sendiri.
- Primary variable approximation. Variabel primer harus dipilih (co: displacement, tegangan, dll.) dan kaidah tentang bagaimana variasi variabel tersebut pada finite element. Biasanya variasi ini dinyatakan dalam pengertian nilai nodal.
- 3. Persamaan element. Prinsip yang tepat digunakan untuk mendapatkan persamaan element:

$$[K_E]\{\Delta d_E\} = \{\Delta R_E\}$$

Keterangan:

 $[K_E]$ = matriks kekakuan element

 $\{\Delta d_E\}$ = vektor nodal displacement

 $\{\Delta R_E\}$ = vektor gaya nodal

4. Persamaan global. Persamaan element dikombinasikan untuk membentuk persamaan global

$$[K_G]\{\Delta d_G\} = \{\Delta R_G\}$$

Keterangan:

 $[K_G]$ = matriks kekakuan global

 $\{\Delta d_G\}$ = vektor semua nodal displacement

 $\{\Delta R_G\}$ = vektor semua gaya nodal

- 5. Kondisi batas. Kondisi batas yang terjadi diformulasikan dan memodifikasi persamaan global.
- 6. Solusi persamaan global. Persamaan global berbentuk persamaan simultan yang banyak. Persamaan ini lalu dipecahkan untuk memperoleh displacement $\{\Delta d_G\}$ pada setiap nodal. Dari displacement ini lalu output sekunder seperti tegangan dapat diperoleh dan dievaluasi.

2.5. Modulus Young

Di dalam mekanika benda padat, modulus Young (E) merupakan ukuran kekakuan dari suatu material. Modulus Young didefinisikan sebagai rasio, untuk regangan kecil, perubahan tegangan terhadap regangan. Modulus Young dapat

Universitas Indonesia

(2.13)

(2.12)

ditentukan dari kemiringan grafik tegangan-regangan yang terjadi selama tes tarik dari sampel material bersangkutan.

Gambar 2.7. Grafik tegangan regangan pada material besi Sumber: *Young's modulus*. <u>http://en.wikipedia.org/wiki/Young's modulus</u>.

Satuan modulus ini biasa dinyatakan dalam pascal (N/m²). Jika nilainya cukup besar dapat dinyatakan dalam megapascal.

$$E = \frac{\text{tensile stress}}{\text{tensile strain}} = \frac{\sigma}{\epsilon} = \frac{F/A_0}{\Delta L/L_0} = \frac{FL_0}{A_0 \Delta L}$$
(2.14)

Keterangan:

E = modulus Young

F = gaya yang diaplikasikan ke material

 A_0 = luas penampang awal material dimana gaya bekerja

 ΔL = perubahan panjang objek

 $L_0 = panjang awal objek$

Dengan adanya modulus Young, kelakuan suatu material selama dibebani dapat dikalkulasi. Misalnya untuk memprediksi seberapa panjang suatu kawat akan merenggang saat dibebani atau memprediksi seberapa besar beban yang dapat menyebabkan kolom mengalami buckling. Beberapa kalkulasi yang lebih rumit juga memerlukan properties material lainnya seperti modulus geser, densitas, dan rasio Poisson.

Untuk beberapa material, modulus Young akan konstan dalam range regangan tertentu. Material ini disebut bersifat linear dan tunduk dalam hukum Hooke. Sebaliknya, untuk material yang nilai modulus Young-nya tidak konstan maka material tersebut bersifat non-linear. Tanah merupakan salah satu material yang bersifat non-linear.

Material yang properties mekaniknya sama untuk segala arah disebut isotropic. Artinya modulus Young akan bernilai sama untuk segala arah. Material yang properties mekaniknya berbeda tergantung arah dimana gaya diaplikasikan disebut dengan anistropic. Artinya nilai modulus Young akan berbeda-beda tergantung pada arah mana gaya bekerja. Contohnya material kayu dimana akan lebih kaku (modulus Young lebih besar) jika beban diaplikasikan paralel terhadap serat kayunya.

2.6. Rasio Poisson

Rasio Poisson (v) adalah rasio dari regangan transverse (normal terhadap arah gaya yang bekerja) dibagi regangan aksial (searah gaya yang bekerja) pada suatu sampel material.

$$\upsilon = -\frac{\varepsilon_{\text{trans}}}{\varepsilon_{\text{axial}}} = -\frac{\epsilon_{\text{x}}}{\epsilon_{\text{y}}}$$
(2.15)

Gambar 2.8. Contoh regangan arah X dan Y saat beban bekerja Sumber: *Poisson's ratio*. <u>http://en.wikipedia.org/wiki/Poisson's_ratio</u>.

2.7. Kekakuan Tanah

Kekakuan tanah secara umum dalam ilmu geoteknik dinyatakan dalam modulus Young dan dilambangkan dengan E_s atau dapat juga dinyatakan dalam modulus resilient M_R . Khusus untuk M_R ditujukan untuk material tanah yang berfungsi sebagai subgrade yaitu tanah untuk lapisan terbawah dari jalan aspal maupun beton. Terdapat 2 cara utama untuk memperoleh nilai parameter kekakuan tanah yang dinyatakan dalam modulus Young:

- a) Tes lab.
- b) Korelasi empiris berdasarkan pengalaman sebelumnya dan nilai tipikal yang sudah ada.

yang akan lebih dibahas adalah yang berdasarkan korelasi empiris dan nilai tipikal.

Berdasarkan penjelasan program SLAB Wingkler Model untuk Slab-On-Ground, besaran modulus elastis tanah untuk tiap jenis tanah antara lain:

- soft normally-consolidated clays: 1,400 4,200 kPa
- medium clays: 4,200 8,400 kPa
- stiff clays: 8,400 20,000 kPa
- lose normally-consolidated sands: 7,000 20,000 kPa
- medium normally-consolidated sands: 20,000 40,000 kPa

• dense normally-consolidated sands: 40,000 - 48,000 kPa

Gambar 2.9. Grafik E_s vs C_u Sumber: Poulos, H.G., & Davis, E.H. *Pile foundation analysis and design*.

Berdasarkan korelasi dengan grafik di atas bisa diperoleh nilai E_s untuk tiang yang berada di tanah clay berdasarkan hubungan nilai c_u .

- Untuk clay medium hingga soft (c_u<120kPa). E_s untuk tiang pancang lebih besar dibandingkan untuk tiang bor. Tapi makin kaku clay, E_s tiang bor menjadi lebih besar.
- Untuk clay kaku, nilai Es paling besar mencapai 40Mpa untuk tiang pancang sedangkan Es paling besar untuk tiang bor adalah 80 MPa.

Untuk tiang yang berada di pasir nilai Es rata-rata dinyatakan dalam tabel berikut.

Densitas Pasir	Relative Density, Dr	Range nilai E _s (MPa)
Loose	<0.4	27.5-55
Medium	0.4-0.6	55
Dense	>0.6	70-110

Tabel 2.2. Tabel E_s pada pasir

Sumber: Poulos, H.G., & Davis, E.H. Pile foundation analysis and design.

2.8. Persamaan Mindlin

Persamaan Mindlin untuk displacement yang terjadi di semi-infinite elastic half-space dalam konteks koefisien fleksibilitas telah dihadirkan oleh Poulos & Davis. Jadi interaksi antarspring terkait settlement tambahan yang terjadi sebagai akibat spring lain bisa dihitung.

Displacement pada titik i akibat beban satu satuan pada titik j :

$$f_{ij} = \frac{1}{16\pi G_{s}(1-\upsilon_{s})} \left\{ \frac{(3-4\upsilon_{s})}{R1} + \frac{8(1-\upsilon_{s}^{2})-(3-4\upsilon_{s})}{R2} + \frac{(z-c)^{2}}{R1^{3}} + \frac{(3-4\upsilon_{s})(z+c)^{2}-2cz}{R2^{3}} + \frac{6cz(z+c)^{2}}{R2^{5}} \right\}$$

$$R_{1} = \sqrt{r^{2} + (z-c)^{2}}$$

$$R_{2} = \sqrt{r^{2} + (z+c)^{2}}$$

$$R_{3} = \sqrt{r^{2} + (z+c)^{2}}$$

$$R_{4} = \sqrt{r^{2} + (z+c)^{2}}$$

$$R_{5} = \sqrt{r^{2} + (z+c)^{2}}$$

$$R_{5} = \sqrt{r^{2} + (z+c)^{2}}$$

Keterangan:

- c = kedalaman di bawah permukaan half-space dimana beban diaplikasikan
- z = kedalaman dimana displacement akibat beban diperlukan
- r = jarak horisontal antara titik-titik yang berinteraksi

2.9. Persamaan Boussinesq

Persamaan Boussinesq dapat digunakan untuk memprediksi settlement yang berada dalam suatu semi-infinite mass. Hal ini berguna untuk menghitung settlement nodal yang dibebani beban sendiri. Persamaan Boussinesq untuk displacement di dalam soil mass:

Gambar 2.10. Skema persamaan Boussinesq

Sumber: Poulos, H.G., & Davis, E.H. Elastic solutions for soil and rock mechanics.

$$\frac{P(1+\upsilon_s)}{2\pi E_s R} \Big(2(1-\nu_s)+\frac{z^2}{R^2}\Big)$$

(2.17)

Keterangan:

P = beban yang diaplikasikan pada permukaan

- r = jarak horisontal dari garis gaya ke titik di dalam mass yang ingin diukur
- R = jarak dari posisi beban diaplikasikan ke titik di dalam mass yang ingin diukur, untuk titik yang berada tepat di bawah garis gaya maka R = z
BAB 3

METODOLOGI PENELITIAN

3.1. Prosedur Analisis

Tulisan ini merupakan sebuah penelitian yang menggunakan bantuan program SAP 2000 10 berdasarkan penelitian An Wang yang ditulis dalam tesisnya "*Three Dimensional Finite Element Analysis of Pile Groups and Piled-Rafts*" pada bab 6 "*Three Dimensional Finite Element Analysis of Piled-Rafts by Preconditioned Conjugate Method*". Adapun tahapan yang harus dilakukan pada saat menjalankan penulisan ini adalah:

- 1. Studi literatur umum. Penulis mencari dan mempelajari berbagai macam data, informasi web, dan tulisan mengenai hal-hal yang berhubungan pondasi piled-raft antara lain tentang input parameter dan proses analisisnya secara teori dan secara permodelan komputer.
- 2. Mempelajari apa saja teori, asumsi dan parameter yang digunakan dalam pondasi piled-raft dari tesis An Wang tersebut. Data-data itu dimanfaatkan dalam melakukan permodelan ulang dalam program SAP2000 10.
- 3. Melakukan permodelan ulang dari pondasi piled-raft versi An Wang yang dibuat dalam program untuk finite element analysis dengan Preconditioned Conjugate Gradient Method ke dalam program SAP2000 10. Elemen tanah dan tiang diganti diubah ke elemen pegas.
- 4. Melakukan analisis struktur dengan memasukkan beban terbagi merata yang bekerja pada permukaan raft dan memasukkan kombinasi kekakuan spring untuk tanah dan tiang.
- 5. Memperoleh output program SAP2000 10.
- 6. Memodifikasi spring tanah dan tiang untuk mendapatkan output yang mendekati output FE PCG An Wang.
- 7. Analisis. Menganalisis output settlement maksimum yang terjadi dan membandingkannya dengan hasil analisis dari An Wang. Kemudian proses analisis yang sama penulis aplikasikan terhadap output lainnya yaitu besaran differential settlement dan bending moment.

Gambar 3.1. Diagram alir penelitian

3.2. Modelisasi Struktur

Struktur yang dianalisis berupa pondasi piled-raft dan pemodelan serta analisisnya dilakukan dalam program SAP2000 10.

Pemodelan struktur adalah pembuatan data numerik (matematis) mewakili struktur real yang digunakan sebagai input data komputer. MacLeod (1990) mengusulkan sebaiknya dalam pembuatan model struktur adalah (Dewobroto, 2007, p.3):

- 1. Jangan terlalu rumit dari yang diperlukan. Jika dapat dibuat model yang simpel tapi representatif, maka umumnya itu yang akan berguna.
- 2. Berkaitan dengan hal di atas, dalam permodelan kadang-kadang perlu beberapa tanapan model. Ada yang secara keseluruhan (makro model) dan lainnya pada bagian-bagian tertentu saja tetapi lebih mendetail (mikro model). Jangan berkeinginan membuat model secara keseluruhan dengan ketelitian yang sama untuk setiap detail yang diinginkan.
- 3. Apakah modelnya simpel tapi masih representatif, maka perlu mengetahui perilaku struktur real. Faktor-faktor apa yang utama, atau sekunder yang dapat diabaikan. Tak ada jaminan bahwa banyak faktor maka hasilnya semakin baik (lower bound theorem). Contohnya, jika deformasi lentur dihitung pada konstruksi truss (rangka batang), maka batangnya perlu ukuran yang lebih besar untuk menahan gaya aksial dan lentur sekaligus (lebih boros).
- 4. Jangan langsung percaya pada hasil keluaran, kecuali telah melakukan validasivalidasi yang ketat dan teliti.
- 5. Meskipun sudah ada validasi-validasi yang ketat, jangan terlalu percaya dulu. Lihat asumsi-asumsi yang dipakai dalam pembuatan model analisis apakah sudah logis dan mewakili kondisi struktur yang real.

3.2.1 Model An Wang

Model An Wang berupa pondasi piled-raft terdiri dari 25 tiang dengan konfigurasi 5x5 yang kemudian bagian yang dianalisis hanya pada ¼ bagian.

- Asumsi material (tiang, raft, tanah) isotropik dan linear elastik
- Setiap tiang rasio kelangsingan L/d=30 dimana L panjang tiang dan d diameter tiang. L = 15 m dan d = 0.5 m

- Rasio Poisson tiang v_p =0.3 dan rasio Poisson untuk raft v_r =0.3, rasio Poisson tanah v_s =0.499
- Semua tiang mempunyai jarak yang sama sebesar s/d=5 dimana s adalah spacing antar-tiang. s = 2.5 m
- $E_s = 10^4 \text{ kN/m}^2$
- Beban terbagi merata = 22.7 kN/m^2
- Variasi kekakuan relatif tiang terhadap tanah K_p. Terdiri dari K_p 1 (raft tanpa tiang), K_p 50, dan K_p 1000
- Variasi kekakuan relatif raft terhadap tanah K_r. Tiap nilai K_p memiliki variasi K_r yaitu 0.001, 0.01, 0.1, 1, 10, 100

Gambar 3.2. Mesh model finite element piled-raft An Wang ¹/₄ dari 5x5 struktur piled-raft Sumber: An Wang. *Three dimensional finite element analysis of pile groups and piled-rafts*.

Universitas Indonesia

24

Gambar 3.3. Penomoran tiang pada piled-raft An Wang Sumber: An Wang. *Three dimensional finite element analysis of pile groups and piled-rafts*.

Hanya seperempat dari pondasi piled-raft yang dianalisis karena tipe struktur dan pembebanan yang simetris. Termasuk penomoran tiang karena tiang yang lain hanya "pencerminan" dari tiang lawannya. Pondasi piled-raft dalam tesis An Wang dimodelkan ulang dalam program SAP2000.

3.2.2 Model SAP2000

Karena tujuan dari penelitian ini lebih kepada analisis balik maka permodelan sama dengan permodelan An Wang dengan penyesuaian.

- Berukuran 6.25 x 6.25 m
- Mesh 5x5 @1.25 m
- Penomoran nodal dan element shell diurutkan dari nomor 1 dan seterusnya dari bawah ke atas
- Penomoran tiang FE PCG disesuaikan dengan penomoran SAP2000

tiang 6 = nodal 1; tiang 5 = nodal 3; tiang 3 = nodal 5;

tiang 4 = nodal 15; tiang 2 = nodal 17;

tiang 1 = nodal 29;

nodal 13, nodal 25, dan nodal 27 juga merupakan tiang yang merupakan "pencerminan" dari nodal 3, nodal 5, dan nodal 17 secara berurutan

• Pada zona potongan yaitu nodal sepanjang sumbu X dan Y global diaplikasikan boundary condition jepit-rol

Gambar 3.4. Penomoran dan posisi nodal serta element shell SAP2000

3.3 Input Data

Beberapa penyesuaian dilakukan dengan mengganti elemen tiang dan tanah sebagai spring/pegas serta input material. Terdiri dari K_p 1, K_p 50, dan K_p 1000 dan tiap nilai K_p terdapat variasi kekakuan raft K_r . Semua satuan menggunakan satuan kN, m, dan C. Beban yang dipakai juga disesuaikan sesuai dengan model An Wang yaitu gaya luar terbagi rata pada permukaan raft sebesar 22.7 kN/m². Data input yang dimasukkan ke SAP2000 :

- Data properti material. Yaitu rasio Poisson untuk raft v_r =0.3 dan modulus elastisitas raft E_r
- Data shell section. Yaitu tipe shell plate-thin dan tebal raft

- Karena model An Wang tidak menyebutkan modulus elastisitas raft E_r dan tebal raft yang dipakai maka model SAP2000 menggunakan asumsi yang digunakan Patrick Clancy (1993) yaitu tebal raft konstan sedangkan E_r berubah dan dihitung menggunakan rumus Brown (2.11). Tebal raft diambil sebesar 1.1754 m.
- Model struktur
- Input spring tanah dan tiang. Perhitungannya melibatkan rumus Boussinesq dan Mindlin serta rumus I_p dan interaksi tiang dari Poulos dan Davis. Prosedur perhitungan akan dibahas pada Lampiran C. Kemudian input spring tanah dan tiang dimodifikasi untuk memperkecil error displacement maksimum terhadap FE PCG.
- Beban terbagi merata = 22.7 kN/m². Di SAP2000 beban terbagi merata ini merupakan bagian area loads yaitu uniform(shell).

Data input tersebut bisa diringkas seperti berikut:

Kekakuan	Kekakuan		Properti Material			Input	Spring	Modifikasi I	nput Spring	Beban
Tiang	Raft	Er	ν _r	Tebal Raft	Tipe Shell	Spring Tanah	Spring Tiang	Spring Tanah	Spring Tiang	Terbagi Merata
						z =1		z=7.5	x Faktor	22.7 kN/m ²
$K_{p} = 1$	$K_{r} = 0.01$		\checkmark	\checkmark	Plate- Thin	1*		2*		\checkmark
	$K_{\rm r} = 0.1$		\checkmark	\checkmark	Plate- Thin	1		2		\checkmark
	$K_r = 1$		\checkmark	\checkmark	Plate- Thin	1		2		\checkmark
	$K_{r} = 10$		\checkmark	\checkmark	Plate- Thin	1		2		\checkmark
	$K_{r} = 100$		\checkmark	\checkmark	Plate- Thin	1		2		\checkmark
$K_{p} = 50$	$K_{\rm r} = 0.001$	\checkmark	\checkmark		Plate- Thin	1,2*	1		2	\checkmark
	$K_{\rm r} = 0.01$	\checkmark		V	Plate- Thin	1,2	1		2	\checkmark
	$K_{\rm r} = 0.1$	\checkmark	\checkmark	V	Plate- Thin	1,2	1		2	\checkmark
	$K_r = 1$	\checkmark	\checkmark	V	Plate- Thin	1,2	1		2	\checkmark
	$K_{r} = 10$	\checkmark		V	Plate- Thin	1,2	1		2	\checkmark
	$K_{r} = 100$	\checkmark	\checkmark	V	Plate- Thin	1,2	1		2	\checkmark
$K_{p} = 1000$	$K_r = 0.001$		\checkmark	\checkmark	Plate- Thin	1,2	1		2	\checkmark
	$K_{\rm r} = 0.01$		V	\checkmark	Plate- Thin	1,2	1		2	\checkmark
	$K_{\rm r} = 0.1$		\checkmark	V	Plate- Thin	1,2	1		2	\checkmark
	$K_r = 1$			V	Plate- Thin	1,2	1		2	
	$K_{r} = 10$		\checkmark	\checkmark	Plate- Thin	1,2	1		2	\checkmark
	$K_{r} = 100$		\checkmark	\checkmark	Plate- Thin	1,2	1		2	\checkmark

Tabel 3.1 Input permodelan SAP2000

*Keterangan: (1 : digunakan untuk model awal sebelum modifikasi) (1,2 : digunakan baik untuk model awal maupun model modifikasi

(2 : digunakan untuk model modifikasi)

3.4. Variabel

Variabel yang akan dievaluasi dari hasil analisis struktur adalah:

- 1. Settlement maksimum yang terjadi.
- 2. Differential settlement maksimum
- 3. Distribusi bending moment.
- 4. Distribusi beban pada raft dan tiang

Sehingga dari parameter-parameter inilah perilaku pondasi piled-raft dapat ditampilkan dan dianalisis lebih lanjut. Dari permodelan ini diharapkan akan didapat perilaku pondasi piled-raft yang dapat dianalisis balik ke hasil dari permodelan An Wang. Jika hasilnya bisa mirip berarti membuktikan bahwa permodelan yang rumit bisa dikonversi dalam model yang lebih praktis dengan beberapa penyesuaian.

BAB 4

HASIL SIMULASI DAN ANALISIS

Bab ini akan membahas hasil dari permodelan dua dimensi (2D) SAP2000 dan relasinya terhadap model tiga dimensi (3D) An Wang yang memakai program finite element metode Preconditioned Conjugate Gradient (FE PCG).

4.1. Hasil Simulasi

Dari hasil run analysis SAP2000 ada 4 variabel yang dibandingkan dengan program FE PCG An Wang :

- 1. Displacement maksimum
- 2. Differential settlement maksimum
- 3. Distribusi bending moment
- 4. Distribusi beban pada raft dan tiang

4.1.1. Penjelasan Umum

Pembahasan output run analysis akan dimulai dari contoh tampilan hasil program SAP2000 secara detail dan untuk selanjutnya yang ditampilkan hanya hasil simulasi yang diinginkan. Output mendetail untuk semua model bisa dilihat pada Lampiran E. Sebelum membaca output perlu diketahui hal-hal dasar dalam pembacaan output tersebut. Yaitu bentuk modelisasi yang bisa dilihat di Bab 3 dan sistem koordinat pada Lampiran A serta kesepakatan tanda pada Lampiran B. Modifikasi model SAP2000 yang ditampilkan hanya yang benar saja sedangkan trial modifikasi bisa dilihat pada Lampiran C. Semua satuan yang berlaku pada output adalah kN dan m.

4.1.2. Piled-Raft $K_p = 1$ (Raft Tanpa Grup Tiang)

Pengukuran dilakukan pada kedalaman 1 meter dari permukaan (z = 1). Sebenarnya akan lebih baik apabila z = 0 sehingga output dihitung pada permukaan tanah namun hal ini tidak bisa dilakukan karena rumus Boussinesq (2.16) yang diperlukan untuk menghitung input spring memakai faktor z yang terletak posisi pembilang sehingga jika z = 0 maka hasilnya menjadi tak hingga. Akhirnya penyesuaian dilakukan dengan memasukkan nilai z = 1 yang diharapkan nilainya tak berbeda jauh dengan z = 0.

4.1.2.1. Input Spring Tanah $K_p = 1$

Spring tanah dihitung dengan menggunakan kombinasi persamaan Boussinesq (2.16) dan persamaan Mindlin (2.15). Berikut merupakan contoh perhitungan spring tanah dengan mesh 5x5, sedangkan perhitungan input secara detail ada di Lampiran C.

1. Jarak horisontal semua titik-titik nodal yang berinteraksi dihitung.

	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905
	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
	6.25	5	3.75	2.5	1.25		1.25	2.5	3.75	5	6.25
ĺ	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
	6.731456	5.59017	4.506939	3.535534	2. 795 085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
	7.28869	6.25	5.303301	4.506 9 39	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905

Gambar 4.1. Jarak tiap titik nodal terhadap nodal 1

Perhitungan jarak interaksi memakai model utuh bukan ¼ model karena interaksi harus dihitung dari semua nodal yang berada di sekitar satu nodal tertentu yang akan dihitung besar springnya yakni nodal 1 yang ditandai dengan warna kuning.

- 2. Besar displacement pada nodal 1 akibat pembebanan pada nodal itu sendiri dihitung menggunakan persamaan Boussinesq.
- Dari input jarak tiap nodal maka akhirnya persamaan Mindlin digunakan menghitung displacement per gaya satu satuan. Hasilnya dikombinasikan dengan hasil persamaan Boussinesq yang ditandai dengan warna kuning.

2.01865E-06	4.45633E-06	4.89E-06	5.29E-06	5.59E-06	5.6971E-06	5.59E-06	5.29E-06	4.89E-06	4.46E-06	2.01865E-06
4.45633E-06	1.00809E-05	1.14E-05	1.27E-05	1.38E-05	1.4207E-05	1.38E-05	1.27E-05	1.14E-05	1.01E-05	4.45633E-06
4.89093E-06	1.13942E-05	1.34E-05	1.57E-05	1.79E-05	1.88372E-05	1.79E-05	1.57E-05	1.34E-05	1.14E-05	4.89093E-06
5.29285E-06	1.27249E-05	1.57E-05	1.99E-05	2.5E-05	2.77855E-05	2.5E-05	1.99E-05	1.57E-05	1.27E-05	5.29285E-06
5.58741E-06	1.37885E-05	1.79E-05	2.5E-05	3.81E-05	5.04966E-05	3.81E-05	2.5E-05	1.79E-05	1.38E-05	5.58741E-06
5.6971E-06	1.4207E-05	1.88E-05	2.78E-05	5.05E-05	0.000047762	5.05E-05	2.78E-05	1.88E-05	1.42E-05	5.6971E-06
5.58741E-06	1.37885E-05	1.79E-05	2.5E-05	3.81E-05	5.04966E-05	3.81E-05	2.5E-05	1.79E-05	1.38E-05	5.58741E-06
5.29285E-06	1.27249E-05	1.57E-05	1.99E-05	2.5E-05	2.77855E-05	2.5E-05	1.99E-05	1.57E-05	1.27E-05	5.29285E-06
4.89093E-06	1.13942E-05	1.34E-05	1.57E-05	1.79E-05	1.88372E-05	1.79E-05	1.57E-05	1.34E-05	1.14E-05	4.89093E-06
4.45633E-06	1.00809E-05	1.14E-05	1.27E-05	1.38E-05	1.4207E-05	1.38E-05	1.27E-05	1.14E-05	1.01E-05	4.45633E-06
2.01865E-06	4.45633E-06	4.89E-06	5.29E-06	5.59E-06	5.6971E-06	5.59E-06	5.29E-06	4.89E-06	4.46E-06	2.01865E-06

Gambar 4.2. Hasil persamaan Mindlin dikombinasikan dengan persamaan Boussinesq z = 1

Hasil displacement per gaya satu satuan pada bagian tepi raft dibagi 2 sedangkan pada pada bagian sudut raft dibagi 4. Hal ini disebabkan area yang berkontribusi pada displacement tepi raft hanya setengah dari nodal-nodal bagian dalam sedangkan nodal-nodal di sudut cuma seperempatnya.

- 4. Semua angka hasil persamaan di atas dijumlah menjadi displacement per gaya satu satuan pada nodal 1 sebesar 0.001784075.
- 5. Langkah 1-4 diulangi untuk semua nodal lainnya sehingga menjadi seperti di bawah ini.

0.00095	0.00107	0.001161	0.001218	0.00125	0.00126	0.00125	0.001218	0.001161	0.00107	0.00095
0.00107	0.001229	0.001347	0.0 0141 8	0.001456	0.001469	0.001456	0.001418	0.001347	0.001229	0.00107
0.001161	0.001347	0.001483	0.001565	0.001609	0.001623	0.001609	0.001565	0.001483	0.001347	0.001161
0.001218	0.001418	0.001565	0.001653	0.001701	0.001717	0.001701	0.001653	0.001565	0.001418	0.001218
0.00125	0.001456	0.001609	0.001701	0.001752	0.001768	0.001752	0.001701	0.001609	0.001456	0.00125
0.00126	0.001469	0.001623	0.001717	0.001768	0.001784	0.001768	0.001717	0.001623	0.001469	0.00126
0.00125	0.001456	0.001609	0.001701	0.001752	0.001768	0.001752	0.001701	0.00160 <mark>9</mark>	0.001456	0.00125
0.001218	0.001418	0.001565	0.001653	0.001701	0.001717	0.001701	0.001653	0.00156 <mark>5</mark>	0.001418	0.001218
0.001161	0.001347	0.001483	0.001565	0.001609	0.001623	0.001609	0.001565	0.001483	0.001347	0.001161
0.00107	0.001229	0.001347	0.001418	0.001456	0.001469	0.001456	0.001418	0.00134 <mark>7</mark>	0.001229	0.00107
0.00095	0.00107	0.001161	0.001218	0.00125	0.00126	0.00125	0.001218	0.001161	0.00107	0.00095

Gambar 4.3. Hasil displacement per gaya satu satuan semua nodal z = 1

6. Selanjutnya hasil ini dikonversi ke konstanta spring dengan cara menginvers (1/...) dan kemudian mengkalikannya dengan luas area yang berkontribusi pada spring tersebut yaitu 1.25 x 1.25 = 1.5625. Makin kecil displacement maka konstanta spring makin besar.

				_						
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	1270.909	1159.916	1102.099	1072.899	1063.889	1072.899	1102.099	1159.916	1270.909	1459.855
1346.051	1159.916	1053.443	998.6251	971.2117	962.7957	971.2117	998.6251	1053.443	1159.916	1346.051
1283.049	1102.099	998.6251	945.1407	918.4131	910.2169	918.4131	945.1407	998.6251	1102.099	1283.049
1250.333	1072.899	971.2117	918.4131	891.9888	883.8834	891.9888	918.4131	971.2117	1072.899	1250.333
1240.125	1063.889	962.7957	910.2169	883.8834	875.8041	883.8834	910.2169	962.7957	1063.889	1240.125
1250.333	1072.899	971.2117	918.4131	891.9888	883.8834	891.9888	918.4131	971.2117	1072.899	1250.333
1283.049	1102.099	998.6251	945.1407	918.4131	910.2169	918.4131	945.1407	998.6251	1102.099	1283.049
1346.051	1159.916	1053.443	998.6251	971.2117	962.7957	971.2117	998.6251	1053.443	1159.916	1346.051
1459.855	1270.909	1159.916	1102.099	1072.899	1063.889	1072.899	1102.099	1159.916	1270.909	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar 4.4. Konstanta spring semua nodal z = 1

 Sesuai permodelan awal yaitu model yang dihitung hanya ¼ saja. Akibatnya distribusi konstanta spring harus dipotong menjadi seperempatnya saja menjadi hanya bagian yang diberi kotak-kotak seperti pada Gambar 4.4.

620.062	1250.333	1283.049	1346.051	1459.855	1644.527
531.945	1072.899	1102.099	1159.916	1270.909	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
455.108	918.413	945.141	998.625	1102.099	1283.049
441.942	891.989	918.413	971.212	1072.899	1250.333
218.951	441.942	455.108	481.398	531.945	620.062

Gambar 4.5. Konstanta spring model $\frac{1}{4}$ bagian z = 1

Saat model full direduksi menjadi model ¼ maka area yang berkontribusi pada kekakuan spring nodal juga berubah khususnya pada zona pemotongan yaitu pada nodal 1-6 dan nodal 7, 13, 19, 25, 31. Konstanta spring pada nodal 1 dibagi 4 sedangkan sisanya dibagi 2.

8. Ukuran mesh menjadi catatan penting dan sangat berpengaruh pada hasil konstanta spring. Ini dikarenakan persamaan Mindlin menghitung interaksi antarnodal. Jika ukuran mesh membesar maka interaksi antarnodal menjadi lebih banyak sehingga displacement per gaya satu satuan yang dihasilkan menjadi jauh lebih besar. Akibatnya konstanta spring menjadi jauh mengecil, sebagai catatan sebaliknya displacement makin kecil konstanta spring makin besar (kaku). Ini terbukti variasi mesh yang lebih halus 10x10 (Lampiran F) yang dibuat ternyata menyebabkan spring sangat lunak dibandingkan spring mesh 5x5 dan nilai errornya tetap besar.

4.1.2.2 Displacement Maksimum (z = 1)

Displacement yang diukur berupa perpindahan dalam arah Z-global atau 3-local axes dari nodal di tengah raft (nodal 1).

1. $K_r = 0.01$

Gambar 4.6. Tampilan 2-D view SAP2000 dilengkapi penomoran nodal

Gambar 4.7. Output run analysis deformed shape dengan kontur displacement $K_p = 1 \ K_r = 0.01$

Tabel 4.1. Output displacement nodal $K_p = 1 K_r = 0.01$

Joint	OutputCase	CaseType	U1	U2	U3	R1	R2
Text	Text	Text	m	m	m	Radians	Radians
1	DEAD	LinStatic	0.000000	0.000000	-0.034221	0.000000	0.000000
36	DEAD	LinStatic	0.000000	0.000000	-0.016152	0.002384	-0.002384

Displacement maksimum	= -0.034221 m
Displacement sudut (minimum)	= -0.016152 m

2. $K_r = 0.1$

Displacement maksimum	= -0.027339 m
Displacement sudut (minimum)	= -0.024181 m

3. $K_r = 1$	
Displacement maksimum	= -0.026072 m
Displacement sudut (minimum)	= -0.025731 m
4. $K_r = 10$	
Displacement maksimum	= -0.025935 m
Displacement sudut (minimum)	= -0.025900 m

5. $K_r = 100$	
Displacement maksimum	= -0.025921 m
Displacement sudut (minimum)	= -0.025917 m

4.1.2.3 Differential Settlement Maksimum (z = 1)

Differential settlement dihitung dari selisih displacement maksimum di tengah raft (nodal 1) dengan displacement minimum di sudut raft (nodal 36).

1. $K_r = 0.01$

Differential settlement maksimum = 0.018069 m

2. $K_r = 0.1$

Differential settlement maksimum = 0.003158 m

3. $K_r = 1$

Differential settlement maksimum = 0.000341 m

4. $K_r = 10$

Differential settlement maksimum = $3.5 \ 10^{-5} \text{ m}$

5. $K_r = 100$

Differential settlement maksimum = $4 \ 10^{-6} \text{ m}$

4.1.2.4 Distribusi Bending Moment (z = 1)

Bending moment maksimum terjadi pada sumbu yang melalui bagian tengah raft yaitu pada sumbu X dan Z pada An Wang atau sumbu X dan Y pada SAP2000. Besaran bending moment yang ditinjau terdapat pada barisan nodal sepanjang sumbu X-global yaitu 2, 3, 4, 5, dan 6. Nodal tersebut dilaporkan dalam bentuk jarak relatif terhadap raft centre X/B yaitu secara berurutan 0.2, 0.4, 0.6, 0.8, 1.

An Wang menampilkan bending moment pada bidang X-Y yaitu Mz, Mz sendiri adalah momen yang berputar pada sumbu Z (kaidah tangan kanan). Penamaan Mz di SAP2000 berbeda dengan program FE PCG An Wang dimana Mz menjadi M11 dalam SAP2000. M11 adalah momen yang sumbu putarnya tegak lurus terhadap sumbu 1 local axes dari area element shell.

Pelaporan bending moment di SAP2000 hanya di tiap nodal. Misalnya pada nodal 2 yang diapit pelat 1 dan 2, bending moment pelat 1 dan pelat 2 akan dilaporkan pada nodal 2 maka 2 nilai bending moment ini akan dirata-rata. Cara yang sama diaplikasikan pada nodal 3-6.

1. $K_r = 0.01$

Gambar 4.8. Tampilan 2-D view SAP2000 dilengkapi penomoran nodal dan penomoran pelat

Gambar 4.9. Output run analysis deformed shape dengan kontur bending moment $K_p = 1 \ K_r = 0.01$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	40.9483
1	21	Plate-Thin	2	DEAD	LinStatic	39.6025
1	21	Plate-Thin	8	DEAD	LinStatic	39.1697
1	21	Plate-Thin	7	DEAD	LinStatic	40.4910
2	22	Plate-Thin	2	DEAD	LinStatic	39.6050
2	22	Plate-Thin	3	DEAD	LinStatic	35.3605
2	22	Plate-Thin	9	DEAD	LinStatic	35.0031
2	22	Plate-Thin	8	DEAD	LinStatic	39.1716
3	23	Plate-Thin	3	DEAD	LinStatic	35.3656
3	23	Plate-Thin	4	DEAD	LinStatic	27.6685
3	23	Plate-Thin	10	DEAD	LinStatic	27.4359
3	23	Plate-Thin	9	DEAD	LinStatic	35.0075
4	24	Plate-Thin	4	DEAD	LinStatic	27.6754
4	24	Plate-Thin	5	DEAD	LinStatic	15.8913
4	24	Plate-Thin	11	DEAD	LinStatic	15.8025
4	24	Plate-Thin	10	DEAD	LinStatic	27.4428
5	25	Plate-Thin	5	DEAD	LinStatic	15.8964
5	25	Plate-Thin	6	DEAD	LinStatic	0.0161
5	25	Plate-Thin	12	DEAD	LinStatic	0.0184

Tabel 4.2. Output bending moment dari pelat $K_p = 1$ $K_r = 0.01$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
5	25	Plate-Thin	11	DEAD	LinStatic	15.8093

Tabel 4.3. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.01$

Jarak dari pusat	Momen	
raft (nodal1)	(kN.m/m)	
0.2	39.6025	
0.4	35.36305	
0.6	27.67195	
0.8	15.89385	
1	0.01611	

2. $K_r = 0.1$

Tabel 4.4. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.1$

Jarak dari pusat	Momen	
raft (nodal1)	(kN.m/m)	
0.2	70.6587	
0.4	67.57335	
0.6	58.4039	
0.8	23.43165	
1	0.0555	
		-

3. $K_r = 1$

Tabel 4.5. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1$ $K_r = 1$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	72.78975
0.4	62.6981
0.6	46.39555
0.8	24.84435
1	0.0632

4. $K_r = 10$

Tabel 4.6. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 10$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	73.35735

0.4	63.1654
0.6	46.71575
0.8	24.9982
1	0.0641

4.1.2.5. Distribusi Beban Pada Piled-Raft K_p 1 (Raft Tanpa Grup Tiang) z = 1

Distribusi pembebanan pada raft diukur pada nodal 1, 3, 5, 15, 17, dan 29 atau dengan kata lain pada posisi tiang berada. $K_p = 1$ menandakan besar spring tiang yang sama dengan spring tanah sehingga bisa disebut hanya terdiri raft saja tanpa tiang. Distribusi pembebanan dihitung dari output joint reaction pada nodal tiang tersebut yang kemudian dibagi dengan rata-rata joint reaction semua nodal tiang. Sedangkan perbandingan beban tiang dengan beban total piled-raft dihitung dari output joint reaction nodal tiang dibagi beban total yaitu beban merata dikali dengan luas area.

Grafik distribusi beban dan perbandingan beban tiang terhadap beban total diletakkan di subbab perbandingan SAP2000 terhadap FE PCG. Penamaannya mengikuti penomoran tiang An Wang.

4.1.2.6. Perbandingan SAP2000 Terhadap FE PCG (z = 1)

Berikut ini membahas perbandingan masing-masing output program SAP2000 dengan program FE PCG An Wang.

1. Displacement maksimum

K _r	Central Disp AnWang (m)	Central Disp (m)	Error (%)
0.01	-0.01975	-0.034221	73.270886
0.1	-0.01658	-0.027339	64.891435
1	-0.01507	-0.026072	73.005972
10	-0.01492	-0.025935	73.827078
100	-0.01485	-0.025921	74.552189

Tabel 4.7. Tabel output displacement maksimum FE PCG Vs SAP2000 $K_p = 1$

2. Differential settlement maksimum

Tabel 4.8. Tabel output differential settlement FE PCG Vs SAP2000 $K_p = 1$

	K _r	Diff Sett (m)	Diff Sett An Wang (m)	Δ (m)	Error DS (%)
	0.01	0.018069	0.009214	0.00886	96.10375516
	0.1	0.003158	0.003571	0.00041	11.56538785
	1	0.000341	0.0005	0.00016	31.8
,	10	3.5E-05	0	3.5E-05	
	100	4E-06	0	4E-06	

- 3. Distribusi bending moment
- 1. $K_r = 0.01$

Gambar 4.13. Grafik distribusi bending moment FE PCG Vs SAP2000 K_p = 1 $K_r = 0.1$

3. $K_r = 1$

Gambar 4.15. Grafik distribusi bending moment FE PCG Vs SAP2000 K_p = 1 $K_r = 10$

4. Distribusi beban

Gambar 4.17. Grafik distribusi beban tanah FE PCG $K_p = 1$

4.1.3. Modifikasi Piled-Raft $K_p = 1$

Ternyata hasil SAP2000 tidak memuaskan dengan error yang begitu besar baik untuk displacement maksimum, differential settlement, distribusi bending moment, dan distribusi beban. Untuk itu dilakukan modifikasi coba-coba (trial) untuk mencocokan hasil SAP2000 dengan FE PCG An Wang. Trial modifikasi berpatokan pada pencocokan hasil displacement maksimum. Cara yang dipilih adalah dengan mengubah z agar spring tanah agar menjadi lebih kuat karena displacement maksimum SAP2000 jauh lebih rendah dibandingkan dengan FE PCG.

4.1.3.1. Displacement Maksimum (z = 7.5)

Displacement yang diukur berupa perpindahan dalam arah Z-global atau 3-local axes dari nodal di tengah raft (nodal 1).

1. $K_r = 0.01$

Displacement sudut (minimum	a) $= -0.015853 \text{ m}$
-----------------------------	----------------------------

5. $K_r = 100$

Displacement maksimum	= -0.01587 m
Displacement sudut (minimum)	= -0.015867 m

4.1.3.2. Differential Settlement Maksimum (z = 7.5)

Differential settlement dihitung dari selisih displacement maksimum di tengah raft (nodal 1) dengan displacement minimum di sudut raft (nodal 36).

1. $K_r = 0.01$

Differential settlement maksimum = 0.011293m

2. $K_r = 0.1$

Differential settlement maksimum = 0.002407m

3. $K_r = 1$

Differential settlement maksimum = 0.000272m

4. $K_r = 10$

Differential settlement maksimum = $2.8 \ 10^{-5} \text{ m}$

5. $K_r = 100$

Differential settlement maksimum = $3 \ 10^{-6}$ m

4.1.3.3. Distribusi Bending Moment (z = 7.5)

Bending moment maksimum terjadi pada sumbu yang melalui bagian tengah raft yaitu pada sumbu X dan Z pada An Wang atau sumbu X dan Y pada SAP2000. Besaran bending moment yang ditinjau terdapat pada barisan nodal sepanjang sumbu X-global yaitu 2, 3, 4, 5, dan 6. Nodal tersebut dilaporkan dalam bentuk jarak relatif terhadap raft centre X/B yaitu secara berurutan 0.2, 0.4, 0.6, 0.8, 1.

An Wang menampilkan bending moment pada bidang X-Y yaitu Mz, Mz sendiri adalah momen yang berputar pada sumbu Z (kaidah tangan kanan). Penamaan Mz di SAP2000 berbeda dengan program FE PCG An Wang dimana Mz menjadi M11 dalam SAP2000. M11 adalah momen yang sumbu putarnya tegak lurus terhadap sumbu 1 local axes dari area element (pelat).

Pelaporan bending moment di SAP2000 hanya di tiap nodal. Misalnya pada nodal 2 yang diapit pelat 1 dan 2, bending moment pelat 1 dan pelat 2 akan dilaporkan pada nodal 2 maka 2 nilai bending moment ini akan dirata-rata. Cara yang sama diaplikasikan pada nodal 3-6.

Gambar 4.20. Output run analysis deformed shape dengan kontur bending moment $K_p = 1$ $K_r = 0.01$ z = 7.5

Tabel 4.9 Output bending moment dari pelat $K_p = 1$ $K_r = 0.01$ z = 7.5

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	40.9483
1	21	Plate-Thin	2	DEAD	LinStatic	39.6025
1	21	Plate-Thin	8	DEAD	LinStatic	39.1697
1	21	Plate-Thin	7	DEAD	LinStatic	40.4910

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
2	22	Plate-Thin	2	DEAD	LinStatic	39.6050
2	22	Plate-Thin	3	DEAD	LinStatic	35.3605
2	22	Plate-Thin	9	DEAD	LinStatic	35.0031
2	22	Plate-Thin	8	DEAD	LinStatic	39.1716
3	23	Plate-Thin	3	DEAD	LinStatic	35.3656
3	23	Plate-Thin	4	DEAD	LinStatic	27.6685
3	23	Plate-Thin	10	DEAD	LinStatic	27.4359
3	23	Plate-Thin	9	DEAD	LinStatic	35.0075
4	24	Plate-Thin	4	DEAD	LinStatic	27.6754
4	24	Plate-Thin	5	DEAD	LinStatic	15.8913
4	24	Plate-Thin	11	DEAD	LinStatic	15.8025
4	24	Plate-Thin	10	DEAD	LinStatic	27.4428
5	25	Plate-Thin	5	DEAD	LinStatic	15.8964
5	25	Plate-Thin	6	DEAD	LinStatic	0.0161
5	25	Plate-Thin	12	DEAD	LinStatic	0.0184
5	25	Plate-Thin	11	DEAD	LinStatic	15.8093

Tabel 4.10. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.01$

Г			
	Jarak dari pusat	Momen	
	raft (nodal1)	(kN.m/m)	
	0.2	24.4022	
	0.4	22.53325	
	0.6	18.6381	
	0.8	11.5935	
	1	0.0033	

2. $K_r = 0.1$

Tabel 4.11. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 0.1$

Z =	1.5
Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	51.7458
0.4	44.96345
0.6	33.84535
0.8	18.69645
1	0.0395

3. $K_r = 1$

Tabel 4.12. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1$ $K_r = 1$ z = 7.5

Z = 7.3		
Jarak dari pusat	Momen	
raft (nodal1)	(kN.m/m)	

0.2	58.1996
0.4	50.2464
0.6	37.4235
0.8	20.37755
1	0.0488

4. $K_r = 10$

Tabel 4.13. Output bending momen	t dari nodal 2, 3, 4, 5, 6 $K_p = 1 K_r = 10$
----------------------------------	---

z = 7.5				
Jarak dari pusat	Momen (kN.m/m)			
raft (nodal1)				
0.2	58.93495			
0.4	50.84825			
0.6	37.83115			
0.8	20.5692			
1	0.0498			

4.1.3.4. Distribusi Beban Pada Piled-Raft K_p 1 (Raft Tanpa Grup Tiang) z = 7.5

Distribusi pembebanan pada raft diukur pada nodal 1, 3, 5, 15, 17, dan 29 atau dengan kata lain pada posisi tiang berada. $K_p = 1$ menandakan besar spring tiang yang sama dengan spring tiang sehingga bisa disebut hanya terdiri raft saja tanpa tiang. Distribusi pembebanan dihitung dari output joint reaction pada nodal tiang tersebut yang kemudian dibagi dengan rata-rata joint reaction nodal tiang. Sedangkan perbandingan beban tiang dengan beban total piled-raft dihitung dari output joint reaction nodal tiang dibagi beban total yaitu beban merata dikali dengan luas area.

Grafik distribusi beban dan perbandingan beban tiang terhadap beban total diletakkan di subbab perbandingan SAP2000 terhadap FE PCG. . Penamaannya mengikuti penomoran tiang An Wang.

4.1.3.5. Perbandingan SAP2000 Terhadap FE PCG (z = 7.5)

Berikut ini membahas perbandingan masing-masing output program SAP2000 dengan program FE PCG An Wang.

1. Displacement maksimum

Gambar 4.21. Grafik displacement maksimum FE PCG Vs SAP2000 K_p = 1 z = 7.5

Tabel 4.14. Tabel output displacement maksimum FE PCG Vs SAP2000 K_p = 1 z = 7.5

K _r	Central Disp AnWang (m)	Central Disp (m)	Error CD (%)
0.01	-0.01975	-0.020847	5.55443038
0.1	-0.01658	-0.016909	1.984318456
1	-0.01507	-0.015986	6.078301261
10	-0.01492	-0.015881	6.441018767
100	-0.01485	-0.01587	6.868686869

Gambar 4.22. Grafik differential settlement maksimum FE PCG Vs SAP2000 $K_p = 1 z = 7.5$

Tabel 4.15.	Tabel output differential settlement FE PCG Vs SAP2000 $K_p = 1$	1
	z=7.5	

K _r	Diff Sett (m)	Diff Sett An Wang (m)	Δ (m)	Error DS (%)
0.01	0.011293	0.009214	-5.5753	22.56349034
0.1	0.002407	0.003571	2.00123	32.59591151
1	0.000272	0.0005	6.09429	45.6
10	2.8E-05	0	-6.4569	
100	3E-06	0	-6.8846	

- 3. Distribusi bending moment
- 1. $K_r = 0.01$

Gambar 4.24. Grafik distribusi bending moment FE PCG Vs SAP2000 K_p = 1 $K_r = 0.1 z = 7.5$
3. $K_r = 1$

Gambar 4.26. Grafik distribusi bending moment FE PCG Vs SAP2000 K_p = 1 $K_r = 10 z = 7.5$

4. Distribusi beban

Gambar 4.28. Grafik perbandingan beban tiang terhadap total beban $K_p = 1$ z = 7.5

4.1.3.6. Kesimpulan Awal z = 1 Vs z = 7.5

Dengan z = 7.5 atau dengan kata lain penguatan spring ternyata displacement maksimum SAP2000 berhasil diperkecil perbedaannya dengan FE PCG sehingga hasilnya hampir sama. Efek lainnya grafik differential settlement SAP2000 juga turun mendekati FE PCG, differential settlement pada K_r 0.01, K_r 10, K_r 100 makin mendekati FE PCG (error mengecil) sedangkan differential settlement pada K_r 0.1 dan K_r 1 menjauhi FE PCG (error membesar). Grafik bending moment ikut turun dimana pada K_r 0.01 hasil SAP2000 mendekati FE PCG (error mengecil) sementara pada K_r 0.1, K_r 10 hasil SAP2000 turun menjauhi FE PCG (error membesar). Distribusi beban pada z = 7.5 menunjukkan bahwa grafik semakin merapat menuju ke nilai pile load/average pile load = 1 dibandingkan z = 1. Namun hasilnya tetap berbeda dengan FE PCG dengan range distribusi beban tiang lebih luas dimana pada tiang 1, 2, dan 3 menanggung beban lebih besar serta tiang 4, 5, dan 6 menanggung beban lebih kecil dibandingkan SAP2000. Sedangkan untuk perbandingan beban tiang beban total tidak ada perubahan berarti, hasil SAP2000 tetap lebih besar dibandingkan FE PCG.

4.1.4. Piled-Raft $K_p = 50$

Pengukuran dan modifikasi dilakukan pada kedalaman 1 meter dari permukaan (z = 1). Pengukuran masih dilakukan pada z = 1 walaupun dibuktikan bahwa pada z = 7.5 perbedaan displacement antara SAP2000 dan FE PCG bisa dipangkas namun kondisi jauh berbeda ditemui pada piled raft dengan $K_p \neq 1$ karena ternyata setelah dianalisis nantinya ternyata konfigurasi spring tiang SAP2000 terlalu kuat bukan lemah seperti pada raft jadi ketika z dibuat makin dalam malah akan membuat spring semakin kuat dan hasil displacement makin jauh perbedaannya antara keduanya.

4.1.4.1. Input Spring Tanah Dan Tiang

Input spring tanah sudah dibahas sebelumnya. Input keseluruhan spring adalah dengan menambahkan spring tanah dan spring tiang karena adanya tiang memperkaku sistem keseluruhan sehingga spring tanah bisa ditambah secara langsung. Spring tiang dihitung dengan menggunakan kombinasi persamaan

settlement tiang akibat beban sendiri (2.2) dan persamaan faktor interaksi 2 floating pile (2.8). Berikut merupakan contoh perhitungan spring tiang dengan mesh 5x5 pada nodal tiang 1 atau di penomoran An Wang ditulis sebagai tiang 6, sedangkan perhitungan input secara detail ada di Lampiran C.

1. Jarak horisontal atau spacing semua titik-titik nodal tiang yang berinteraksi dihitung.

				-						
8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905
7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
6.25	5	3.75	2.5	1.25	0	1.25	2.5	3.75	5	6.25
6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.53 5534	4.506939	5.59017	6.731456
7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905
8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835

Gambar 4.29. Jarak tiap titik nodal terhadap nodal tiang 1

Untuk perhitungan diperlukan model full. Bagian kuning merupakan lokasi nodal tiang dan bagian biru merupakan lokasi tiang yang akan dihitung settlementnya.

- 2. Besar settlement akibat beban sendiri dihitung menggunakan persamaan (2.2)
- 3. Besar faktor α_F pada nodal tiang 1 ditentukan dari Gambar 2.3. Sehingga dihasilkan seperti di bawah ini.

0.131	0.162	0.169	0.162	0.131
0.162	0.217	0.207	0.217	0.162
0.102	0.217	0.207	0.217	0.102
0.169	0.267	0	0.267	0.169
0.162	0.217	0.267	0.217	0.162
0.102	0.217	0.207	0.217	0.102
0.131	0.162	0.169	0.162	0.131

Gambar 4.30. Besar faktor $\alpha_F K_p = 50$

 Sesuai persamaan (2.7) maka settlement tambahan akibat tiang lain sama dengan settlement tiang akibat beban sendiri dikali α. Kolom biru menampilkan settlement akibat beban sendiri dari nodal tiang 1.

3.8E-06	4.7E-06	4.9E-06	4.7E-06	3.8E-06
4.7E-06	6.3E-06	7.75E-06	6.3E-06	4.7E-06
4.9E-06	7.75E-06	2.9E-05	7.75E-06	4.9E-06
4.7E-06	6.3E-06	7.75E-06	6.3E-06	4.7E-06
3.8E-06	4.7E-06	4.9E-06	4.7E-06	3.8E-06

Gambar 4.31. Settlement tiang per gaya satu satuan $K_p = 50$

- 5. Semua angka hasil persamaan di atas dijumlah menjadi displacement per gaya satu satuan pada nodal tiang 1 sebesar 1.58 10⁻⁴.
- 6. Langkah 1-5 diulangi untuk semua nodal tiang lainnya sehingga menjadi seperti di bawah ini.

1.20E-04	0.000132	1.36E-04	0.000132	1.20E-04
0.000132	0.000147	1.52E-04	0.000147	0.000132
1 36F-04	1 52F-04	1 58F-04	1 52E-04	1 36F-04
1.002.01				
0.000132	0.000147	1.52E-04	0.000147	0.000132
1.20E-04	0.000132	1.36E-04	0.000132	1.20E-04
C 1	4 00 XX 11 11 1			

Gambar 4.32. Hasil displacement per gaya satu satuan semua nodal tiang $K_p = 50$

7. Selanjutnya hasil ini dikonversi ke konstanta spring dengan cara menginvers (1/...) dan kemudian mengkalikannya dengan luas area yang berkontribusi pada spring tersebut yaitu 1.25 x 1.25 = 1.5625. Makin kecil displacement maka konstanta spring makin besar.

12994.595	11801.359	11454.925	11801.359	12994.595
11801.359	10621.223	10264.888	10621.223	11801.359
11454.925	10264.888	9913.402	10264.888	11454.925
11801.359	10621.223	10264.888	10621.223	11801.359
12994.595	11801.359	11454.925	11801.359	12994.595

Gambar 4.33. Konstanta spring semua nodal tiang $K_p = 50$

8. Hasil konstanta spring tiang dijumlahkan dengan spring tanah.

1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	14265.504	1159.916	12903.458	1072.899	12518.814	1072.899	12903.458	1159.916	14265.504	1459.855
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1283.049	12903.458	998.625	11566.364	918.413	11175.104	918.413	11566.36 4	9 98.6 2 5	1 <mark>2903.458</mark>	1283.049
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1240.125	12518.814	962.796	11175.104	883.883	10789.206	883.883	11175.104	962.796	12518.814	1240.125
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1283.049	12903.458	998.625	1156 6.364	918.413	11175.104	918.413	11566.364	998.625	12903.458	1283.049
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1459.855	14265.504	1159.916	12903.458	10 72 .899	12 518.814	1072.899	12903.458	1159.916	14265.504	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar 4.34. Konstanta spring tanah + spring tiang $K_p = 50 z = 1$

Zona orange merupakan spring tiang + spring tanah. Sisanya spring tanah saja.

Sesuai permodelan awal yaitu model yang dihitung hanya ¼ saja. Akibatnya distribusi konstanta spring harus dipotong menjadi seperempatnya.

620.062	1250.333	1283.049	1346.051	1459.855	1644.527
6259.407	1072.899	12903.458	1159.916	14265.504	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
5587.552	918.413	11566.364	998.625	12903.458	1283.049
441.942	891.989	918.413	971.212	1072.899	1250.333
2697.302	441.942	5587.552	481.398	6259.407	620.062

Gambar 4.35. Konstanta spring model $\frac{1}{4}$ bagian $K_p = 50$ z = 1

Saat model full direduksi menjadi model ¼ maka area yang berkontribusi pada kekakuan spring nodal juga berubah khususnya pada zona pemotongan yaitu

pada nodal 1-6 dan nodal 7, 13, 19, 25, 31. Konstanta spring pada nodal 1 dibagi 4 sedangkan sisanya dibagi 2.

4.1.4.2 Displacement Maksimum (z = 1)

Displacement yang diukur berupa perpindahan dalam arah Z-global atau 3-local axes dari nodal di tengah raft (nodal 1).

Gambar 4.36. Output run analysis deformed shape dengan kontur displacement $K_p = 50 K_r = 0.001$

Tabel 4.16. Output displacement nodal $K_p = 50 K_r = 0.001$

Joint	OutputCase	CaseType	U1	U2	U3	R1	R2
Text	Text	Text	m	m	m	Radians	Radians
1	DEAD	LinStatic	0.000000	0.000000	-0.010540	0.000000	0.000000
36	DEAD	LinStatic	0.000000	0.000000	-0.005592	0.000694	-0.000694
Displacement maksimum			= -0.01054 m				
Displacement sudut (minimum)			= -0.005592	m			

•

2	V -	-0.01
4.	N_{r}	- 0.01

Displacement maksimum	= -0.009915 m
Displacement sudut (minimum)	= -0.006217 m

2	1Z	_ 0	1
э.	K r	- 0.	1

Displacement maksimum	= -0.008784 m
Displacement sudut (minimum)	= -0.007815 m

4. $K_r = 1$

Displacement maksimum	= -0.008441 m
Displacement sudut (minimum)	= -0.008326 m

5. K_r = 10 Displacement maksimum

Displacement sudut (minimum)

= -0.008399 m = -0.008388 m

6. $K_r = 100$	
Displacement maksimum	= -0.008395 m
Displacement sudut (minimum)	= -0.008394 m

4.1.4.3 Differential Settlement Maksimum (z = 1)

Differential settlement dihitung dari selisih displacement maksimum di tengah raft (nodal 1) dengan displacement minimum di sudut raft (nodal 36).

1. $K_r = 0.001$

Differential settlement maksimum = 0.004948 m

2. $K_r = 0.01$

Differential settlement maksimum = 0.003698 m

Differential settlement maksimum = 0.000969 m

4. $K_r = 1$

Differential settlement maksimum = 0.000115 m

5. $K_r = 10$

Differential settlement maksimum = $1.1 \ 10^{-5}$ m

6. $K_r = 100$

Differential settlement maksimum = $1 \ 10^{-6}$ m

4.1.4.4 Distribusi Bending Moment (z = 1)

Bending moment maksimum terjadi pada sumbu yang melalui bagian tengah raft yaitu pada sumbu X dan Z pada An Wang atau sumbu X dan Y pada SAP2000. Besaran bending moment yang ditinjau terdapat pada barisan nodal sepanjang sumbu X-global yaitu 2, 3, 4, 5, dan 6. Nodal tersebut dilaporkan dalam bentuk jarak relatif terhadap raft centre X/B yaitu secara berurutan 0.2, 0.4, 0.6, 0.8, 1.

An Wang menampilkan bending moment pada bidang X-Y yaitu Mz, Mz sendiri adalah momen yang berputar pada sumbu Z (kaidah tangan kanan). Penamaan Mz di SAP2000 berbeda dengan program FE PCG An Wang dimana Mz menjadi M11 dalam SAP2000. M11 adalah momen yang sumbu putarnya tegak lurus terhadap sumbu 1 local axes dari area element shell.

Pelaporan bending moment di SAP2000 hanya di tiap nodal. Misalnya pada nodal 2 yang diapit pelat 1 dan 2, bending moment pelat 1 dan pelat 2 akan dilaporkan pada nodal 2 maka 2 nilai bending moment ini akan dirata-rata. Cara yang sama diaplikasikan pada nodal 3-6.

Gambar 4.37. Output run analysis deformed shape dengan kontur bending moment $K_p = 50 K_r = 0.01$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-4.2729
1	21	Plate-Thin	2	DEAD	LinStatic	19.4402
1	21	Plate-Thin	8	DEAD	LinStatic	10.9967
1	21	Plate-Thin	7	DEAD	LinStatic	11.1967
2	22	Plate-Thin	2	DEAD	LinStatic	19.4396
2	22	Plate-Thin	3	DEAD	LinStatic	-6.4365
2	22	Plate-Thin	9	DEAD	LinStatic	9.0265
2	22	Plate-Thin	8	DEAD	LinStatic	11.0003
3	23	Plate-Thin	3	DEAD	LinStatic	-6.4339
3	23	Plate-Thin	4	DEAD	LinStatic	14.5764
3	23	Plate-Thin	10	DEAD	LinStatic	6.2130
3	23	Plate-Thin	9	DEAD	LinStatic	9.0277
4	24	Plate-Thin	4	DEAD	LinStatic	14.5232
4	24	Plate-Thin	5	DEAD	LinStatic	-14.1148
4	24	Plate-Thin	11	DEAD	LinStatic	1.0801
4	24	Plate-Thin	10	DEAD	LinStatic	6.2756
5	25	Plate-Thin	5	DEAD	LinStatic	-13.5142
5	25	Plate-Thin	6	DEAD	LinStatic	0.5518

Tabel 4.17. Output bending moment dari pelat $K_p = 50 K_r = 0.01$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5353
5	25	Plate-Thin	11	DEAD	LinStatic	0.4850

Tabel 4.18. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.01$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	19.4399
0.4	-6.4352
0.6	14.5498
0.8	-13.8145
1	0.5518

Tabel 4.19. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.1$

Momen	Jarak dari pusat	
(kN.m/m)	raft (nodal1)	
32.0535	0.2	
5.65845	0.4	
20.85655	0.6	
-10.711	0.8	
0.5593	1	

3. $K_r = 1$

Tabel 4.20. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 1$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	35.9381
0.4	9.3896
0.6	22.8138
0.8	-9.70785
1	0.561

4. $K_r = 10$

Tabel 4.21. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 10$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	36.4094

0.4	9.8424
0.6	23.05145
0.8	-9.5856
1	0.5612

4.1.4.5. Distribusi Beban Pada Piled-Raft Kp 50

Distribusi pembebanan pada raft diukur pada nodal 1, 3, 5, 15, 17, dan 29 atau dengan kata lain pada posisi tiang berada. Distribusi pembebanan dihitung dari output joint reaction pada nodal tiang tersebut yang kemudian dibagi dengan rata-rata joint reaction nodal tiang. Sedangkan perbandingan beban tiang dengan beban total piled-raft dihitung dari output joint reaction nodal tiang dibagi beban total yaitu beban merata dikali dengan luas area.

Grafik distribusi beban diletakkan di subbab perbandingan SAP2000 terhadap FE PCG. Penamaannya mengikuti penomoran tiang An Wang.

4.1.4.6. Perbandingan SAP2000 Terhadap FE PCG (z = 1)

Berikut ini membahas perbandingan masing-masing output program SAP2000 dengan program FE PCG An Wang.

Tabel 4.22. Tabel output displacement maksimum FE PCG vs SAP2000 $K_p = 50$

	K.	Central Disp AnWang	Central Disp	Error CD
	1	(m)	(m)	(%)
-	0.001	-0.01742	-0.01054	39.4948335
	0.01	-0.015	-0.009915	33.9
	0.1	-0.01342	-0.008784	34.5454545
	1	-0.01233	-0.008441	31.540957
	10	-0.01225	-0.008399	31.4367347
	100	-0.01217	-0.008395	31.0188989

Gambar 4.39. Grafik differential settlement maksimum FE PCG vs SAP2000 $K_p = 50$

Tabel 4.23.	Tabel outpu	at differential	settlement	FE PCG	vs SAP2000	$K_{p} = 50$

K _r	Diff Sett (m)	Diff Sett An Wang (m)	Δ (m)	Error DS (%)
0.001	0.004948	0.005571	0.00062	11.1829115
0.01	0.003698	0.004933	0.00124	25.0354754
0.1	0.000969	0.002571	0.0016	62.3103851
1	0.000115	0.0004	0.00029	71.25
10	1.1E-05	0	-1E-05	
100	1E-06	0	-1E-06	

- 3. Distribusi bending moment
- 1. $K_r = 0.01$

Gambar 4.41. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 50 $K_r = 0.1$

3. $K_r = 1$

Gambar 4.43. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 50 $K_r = 10$

4. Distribusi beban

Gambar 4.45. Grafik distribusi beban tanah FE PCG $K_p = 50$

4.1.5. Modifikasi Piled-raft $K_p = 50$

Ternyata hasil SAP2000 tidak memuaskan dengan error yang begitu besar baik untuk displacement maksimum, differential settlement, dan distribusi bending moment. Untuk itu dilakukan modifikasi coba-coba (*trial*) untuk mencocokan hasil SAP2000 dengan FE PCG An Wang. Cara yang dipilih adalah dengan mengubah mencari faktor pengali khusus untuk spring tiang agar lebih lemah dan berpatokan pada hasil displacement maksimum. Faktor pengali = 0.48 untuk tiang sedangkan spring tanah tetap.

4.1.5.1. Displacement Maksimum (x 0.48)

Displacement yang diukur berupa perpindahan dalam arah Z-global atau 3-local axes dari nodal di tengah raft (nodal 1).

Displacement sudut	(minimum)	= -0.012844 m
--------------------	-----------	---------------

5. $K_r = 10$	
Displacement maksimum	= -0.012954 m
Displacement sudut (minimum)	= -0.012936 m

6. $K_r = 100$ Displacement maksimum = -0.012947 m Displacement sudut (minimum) = -0.012945 m

4.1.5.2. Differential Settlement Maksimum (x 0.48)

Differential settlement dihitung dari selisih displacement maksimum di tengah raft (nodal 1) dengan displacement minimum di sudut raft (nodal 36).

1. $K_r = 0.001$

Differential settlement maksimum = 0.010786 m

2. K_r = 0.01 Differential settlement maksimum = 0.006989 m

3. $K_r = 0.1$

Differential settlement maksimum = 0.001534 m

4. $K_r = 1$

Differential settlement maksimum = 0.000174 m

5. $K_r = 10$

Differential settlement maksimum = $1.8 \ 10^{-5} \text{ m}$

6. $K_r = 100$

Differential settlement maksimum = $2 \ 10^{-6} \text{ m}$

4.1.5.3. Distribusi Bending Moment (x 0.48)

Bending moment maksimum terjadi pada sumbu yang melalui bagian tengah raft yaitu pada sumbu X dan Z pada An Wang atau sumbu X dan Y pada SAP2000. Besaran bending moment yang ditinjau terdapat pada barisan nodal sepanjang sumbu X-global yaitu 2, 3, 4, 5, dan 6. Nodal tersebut dilaporkan dalam bentuk jarak relatif terhadap raft centre X/B yaitu secara berurutan 0.2, 0.4, 0.6, 0.8, 1.

An Wang menampilkan bending moment pada bidang X-Y yaitu Mz, Mz sendiri adalah momen yang berputar pada sumbu Z (kaidah tangan kanan). Penamaan Mz di SAP2000 berbeda dengan program FE PCG An Wang dimana Mz menjadi M11 dalam SAP2000. M11 adalah momen yang sumbu putarnya tegak lurus terhadap sumbu 1 local axes dari area element (pelat).

Pelaporan bending moment di SAP2000 hanya di tiap nodal. Misalnya pada nodal 2 yang diapit pelat 1 dan 2, bending moment pelat 1 dan pelat 2 akan dilaporkan pada nodal 2 maka 2 nilai bending moment ini akan dirata-rata. Cara yang sama diaplikasikan pada nodal 3-6.

Gambar 4.48. Output run analysis deformed shape dengan kontur bending moment $K_p = 50 K_r = 0.01 x 0.48$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	5.8783
1	21	Plate-Thin	2	DEAD	LinStatic	23.7978
1	21	Plate-Thin	8	DEAD	LinStatic	17.2492
1	21	Plate-Thin	7	DEAD	LinStatic	17.6501
2	22	Plate-Thin	2	DEAD	LinStatic	23.7961
2	22	Plate-Thin	3	DEAD	LinStatic	3.1621
2	22	Plate-Thin	9	DEAD	LinStatic	14.9107
2	22	Plate-Thin	8	DEAD	LinStatic	17.2543
3	23	Plate-Thin	3	DEAD	LinStatic	3.1704
3	23	Plate-Thin	4	DEAD	LinStatic	17.5853
3	23	Plate-Thin	10	DEAD	LinStatic	11.2101
3	23	Plate-Thin	9	DEAD	LinStatic	14.9075
4	24	Plate-Thin	4	DEAD	LinStatic	17.5393
4	24	Plate-Thin	5	DEAD	LinStatic	-6.6814
4	24	Plate-Thin	11	DEAD	LinStatic	4.7199
4	24	Plate-Thin	10	DEAD	LinStatic	11.2663
5	25	Plate-Thin	5	DEAD	LinStatic	-6.2269
5	25	Plate-Thin	6	DEAD	LinStatic	0.4173
5	25	Plate-Thin	12	DEAD	LinStatic	-0.3972
5	25	Plate-Thin	11	DEAD	LinStatic	4.2720

Tabel 4.24. Output bending moment pelat $K_p = 50 K_r = 0.01 x0.48$

X0.46				
Jarak dari pusat	Momen			
raft (nodal1)	(kN.m/m)			
0.2	23.79695			
0.4	3.16625			
0.6	17.5623			
0.8	-6.45415			
1	0.4173			

Tabel 4.25. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.01 x0.48$

Tabel 4.26. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 0.1$

xU	0.48
Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	41.21235
0.4	19.2628
0.6	26.6834
0.8	-1.8947
1	0.4291

3. $K_r = 1$

Tabel 4.27. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 50 K_r = 1$

XU	.48	
Jarak dari pusat	Momen	
raft (nodal1)	(kN.m/m)	
0.2	45.5121	
0.4	23.23565	
0.6	28.9386	
0.8	-0.73675	
1	0.4318	

4. $K_r = 10$

Tabel 4.28. Output bending moment dari nodal 2, 3, 4, 5, 6 K_p = 50 K_r = 10 $\times 0.48$

X0.48				
Jarak dari pusat	Momen			
raft (nodal1)	(kN.m/m)			
0.2	46.00655			
0.4	23.69245			
0.6	29.19795			
0.8	-0.6032			

4.1.5.4. Distribusi Beban Pada Piled-Raft Kp 50

Distribusi pembebanan pada raft diukur pada nodal 1, 3, 5, 15, 17, dan 29 atau dengan kata lain pada posisi tiang berada. Distribusi pembebanan dihitung dari output joint reaction pada nodal tiang tersebut yang kemudian dibagi dengan rata-rata joint reaction nodal tiang. Sedangkan perbandingan beban tiang dengan beban total piled-raft dihitung dari output joint reaction nodal tiang dibagi beban total yaitu beban merata dikali dengan luas area.

Grafik distribusi beban diletakkan di subbab perbandingan SAP2000 terhadap FE PCG. Penamaannya mengikuti penomoran tiang An Wang.

4.1.5.5.Perbandingan SAP2000 Terhadap FE PCG (x 0.48)

Berikut ini membahas perbandingan masing-masing output program SAP2000 dengan program FE PCG An Wang.

Gambar 4.49. Grafik displacement maksimum FE PCG vs SAP2000 K_p = 50 $\times 0.48$

AU.40							
K _r	Central Disp AnWang (m)	Central Disp (m)	Error CD (%)				
0.001	-0.01742	-0.017328	0.52812859				
0.01	-0.015	-0.01584	-5.6				
0.1	-0.01342	-0.013574	-1.14754098				
1	-0.01233	-0.013018	-5.57988646				
10	-0.01225	-0.012954	-5.74693878				
100	-0.01217	-0.012947	-6.38455218				

Tabel 4.29. Tabel output displacement maksimum FE PCG vs SAP2000 $K_p = 50 \times 0.48$

2. Differential settlement maksimum

Gambar 4.50. Grafik differential settlement maksimum FE PCG vs SAP2000 $K_p = 50 \text{ x} 0.48$

Tabel 4.30.	Tabel output differential settlement FE PCG vs SAP2000 $K_p =$	50
	v0.49	

20.48								
K _r	Diff Sett (m)	Diff Sett An Wang (m)	Δ (m)	Error DS (%)				
0.001	0.010786	0.005571	-0.0052	-93.6097649				
0.01	0.006989	0.004933	-0.0021	-41.6784918				
0.1	0.001534	0.002571	0.00104	40.33450019				
1	0.000174	0.0004	0.00023	56.5				
10	1.8E-05	0	-2E-05					
100	2E-06	0	-2E-06					

- 3. Distribusi bending moment
- 1. $K_r = 0.01$

 $K_r = 0.1 x 0.48$

3. $K_r = 1$

Gambar 4.54. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 50 $K_r = 10 \text{ x}0.48$

4. Distribusi beban

Gambar 4.56. Grafik perbandingan beban tiang terhadap total beban $K_p = 50 \times 0.48$

4.1.5.6. Kesimpulan Awal K_p 50 Vs K_p 50 x0.48

Dengan faktor 0.48 atau dengan kata lain pelemahan spring ternyata displacement maksimum SAP2000 berhasil diperkecil perbedaannya dengan FE PCG sehingga hasilnya hampir sama. Efek lainnya grafik differential settlement SAP2000 naik yang mana pada Kr 0.001, Kr 0.01, Kr 10, dan Kr 100 kenaikannya membuat perbedaan antara output SAP2000 dengan FE PCG membesar (error membesar), sedangkan $K_r 0.1$ dan $K_r 1$ yang semula nilainya di bawah FE PCG jadi naik mendekati FE PCG (error mengecil). Grafik bending moment juga naik, bending moment K_r 0.01 di posisi tiang (jarak dari raft center 0.4 dan 0.8) bergerak mendekati FE PCG (error mengecil) sedangkan di posisi tanah (jarak dari raft center 0.2 dan 0.6) bergerak menjauhi FE PCG (error membesar), sementara bending moment baik di posisi tiang maupun tanah pada K_r 0.1, Kr 1, Kr 10 makin mendekati nilai FE PCG (error mengecil). Dibandingkan dengan piled-raft model awal, distribusi beban pada faktor 0.48 nyaris tidak ada perubahan berarti dan secara garis besar keduanya masih berbeda dengan FE PCG. FE PCG memiliki range distribusi beban tiang lebih luas dimana pada tiang 1, 2, dan 3 menanggung beban lebih besar serta tiang 4, 5, dan 6 menanggung beban lebih kecil dibandingkan SAP2000. Perbandingan beban tiang terhadap beban total memperlihatkan pada model x0.48 perbandingan beban SAP2000 turun mendekati An Wang, walaupun begitu perbedaan keduanya masih cukup besar.

4.1.6. Piled-raft $K_p = 1000$

Pengukuran dilakukan pada kedalaman 1 meter dari permukaan (z = 1). Pengukuran tidak dilakukan pada z = 7.5 karena alasan yang sama seperti pada K_p 50.

4.1.6.1 Input Spring Tanah Dan Tiang

Sama dengan K_p 50, letak perubahan hanya pada faktor α_F karena perubahan kekakuan tiang ke K_p 1000.

4.1.6.2 Displacement Maksimum (z = 1)

Displacement yang diukur berupa perpindahan dalam arah Z-global atau 3-local axes dari nodal di tengah raft (nodal 1).

1. $K_r = 0.001$

Gambar 4.57. Output run analysis deformed shape dengan kontur displacement $K_p = 1000 \text{ K}_r = 0.001$

Tabel 4.31. Output displacement tiap nodal $K_p = 1000 \text{ K}_r = 0.001$

Joint	OutputCase	CaseType	U1	U2	U3	R1	R2
Text	Text	Text	m	m	m	Radians	Radians
1	DEAD	LinStatic	0.000000	0.000000	-0.007780	0.000000	0.000000
36	DEAD	LinStatic	0.000000	0.000000	-0.005084	0.000285	-0.000285

Displacement maksimum	= -0.00778 m
Displacement sudut (minimum)	= -0.005084 m

8	7

2	V -	0.01
Ζ.	$\kappa_r -$	0.01

Displacement maksimum	= -0.007368 m
Displacement sudut (minimum)	= -0.004973 m

2	17	0.1
3.	$K_r =$	0.1

Displacement maksimum	= -0.00664 m
Displacement sudut (minimum)	= -0.005921 m

4. $K_r = 1$

Displacement maksimum	= -0.006385 n
Displacement sudut (minimum)	= -0.006296 n

5. K_r = 10 Displacement maksimum

Displacement sudut (minimum)

= -0.006353 m = -0.006344 m

6. $K_r = 100$	
Displacement maksimum	= -0.00635 m
Displacement sudut (minimum)	= -0.006349 m

4.1.6.3 Differential Settlement Maksimum (z = 1)

Differential settlement dihitung dari selisih displacement maksimum di tengah raft (nodal 1) dengan displacement minimum di sudut raft (nodal 36).

1. $K_r = 0.001$

Differential settlement maksimum = 0.002696 m

2. $K_r = 0.01$

Differential settlement maksimum = 0.002395 m

Differential settlement maksimum = 0.000719 m

4. $K_r = 1$

Differential settlement maksimum = $8.9 \ 10^{-5} \text{ m}$

5. $K_r = 10$

Differential settlement maksimum = $9 \ 10^{-6} \text{ m}$

6. $K_r = 100$

Differential settlement maksimum = $1 \ 10^{-6}$ m

4.1.6.4 Distribusi Bending Moment (z = 1)

Bending moment maksimum terjadi pada sumbu yang melalui bagian tengah raft yaitu pada sumbu X dan Z pada An Wang atau sumbu X dan Y pada SAP2000. Besaran bending moment yang ditinjau terdapat pada barisan nodal sepanjang sumbu X-global yaitu 2, 3, 4, 5, dan 6. Nodal tersebut dilaporkan dalam bentuk jarak relatif terhadap raft centre X/B yaitu secara berurutan 0.2, 0.4, 0.6, 0.8, 1.

An Wang menampilkan bending moment pada bidang X-Y yaitu Mz, Mz sendiri adalah momen yang berputar pada sumbu Z (kaidah tangan kanan). Penamaan Mz di SAP2000 berbeda dengan program FE PCG An Wang dimana Mz menjadi M11 dalam SAP2000. M11 adalah momen yang sumbu putarnya tegak lurus terhadap sumbu 1 local axes dari area element shell.

Pelaporan bending moment di SAP2000 hanya di tiap nodal. Misalnya pada nodal 2 yang diapit pelat 1 dan 2, bending moment pelat 1 dan pelat 2 akan dilaporkan pada nodal 2 maka 2 nilai bending moment ini akan dirata-rata. Cara yang sama diaplikasikan pada nodal 3-6.

88

Gambar 4.58. Output run analysis deformed shape dengan kontur bending moment $K_p = 1000 \text{ K}_r = 0.01$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-8.1904
1	21	Plate-Thin	2	DEAD	LinStatic	17.8516
1	21	Plate-Thin	8	DEAD	LinStatic	8.6231
1	21	Plate-Thin	7	DEAD	LinStatic	8.7739
2	22	Plate-Thin	2	DEAD	LinStatic	17.8527
2	22	Plate-Thin	3	DEAD	LinStatic	-10.2691
2	22	Plate-Thin	9	DEAD	LinStatic	6.7252
2	22	Plate-Thin	8	DEAD	LinStatic	8.6250
3	23	Plate-Thin	3	DEAD	LinStatic	-10.2714
3	23	Plate-Thin	4	DEAD	LinStatic	13.3767
3	23	Plate-Thin	10	DEAD	LinStatic	4.1563
3	23	Plate-Thin	9	DEAD	LinStatic	6.7309
4	24	Plate-Thin	4	DEAD	LinStatic	13.3234
4	24	Plate-Thin	5	DEAD	LinStatic	-17.3498
4	24	Plate-Thin	11	DEAD	LinStatic	-0.5071
4	24	Plate-Thin	10	DEAD	LinStatic	4.2181

Tabel 4.32. Output bending moment pelat $K_p = 1000 \text{ K}_r = 0.01$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
5	25	Plate-Thin	5	DEAD	LinStatic	-16.6860
5	25	Plate-Thin	6	DEAD	LinStatic	0.6112
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5960
5	25	Plate-Thin	11	DEAD	LinStatic	-1.1656

Tabel 4.33. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000 K_r = 0.01$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	17.85215
0.4	-10.27025
0.6	13.35005
0.8	-17.0179
1	0.6112

Tabel 4.34. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000 K_r = 0.1$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	28.01935
0.4	-0.37175
0.6	18.2743
0.8	-14.60875
1	0.617

3. $K_r = 1$

Tabel 4.35. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000 K_r = 1$

Jarak dari pusat	Momen	
raft (nodal1)	(kN.m/m)	
0.2	31.70605	
0.4	3.23215	
0.6	20.09	
0.8	-13.6809	
1	0.6183	

4. $K_r = 10$

Tabel 4.36. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000 K_r = 10$

Jarak dari pusat Momen

raft (nodal1)	(kN.m/m)	
0.2	32.1746	
0.4	3.69025	
0.6	20.3211	
0.8	-13.5623	
1	0.6185	

4.1.6.5. Distribusi Beban Pada Piled-Raft Kp 1000

Distribusi pembebanan pada raft diukur pada nodal 1, 3, 5, 15, 17, dan 29 atau dengan kata lain pada posisi tiang berada. Distribusi pembebanan dihitung dari output joint reaction pada nodal tiang tersebut yang kemudian dibagi dengan rata-rata joint reaction nodal tiang. Sedangkan perbandingan beban tiang dengan beban total piled-raft dihitung dari output joint reaction nodal tiang dibagi beban total yaitu beban merata dikali dengan luas area.

Grafik distribusi beban diletakkan di subbab perbandingan SAP2000 terhadap FE PCG. Penamaannya mengikuti penomoran tiang An Wang.

4.1.6.6. Perbandingan SAP2000 Terhadap FE PCG (z = 1)

Berikut ini membahas perbandingan masing-masing output program SAP2000 dengan program FE PCG An Wang.

1. Displacement maksimum

Tabel 4.37. Tabel output displacement maksimum FE PCG vs SAP2000 K = 1000

$K_{p} = 1000$					
	K _r	Central Disp AnWang (m)	Central Disp (m)	Error CD (%)	
	0.001	-0.01217	-0.00778	36.072309	
	0.01	-0.01125	-0.007368	34.5066667	
	0.1	-0.01025	-0.00664	35.2195122	
	1	-0.0095	-0.006385	32.7894737	
	10	-0.0093	-0.006353	31.688172	
	100	-0.0093	-0.00635	31.7204301	

2. Differential settlement maksimum

Gambar 4.60. Grafik differential settlement maksimum FE PCG vs SAP2000 $K_p = 1000$

Tabel 4.38. Tabel	output differential	settlement FE PC	DG vs SA	P2000 Kn	= 1000
				p	

K _r	Diff Sett (m)	Diff Sett An Wang (m)	Δ (m)	Error DS (%)
0.001	0.002696	0.0034	0.0007	20.70588235
0.01	0.002395	0.003267	0.00087	26.69115396
0.1	0.000719	0.001786	0.00107	59.74244121
1	8.9E-05	0.0004	0.00031	77.75
10	9E-06	0	-9E-06	
100	1E-06	0	-1E-06	

- 3. Distribusi bending moment
- 1. $K_r = 0.01$

2. $K_r = 0.1$

Gambar 4.62. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 1000 $K_r = 0.1$

3. $K_r = 1$

Gambar 4.64. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 1000 K_r = 10

4. Distribusi beban

Gambar 4.66. Grafik distribusi beban tiang FE PCG $K_p = 1000$

4.1.7. Modifikasi Piled-raft $K_p = 1000$

Ternyata hasil SAP2000 tidak memuaskan dengan error yang begitu besar baik untuk displacement maksimum, differential settlement, dan distribusi bending moment. Untuk itu dilakukan modifikasi coba-coba (trial) untuk mencocokan hasil SAP2000 dengan FE PCG An Wang. Cara yang dipilih adalah dengan mengubah mencari faktor pengali khusus untuk spring tiang agar lebih lemah dan berpatokan pada hasil displacement maksimum. Faktor pengali = 0.55 untuk spring tiang sementara spring tanah tetap.

4.1.7.1. Displacement Maksimum (x 0.55)

Displacement yang diukur berupa perpindahan dalam arah Z-global atau 3-local axes dari nodal di tengah raft (nodal 1).

1.
$$K_r = 0.001$$

Gambar 4.68. Output run analysis deformed shape dengan kontur displacement $K_p = 1000 \text{ K}_r = 0.001 \text{ x} 0.55$

Displacement maksimum	= -0.012285 m
Displacement sudut (minimum)	= -0.005864 m
2. $K_r = 0.01$	
Displacement maksimum	= -0.01148 m
Displacement sudut (minimum)	= -0.00693 m
3. $K_r = 0.1$	
Displacement maksimum	= -0.010069 m
Displacement sudut (minimum)	= -0.008946 m

4. $K_r = 1$

Displacement maksimum	= -0.00967 m
Displacement sudut (minimum)	= -0.009538 m

5. $K_r = 10$	
Displacement maksimum	= -0.009622 m
Displacement sudut (minimum)	= -0.009609 m

6. $K_r = 100$

Displacement maksimum	= -0.009617 m
Displacement sudut (minimum)	= -0.009616 m

4.1.7.2. Differential Settlement Maksimum (x 0.55)

Differential settlement dihitung dari selisih displacement maksimum di tengah raft (nodal 1) dengan displacement minimum di sudut raft (nodal 36).

1. K_r = 0.001 Differential settlement maksimum = 0.006421 m

2. $K_r = 0.01$

Differential settlement maksimum = 0.00455 m

3. $K_r = 0.1$

Differential settlement maksimum = 0.001123 m

4. $K_r = 1$

Differential settlement maksimum = 0.000132 m

5. $K_r = 10$

Differential settlement maksimum = $1.3 \ 10^{-5} \text{ m}$

6. $K_r = 100$

Differential settlement maksimum = $1 \ 10^{-6}$ m

4.1.7.3. Distribusi Bending Moment (x 0.55)

Bending moment maksimum terjadi pada sumbu yang melalui bagian tengah raft yaitu pada sumbu X dan Z pada An Wang atau sumbu X dan Y pada SAP2000. Besaran bending moment yang ditinjau terdapat pada barisan nodal sepanjang sumbu X-global yaitu 2, 3, 4, 5, dan 6. Nodal tersebut dilaporkan dalam bentuk jarak relatif terhadap raft centre X/B yaitu secara berurutan 0.2, 0.4, 0.6, 0.8, 1.

An Wang menampilkan bending moment pada bidang X-Y yaitu Mz, Mz sendiri adalah momen yang berputar pada sumbu Z (kaidah tangan kanan). Penamaan Mz di SAP2000 berbeda dengan program FE PCG An Wang dimana Mz menjadi M11 dalam SAP2000. M11 adalah momen yang sumbu putarnya tegak lurus terhadap sumbu 1 local axes dari area element (pelat).

Pelaporan bending moment di SAP2000 hanya di tiap nodal. Misalnya pada nodal 2 yang diapit pelat 1 dan 2, bending moment pelat 1 dan pelat 2 akan dilaporkan pada nodal 2 maka 2 nilai bending moment ini akan dirata-rata. Cara yang sama diaplikasikan pada nodal 3-6.

1. $K_r = 0.01$

moment $K_p = 1000 K_r = 0.01 x0.55$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-1.6433
1	21	Plate-Thin	2	DEAD	LinStatic	20.5371
1	21	Plate-Thin	8	DEAD	LinStatic	12.5928
1	21	Plate-Thin	7	DEAD	LinStatic	12.8482
2	22	Plate-Thin	2	DEAD	LinStatic	20.5367
2	22	Plate-Thin	3	DEAD	LinStatic	-3.9666
2	22	Plate-Thin	9	DEAD	LinStatic	10.5293
2	22	Plate-Thin	8	DEAD	LinStatic	12.5965
3	23	Plate-Thin	3	DEAD	LinStatic	-3.9620
3	23	Plate-Thin	4	DEAD	LinStatic	15.3474
3	23	Plate-Thin	10	DEAD	LinStatic	7.5125
3	23	Plate-Thin	9	DEAD	LinStatic	10.5288
4	24	Plate-Thin	4	DEAD	LinStatic	15.2944
4	24	Plate-Thin	5	DEAD	LinStatic	-12.1060
4	24	Plate-Thin	11	DEAD	LinStatic	2.0508
4	24	Plate-Thin	10	DEAD	LinStatic	7.5745

Tabel 4.39. Output bending moment pelat $K_p = 1000 \text{ } K_r = 0.01 \text{ } x0.55$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
5	25	Plate-Thin	5	DEAD	LinStatic	-11.5442
5	25	Plate-Thin	6	DEAD	LinStatic	0.5152
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4981
5	25	Plate-Thin	11	DEAD	LinStatic	1.4947

Tabel 4.40. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000 K_r = 0.01$

x0.55				
Jarak dari pusat	Momen			
raft (nodal1)	(kN.m/m)			
0.2	20.5369			
0.4	-3.9643			
0.6	15.3209			
0.8	-11.8251			
1	0.5152			

2. $K_r = 0.1$

Tabel 4.41. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$

$K_r = 0.1 \times 0.55$				
Jarak dari pusat	Momen			
raft (nodal1)	(kN.m/m)			
0.2	34.5611			
0.4	9.35295			
0.6	22.438			
0.8	-8.30085			
1	0.5238			

3. $K_r = 1$

Tabel 4.42. Output bending moment dari nodal 2, 3, 4, 5, 6 $K_p = 1000$

$K_r = 1 \times 0.55$				
Jarak dari pusat	Momen			
raft (nodal1)	(kN.m/m)			
0.2	38.5739			
0.4	13.16715			
0.6	24.4846			
0.8	-7.24985			
1	0.5257			

4. $K_r = 10$

Jarak dari pusat	Momen
raft (nodal1)	(kN.m/m)
0.2	39.05165
0.4	13.6213
0.6	24.7284
0.8	-7.12425
1	0.5259

Tabel 4.43. Output bending moment dari nodal 2, 3, 4, 5, 6 K_p = 1000 $K_r = 10 \times 0.55$

4.1.7.4. Distribusi Beban Pada Piled-Raft $K_{\rm p}$ 1000

Distribusi pembebanan pada raft diukur pada nodal 1, 3, 5, 15, 17, dan 29 atau dengan kata lain pada posisi tiang berada. Distribusi pembebanan dihitung dari output joint reaction pada nodal tiang tersebut yang kemudian dibagi dengan rata-rata joint reaction nodal tiang. Sedangkan perbandingan beban tiang dengan beban total piled-raft dihitung dari output joint reaction nodal tiang dibagi beban total yaitu beban merata dikali dengan luas area.

Grafik distribusi beban diletakkan di subbab perbandingan SAP2000 terhadap FE PCG. Penamaannya mengikuti penomoran tiang An Wang.

4.1.7.5.Perbandingan SAP2000 Terhadap FE PCG (x 0.55)

Berikut ini membahas perbandingan masing-masing output program SAP2000 dengan program FE PCG An Wang.

1. Displacement maksimum

Gambar 4.70. Grafik displacement maksimum FE PCG vs SAP2000 K_p = 1000 x0.55

Tabel 4.44. Tabel output displacement maksimum FE PCG vs SAP2000 $K_p = 1000 \text{ x}0.55$

	IID IOOC	10.00		
K _r	Central Disp AnWang (m)	Central Disp (m)	Error CD (%)	
0.001	-0.01217	-0.012285	-0.94494659	
0.01	-0.01125	-0.01148	-2.04444444	
0.1	-0.01025	-0.010069	1.76585366	
1	-0.0095	-0.00967	-1.78947368	
10	-0.0093	-0.009622	-3.46236559	
100	-0.0093	-0.009617	-3.40860215	

2. Differential settlement maksimum

Gambar 4.71. Grafik differential settlement maksimum FE PCG vs SAP2000 $K_p = 1000 \text{ x} 0.55$

Tabel 4.45.	Tabel output	differential settlement F	E PCG vs SAP2000
		$K_p = 1000 \text{ x} 0.55$	

Kr	Diff Sett (m)	Diff Sett An Wang (m)	Δ (m)	Error DS (%)
0.001	0.006421	0.0034	-0.003	-88.8529412
0.01	0.00455	0.003267	-0.0013	-39.2715029
0.1	0.001123	0.001786	0.00066	37.12206047
1	0.000132	0.0004	0.00027	67
10	1.3E-05	0	-1E-05	
100	1E-06	0	-1E-06	

3. Distribusi bending moment

2. $K_r = 0.1$

Gambar 4.73. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 1000 $K_r = 0.1 \text{ x}0.55$

3. $K_r = 1$

Gambar 4.75. Grafik distribusi bending moment FE PCG vs SAP2000 K_p = 1000 K_r = 10 x0.55

5. Distribusi beban

Gambar 4.77. Grafik perbandingan beban tiang terhadap beban total $K_p = 1000 \times 0.55$

4.1.7.6. Kesimpulan Awal K_p 1000 Vs K_p 1000 x0.55

Dengan faktor 0.55 atau dengan kata lain pelemahan spring ternyata displacement maksimum SAP2000 berhasil diperkecil perbedaannya dengan FE PCG sehingga hasilnya hampir sama. Efek lainnya grafik differential settlement SAP2000 naik yang mana pada Kr 0.001, Kr 0.01, dan Kr 10 kenaikannya membuat output SAP2000 menjauhi FE (error membesar), sedangkan differential settlement pada K_r 0.1 dan K_r 1 yang semula di bawah nilai FE PCG jadi naik dan mendekati FE PCG dan Kr 100 nilainya tetap tidak berubah antara model awal dengan model x0.55. Grafik bending moment juga naik, pada K_r 0.01 di posisi tiang (jarak dari raft center 0.4 dan 0.8) bergerak mendekati FE PCG (error mengecil) sedangkan di posisi tanah (jarak dari raft center 0.2 dan 0.6) bergerak menjauhi FE PCG (error membesar), sementara bending moment baik di posisi tiang maupun tanah pada Kr 0.1, Kr 1, Kr 10 makin mendekati nilai FE PCG (error mengecil). Dibandingkan dengan piled-raft model awal, distribusi beban pada faktor 0.55 nyaris tidak ada perubahan berarti dan secara garis besar keduanya masih berbeda dengan FE PCG. FE PCG memiliki range distribusi beban tiang lebih luas dimana pada tiang 1, 2, dan 3 menanggung beban lebih besar serta tiang 4, 5, dan 6 menanggung beban lebih kecil dibandingkan SAP2000. Perbandingan beban tiang terhadap beban total memperlihatkan pada model x0.55 perbandingan beban SAP2000 turun mendekati An Wang, hasilnya jauh lebih baik dibandingkan K_p lainnya karena grafik keduanya hampir sama dan berhimpitan.

4.2. Analisis Hasil

4.2.1. Displacement Maksimum Piled-Raft

Dari grafik dan tabel di atas memperlihatkan perbedaan yang sangat signifikan antara 2 output program SAP2000 dengan FE PCG An Wang. Ditinjau dari segi kuantitatif, untuk piled-raft $K_p = 1$ output displacement maksimum SAP2000 lebih besar dari FE PCG. Ini artinya spring yang digunakan pada model ternyata terlalu lunak. Untuk piled raft $K_p = 50$ dan $K_p = 1000$ ternyata berkebalikan dengan $K_p = 1$ dimana displacement maksimum ternyata lebih kecil dibandingkan FE PCG An Wang. Karena nodal 1 (posisi displacement

maksimum) pada $K_p = 50$ dan $K_p = 1000$ merupakan lokasi tiang 6 maka bisa dipastikan penyebab hal ini karena spring tiang yang ternyata terlalu kuat.

Untuk itu dilakukan modifikasi terhadap spring tanah dan tiang. Pertama pada $K_p = 1$, kedalaman z yang awalnya 1 pada awalnya dicoba diubah posisinya mendekati 0. Tapi ternyata yang diperoleh displacement maksimum lebih besar daripada z = 1 yang artinya malah makin menjauhi hasil FE PCG. Lalu z akhirnya makin diperdalam sehingga setelah beberapa kali trial diperoleh z = 7.5 yang di kedalaman tersebut displacement maksimum SAP2000 hampir sama dengan FE PCG.

Modifikasi yang dilakukan pada $K_p = 50$ dan $K_p = 1000$ sebenarnya sama dengan $K_p = 1$ yaitu dengan mengubah z namun setelah melalui mekanisme trial yang sama ternyata tidak mendapatkan hasil displacement maksimum yang diinginkan. Maka ditempuh trial lain yaitu memperlemah spring tiang dengan faktor pengali tertentu. Ternyata bisa diperoleh faktor pengali yang seragam untuk setiap K_p walaupun terdapat variasi K_r yakni 0.48 untuk $K_p = 50$ dan 0.55 untuk Kp = 1000.

Jika dilihat dari segi bentuk grafik yang mirip antara SAP2000 dan FE PCG maka bisa disimpulkan bahwa perilaku piled-raft antara keduanya punya kesamaan. Adanya raft dapat memperkecil displacement maksimum dari group tiang, makin kaku raft ($K_r >>$) maka pengaruhnya semakin efektif dalam memperkecil displacement maksimum. Akan tetapi, saat raft sudah cukup kaku ($K_r = 0.1$) penambahan kekakuan selanjutnya hanya berpengaruh kecil terhadap displacement maksimum. Hal ini terlihat dari grafik yang semakin lurus.

Kemunculan grup tiang pada $K_p = 50$ dan $K_p = 1000$ juga berpengaruh pada displacement maksimum. Semakin kaku tiang ($K_p >>$) maka semakin kecil displacement maksimum. Tetapi pengaruhnya jauh lebih efektif dibanding raft, terbukti semakin kaku grup tiang maka besar displacement maksimum di setiap variasi K_r ternyata makin kecil, bandingkan dengan raft yang bila sudah cukup kaku tidak memiliki pengaruh apa-apa lagi terhadap displacement maksimum.

4.2.2. Differential Settlement Maksimum Piled-Raft

Dari grafik dan tabel di atas memperlihatkan perbedaan yang sangat signifikan antara 2 output program SAP2000 dengan FE PCG An Wang. Ditinjau dari segi kuantitatif untuk semua nilai K_p , umumnya ada perbedaan angka yang mencolok pada nilai-nilai K_r awal dari $K_r = 0.001$ hingga $K_r = 0.1$ dan perbedaan differential settlement itu makin mengecil sejak $K_r = 1$ hingga $K_r = 100$.

Setelah dilakukan modifikasi untuk setiap K_p . Pada $K_p = 1$ hasil yang diperoleh adalah grafik differential settlement SAP2000 makin turun. Sedangkan pada $K_p = 50$ dan $K_p = 1000$ grafik SAP2000 makin naik. Walaupun ada yang errornya mengecil tetapi modifikasi yang dilakukan ternyata tidak berpengaruh banyak pada differential settlement maksimum karena error juga masih besar.

Jika dilihat dari segi bentuk grafik yang mirip antara SAP2000 dan FE PCG maka bisa disimpulkan bahwa perilaku piled-raft antara keduanya punya kesamaan. Adanya raft dapat memperkecil differential settlement maksimum dari grup tiang, makin kaku raft ($K_r >>$) maka pengaruhnya semakin efektif dalam memperkecil displacement maksimum. Akan tetapi, penambahan kekakuan raft selanjutnya ($K_r > 1$) berpengaruh lebih kecil terhadap differential settlement maksimum. Hal ini terlihat dari grafik yang semakin lurus.

Kemunculan grup tiang pada $K_p = 50$ dan $K_p = 1000$ juga berpengaruh pada differential settlement maksimum. Semakin kaku tiang ($K_p >>$) maka semakin kecil differential settlement maksimum. Tetapi pengaruhnya raft ternyata lebih dominan dibanding grup tiang, terbukti semakin kaku raft penurunan differential settlement makin curam jauh melebihi kemampuan grup tiang.

4.2.3. Distribusi Bending Moment

Dari grafik dan tabel di atas memperlihatkan perbedaan yang sangat signifikan antara 2 output program SAP2000 dengan FE PCG An Wang. Ditinjau dari segi kuantitatif untuk semua nilai K_p, umumnya terjadi perbedaan distribusi bending moment pada setiap nilai K_r.

Setelah dilakukan modifikasi untuk setiap K_p . Pada $K_p = 1$ hasil yang diperoleh adalah grafik SAP2000 makin turun. Sedangkan pada $K_p = 50$ dan $K_p = 1000$ grafik SAP2000 makin naik. Walaupun ada yang errornya mengecil tetapi

Jika dilihat dari segi bentuk grafik yang mirip antara SAP2000 dan FE PCG maka bisa disimpulkan bahwa perilaku piled-raft antara keduanya punya kesamaan. Bending moment maksimum terjadi pada bagian tengah raft dan semakin jauh dari pusat raft maka moment makin berkurang menjadi ± 0 . Adanya raft dapat memperbesar distribusi bending moment dari group tiang, makin kaku raft (K_r >>) maka pengaruhnya semakin efektif dalam memperbesar distribusi bending moment. Akan tetapi, saat raft sudah cukup kaku maka penambahan kekakuan raft selanjutnya (K_r = 1 dan K_r = 10) hanya sedikit memperbesar moment. Hal ini dikarenakan perbedaan differential settlement raft antara keduanya cukup kecil.

Kemunculan grup tiang pada $K_p = 50$ dan $K_p = 1000$ juga berpengaruh pada differential settlement maksimum. Bending moment raft yang semula mulus dengan adanya keberadaan tiang akan menurunkan moment di posisi tiang yang dimaksud. Semakin kaku tiang ($K_p >>$) dan dibarengi semakin lunak raft ($K_r <<$) maka penurunan bending moment ini semakin kelihatan.

4.2.4. Distribusi Beban Pada Raft dan Tiang

Dari grafik dan tabel di atas memperlihatkan perbedaan yang sangat signifikan antara 2 output program SAP2000 dengan FE PCG An Wang. Ditinjau dari segi kuantitatif untuk semua nilai K_p, umumnya distribusi beban pada tiang SAP2000 untuk tiang-tiang sentral (contoh tiang 6 atau nodal 1) lebih besar dibandingkan yang dihasilkan FE PCG. Sedangkan pada tiang-tiang bagian sudut (contoh tiang 1 atau nodal 29) hasil SAP2000 menunjukkan distribusi beban tiang jauh lebih kecil dibandingkan FE PCG. Untuk perbandingan beban tiang terhadap total beban, hasil SAP2000 berbeda dalam arti lebih besar dibandingkan FE PCG pada semua nilai K_p.

Setelah dilakukan modifikasi untuk setiap K_p. Tidak ada perubahan berarti pada distribusi beban. Artinya modifikasi yang dilakukan ternyata tidak berpengaruh banyak pada distribusi beban karena error yang besar juga masih ada.

Hasil cukup baik terdapat pada perbandingan beban tiang terhadap total beban khususnya pada $K_p = 1000$.

Jika dilihat dari segi bentuk grafik yang mirip antara SAP2000 dan FE PCG maka bisa disimpulkan bahwa perilaku piled-raft antara keduanya punya kesamaan. Dapat dilihat pada raft fleksibel ($K_r = 0.01$) semua tiang hampir menanggung beban yang sama, ini bisa dibuktikan dengan grafik distribusi yang berkumpul sekitar nilai 1 (pile load/average pile load = 1). Seiring kenaikan kekakuan raft tiang 1 yang terletak di sudut raft semakin menanggung beban semakin tinggi. Sementara tiang 6 yang terletak di tengah raft malah makin kecil menanggung beban. Makin kaku tiang maka kekakuan raft yang paling mempengaruhi distribusi beban tiang, ini bisa dilihat pada contoh K_p 1000 dimana grafik perubahan distribusi bebannya paling curam seiring kenaikan kekakuan raft. Selain itu ternyata juga tiang tidak menahan semua beban karena raft juga menahan sebagian beban tersebut. Contohnya bisa dilihat pada grafik K_p 1000 x0.55, baik hasil SAP2000 dan FE PCG menunjukkan angka 70% beban ditanggung tiang sedangkan 30% lainnya ditanggung raft.

BAB 5

KESIMPULAN

Analisis permodelan piled-raft 2D SAP2000 ini dilakukan dengan mengambil referensi permodelan 3D An Wang yang memakai program finite element Preconditioned Conjugate Method. Proses ini dapat dijabarkan sebagai berikut:

- 1. Menggunakan model plate-thin dan menyederhanakan model tiang dan tanah menjadi spring.
- Mesh berukuran 5x5 @1.25 m. Tebal raft diambil konstan sedangkan nilai E_r berubah naik seiring kenaikan K_r berdasarkan persamaan kekakuan raft dari Brown. Beban yang digunakan berupa beban terbagi merata.
- 3. Masing-masing input spring secara umum dihitung dari dua persamaan yaitu persamaan untuk menghitung settlement akibat interaksi antarspring dan settlement akibat beban sendiri. Spring tanah dihitung menggunakan persamaan Mindlin (settlement akibat interaksi antarspring tanah) dan Boussinesq (settlement akibat beban di nodal spring tanah itu sendiri). Input spring tiang dihitung menggunakan persamaan faktor α (settlement akibat interaksi antarspring tiang dihitung menggunakan persamaan faktor α (settlement akibat interaksi antarspring tiang) dan persamaan Poulos & Davis I_p (settlement di nodal akibat beban di spring tiang itu sendiri).
- 4. Modifikasi input spring secara trial (coba-coba) dilakukan untuk menyesuaikan hasil displacement maksimum SAP2000 terhadap FE PCG. Spring tanah dimodifikasi dengan cara mengubah z dari z = 1 ke z = 7.5 sementara spring tiang dimodifikasi dengan cara dikalikan dengan faktor pengali.

Dari perbandingan variabel output antara SAP2000 dengan FE PCG dapat disimpulkan bahwa:

- 1. Output SAP2000 dari segi kuantitatif berbeda dengan FE PCG.
- 2. Terlihat sekali kekurangan permodelan SAP2000 2D untuk memodelkan struktur yang kompleks seperti pondasi piled-raft. Penyederhanaan model tanah menjadi spring (sebagai fungsi $E_s \rightarrow f(E_s)$) dan model element tiang yang disederhanakan menjadi spring juga tidak bisa menyamai keakuratan permodelan full 3D dengan finite element walaupun sudah memperhitungkan

efek interaksi raft-soil-raft dengan teori elastis Mindlin, persamaan elastis Boussinesq untuk perhitungan displacement di dalam semi-infinite mass, serta interaksi antartiang.

- 3. Modifikasi spring tanah dan tiang dapat dilakukan. Yaitu dengan memperdalam z = 1 menjadi z = 7.5 untuk $K_p = 1$ (raft saja tanpa grup tiang) yang mana kondisi spring terlalu lunak sehingga spring harus dinaikkan. Untuk $K_p = 50$ dan $K_p = 1000$ spring tiangnya harus dikali faktor yakni 0.48 dan 0.55 untuk memperlemah spring yang pada mulanya terlalu kaku. Modifikasi ini sukses memperbaiki error displacement maksimum.
- 4. Modifikasi spring tanah dan tiang gagal memperbaiki error pada differential settlement maksimum, distribusi bending moment, dan distribusi beban.
- 5. Secara kualitatif sifat struktur piled-raft SAP2000 dengan FE PCG An Wang sama.
- 6. Displacement maksimum piled-raft lebih dikontrol kekakuan grup tiang sedangkan differential settlement maksimum lebih dikontrol keberadaan dan kekakuan raft. Sehingga bisa dilakukan kombinasi kekakuan raft dengan kekakuan grup tiang untuk mendapat displacement dan differential settlement yang diinginkan
- 7. Bending moment maksimum terjadi pada area tengah raft dan semakin jauh dari pusat raft maka bending moment semakin kecil. Raft mempunyai grafik bending moment yang mulus sedangkan keberadaan tiang akan memperkecil bending moment pada posisi tiang itu dipasang. Sehingga dalam perancangan piled-raft keberadaan tiang bisa seperlunya dipasang hanya pada titik-titik dengan bending moment positif yang besar. Namun jangan sampai terlalu kecil hingga menjadi momen negatif karena menyebabkan tarik pada permukaan raft yang dapat menyebabkan kegagalan struktur
- 8. Semakin kaku raft menyebabkan tiang di daerah tengah raft menanggung beban yang semakin ringan sementara tiang-tiang pada daerah sudut raft malah menanggung beban makin berat. Kekakuan raft memiliki pengaruh yang lebih besar pada distribusi beban. Raft juga menanggung sebagian beban dari struktur piled-raft sehingga dalam perancangan piled-raft apabila raft diasumsikan menanggung semua beban maka itu terlalu konservatif.

DAFTAR REFERENSI

- An Wang. (1996). *Three dimensional finite element analysis of pile groups and piled-rafts*. Manchester: Manchester School of Engineering.
- Clancy, Patrick. (1993). *Numerical analysis of piled raft foundation*. University of Western Australia.
- Dewobroto. (2007). *Aplikasi rekayasa konstruksi dengan SAP2000 edisi baru*. Jakarta: PT Elex Media Komputindo.
- Maharaj, Dilip Kumar. (2004). Three dimensional nonlinear finite element analysis to study the effect of raft and pile stiffness on the load settlement behaviour of piled raft foundations. *EJGE*. <u>http://www.ejge.com/2004/Ppr0349.html</u>

Poisson's ratio. (n.d.). Desember 13, 2007.

http://en.wikipedia.org/wiki/Poisson's_ratio

Poulos, H.G., & Davis, E.H. (1991). *Elastic solutions for soil and rock mechanics*.Sydney: The University of Sydney.

Poulos, H.G., & Davis, E.H. (1980). *Pile foundation analysis and design*. Canada: John Wiley and Sons.

Young's modulus. (n.d.). Desember 28, 2007.

http://en.wikipedia.org/wiki/Young's_modulus

LAMPIRAN A Sistem sumbu koordinat

Sistem koordinat digunakan untuk menempatkan geometri model struktur dan menentukan arah pembebanan, perpindahan, gaya internal, dan tegangan yang terjadi. Semua sistem koordinat yang digunakan dalam permodelan dinyatakan terhadap satu sistem koordinat global, sedangkan setiap bagian (nodal, element, atau constraint) dapat memiliki sistem sumbu koordinat tersendiri (koordinat lokal).

Gambar A.1. Sistem sumbu dengan kaidah tangan kanan

Sistem koordinat yang digunakan adalah sistem koordinat tiga dimensi persegi (Cartesion) yang mengacu pada kaidah tangan kanan. Dengan tangan kanan (ibu jari, telunjuk, dan jari tengah) membentuk garis yg saling tegak lurus satu sama lain, dan arah yang ditunjukkan oleh ketiga jari tangan kanan menunjukkan arah positif sistem sumbu koordinat. Di mana ibu jari sebagai sumbu X, telunjuk sebagai sumbu Y, dan jari tengah sebagai sumbu Z.

Gambar A.2. Rotasi positif dengan kaidah tangan kanan

Translasi atau gaya mempunyai arah positif jika selaras dengan sistem sumbu koordinat arah positif. Sedangkan untuk rotasi dan moment yang berarah positif, ditentukan dengan bantuan tangan kanan juga.Untuk menjelaskan rotasi atau moment, tangan kanan yang digunakan diminta dalam posisi menggenggam dan ibu jari mengarah ke luar, seperti yang diperlihatkan pada Gambar A.2. Arah jempol menunjukkan arah sumbu putaran, sedangkan arah yang ditunjukkan oleh keempat jari –jari yang menggenggam menunjukkan arah putaran momen dan rotasi.

Gambar A.3. Sistem koordinat persegi (cartesian) dalam SAP2000

SAP2000 selalu menganggap sumbu Z terletak vertikal dengan sumbu +Z ke atas. Sistem koordinat lokal dari nodal, element, atau akselerasi tanah terhadap sumbu vertikal tersebut. Berat sendiri struktur (self-weight loading) arahnya selalu ke bawah dalam arah sumbu –Z.

Bidang X-Y adalah horizontal. Arah horizontal utama adalah +X. Suatu sudut pada bidang horizontal diukur dari sumbu positif X dengan sudut bernilai positif jika membentuk arah berlawanan dengan arah jarum jam (jika dilihat dari atas pada bidang X-Y).

Sistem koordinat global disebut sebagai sistem koordinat tetap karena digunakan untuk menetapkan semua geometri model struktur keseluruhan. Nodal, element, atau constraint model struktur dapat mempunyai sistem koordinat tersendiri yang disebut sistem koordinat lokal yang diberi nama sumbu 1, 2, dan 3.

A. Orientasi sumbu lokal nodal

Orientasi sistem koordinat lokal dari suatu titik nodal adalah sama dengan orientasi sistem koordinat global (default). 1 = X, 2 = Y, dan 3 = Z.

Gambar A.4. Koordinal lokal nodal dibandingkan koordinal global

B. Orientasi koordinat lokal element shell

Koordinat lokal shell sama halnya dengan nodal diberi nama lokal 1, 2, dan 3. Lokal 1 dan 2 terletak pada bidang element shell. Lokal 3 normal dari bidang element shell.

Orientasi default dari lokal 1, 2 ditentukan berdasarkan relasi antara lokal 3 dengan global Z :

- Bidang lokal 3-2 selalu diambil vertikal paralel terhadap global Z
- Lokal 2 jika terletak horizontal maka diambil sepanjang global +Y
- Lokal 1 selalu horizontal, biasanya berada pada bidang X-Y

Gambar A.6 memperlihatkan bagaimana element shell yang terletak pada bidang X-Y. Pada posisi seperti ini maka lokal 1 sama dengan global X dan lokal 2 sama dengan global Y juga lokal 3 yang sama dengan global Z.

Gambar A.5 Koordinat lokal dan face elemen shell pada bidang X-Y

121

LAMPIRAN B Kesepakatan tanda dan arah hasil hitungan

Hal utama agar dapat memakai program rekayasa secara benar adalah memahami kesepakatan tanda yang digunakan untuk menampilkan output. Perlu diperhatikan bahwa program rekayasa satu dengan yang lainnya mempunyai kesepakatan berbeda, tergantung dari sistem yang digunakan. Contoh hasil keluaran SAP2000 dan FE PCG yang berbeda penamaan.

Program SAP2000 menggunakan sistem koordinat tiga sumbu, yaitu XYZ (global) dan 123 (lokal) yang mengikuti kaidah tangan kanan (lihat lampiran A). Penamaan output SAP2000 dinamakan sesuai arah output tersebut berdasarkan arah lokal axes dan global axes yang bersangkutan.

Gambar B.2. Vektor output nodal

- **u** adalah deformasi
- **r** adalah rotasi

Untuk \mathbf{F} (force) vektornya sama dengan \mathbf{u} dan \mathbf{M} (moment) vektornya sama \mathbf{r} .

B. Deformasi dan gaya-gaya pada shell

Deformasi pada shell dilaporkan SAP2000 hanya pada nodal-nodal yang mengelilingi element shell.

Gaya-gaya internal pada element shell terjadi pada setiap titik pada permukaan shell. Namun SAP2000 hanya menampilkan output gaya internal pada nodal-nodal yang mengelilingi shell saja. Gaya dan moment pada shell diidentifikasikan sebagai F11, F22, F12, M11, M22, M12, V13, dan V23.

Gambar B.3. Arah positif dari gaya-gaya internal shell

Gambar B.3. menunjukkan bagaimana gaya-gaya internal shell bekerja. Catatan penting bahwa output gaya internal SAP2000 berupa gaya per unit

panjang yang bekerja pada permukaan element shell dan SAP2000 hanya melaporkan besar gaya tersebut pada nodal-nodal dari element shell.

Gambar B.4. Arah positif dari gaya-gaya internal shell

Gambar B.4. menunjukkan bagaimana moment-moment internal shell bekerja. Catatan penting bahwa output gaya internal SAP2000 berupa gaya per unit panjang yang bekerja pada permukaan element shell dan SAP2000 hanya melaporkan besar gaya tersebut pada nodal-nodal dari element shell. Gunakan kaidah tangan kanan untuk mengetahui arah putaran moment dimana tanda panah menunjukkan arah sumbu moment.

LAMPIRAN C

Perhitungan input spring tanah dan tiang, serta trial modifikasi

A. Perhitungan input spring tanah

K _r	Es	Br	Vs	t	E _r
0.001	1.00E+04	12.5	0.499	1.1754	37735.03501
0.01	1.00E+04	12.5	0.499	1.1754	377350.3501
0.1	1.00E+04	12.5	0.499	1.1754	3773503.501
1	1.00E+04	12.5	0.499	1.1754	37735035.01
10	1.00E+04	12.5	0.499	1.1754	377350350.1
100	1.00E+04	12.5	0.499	1.1754	3773503501

Tabel C.1. Besar input t dan Er untuk semua variasi Kr

A.1. Input spring tanah z = 1

8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
8.003905	7.071068	6.25	5.59017	5.1538 82	5	5.153882	5.59017	6.25	7.071068	8.003905
7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
6.25	5	3.75	2.5	1.25	0	1.25	2.5	3.75	5	6.25
6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905
8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
	1									
9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905
9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068
8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25
7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017
7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882
7.5	6.25	5	3.75	2.5	1.25		1.25	2.5	3.75	5
7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882
7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017
8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25
9.013878	8.003905	7 071060	6 25	E E0017	E 4 E 0 0 0 0					
0 76 2012		7.071008	0.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068
9.702012	8.838835	8.003905	0.25 7.28869	6.731456	5.153882 6.373774	5 6.25	5.153882 6.373774	5.59017 6.731456	6.25 7.28869	7.071068 8.003905
10 75291	8.838835	8.003905 8.838835	7.28869 8.003905	6.731456 7 28869	5.153882 6.373774	6 373774	5.153882 6.373774 6.25	5.59017 6.731456 6.373774	6.25 7.28869 6 731456	7.071068 8.003905 7.28869
9.702812 10.75291 10.07782	8.838835 9.762812 9.013878	8.003905 8.838835 8.003905	0.25 7.28869 8.003905 7.071068	6.731456 7.28869 6.25	6.731456 5.59017	6.25 6.373774 5 153882	5.153882 6.373774 6.25	5.59017 6.731456 6.373774 5.153882	6.25 7.28869 6.731456 5 59017	7.071068 8.003905 7.28869 6.25
9.762812 10.75291 10.07782 9.519716	8.838835 9.762812 9.013878 8 385255	8.003905 8.838835 8.003905 7.28869	0.25 7.28869 8.003905 7.071068 6.25	5.35017 6.731456 7.28869 6.25 5.303301	6.731456 5.59017 4 506939	6.25 6.373774 5.153882 3.952847	5.153882 6.373774 6.25 5 3.75	5.59017 6.731456 6.373774 5.153882 3.952847	6.25 7.28869 6.731456 5.59017 4 506939	7.071068 8.003905 7.28869 6.25 5.303301
9.702812 10.75291 10.07782 9.519716 9.100137	8.838835 9.762812 9.013878 8.385255 7.905694	8.003905 8.838835 8.003905 7.28869 6.731456	6.25 7.28869 8.003905 7.071068 6.25 5 59017	5.39017 6.731456 7.28869 6.25 5.303301 4 506939	5.153882 6.373774 6.731456 5.59017 4.506939 3.535534	5 6.25 6.373774 5.153882 3.952847 2 795085	5.153882 6.373774 6.25 5 3.75 2 5	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085	6.25 7.28869 6.731456 5.59017 4.506939 3.535534	7.071068 8.003905 7.28869 6.25 5.303301 4 506939
10.75291 10.07782 9.519716 9.100137 8.838835	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882	5.39017 6.731456 7.28869 6.25 5.303301 4.506939 3.952847	6.731456 5.59017 4.506939 3.535534 2.795085	5 6.25 6.373774 5.153882 3.952847 2.795085 1.767767	5.153882 6.373774 6.25 5 3.75 2.5 1.25	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847
9.702812 10.75291 10.07782 9.519716 9.100137 8.838835 8.75	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453 7.5	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774 6.25	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882	6.731456 7.28869 6.25 5.303301 4.506939 3.952847 3.75	6.731456 5.59017 4.506939 3.535534 2.795085 2.5	5 6.25 6.373774 5.153882 3.952847 2.795085 1.767767 1.25	5.153882 6.373774 6.25 5 3.75 2.5 1.25	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767 1.25	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085 2.5	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847 3.75
10.75291 10.07782 9.519716 9.100137 8.838835 8.75 8.838835	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453 7.603453	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774 6.25 6.373774	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882 5.153882	6.731456 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847	5.153882 6.373774 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 2.795085	5 6.25 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767	5.153882 6.373774 6.25 5 3.75 2.5 1.25 1.25 1.25	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 2.795085	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847
9.702812 10.75291 10.07782 9.519716 9.100137 8.838835 8.75 8.838835 9.100137	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453 7.603453 7.905694	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774 6.25 6.373774 6.731456	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882 5.153882 5.59017	6.731456 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939	5.153882 6.373774 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 2.795085 3.535534	5 6.25 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085	5.153882 6.373774 6.25 5 3.75 2.5 1.25 1.25 1.25 2.5	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 2.795085 3.535534	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939
9.702812 10.75291 10.07782 9.519716 9.100137 8.838835 8.75 8.838835 9.100137 9.519716	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453 7.603453 7.905694 8.385255	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774 6.25 6.373774 6.731456 7.28869	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882 5.153882 5.59017 6.25	6.731456 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939 5.303301	5.153882 6.373774 6.731456 5.59017 4.506939 3.535534 2.795085 2.795085 3.535534 4.506939	5 6.25 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 3.952847	5.153882 6.373774 6.25 5 3.75 2.5 1.25 1.25 1.25 2.5 3.75	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 3.952847	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085 2.795085 3.535534 4.506939	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939 5.303301
9.702812 10.75291 10.07782 9.519716 9.100137 8.838835 8.75 8.838835 9.100137 9.519716 10.07782	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453 7.603453 7.905694 8.385255 9.013878	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774 6.25 6.373774 6.731456 7.28869 8.003905	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882 5.153882 5.59017 6.25 7.071068	6.731456 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939 5.303301 6.25	5.153882 6.373774 6.731456 5.59017 4.506939 3.535534 2.795085 2.795085 3.535534 4.506939 5.59017	5 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 3.952847 5.153882	5.153882 6.373774 6.25 5 3.75 2.5 1.25 1.25 1.25 2.5 3.75 5	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 3.952847 5.153882	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085 2.795085 3.535534 4.506939 5.59017	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939 5.303301 6.25
9.702812 10.75291 10.07782 9.519716 9.100137 8.838835 8.75 8.838835 9.100137 9.519716 10.07782 10.75291	8.838835 9.762812 9.013878 8.385255 7.905694 7.603453 7.603453 7.905694 8.385255 9.013878 9.762812	8.003905 8.838835 8.003905 7.28869 6.731456 6.373774 6.25 6.373774 6.731456 7.28869 8.003905 8.838835	6.25 7.28869 8.003905 7.071068 6.25 5.59017 5.153882 5.153882 5.59017 6.25 7.071068 8.003905	6.731456 7.28869 6.25 5.303301 4.506939 3.952847 3.952847 4.506939 5.303301 6.25 7.28869	5.153882 6.373774 6.731456 5.59017 4.506939 3.535534 2.795085 2.795085 3.535534 4.506939 5.59017 6.731456	5 6.25 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 3.952847 5.153882 6.373774	5.153882 6.373774 6.25 5 3.75 2.5 1.25 1.25 2.5 3.75 5 6.25	5.59017 6.731456 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 3.952847 5.153882 6.373774	6.25 7.28869 6.731456 5.59017 4.506939 3.535534 2.795085 2.795085 3.535534 4.506939 5.59017 6.731456	7.071068 8.003905 7.28869 6.25 5.303301 4.506939 3.952847 3.75 3.952847 4.506939 5.303301 6.25 7.28869

	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456
	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017
	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
	10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25	2.5
	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017
	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456
								c =0.1.1= c	c	6.95	c
	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6./31456	6.3/3//4	6.25	6.3/3//4
	12.31107	11.18034	10.07782	9.013878	8.003905	/.0/1068	6.25	5.59017	5.153882	5	5.153882
	11.85854	10.68	9.519/16	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
r	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
l	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	4.05	1.25
	11.31923	10.07782	8.838835	7.603453	6.3/3//4	5.153882	3.952847	2.795085	1./6//6/	1.25	1./6//6/
	11.52443	10.30776	9.100137	7.905694	6.731456	5.5901/	4.506939	3.535534	2.795085	2.5	2.795085
	11.85854	10.68	9.519/16	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
	12.86954	11./9248	10.75291	9.762812	8.838835	8.003905	7.28869	6./31456	6.3/3//4	6.25	6.3/3//4
	13.97542	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25
	13.46291	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5
	13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
	12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
	12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
ſ	12.5	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	
	12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
	12.74755	11.52443	10.30776	9.100137	7.905694	6. 73 1456	5.59017	4.506939	3.535534	2.795085	2.5
	13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
	13.46291	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5
	13.97542	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25

Gambar C.1. Jarak antarnodal untuk nodal 1-6

2.01865E-06	4.45633E-06	4.89E-06	5.29E-06	5.59E-06	5.6971E-06	5.59E-06	5.29E-06	4.89E-06	4.46E-06	2.01865E-06
4.45633E-06	1.00809E-05	1.14E-05	1.27E-05	1.38E-05	1.4207E-05	1.38E-05	1.27E-05	1.14E-05	1.01E-05	4.45633E-06
4.89093E-06	1.13942E-05	1.34E-05	1.57E-05	1.79E-05	1.88372E-05	1.79E- 05	1.57E-05	1.34E-05	1.14E-05	4.89093E-06
5.29285E-06	1.27249E-05	1.57E-05	1.99E-05	2.5E-05	2.77855E-05	2.5E-05	1.99E-05	1.57E-05	1.27E-05	5.29285E-06
5.58741E-06	1.37885E-05	1.79E-05	2.5E-05	3.81E-05	5.04966E-05	3.81E-05	2.5E-05	1.79E-05	1.38E-05	5.58741E-06
5.6971E-06	1.4207E-05	1.88E-05	2.78E-05	5.05E-05	0.000047762	5.05E-05	2.78E-05	1.88E-05	1.42E-05	5.6971E-06
5.58741E-06	1.37885E-05	1.79E-05	2.5E-05	3.81E-05	5.04966E-05	3.81E-05	2.5E-05	1.79E-05	1.38E-05	5.58741E-06
5.29285E-06	1.27249E-05	1.57E-05	1.99E-05	2.5E-05	2.77855E-05	2.5E-05	1.99E-05	1.57E-05	1.27E-05	5.29285E-06
4.89093E-06	1.13942E-05	1.34E-05	1.57E-05	1.79E-05	1.88372E-05	1.79E-05	1.57E-05	1.34E-05	1.14E-05	4.89093E-06
4.45633E-06	1.00809E-05	1.14E-05	1.27E-05	1.38E-05	1.4207E-05	1.38E-05	1.27E-05	1.14E-05	1.01E-05	4.45633E-06
2.01865E-06	4.45633E-06	4.89E-06	5.29E-06	5.59E-06	5.6971E-06	5.59E-06	5.29E-06	4.89E-06	4.46E-06	2.01865E-06
1.82832E-06	4.03731E-06	4.46E-06	4.89E-06	5.29E-06	5.58741E-06	5.7E-06	5.59E-06	5.29E-06	4.89E-06	2.22816E-06
3.95924E-06	8.91266E-06	1.01E-05	1.14E-05	1.27E-05	1.37885E-05	1.42E-05	1.38E-05	1.27E-05	1.14E-05	5.04043E-06
4.25467E-06	9.78185E-06	1.14E-05	1.34E-05	1.57E-05	1.78936E-05	1.88E-05	1.79E-05	1.57E-05	1.34E-05	5.6971E-06
4.51139E-06	1.05857E-05	1.27E-05	1.57E-05	1.99E-05	2.50056E-05	2.78E-05	2.5E-05	1.99E-05	1.57E-05	6.36247E-06
4.68968E-06	1.11748E-05	1.38E-05	1.79E-05	2.5E-05	3.80636E-05	5.05E-05	3.81E-05	2.5E-05	1.79E-05	6.89424E-06
4.75398E-06	1.13942E-05	1.42E-05	1.88E-05	2.78E-05	5.04966E-05	4.78E-05	5.05E-05	2.78E-05	1.88E-05	7.10348E-06
4.68968E-06	1.11748E-05	1.38E-05	1.79E-05	2.5E-05	3.80636E-05	5.05E-05	3.81E-05	2.5E-05	1.79E-05	6.89424E-06
4.51139E-06	1.05857E-05	1.27E-05	1.57E-05	1.99E-05	2.50056E-05	2.78E-05	2.5E-05	1.99E-05	1.57E-05	6.36247E-06
4.25467E-06	9.78185E-06	1.14E-05	1.34E-05	1.57E-05	1.78936E-05	1.88E-05	1.79E-05	1.57E-05	1.34E-05	5.6971E-06
3.95924E-06	8.91266E-06	1.01E-05	1.14E-05	1.27E-05	1.37885E-05	1.42E-05	1.38E-05	1.27E-05	1.14E-05	5.04043E-06
1.82832E-06	4.03731E-06	4.46E-06	4.89E-06	5.29E-06	5.58741E-06	5.7E-06	5.59E-06	5.29E-06	4.89E-06	2.22816E-06

Universitas Indonesia

1.66049E-06	3.65664E-06	4.04E-06	4.46E-06	4.89E-06	5.29285E-06	5.59E-06	5.7E-06	5.59E-06	5.29E-06	2.44546E-06
3.54273E-06	7.91847E-06	8.91E-06	1.01E-05	1.14E-05	1.27249E-05	1.38E-05	1.42E-05	1.38E-05	1.27E-05	5.6971E-06
3.74967E-06	8.50933E-06	9.78E-06	1.14E-05	1.34E-05	1.57354E-05	1.79E-05	1.88E-05	1.79E-05	1.57E-05	6.70246E-06
3.92186E-06	9.02278E-06	1.06E-05	1.27E-05	1.57E-05	1.99473E-05	2.5E-05	2.78E-05	2.5E-05	1.99E-05	7.86772E-06
4.03731E-06	9.37936E-06	1.12E-05	1.38E-05	1.79E-05	2.50056E-05	3.81E-05	5.05E-05	3.81E-05	2.5E-05	8.94681E-06
4.07812E-06	9.50795E-06	1.14E-05	1.42E-05	1.88E-05	2.77855E-05	5.05E-05	4.78E-05	5.05E-05	2.78E-05	9.41858E-06
4.03731E-06	9.37936E-06	1.12E-05	1.38E-05	1.79E-05	2.50056E-05	3.81E-05	5.05E-05	3.81E-05	2.5E-05	8.94681E-06
3.92186E-06	9.02278E-06	1.06E-05	1.27E-05	1.57E-05	1.99473E-05	2.5E-05	2.78E-05	2.5E-05	1.99E-05	7.86772E-06
3.74967E-06	8.50933E-06	9.78E-06	1.14E-05	1.34E-05	1.57354E-05	1.79E-05	1.88E-05	1.79E-05	1.57E-05	6.70246E-06
3.54273E-06	7.91847E-06	8.91E-06	1.01E-05	1.14E-05	1.27249E-05	1.38E-05	1.42E-05	1.38E-05	1.27E-05	5.6971E-06
1.66049E-06	3.65664E-06	4.04E-06	4.46E-06	4.89E-06	5.29285E-06	5.59E-06	5.7E-06	5.59E-06	5.29E-06	2.44546E-06
1.51448E-06	3.32098E-06	3.66E-06	4.04E-06	4.46E-06	4.89093E-06	5.29E-06	5.59E-06	5.7E-06	5.59E-06	2.64642E-06
3.19437E-06	7.08545E-06	7.92E-06	8.91E-06	1.01E-05	1.13942E-05	1.27E-05	1.38E-05	1.42E-05	1.38E-05	6.36247E-06
3.34358E-06	7.49934E-06	8.51E-06	9.78E-06	1.14E-05	1.34049E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	7.86772E-06
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57354E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.78936E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.5702E-06	8.15623E-06	9.51E-06	1.14E-05	1.42E-05	1.88372E-05	2.78E-05	5.05E-05	4.78E-05	5.05E-05	1.38927E-05
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.78936E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57354E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.34358E-06	7.49934E-06	8.51E-06	9.78E-06	1.14E-05	1.34049E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	7.86772E-06
3.19437E-06	7.08545E-06	7.92E-06	8.91E-06	1.01E-05	1.13942E-05	1.27E-05	1.38E-05	1.42E-05	1.38E-05	6.36247E-06
1.51448E-06	3.32098E-06	3.66E-06	4.04E-06	4.46E-06	4.89093E-06	5.29E-06	5.59E-06	5.7E-06	5.59E-06	2.64642E-06
1.388E-06	3.02896E-06	3.32E-06	3.66E-06	4.04E-06	4.45633E-06	4.89E-06	5.29E-06	5.59E-06	5.7E-06	2.79371E-06
2.90166E-06	6.38873E-06	7.09E-06	7.92E-06	8.91E-06	1.00809E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	6.89424E-06
3.01213E-06	6.68716E-06	7.5E-06	8.51E-06	9.78E-06	1.13942E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27249E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1.37885E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.17464E-06	7.14041E-06	8.16E-06	9.51E-06	1.14E-05	1.4207E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	2.52483E-05
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1.37885E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27249E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.01213E-06	6.68716E-06	7.5E-06	8.51E- 06	9.78E-06	1.139 42 E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
2.90166E-06	6.38873E-06	7.09E-06	7.92E-06	8.91E- 06	1.00809E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	6.89424E-06
1.388E-06	3.02896E-06	3.32E-06	3.66E-06	4.04E-06	4.45633E-06	4.89E-06	5.29E-06	5.59E-06	5.7E-06	2.79371E-06
1 270275 00	2 7765 06	2.025.00	2 225 00	2 665 06	4 027215 00	4.465.06	4 905 00	E 205 0C		2 0 40555 00
1.27837E-06	2.776E-06	3.03E-06	3.32E-00	3.000-00	4.03731E-06	4.46E-06	4.89E-06	5.29E-06	5.59E-06	2.84855E-06
2.05389E-06	5.80332E-06	6.39E-06	7.09E-06	7.92E-06	8.91266E-06	1.01E-05	1.14E-05	1.2/E-05	1.38E-05	7.10348E-06
2./3/61E-06	6.02426E-06	6.69E-06	7.5E-06	8.51E-06	9.78185E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	9.41858E-06
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.05857E-05	1.27E-05	1.5/E-05	1.99E-05	2.5E-05	1.38927E-05
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.11/48E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.8579E-06	6.34928E-06	7.14E-06	8.16E-06	9.51E-06	1.13942E-05	1.42E-05	1.88E-05	2.785-05	5.05E-05	0.000023881
2.843/4E-06	0.31055E-06	7.09E-06	8.0/E-06	9.38E-06	1.11748E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.80252E-06	0.1984/E-06	0.93E-06	7.84E-06	9.02E-06	1.05857E-05	1.27E-05	1.5/E-05	1.998-05	2.5E-05	1.38927E-05
2./3/01E-06	0.UZ426E-U6	0.09E-06	7.5E-Ub	6.51E-06	9./0102E-00	1.14E-05	1.34E-05	1.57E-05	1.79E-05	9.41058E-06
	E 002225 0C	C 205 0C	7 005 00	7 0 25 0 2	0.012005.00	1 015 05	1 1 45 05	1 375 05	1 205 05	7 102 405 00
2.033696-00	5.80332E-06	6.39E-06	7.09E-06	7.92E-06	8.91266E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	7.10348E-06

Gambar C.2. Settlement per gaya satu satuan untuk nodal 1-6

9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068
8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25
7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017
7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882
7.5	6.25	5	3.75	2.5	1.25		1.25	2.5	3.75	5
7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882
7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017
8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25
9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068
9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905
10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694	8.385255	9.013878
	9.013878 8.385255 7.905694 7.603453 7.603453 7.905694 8.385255 9.013878 9.762812 10.6066	9.013878 8.003905 8.385255 7.28869 7.905694 6.731456 7.603453 6.373774 7.603453 6.373774 7.905694 6.731456 8.385255 7.28869 9.013878 8.03905 9.762812 8.83835 10.6066 9.762812	9.013878 8.003905 7.071068 8.385255 7.28869 6.255 7.905694 6.731456 5.59017 7.603453 6.373774 5.153882 7.603453 6.373774 5.153882 7.603453 6.373774 5.153882 7.603453 6.373774 5.153882 7.905694 6.731456 5.59017 8.385255 7.28869 6.255 9.013878 8.003905 7.071068 9.762812 8.838835 8.003905 10.6066 9.762812 9.013878	9.013878 8.003905 7.071068 6.25 8.385255 7.28869 6.25 5.30301 7.905694 6.731456 5.59017 4.506939 7.603453 6.373774 5.153882 3.952847 7.603453 6.373774 5.153882 3.952847 7.603453 6.373774 5.153882 3.952847 7.905694 6.731456 5.59017 4.506939 8.385255 7.28869 6.25 5.30301 9.013878 8.003905 7.071068 6.25 9.762812 8.83835 8.003905 7.28869 10.6066 9.762812 9.013878 8.385255	9.013878 8.003905 7.071068 6.25 5.59017 8.385255 7.28869 6.25 5.303301 4.506939 7.905694 6.731456 5.59017 4.506939 3.53554 7.603453 6.373774 5.153882 3.952847 2.795085 7.603453 6.373774 5.153882 3.952847 2.795085 7.603453 6.373774 5.153882 3.952847 2.795085 7.050594 6.731456 5.59017 4.506939 3.53534 7.905694 6.731456 5.59017 4.506939 3.53534 8.385255 7.28869 6.25 5.303301 4.506939 9.013878 8.003905 7.071068 6.25 5.59017 9.762812 8.83835 8.003905 7.28669 6.731456 9.013878 8.03905 7.071068 6.25 5.59017 9.762812 8.83835 8.003905 7.28669 6.731456 10.6066 9.762812 9.013878 8.385255 7.905694 <	9.013878 8.003905 7.071068 6.25 5.59017 5.153882 8.385255 7.2869 6.25 5.303301 4.506939 3.952847 7.905694 6.731456 5.59017 4.506939 3.53554 2.795085 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 7.905694 6.731456 5.59017 4.506939 3.53554 2.795085 8.385255 7.28869 6.625 5.303301 4.506939 3.952847 9.013878 8.003905 7.071068 6.25 5.59017 5.153882 9.762812 8.83835 8.003905 7.28869 6.731456 6.373774 9.013878 8.385255 7.905694 7.603453	9.013878 8.003905 7.071068 6.25 5.59017 5.153882 5 8.385255 7.2869 6.25 5.303301 4.506939 3.952847 3.75 7.905694 6.731456 5.59017 4.506939 3.535534 2.795085 2.55 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 7.905694 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 8.385255 7.2869 6.25 5.303301 4.506939 3.952847 3.75 9.013878 8.003905 7.071068 6.25 5.59017 5.153882 5 9.762812 8.38835 8.003905 7.28669	9.013878 8.003905 7.071068 6.25 5.59017 5.153882 5 5.153882 8.385255 7.28869 6.25 5.303301 4.506393 3.952847 3.75 3.952847 7.905694 6.731456 5.59017 4.506393 3.53554 2.795085 2.5 2.795085 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 7.5 6.25 5.9017 4.506939 3.53554 2.795085 1.767767 1.25 1.767767 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 7.050594 6.731456 5.59017 4.506939 3.53534 2.795085 2.5 2.795085 8.385255 7.28869 6.625 5.59017 5.153882 5.153882 3.952847 9.013878 8.003905	9.013878 8.003905 7.071068 6.25 5.59017 5.153882 5 5.59017 8.385255 7.28669 6.25 5.03301 4.506939 3.952847 3.75 3.952847 4.506939 7.905694 6.731456 5.59017 4.506939 3.952847 2.795085 2.5 2.795085 3.53534 2.795085 2.5 2.795085 3.535534 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 7.603453 6.373774 5.153882 3.952847 2.795085 1.767767 1.25 1.767767 2.795085 7.905694 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 2.795085 3.53534 7.905694 6.731456 5.59017 4.506939 3.952847 3.75 3.952847 4.506939 9.013878 8.003905	9.013878 8.003905 7.071068 6.25 5.59017 5.153882 5 5.59017 5.153882 5 5.59017 5.153882 5 5.59017 5.153882 5 5.59017 5.153882 5.59017 5.153882 5.59017 5.03301 4.506939 3.952847 3.75 3.952847 4.506939 5.303301 7.095694 6.731456 5.59017 4.506939 3.535534 2.795085 2.5 2.795085 2.5 2.795085 3.53544 4.506939 3.952847 7.603453 6.373774 5.153882 3.952847 2.795085 1.25 1.25 1.767767 2.795085 3.952847 7.603453 6.373774 5.153882 3.952847 2.795085 1.25 1.767767 1.25 1.767767 2.795085 3.952847 7.603453 6.373774 5.153882 3.952847 2.795085 1.25 1.767767 1.25 1.767767 2.795085 3.952847 7.905694 6.731456 5.59017 4.506939 3.95284

	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
ſ	8.75	7.5	6.25	5	3.75	2.5	1.25	-	1.25	2.5	3.75
	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869
	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694	8.385255
							P	ŗ			
	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017
	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
r	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
l	10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25	2.5
	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017
	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456
	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25
4	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
	13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
	13.46291	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5
	13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
	12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
ſ	12.56234	11.31923	10.07782	8.838835	7.603453	6.3/3//4	5.153882	3.952847	2./95085	1./6//6/	1.25
l	12.5	11.25	10 07702	8.75	7.5	6.25	5	3.75	2.5	1.25	4.25
	12.56234	11.31923	10.07782	8.838835	7.603453	6.3/3//4	5.153882	3.952847	2.795085	1./6//6/	1.25
	12.74755	11.52443	10.30776	9.10013/	7.905694	0./31456	5.59017	4.506939	3.535534	2.795085	2.5
	12 46201	12 21107	11 10024	9.519/10	0.305255	7.28809 8.002005	0.25	5.303301 6 25	4.500939	5.95284/	3./5 r
	12 075/7	12.5110/	11 70240	10.07782	9.0150/8	8 83003E	8 002005	7 28860	5.59017 6 731756	6 372774	5 د عد
	1/ 577342	12 52007	12.79248	11 5 7 4 4 2	10 6066	0.0000000	0.003903	0 205255	7 005604	7 602452	0.25
	14.3//38	12.22005	12.5	11.52443	10.0000	9.702012	9.013018	0.202225	1.303034	1.003433	1.5

Gambar C.3. Jarak antarnodal untuk nodal 8-12
3.32098E-06	7.31328E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	1.06E-05	4.89093E-06
1.54962E-06	3.36665E-06	3.66E-06	3.96E-06	4.25E-06	4.51E-06	4.69E-06	4.75E-06	4.69E-06	4.51E-06	2.12733E-06
1.59718E-06	3.54273E-06	3.96E-06	4.46E-06	5.04E-06	5.7E-06	6.36E-06	6.89E-06	7.1E-06	6.89E-06	3.18123E-06
3.34358E-06	7.49934E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	7.86772E-06
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.5702E-06	8.15623E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	5.05E-05	1.38927E-05
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.34358E-06	7.49934E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	7.86772E-06
3.19437E-06	7.08545E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	1.38E-05	6.36247E-06
3.02896E-06	6.64196E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	5.29285E-06
1.42895E-06	3.09924E-06	3.37E-06	3.66E-06	3.96E-06	4.25E-06	4.51E-06	4.69E-06	4.75E-06	4.69E-06	2.25569E-06
1.45083E-06	3.19437E-06	3.54E-06	3.96E-06	4.46E-06	5.04E-06	5.7E-06	6.36E-06	6.89E-06	7.1E-06	3.44712E-06
3.01213E-06	6.68716E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1. 79 E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.17464E-06	7.14041E-06	8.16E -06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E- 05	4.78E-05	2.52483E-05
3.15527E-06	7.08545E-06	8.07E- 06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.01213E-06	6.68716E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
2.90166E-06	6.38873E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	6.89424E-06
2.776E-06	6.05792E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	5.58741E-06
1.32127E-06	2.8579E-06	3.1E-06	3.37E-06	3.66E-06	3.96E-06	4.25E-06	4.51E-06	4.69E-06	4.75E-06	2.34484E-06
1.32694E-06	2.90166E-06	3.19E-06	3.54E-06	3.96E-06	4.46E-06	5.04E-06	5.7E-06	6.36E-06	6.89E-06	3.55174E-06
2.73761E-06	6.02426E-06	6.69E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	9.41858E-06
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	1.38927E-05
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.8579E-06	6.34928E-06	7.14E-06	8.16E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	0.000023881
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	1.38927E-05
2.73761E-06	6.02426E-06	6.69E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	9.41858E-06
2.65389E-06	5.80332E-06	6.39E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	7.10348E-06
2.55673E-06	5.55201E-06	6.06E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	5.6971E-06
1.22566E-06	2.64254E-06	2.86E-06	3.1E-06	3.37E-06	3.66E-06	3.96E-06	4.25E-06	4.51E-06	4.69E-06	2.37699E-06
	Gambar (C.4. Set	tlement	t per ga	ya satu	satuan	untuk r	odal 8-	-12	
									Univ	ersitas In

1.97962E-06 4.45633E-06 5.04E-06

4.51139E-06 1.05857E-05 1.27E-05

4.68968E-06 1.11748E-05 1.38E-05

4.68968E-06 1.11748E-05 1.38E-05

4.51139E-06 1.05857E-05 1.27E-05

4.25467E-06 9.78185E-06 1.14E-05

3.65664E-06 8.07462E-06 8.91E-06

1.68333E-06 3.65664E-06 3.96E-06

4.03731E-06 9.37936E-06 1.12E-05

3.92186E-06 9.02278E-06 1.06E-05

8.91266E-06

1.77136E-06 3.95924E-06 4.46E-06 5.04E-06

9.02278E-06 1.06E-05

4.03731E-06 9.37936E-06 1.12E-05 1.38E-05 1.79E-05

1.13942E-05

1.14E-05

1.42E-05

1.01E-05

1.34E-05

1.57E-05

1.79E-05

1.88E-05

1.79E-05

1.34E-05

1.14E-05

1.27E-05

4.07812E-06 9.50795E-06 1.14E-05 1.42E-05 1.88E-05 2.78E-05 5.05E-05

3.74967E-06 8.50933E-06 9.78E-06 1.14E-05 1.34E-05 1.57E-05 1.79E-05

1.57E-05 1.99E-05

1.38E-05 1.79E-05

4.25467E-06 9.78185E-06

4.75398E-06

3.95924E-06

3.92186E-06

5.7E-06 6.36E-06 6.89E-06

1.57E-05

1.99E-05

2.5E-05

2.78E-05

2.5E-05

1.57E-05

1.27E-05

9.78E-06 1.06E-05 1.12E-05

4.25E-06 4.51E-06 4.69E-06

1.57E-05

1.27E-05 1.57E-05 1.99E-05

1.79E-05

2.5E-05

3.81E-05

5.05E-05

3.81E-05

2.5E-05

1.79E-05

1.38E-05

5.7E-06 6.36E-06 6.89E-06

3.74967E-06 8.50933E-06 9.78E-06 1.14E-05 1.34E-05 1.57E-05 1.79E-05 1.79E-05 1.79E-05 1.57E-05 6.70246E-06

1.99E-05

2.5E-05

3.54273E-06 7.91847E-06 8.91E-06 1.01E-05 1.14E-05 1.27E-05 1.38E-05 1.42E-05 1.38E-05 1.38E-05 1.27E-05 5.6971E-06

1.88E-05

2.78E-05

5.05E-05

4.78E-05

2.78E-05

1.88E-05

1.42E-05

2.5E-05

3.81E-05

2.5E-05 3.81E-05

5.05E-05 3.81E-05

1.14E-05 1.12E-05

4.75E-06 4.69E-06

2.5E-05 2.78E-05

7.1E-06 6.89E-06 6.36E-06

1.79E-05

3.81E-05

5.05E-05

2.5E-05

1.79E-05

1.38E-05

2.78E-05

5.05E-05

4.78E-05

5.05E-05

2.5E-05

1.57E-05

1.99E-05

2.5E-05

2.78E-05

2.5E-05

1.99E-05

1.57E-05

1.27E-05

2.5E-05

3.81E-05

3.81E-05

1.06E-05

129

5.6971E-06

6.36247E-06

6.89424E-06

7.10348E-06

6.89424E-06

6.36247E-06

5.6971E-06

5.04043E-06 9.78E-06 4.45633E-06

7.86772E-06

8.94681E-06

7.86772E-06

Indonesia

2.5E-05 8.94681E-06

5.7E-06 2.52022E-06

1.34E-05

1.57E-05

1.79E-05

1.88E-05

1.79E-05

1.57E-05

1.34E-05

1.14E-05

1.99E-05

5.05E-05 2.78E-05 9.41858E-06

2.5E-05

7.1E-06 6.89E-06 6.36E-06 2.84855E-06

2.5E-05 1.99E-05

1.88E-05 1.79E-05 1.57E-05 6.70246E-06

4.51E-06 4.25E-06 1.97962E-06

	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
ļ	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25	2.5	3.75
	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869
	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694	8.385255
	12.3/43/	11.52443	10.75291	10.07782	9.519/16	9.100137	8.838835	8.75	8.838835	9.100137	9.519716
	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
[10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25	2.5
	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017
	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456
	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694
	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835	9.100137
	11.05054	10.00	0 510716	0.205255	7 20000	C 25	5 202201	4 505020	2 05 20 47	2.75	2 05 20 47
	11.00004	10 20776	9.519/10	8.385255 7.00E604	6 721456	0.25 E E0017	5.303301	4.500939	3.952847	3.75	3.952847
	11.52445	10.50770	9.100157	7.903094	6 272774	5.59017	4.500959	3.3333334	2.795065	2.5	2.795065
ſ	11.51925	10.07782	0.030033	7.003433	6 25	5.155002	2 75	2.795065	1.707707	1.25	1.707707
l	11 31923	10 07782	8.838835	7.603453	6 373774	5 15388 2	3.75	2.5	1.25	1 25	1.25
	11.51525	10.0776	9 100137	7 905694	6 731456	5 59017	4 506939	3 535534	2 795085	2.5	2 795085
	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3,952847	3.75	3.952847
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	55	5.153882
	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
	13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
	14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835
	13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
	12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
ſ	12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
ļ	12.5	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	1.07
	1.1 [(1.1]]	11 21922	10 07789	0 0.100.1	7602752	6 373774	5,153882	3.952847	2.795085	1.767767	1.25
	12.50234	11.51525	10.07782	0.030035	7.003433	0.373774	5.50002	4.500000	2 5 2 5 5 5 2 1	2 70500-	<u> </u>
	12.56234	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
	12.56234 12.74755 13.05038	11.52443 11.85854	10.30776 10.68	8.838835 9.100137 9.519716	7.905694 8.385255	6.731456 7.28869	5.59017 6.25	4.506939 5.303301	3.535534 4.506939	2.795085 3.952847	2.5 3.75
	12.30234 12.74755 13.05038 13.46291	11.52443 11.85854 12.31107	10.30776 10.68 11.18034	8.838835 9.100137 9.519716 10.07782	7.905694 8.385255 9.013878	6.731456 7.28869 8.003905	5.59017 6.25 7.071068	4.506939 5.303301 6.25	3.535534 4.506939 5.59017	2.795085 3.952847 5.153882	2.5 3.75 5
	12.36234 12.74755 13.05038 13.46291 13.97542	11.52443 11.85854 12.31107 12.86954	10.30776 10.68 11.18034 11.79248	8.838835 9.100137 9.519716 10.07782 10.75291	7.905694 8.385255 9.013878 9.762812	6.731456 7.28869 8.003905 8.838835	5.59017 6.25 7.071068 8.003905	4.506939 5.303301 6.25 7.28869	3.535534 4.506939 5.59017 6.731456	2.795085 3.952847 5.153882 6.373774	2.5 3.75 5 6.25
	12.50234 12.74755 13.05038 13.46291 13.97542 14.57738	11.51925 11.52443 11.85854 12.31107 12.86954 13.52082 14.25210	10.0776 10.30776 10.68 11.18034 11.79248 12.5	8.838835 9.100137 9.519716 10.07782 10.75291 11.52443 12.37427	7.905453 7.905694 8.385255 9.013878 9.762812 10.6066 11 52442	6.731456 7.28869 8.003905 8.838835 9.762812	5.59017 6.25 7.071068 8.003905 9.013878 10.07783	4.506939 5.303301 6.25 7.28869 8.385255 9.519716	3.535534 4.506939 5.59017 6.731456 7.905694 9.100137	2.795085 3.952847 5.153882 6.373774 7.603453 8 838825	2.5 3.75 5 6.25 7.5

Gambar C.5. Jarak antarnodal untuk nodal 15-18

1.87483E-06	4.25467E-06	4.89E-06	5.7E-06	6.7E-06	7.87E-06	8.95E-06	9.42E-06	8.95E-06	7.87E-06	3.35123E-06
3.92186E-06	9.02278E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	1.99E-05	7.86772E-06
4.03731E-06	9.37936E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	2.5E-05	8.94681E-06
4.07812E-06	9.50795E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	5.05E-05	2.78E-05	9.41858E-06
4.03731E-06	9.37936E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	2.5E-05	8.94681E-06
3.92186E-06	9.02278E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	1.99E-05	7.86772E-06
3.74967E-06	8.50933E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	1.57E-05	6.70246E-06
3.54273E-06	7.91847E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	1.38E-05	1.27E-05	5.6971E-06
3.32098E-06	7.31328E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	1.06E-05	4.89093E-06
3.09924E-06	6.73331E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	9.51E-06	9.38E-06	9.02E-06	4.25467E-06
1.44342E-06	3.09924E-06	3.32E-06	3.54E-06	3.75E-06	3.92E-06	4.04E-06	4.08E-06	4.04E-06	3.92E-06	1.87483E-06

Analisis po	ndasi, A	Azmi	Mulki,	FΤ	UI,	2009
-------------	----------	------	--------	----	-----	------

							-			
10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25	2.5
10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085
10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534
10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939
11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017
11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456
12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694
13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835	9.100137
14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10	10.07782	10.30776
							_			
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25
11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835
15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10	10.07782

Gambar C.6. Settlement per gaya satu satuan untuk nodal 15-18

1.67179E-06	3.74967E-06	4.25E-06	4.89E-06	5.7E-06	6.7E-06	7.87E-06	8.95E-06	9.42E-06	8.95E-06	3.93386E-06
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.5702E-06	8.15623E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	5.05E-05	1.38927E-05
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.34358E-06	7.49934E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	7.86772E-06
3.19437E-06	7.08545E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	1.38E-05	6.36247E-06
3.02896E-06	6.64196E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	5.29285E-06
2.8579E-06	6.19847E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	9.51E-06	9.38E-06	4.51139E-06
1.34441E-06	2.88685E-06	3.1E-06	3.32E-06	3.54E-06	3.75E-06	3.92E-06	4.04E-06	4.08E-06	4.04E-06	1.96093E-06
										==
1.50606E-06	3.34358E-06	3.75E-06	4.25E-06	4.89E-06	5.7E-06	6.7E-06	7.87E-06	8.95E-06	9.42E-06	4.4734E-06
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.1552/E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.17464E-06	7.14041E-06	8.16E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	2.52483E-05
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.09924E-06	6.92/9E-06	7.84E-06	9.02E-06	1.06E-05	1.2/E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.01213E-06	6.68/16E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
2.90166E-06	6.388/3E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.2/E-05	1.38E-05	1.42E-05	6.89424E-06
2.776E-06	6.05/92E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	5.58741E-06
2.64254E-06	5./158E-06	6.2E-06	6./3E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	9.51E-06	4.68968E-06
1.25358E-06	2.68882E-06	2.89E-06	3.1E-06	3.32E-06	3.54E-06	3.75E-06	3.92E-06	4.04E-06	4.08E-06	2.01865E-06
1.36881E-06	3.01213E-06	3.34E-06	3.75E-06	4.25E-06	4.89E-06	5.7E-06	6.7E-06	7.87E-06	8.95E-06	4.70929E-06
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	1.38927E-05
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.8579E-06	6.34928E-06	7.14E-06	8.16E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	0.000023881
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	1.38927E-05
2.73761E-06	6.02426E-06	6.69E-06	7.5E-06	8.51E-06	9. 78 E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	9.41858E-06
2.65389E-06	5.80332E-06	6.39E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	7.10348E-06
2.55673E-06	5.55201E-06	6.06E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	5.6971E-06
2.45132E-06	5.28508E-06	5.72E-06	6.2E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	4.75398E-06
1.17105E-06	2.50716E-06	2.69E-06	2.89E-06	3.1E-06	3.32E-06	3.54E-06	3.75E-06	3.92E-06	4.04E-06	2.03906E-06

12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
12.5	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	
12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
13.46291	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5
13.97542	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25
14.57738	13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5
15.25819	14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75
16.00781	15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10

Gambar C.7. Jarak antarnodal untuk nodal 22-24

1.73198E-06	3.92186E-06	4.51E-06	5.29E-06	6.36E-06	7.87E-06	9.97E-06	1.25E-05	1.39E-05	1.25E-05	4.98683E-06
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.5702E-06	8.15623E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	5.05E-05	1.38927E-05
3.54273E-06	8.07462E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	3.81E-05	1.25028E-05
3.46395E-06	7.84372E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	2.5E-05	9.97367E-06
3.34358E-06	7.49934E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	1.79E-05	7.86772E-06
3.19437E-06	7.08545E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	1.38E-05	6.36247E-06
3.02896E-06	6.64196E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	5.29285E-06
2.8579E-06	6.19847E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	9.51E-06	9.38E-06	4.51139E-06
2.68882E-06	5.7737E-06	6.2E-06	6.64E-06	7.09E-06	7.5E-06	7.84E-06	8.07E-06	8.16E-06	8.07E-06	3.92186E-06
1.26332E-06	2.68882E-06	2.86E-06	3.03E-06	3.19E-06	3.34E-06	3.46E-06	3.54E -06	3.57E-06	3.54E-06	1.73198E-06
1.54962E-06	3.46395E-06	3.92E-06	4.51E-06	5.29E-06	6.36E-06	7.87E-06	9.97E-06	1.25E-05	1.39E-05	6.25139E-06
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.1 2E-0 5	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.17464E-06	7.14041E-06	8.16E-06	9.51E- 0 6	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	2.52483E-05
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1. 38 E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E- 05	2.78E-05	1.25028E-05
3.01213E-06	6.68716E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
2.90166E-06	6.38873E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	6.89424E-06
2.776E-06	6.05792E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	5.58741E-06
2.64254E-06	5.7158E-06	6.2E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	9.51E-06	4.68968E-06
2.50716E-06	5.37763E-06	5.77E-06	6.2E-06	6.64E-06	7.09E-06	7.5E-06	7.84E-06	8.07E-06	8.16E-06	4.03731E-06
1.18707E-06	2.52664E-06	2.69E- 06	2.86E-06	3.03E-06	3.19E-06	3.34E-06	3.46E-06	3.54E-06	3.57E-06	1.77136E-06

Gambar C.8. Settlement per gaya satu satuan untuk nodal 22-24

	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
l	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25		1.25
	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
	13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
	14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835
	15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10	10.07782
	15.9099	15.05199	14.25219	13.52082	12.86954	12.31107	11.85854	11.52443	11.31923	11.25	11.31923

12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
12.5	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	
12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
13.46291	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5
13.97542	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25
14.57738	13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5
15.25819	14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75
16.00781	15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10
16.81703	15.9099	15.05199	14.25219	13.52082	12.86954	12.31107	11.85854	11.52443	11.31923	11.25

Gambar C.9. Jarak antarnodal untuk nodal 29-30

1.57764E-06	3.54273E-06	4.04E-06	4.69E-06	5.59E-06	6.89E-06	8.95E-06	1.25E-05	1.9E-05	2.52E-05	9.5159E-06
3.17464E-06	7.14041E-06	8.16E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	4.78E-05	2.52483E-05
3.15527E-06	7.08545E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	5.05E-05	1.90318E-05
3.09924E-06	6.9279E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	2.78E-05	1.25028E-05
3.01213E-06	6.68716E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	1.88E-05	8.94681E-06
2.90166E-06	6.38873E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	1.42E-05	6.89424E-06
2.776E-06	6.05792E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	1.14E-05	5.58741E-06
2.64254E-06	5.7158E-06	6.2E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	9.51E-06	4.68968E-06
2.50716E-06	5.37763E-06	5.77E-06	6.2E-06	6.64E-06	7.09E-06	7.5E-06	7.84E-06	8.07E-06	8.16E-06	4.03731E-06
2.37415E-06	5.05329E-06	5.38E-06	5.72E-06	6.06E-06	6.39E-06	6.69E-06	6.93E-06	7.09E-06	7.14E-06	3.54273E-06
1.12315E-06	2.37415E-06	2.51E-06	2.64E-06	2.78E-06	2.9E-06	3.01E-06	3.1E-06	3.16E-06	3.17E-06	1.57764E-06
1.42187E-06	3.15527E-06	3.54E-06	4.04E-06	4.69E-06	5.59E-06	6.89E-06	8.95E-06	1.25E-05	1.9E-05	1.26242E-05
2.8579E-06	6.34928E-06	7.14E-06	8.16E-06	9.51E-06	1.14E-05	1.42E-05	1.88E-05	2.78E-05	5.05E-05	0.000023881
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	1.38927E-05
2.73761E-06	6.02426E-06	6.69E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E- 05	1.79E-05	9.41858E-06
2.65389E-06	5.80332E-06	6.39E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	7.10348E-06
2.55673E-06	5.55201E-06	6.06E-06	6.64E-06	7.31E-06	8.07E- 0 6	8.91E-06	9.78E-06	1.06E-05	1.12E-05	5.6971E-06
2.45132E-06	5.28508E-06	5.72E-06	6.2E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	4.75398E-06
2.34211E-06	5.01433E-06	5.38E-06	5.77E-06	6.2E-06	6.64E-06	7.09E-06	7.5E-06	7.84E-06	8.07E-06	4.07812E-06
2.23258E-06	4.74829E-06	5.05E-06	5.38E-06	5.72E-06	6.06E-06	6.39E-06	6.69E-06	6.93E-06	7.09E-06	3.5702E-06
1.06264E-06	2.2463E-06	2.37E-06	2.51E-06	2.64E-06	2.78E-06	2.9E-06	3.01E-06	3.1E-06	3.16E-06	1.58732E-06

Gambar C.10. Settlement per gaya satu satuan untuk nodal 29-30

12.5	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	
12.56234	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25
12.74755	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5
13.05038	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75
13.46291	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5
13.97542	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25
14.57738	13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5
15.25819	14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75
16.00781	15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10
16.81703	15.9099	15.05199	14.25219	13.52082	12.86954	12.31107	11.85854	11.52443	11.31923	11.25
17.67767	16.81703	16.00781	15.25819	14.57738	13.97542	13.46291	13.05038	12.74755	12.56234	12.5

Gambar C.11. Jarak antarnodal untuk nodal 36

1.42895E-06	3.17464E-06	3.57E-06	4.08E-06	4.75E-06	5.7E-06	7.1E-06	9.42E-06	1.39E-05	2.52E-05	1.19405E-05
2.84374E-06	6.31055E-06	7.09E-06	8.07E-06	9.38E-06	1.12E-05	1.38E-05	1.79E-05	2.5E-05	3.81E-05	2.52483E-05
2.80252E-06	6.19847E-06	6.93E-06	7.84E-06	9.02E-06	1.06E-05	1.27E-05	1.57E-05	1.99E-05	2.5E-05	1.38927E-05
2.73761E-06	6.02426E-06	6.69E-06	7.5E-06	8.51E-06	9.78E-06	1.14E-05	1.34E-05	1.57E-05	1.79E-05	9.41858E-06
2.65389E-06	5.80332E-06	6.39E-06	7.09E-06	7.92E-06	8.91E-06	1.01E-05	1.14E-05	1.27E-05	1.38E-05	7.10348E-06
2.55673E-06	5.55201E-06	6.06E-06	6.64E-06	7.31E-06	8.07E-06	8.91E-06	9.78E-06	1.06E-05	1.12E-05	5.6971E-06
2.45132E-06	5.28508E-06	5.72E-06	6.2E-06	6.73E-06	7.31E-06	7.92E-06	8.51E-06	9.02E-06	9.38E-06	4.75398E-06
2.34211E-06	5.01433E-06	5.38E-06	5.77E-06	6.2E-06	6.64E-06	7.09E-06	7.5E-06	7.84E-06	8.07E-06	4.07812E-06
2.23258E-06	4.74829E-06	5.05E-06	5.38E-06	5.72E-06	6.06E-06	6.39E-06	6.69E-06	6.93E-06	7.09E-06	3.5702E-06
2.12528E-06	4.4926E-06	4.75E-06	5.01E-06	5.29E-06	5.55E-06	5.8E-06	6.02E-06	6.2E-06	6.31E-06	3.17464E-06
1.01096E-06	2.12528E-06	2.23E-06	2.34E-06	2.45E-06	2.56E-06	2.65E-06	2.74E-06	2.8E-06	2.84E-06	1.42895E-06

Gambar C.12. Settlement per gaya satu satuan untuk nodal 36

Settlement nodal per gaya satu satuan untuk tiap nodal diakumulasi.

0.00095	0.00107	0.001161	0.001218	0.00125	0.00126	0.00125	0.001218	0.001161	0.00107	0.00095
0.00107	0.001229	0.001347	0.001418	0.001456	0.001469	0.001456	0.001418	0.001347	0.001229	0.00107
0.001161	0.001347	0.001483	0.001565	0.001609	0.001623	0.001609	0.001565	0.001483	0.001347	0.001161
0.001218	0.001418	0.001565	0.001653	0.001701	0.001717	0.001701	0.001653	0 .001565	0.001418	0.001218
0.00125	0.001456	0.001609	0.001701	0.001752	0.001768	0.001752	0.001701	0.001609	0.001456	0.00125
0.00126	0.001469	0.001623	0.001717	0.001768	0.001784	0.001768	0.001717	0.001623	0.001469	0.00126
0.00125	0.001456	0.001609	0.001701	0.001752	0.001768	0.001752	0.001701	0.001609	0.001456	0.00125
0.001218	0.001418	0.001565	0.001653	0.001701	0.001717	0.001701	0.001653	0.001565	0.001418	0.001218
0.001161	0.001347	0.001483	0.001565	0.001609	0.001623	0.001609	0.001565	0.001483	0.001347	0.001161
0.00107	0.001229	0.001347	0.001418	0.001456	0.001469	0.001456	0.001418	0.001347	0.001229	0.00107
0.00095	0.00107	0.001161	0.001218	0.00125	0.00126	0.00125	0.001218	0.001161	0.00107	0.00095

Gambar C.13. Settlement per gaya satuan z = 1

						/				
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	1270.909	1159.916	1102.099	1072.899	1063.889	1072.899	1102.099	1159.916	1270.909	1459.855
1346.051	1159.916	1053.443	998.6251	971.2117	962.7957	971.2117	998.6251	1053.443	1159.916	1346.051
1283.049	1102.099	998.6251	945.1407	918.4131	9 10.2 169	918.4131	945.1407	998.6251	1102.099	1283.049
1250.333	1072.899	971.2117	918.4131	891.9888	883.8834	891.98 <mark>88</mark>	918.4131	971.2117	1072.899	1250.333
1240.125	1063.889	962.7957	910.2169	883.8834	875.8041	883.8834	910.2169	962.7957	1063.889	1240.125
1250.333	1072.899	971.2117	918.4131	891.9888	883.8834	891.9888	918.4131	971.2117	1072.899	1250.333
1283.049	1102.099	998.6251	945.1407	918.4131	910.2169	918.4131	945.1407	998.6251	1102.099	1283.049
1346.051	1159.916	1053.443	998.6251	971.2117	962.7957	971.2117	998.6251	1053.443	1159.916	1346.051
1459.855	1270.909	1159.916	1102.099	1072.899	1063.889	1072.899	1102.099	1159.916	1270.909	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar C.14	. Spring tan	ah full mod	el $z = 1$

620.062	1250.333	1283.049	1346.051	1459.855	1644.527
531.945	1072.899	1102.099	1159.916	1270.909	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
455.108	918.413	945.141	998.625	1102.099	1283.049
441.942	891.989	918.413	971.212	1072.899	1250.333
218.951	441.942	455.108	481.398	531.945	620.062

Gambar C.15. Spring tanah $\frac{1}{4}$ model z = 1

A.2. Input spring tanah z = 0.5

Jarak antarnodal sama dengan z = 1

2.02192E-06	4.46516E-06	4.9E-06	5.31E-06	5.61E-06	5.7158E-06	5.61E-06	5.31E-06	4.9E-06	4.47E-06	2.02192E-06
4.46516E-06	1.01066E-05	1.14E-05	1.28E-05	1.39E-05	1.42808E-05	1.39E-05	1.28E-05	1.14E-05	1.01E-05	4.46516E-06
4.90265E-06	1.14316E-05	1.35E-05	1.58E-05	1.8E-05	1.90159E-05	1.8E-05	1.58E-05	1.35E-05	1.14E-05	4.90265E-06
5.30777E-06	1.27775E-05	1.58E-05	2.02E-05	2.54E-05	2.84139E-05	2.54E-05	2.02E-05	1.58E-05	1.28E-05	5.30777E-06
5.60503E-06	1.38558E-05	1.8E-05	2.54E-05	3.99E-05	5.55709E-05	3.99E-05	2.54E-05	1.8E-05	1.39E-05	5.60503E-06
5.7158E-06	1.42808E-05	1.9E-05	2.84E-05	5.56E-05	0.000095525	5.56E-05	2.84E-05	1.9E-05	1.43E-05	5.7158E-06
5.60503E-06	1.38558E-05	1.8E-05	2.54E-05	3.99E-05	5.55709E-05	3.99E-05	2.54E-05	1.8E-05	1.39E-05	5.60503E-06
5.30777E-06	1.27775E-05	1.58E-05	2.02E-05	2.54E-05	2.84139E-05	2.54E-05	2.02E-05	1.58E-05	1.28E-05	5.30777E-06
4.90265E-06	1.14316E-05	1.35E-05	1.58E-05	1.8E-05	1.90159E-05	1.8E-05	1.58E-05	1.35E-05	1.14E-05	4.90265E-06
4.46516E-06	1.01066E-05	1.14E-05	1.28E-05	1.39E-05	1.42808E-05	1.39E-05	1.28E-05	1.14E-05	1.01E-05	4.46516E-06
2.02192E-06	4.46516E-06	4.9E-06	5.31E-06	5.61E-06	5.7158E-06	5.61E-06	5.31E-06	4.9E-06	4.47E-06	2.02192E-06
1.83074E-06	4.04385E-06	4.47E-06	4.9E-06	5.31E-06	5.60503E-06	5.72E-06	5.61E-06	5.31E-06	4.9E-06	2.23258E-06
3.9654E-06	8.93032E-06	1.01E-05	1.14E-05	1.28E-05	1.38558E-05	1.43E-05	1.39E-05	1.28E-05	1.14E-05	5.05329E-06
4.26234E-06	9.8053E-06	1.14E-05	1.35E-05	1.58E-05	1.80456E-05	1.9E-05	1.8E-05	1.58E-05	1.35E-05	5.7158E-06
4.52055E-06	1.06155E- 05	1.28E-05	1.58E-05	2.02E-05	2.54499E-05	2.84E-05	2.54E-05	2.02E-05	1.58E-05	6.38873E-06
4.69999E-06	1.12101E-05	1.39E-05	1.8E-05	2.54E-05	3.98947E-05	5.56E-05	3.99E-05	2.54E-05	1.8E-05	6.9279E-06
4.76473E-06	1.14316E-05	1.43E-05	1.9E-05	2.84E-05	5.55709E-05	9.55E-05	5.56E-05	2.84E-05	1.9E-05	7.14041E-06
4.69999E-06	1.12101E-05	1.39E- 05	1.8E-05	2.54E-05	3.98947E-05	5.56E-05	3.99E-05	2.54E-05	1.8E-05	6.9279E-06
4.52055E-06	1.06155E-05	1.28E-05	1.58E-05	2.02E-05	2.54499E-05	2.84E-05	2.54E-05	2.02E-05	1.58E-05	6.38873E-06
4.26234E-06	9.8053E-06	1.14E-05	1.35E-05	1.58E-05	1.80456E-05	1.9E-05	1.8E-05	1.58E-05	1.35E-05	5.7158E-06
3.9654E-06	8.93032E-06	1.01E-05	1.14E-05	1.28E-05	1.38558E-05	1.43E-05	1.39E-05	1.28E-05	1.14E-05	5.05329E-06
1.83074E-06	4.04385E-06	4.47E-06	4.9E-06	5.31E-06	5.60503E-06	5.72E-06	5.61E-06	5.31E-06	4.9E-06	2.23258E-06
1.6623E-06	3.66148E-06	4.04E-06	4.47E-06	4.9E-06	5.30777E-06	5.61E-06	5.72E-06	5.61E-06	5.31E-06	2.45132E-06
3.54713E-06	7.9308E-06	8.93E-06	1.01E-05	1.14E-05	1.27775E-05	1.39E-05	1.43E-05	1.39E-05	1.28E-05	5.7158E-06
3.7549E-06	8.52467E-06	9.81E-06	1.14E-05	1.35E-05	1.58369E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	6.73331E-06
3.92785E-06	9.04111E-06	1.06E-05	1.28E-05	1.58E-05	2.01617E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	7.91847E-06
4.04385E-06	9.39999E-06	1.12E-05	1.39E-05	1.8E-05	2.54499E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	9.02278E-06
4.08486E-06	9.52946E-06	1.14E-05	1.43E-05	1.9E-05	2.84139E-05	5.56E-05	9.55E-05	5.56E-05	2.84E-05	9.50795E-06
4.04385E-06	9.39999E-06	1.12E-05	1.39E-05	1.8E-05	2.54499E-05	3.99E-05	5.56E-05	3.99E- 05	2.54E-05	9.02278E-06
3.92785E-06	9.04111E-06	1.06E-05	1.28E-05	1.58E-05	2.01617E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	7.91847E-06
3.7549E-06	8.52467E-06	9.81E-06	1.14E-05	1.35E-05	1.58369E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	6.73331E-06
3.54713E-06	7.9308E-06	8.93E-06	1.01E-05	1.14E-05	1.27775E-05	1.39E-05	1.43E-05	1.39E-05	1.28E-05	5.7158E-06
1.6623E-06	3.66148E-06	4.04E-06	4.47E-06	4.9E-06	5.30777E-06	5.61E-06	5.72E-06	5.61E-06	5.31E-06	2.45132E-06
1.51585E-06	3.3246E-06	3.66E-06	4.04E-06	4.47E-06	4.90265E-06	5.31E-06	5.61E-06	5.72E-06	5.61E-06	2.65389E-06
3.19758E-06	7.09426E-06	7.93E-06	8.93E-06	1.01E-05	1.14316E-05	1.28E-05	1.39E-05	1.43E- 05	1.39E-05	6.38873E-06
3.34728E-06	7.50979E-06	8.52E-06	9.81E-06	1.14E-05	1.34666E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	7.91847E-06
3.46806E-06	7.8557E-06	9.04E-06	1.06E-05	1.28E-05	1.58369E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	1.00809E-05
3.54713E-06	8.0877E-06	9.4E-06	1.12E-05	1.39E-05	1.80456E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	1.27249E-05
3.57471E-06	8.16972E-06	9.53E-06	1.14E-05	1.43E-05	1.90159E-05	2.84E-05	5.56E-05	9.55E-05	5.56E-05	1.4207E-05
3.54713E-06	8.0877E-06	9.4E-06	1.12E-05	1.39E-05	1.80456E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	1.27249E-05
3.46806E- 06	7.8557E-06	9.04E-06	1.06E-05	1.28E-05	1.58369E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	1.00809E-05
3.34728E-06	7.50979E-06	8.52E-06	9.81E-06	1.14E-05	1.34666E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	7.91847E-06
3.19758E-06	7.09426E-06	7.93E-06	8.93E-06	1.01E-05	1.14316E-05	1.28E-05	1.39E-05	1.43E-05	1.39E-05	6.38873E-06
1.51585E-06	3.3246E-06	3.66E-06	4.04E-06	4.47E-06	4.90265E-06	5.31E-06	5.61E-06	5.72E-06	5.61E-06	2.65389E-06
1.38906E-06	3.0317E-06	3.32E-06	3.66E-06	4.04E-06	4.46516E-06	4.9E-06	5.31E-06	5.61E-06	5.72E-06	2.80252E-06
2.90407E-06	6.39517E-06	7.09E-06	7.93E-06	8.93E-06	1.01066E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	6.9279E-06
3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14316E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.27775E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.38558E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.1778E-06	7.14942E-06	8.17E-06	9.53E-06	1.14E-05	1.42808E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	2.77855E-05
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.38558E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.27775E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14316E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
2.90407E-06	6.39517E-06	7.09E-06	7.93E-06	8.93E-06	1.01066E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	6.9279E-06
1.38906E-06	3.0317E-06	3.32E-06	3.66E-06	4.04E-06	4.46516E-06	4.9E-06	5.31E-06	5.61E-06	5.72E-06	2.80252E-06

1.27919E-06	2.77811E-06	3.03E-06	3.32E-06	3.66E-06	4.04385E-06	4.47E-06	4.9E-06	5.31E-06	5.61E-06	2.8579E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93032E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.8053E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06155E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12101E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.8602E-06	6.3556E-06	7.15E-06	8.17E-06	9.53E-06	1.14316E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	4.77625E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12101E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06155E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.8053E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93032E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
1.27919E-06	2.77811E-06	3.03E-06	3.32E-06	3.66E-06	4.04385E-06	4.47E-06	4.9E-06	5.31E-06	5.61E-06	2.8579E-06

Gambar C.16. Settlement per gaya satu satuan untuk nodal 1-6

	1.9827E-06	4.46516E-06	5.05E-06	5.72E-06	6.39E-06	6.93E-06	7.14E-06	6.93E-06	6.39E-06	5.72E-06	2.52664E-06
	4.26234E-06	9.8053E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	1.35E-05	5.7158E-06
	4.52055E-06	1.06155E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	1.58E-05	6.38873E-06
	4.69999E-06	1.12101E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	1.8E-05	6.9279E-06
	4.76473E-06	1.14316E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	5.56E-05	2.84E-05	1.9E-05	7.14041E-06
	4.69999E-06	1.12101E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	1.8E-05	6.9279E-06
	4.52055E-06	1.06155E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	1.58E-05	6.38873E-06
	4.26234E-06	9.8053E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	1.35E-05	5.7158E-06
	3.9654E-06	8.93032E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	1.39E-05	1.28E-05	1.14E-05	5.05329E-06
	3.66148E-06	8.0877E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	1.06E-05	9.81E-06	4.46516E-06
	1.68521E-06	3.66148E-06	3.97E-06	4.26E-06	4.52E-06	4.7E-06	4.76E-06	4.7E-06	4.52E-06	4.26E-06	1.9827E-06
	1.77356E-06	3.9654E-06	4.47E-06	5.05E-06	5.72E-06	6.39E-06	6.93E-06	7.14E-06	6.93E-06	6.39E-06	2.8579E-06
	3.7549E-06	8.52467E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	6.73331E-06
	3.92785E-06	9.04111E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	7.91847E-06
	4.04385E-06	9.39999E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	9.02278E-06
	4.08486E-06	9.52946E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	5.56E-05	2.84E-05	9.50795E-06
1	4.04385E-06	9.39999E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	9.02278E-06
	3.92785E-06	9.04111E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	7.91847E-06
	3.7549E-06	8.52467E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	6.73331E-06
	3.54713E-06	7.9308E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	1.39E-05	1.28E-05	5.7158E-06
	3.3246E-06	7.32296E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	1.06E-05	4.90265E-06
	1.55109E-06	3.37042E-06	3.66E-06	3.97E-06	4.26E-06	4.52E-06	4.7E-06	4.76E-06	4.7E-06	4.52E-06	2.13117E-06
	1 59879E-06	3 5/1713E-06	3 97F-06	4 47E-06	5 05E-06	5 72E-06	6 39E-06	6 93E-06	7 1/F-06	6 93E-06	3 19/37F-06
	3.34728E-06	7 50979E-06	8.52E-06	9.81E-06	1.1/F-05	1 35E-05	1.58E-05	1 8F-05	1 9E-05	1.8E-05	7 91847E-06
	3 46806E-06	7 8557F-06	9.04E-06	1.06E-05	1.14C 05	1.53E 05	2 02E-05	2 54F-05	2 84F-05	2 54E-05	1.00809F-05
	3 54713E-06	8 0877F-06	9 4F-06	1.00E 05	1.20E 05	1.50E 05	2.02L 05	3 99F-05	5.56E-05	3.99E-05	1.000009E 05
	3 57471F-06	8 16972E-06	9 53E-06	1.12E 05	1.33E 05	1.0E 05	2.54E 05	5.55E-05	9 55E-05	5 56E-05	1 4207F-05
	3 54713E-06	8 0877F-06	9.4E-06	1.14E 05	1.49E-05	1.5E 05	2.04E-05	3.99F-05	5.56E-05	3.99F-05	1 27249F-05
	3 46806F-06	7.8557E-06	9.04E-06	1.12E 05	1.35E 05	1.0E 05	2.34E 05	2 54E-05	2 84E-05	2 54F-05	1.00809F-05
	3 34728F-06	7 50979E-06	8.52E-06	9.81E-06	1.20E 05	1.30E 05	1.58E-05	1.8E-05	1.9E-05	1.8F-05	7 91847F-06
	3 19758F-06	7.09426E-06	7 93E-06	8 93E-06	1.01E-05	1.33E 05	1.30E 05	1 39F-05	1 43E-05	1 39F-05	6 38873F-06
	3 0317F-06	6 6492E-06	7.32E-06	8.09E-06	8 93E-06	9.81E-06	1.20E 05	1.35E 05	1.45E 05	1.35E 05	5 30777E-06
	1 4301F-06	3 10217E-06	3 37E-06	3.66E-06	3.97E-06	4 26E-06	4 52E-06	4 7E-06	4 76F-06	4 7F-06	2 26028E-06
	1.45012 00	5.102172 00	5.57E 00	3.00E 00	5.572 00	4.202 00	4.522 00	4.72 00	4.702 00	4.7 2 00	2.200202 00
	1.45203E-06	3.19758E-06	3.55E-06	3.97E-06	4.47E-06	5.05E-06	5.72E-06	6.39E-06	6.93E-06	7.14E-06	3.46395E-06
	3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
	3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
	3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
	3.1778E-06	7.14942E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	2.77855E-05
	3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
	3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
	3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
	2.90407E-06	6.39517E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	6.9279E-06
	2.77811E-06	6.06341E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	5.60503E-06
	1.32218E-06	2.8602E-06	3.1E-06	3.37E-06	3.66E-06	3.97E-06	4.26E-06	4.52E-06	4.7E-06	4.76E-06	2.35E-06

1.32786E-06	2.90407E-06	3.2E-06	3.55E-06	3.97E-06	4.47E-06	5.05E-06	5.72E-06	6.39E-06	6.93E-06	3.5702E-06
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.8602E-06	6.3556E-06	7.15E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	4.77625E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
2.55837E-06	5.55622E-06	6.06E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	5.7158E-06
1.22639E-06	2.64436E-06	2.86E-06	3.1E-06	3.37E-06	3.66E-06	3.97E-06	4.26E-06	4.52E-06	4.7E-06	2.38236E-06

Gambar C.17. Settlement per gaya satu satuan untuk nodal 8-12

1.87745E-06	4.26234E-06	4.9E-06	5.72E-06	6.73E-06	7.92E-06	9.02E-06	9.51E-06	9.02E-06	7.92E-06	3.36665E-06
3.92785E-06	9.04111E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	7.91847E-06
4.04385E-06	9.39999E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	9.02278E-06
4.08486E-06	9.52946E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	5.56E-05	2.84E-05	9.50795E-06
4.04385E-06	9.39999E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	2.54E-05	9.02278E-06
3.92785E-06	9.04111E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	2.02E-05	7.91847E-06
3.7549E-06	8.52467E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	1.58E-05	6.73331E-06
3.54713E-06	7.9308E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	1.39E-05	1.28E-05	5.7158E-06
3.3246E-06	7.32296E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	1.06E-05	4.90265E-06
3.10217E-06	6.74085E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	9.53E-06	9.4E-06	9.04E-06	4.26234E-06
1.44461E-06	3.10217E-06	3.32E-06	3.55E-06	3.75E-06	3.93E-06	4.04E-06	4.08E-06	4.04E-06	3.93E-06	1.87745E-06
1.67364E-06	3.7549E-06	4.26E-06	4.9E-06	5.72E-06	6.73E-06	7.92E-06	9.02E-06	9.51E-06	9.02E-06	3.95924E-06
3.46806E-06	7.8557E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	1.00809E-05
3.54/13E-06	8.0877E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	1.2/249E-05
3.5/4/1E-06	8.16972E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	5.56E-05	1.4207E-05
3.54/13E-06	8.0877E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	1.27249E-05
3.46806E-06	7.8557E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	1.00809E-05
3.34728E-06	7.50979E-06	8.52E-00	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.86-05	1.9E-05	1.86-05	7.91847E-06
3.19758E-06	7.09426E-06	7.93E-06	8.93E-00	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	1.39E-05	6.38873E-06
3.03172-00	6.0492E-06	7.52E-00	0.09E-00	0.95E-00	9.612-00	1.002-05	1.12E-05	1.14E-05	1.12E-05	5.50777E-06
1 245265 06	0.20455E-00	0.74E-00 2.1E-06	2 225 06	2 555 06	0.52E-00	9.04E-00	9.4E-00	9.55E-00	9.46-00	4.52055E-00
1.34330E-00	2.889222-00	5.12-00	5.52E-00	3.33E-00	3.75E-00	3.932-00	4.04E-00	4.082-00	4.04E-00	1.903932-00
1.50741E-06	3.34728E-06	3.75E-06	4.26E-06	4.9E-06	5.72E-06	6.73E-06	7.92E-06	9.02E-06	9.51E-06	4.51139E-06
3.10217E-06	6.93612E-06	7.86E- 06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.1778E-06	7.14942E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	2.77855E-05
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
2.90407E-06	6.39517E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	6.9279E-06
2.77811E-06	6.06341E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	5.60503E-06
2.64436E-06	5.72039E-06	6.2E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	9.53E-06	4.69999E-06
1.25436E-06	2.69073E-06	2.89E-06	3.1E-06	3.32E-06	3.55E-06	3.75E-06	3.93E-06	4.04E-06	4.08E-06	2.02192E-06
1.36982E-06	3.01482E-06	3.35E-06	3.75E-06	4.26E-06	4.9E-06	5.72E-06	6.73E-06	7.92E-06	9.02E-06	4.75398E-06
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.8602E-06	6.3556E-06	7.15E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	4.77625E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
2.55837E-06	5.55622E-06	6.06E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	5.7158E-06
2.45277E-06	5.28871E-06	5.72E-06	6.2E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	4.76473E-06
1.17169E-06	2.50871E-06	2.69E-06	2.89E-06	3.1E-06	3.32E-06	3.55E-06	3.75E-06	3.93E-06	4.04E-06	2.04243E-06

Gambar C.18. Settlement per gaya satu satuan untuk nodal 15-18

1.73403E-06	3.92785E-06	4.52E-06	5.31E-06	6.39E-06	7.92E-06	1.01E-05	1.27E-05	1.42E-05	1.27E-05	5.04043E-06
3.54713E-06	8.0877E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	1.27249E-05
3.57471E-06	8.16972E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	5.56E-05	1.4207E-05
3.54713E-06	8.0877E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	3.99E-05	1.27249E-05
3.46806E-06	7.8557E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	2.54E-05	1.00809E-05
3.34728E-06	7.50979E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	1.8E-05	7.91847E-06
3.19758E-06	7.09426E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	1.39E-05	6.38873E-06
3.0317E-06	6.6492E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	1.12E-05	5.30777E-06
2.8602E-06	6.20435E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	9.53E-06	9.4E-06	4.52055E-06
2.69073E-06	5.77844E-06	6.2E-06	6.65E-06	7.09E-06	7.51E-06	7.86E-06	8.09E-06	8.17E-06	8.09E-06	3.92785E-06
1.26411E-06	2.69073E-06	2.86E-06	3.03E-06	3.2E-06	3.35E-06	3.47E-06	3.55E-06	3.57E-06	3.55E-06	1.73403E-06
1.55109E-06	3.46806E-06	3.93E-06	4.52E-06	5.31E-06	6.39E-06	7.92E-06	1.01E-05	1.27E-05	1.42E-05	6.36247E-06
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.1778E-06	7.14942E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	2.77855E-05
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
2.90407E-06	6.39517E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	6.9279E-06
2.77811E-06	6.06341E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	5.60503E-06
2.64436E-06	5.72039E-06	6.2E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	9.53E-06	4.69999E-06
2.50871E-06	5.38146E-06	5.78E-06	6.2E-06	6.65E-06	7.09E-06	7.51E-06	7.86E-06	8.09E-06	8.17E-06	4.04385E-06
1.18773E-06	2.52823E-06	2.69E-06	2.86E-06	3.03E-06	3.2E-06	3.35E-06	3.47E-06	3.55E-06	3.57E-06	1.77356E-06
1 402245 00	2 102175 00	2 475 00	2 025 05	4 535 00	E 21E 0C	C 205 0C	7.025.00	1 015 05	1 275 05	7 102495 00
1.40234E-06	3.10217E-06	3.4/E-06	3.93E-06	4.52E-06	5.31E-00	0.39E-00	7.92E-06	1.01E-05	1.27E-05	7.10348E-06
2.840012-00	6.310752-00	7.092-00	0.09E-00	9.4E-00	1.12E-05	1.396-05	1.00-05	2.54E-05	5.992-05	4.77635E-05
2.86022-06	6.3550E-00	7.152-00	0.1/E-00	9.552-00	1.146-05	1.45E-05	1.92-05	2.64E-05	2.00E 0E	4.77025E-05
2.84001E-06	6.304255.06	7.09E-00	0.09E-00	9.46-00	1.12E-05	1.395-05	1.00-05	2.54E-05	3.996-05	2.77655E-05
2.804082-00	6.20455E-00	0.94E-00	7.602-00	9.042-00	0.915.06	1.200-05	1.365-05	1 595 05	2.54E-05	1.4207E-05
2.73963E-06	6.02965E-06	0.09E-00	7.51E-00	8.52E-00	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.86-05	9.50795E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
2.55837E-06	5.55622E-06	0.00E-00	0.05E-00	7.32E-00	8.09E-06	8.93E-00	9.81E-06	1.06E-05	1.12E-05	5./158E-06
2.452//E-06	5.288/1E-Ub	5.72E-00	0.2E-00	0.74E-00	7.32E-00	7.93E-06	0.52E-UD	9.04E-06	9.4E-06	4./04/3E-06
2.54337E-06	5.01/43E-06	5.38E-06	3./8E-06	0.22-06	0.05E-06	7.09E-06	7.51E-06	7.80E-Ub	0.09E-06	4.08480E-06
1.11084E-06	2.3/546E-06	2.53E-06	2.69E-06	2.80E-06	3.03E-06	3.2E-06	3.35E-06	3.4/E-06	3.55E-06	1./8/35E-06

Gambar C.19. Settlement per gaya satu satuan untuk nodal 22-24

1.57919E-06	3.54713E-06	4.04E-06	4.7E-06	5.61E-06	6.93E-06	9.02E-06	1.27E-05	1.99E-05	2.78E-05	9.97367E-06
3.1778E-06	7.14942E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	9.55E-05	2.77855E-05
3.15837E-06	7.09426E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	5.56E-05	1.99473E-05
3.10217E-06	6.93612E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	2.84E-05	1.27249E-05
3.01482E-06	6.69455E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	1.9E-05	9.02278E-06
2.90407E-06	6.39517E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	1.43E-05	6.9279E-06
2.77811E-06	6.06341E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	1.14E-05	5.60503E-06
2.64436E-06	5.72039E-06	6.2E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	9.53E-06	4.69999E-06
2.50871E-06	5.38146E-06	5.78E-06	6.2E-06	6.65E-06	7.09E-06	7.51E-06	7.86E-06	8.09E-06	8.17E-06	4.04385E-06
2.37546E-06	5.05646E-06	5.38E-06	5.72E-06	6.06E-06	6.4E-06	6.69E-06	6.94E-06	7.09E-06	7.15E-06	3.54713E-06
1.12371E-06	2.37546E-06	2.51E-06	2.64E-06	2.78E-06	2.9E-06	3.01E-06	3.1E-06	3.16E-06	3.18E-06	1.57919E-06
1.42301E-06	3.15837E-06	3.55E-06	4.04E-06	4.7E-06	5.61E-06	6.93E-06	9.02E-06	1.27E-05	1.99E-05	1.38927E-05
2.8602E-06	6.3556E-06	7.15E-06	8.17E-06	9.53E-06	1.14E-05	1.43E-05	1.9E-05	2.84E-05	5.56E-05	4.77625E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
2.55837E-06	5.55622E-06	6.06E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	5.7158E-06
2.45277E-06	5.28871E-06	5.72E-06	6.2E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	4.76473E-06
2.34337E-06	5.01743E-06	5.38E-06	5.78E-06	6.2E-06	6.65E-06	7.09E-06	7.51E-06	7.86E-06	8.09E-06	4.08486E-06
2.23367E-06	4.75092E-06	5.06E-06	5.38E-06	5.72E-06	6.06E-06	6.4E-06	6.69E-06	6.94E-06	7.09E-06	3.57471E-06
1.06311E-06	2.24741E-06	2.38E-06	2.51E-06	2.64E-06	2.78E-06	2.9E-06	3.01E-06	3.1E-06	3.16E-06	1.5889E-06

Gambar C.20. Settlement per gaya satu satuan untuk nodal 29-30

1.4301E-06	3.1778E-06	3.57E-06	4.08E-06	4.76E-06	5.72E-06	7.14E-06	9.51E-06	1.42E-05	2.78E-05	2.38813E-05
2.84601E-06	6.31675E-06	7.09E-06	8.09E-06	9.4E-06	1.12E-05	1.39E-05	1.8E-05	2.54E-05	3.99E-05	2.77855E-05
2.80468E-06	6.20435E-06	6.94E-06	7.86E-06	9.04E-06	1.06E-05	1.28E-05	1.58E-05	2.02E-05	2.54E-05	1.4207E-05
2.73963E-06	6.02965E-06	6.69E-06	7.51E-06	8.52E-06	9.81E-06	1.14E-05	1.35E-05	1.58E-05	1.8E-05	9.50795E-06
2.65572E-06	5.80813E-06	6.4E-06	7.09E-06	7.93E-06	8.93E-06	1.01E-05	1.14E-05	1.28E-05	1.39E-05	7.14041E-06
2.55837E-06	5.55622E-06	6.06E-06	6.65E-06	7.32E-06	8.09E-06	8.93E-06	9.81E-06	1.06E-05	1.12E-05	5.7158E-06
2.45277E-06	5.28871E-06	5.72E-06	6.2E-06	6.74E-06	7.32E-06	7.93E-06	8.52E-06	9.04E-06	9.4E-06	4.76473E-06
2.34337E-06	5.01743E-06	5.38E-06	5.78E-06	6.2E-06	6.65E-06	7.09E-06	7.51E-06	7.86E-06	8.09E-06	4.08486E-06
2.23367E-06	4.75092E-06	5.06E-06	5.38E-06	5.72E-06	6.06E-06	6.4E-06	6.69E-06	6.94E-06	7.09E-06	3.57471E-06
2.12622E-06	4.49483E-06	4.75E-06	5.02E-06	5.29E-06	5.56E-06	5.81E-06	6.03E-06	6.2E-06	6.32E-06	3.1778E-06
1.01137E-06	2.12622E-06	2.23E-06	2.34E-06	2.45E-06	2.56E-06	2.66E-06	2.74E-06	2.8E-06	2.85E-06	1.4301E-06

Gambar C.21. Settlement per gaya satu satuan untuk nodal 36

Settlement nodal per gaya satu satuan untuk tiap nodal diakumulasi.

0.000973	0.00111	0.001204	0.001262	0.001294	0.001304	0.001294	0.001262	0.001204	0.00111	0.000973
0.00111	0.001302	0.001425	0.001496	0.001535	0.001548	0.001535	0.001496	0.001425	0.001302	0.00111
0.001204	0.001425	0.001567	0.001649	0.001694	0.001708	0.001694	0.001649	0.001567	0.001425	0.001204
0.001262	0.001496	0.001649	0.001739	0.001788	0.001803	0.001788	0.001739	0 .001649	0.001496	0.001262
0.001294	0.001535	0.001694	0.001788	0.001839	0.001855	0.001839	0.001788	0.001694	0.001535	0.001294
0.001304	0.001548	0.001708	0.001803	0.001855	0.001872	0.001855	0.001803	0.001708	0.001548	0.001304
0.001294	0.001535	0.001694	0.001788	0.001839	0.001855	0.001839	0.001788	0.001694	0.001535	0.001294
0.001262	0.001496	0.001649	0.001739	0.001788	0.001803	0.001788	0.001739	0.001649	0.001496	0.001262
0.001204	0.001425	0.001567	0.001649	0.001694	0.001708	0.001694	0.001649	0.001567	0.001425	0.001204
0.00111	0.001302	0.001425	0.001496	0.001535	0.001548	0.001535	0.001496	0.001425	0.001302	0.00111
0.000973	0.00111	0.001204	0.001262	0.001294	0.001304	0.001294	0.001262	0.001204	0.00111	0.000973

Gambar C.22. Settlement per gaya satuan z = 0.5

1606.433	1407.242	1297.833	1238.391	1207.61	1198.011	1207.61	1238.391	1297.833	1407.242	1606.433
1407.242	1200.203	1096.7 96	1044.174	1017.665	1009.487	1017.665	1044.174	1096.796	1200.203	1407.242
1297.833	1096.796	997.4008	947.3539	922.3924	914.7313	922 .3924	947.3539	997.4008	1096.796	1297.833
1238.391	1044.174	947.3539	898.3412	873.9091	866.4187	873.9091	898.3412	947.3539	1044.174	1238.391
1207.61	1017.665	922.3924	873.9091	849.7014	842.2776	849.7014	873.9091	922.3 92 4	1017.665	1207.61
1198.011	1009.487	914.7313	866.4187	842.2776	834.8725	842.2776	866.4187	914.7313	1009.487	1198.011
1207.61	1017.665	922.3924	873.9091	849.7014	842.2776	849.7014	873.9091	922.3924	1017.665	1207.61
1238.391	1044.174	947.3539	898.3412	873.9091	866.4187	873.9091	898.3412	947.3539	1044.174	1238.391
1297.833	1096.796	997.4008	947.3539	922.3924	914.7313	922.3924	947.3539	997.4008	1096.796	1297.833
1407.242	1200.203	1096.796	1044.174	1017.665	1009.487	1017.665	1044.174	1096.796	1200.203	1407.242
1606.433	1407.242	1297.833	1238.391	1207.61	1198.011	1207.61	1238.391	1297.833	1407.242	1606.433

Gambar C.23.	Spring tar	nah full mo	del z = 0.5
			· · · · · - [

					_	
	599.005	1207.610	1238.391	1297.833	1407.242	1606.433
	504.743	1017.665	1044.174	1096.796	1200.203	1407.242
	457.366	922.392	947.354	997.401	1096.796	1297.833
	433.209	873.909	898.341	947.354	1044.174	1238.391
	421.139	849.701	873.909	922.392	1017.665	1207.610
ſ	208.718	421.139	433.209	457.366	504.743	599.005

Gambar C.24. Spring tanah $\frac{1}{4}$ model z = 0.5

A.3. Input spring tanah z = 7.5

Jarak antarnodal sama dengan z = 1

1.75791E-06	3.76883E-06	4.01E-06	4.2E-06	4.34E-06	4.38419E-06	4.34E-06	4.2E-06	4.01E-06	3.76883E-06	1.75791E-06
3.76883E-06	8.16419E-06	8.77E-06	9.29E-06	9.64E-06	9.76726E-06	9.64E-06	9.29E-06	8.77E-06	8.16419E-06	3.76883E-06
4.00611E-06	8.76838E-06	9.52E-06	1.02E-05	1.06E-05	1.08059E-05	1.06E-05	1.02E-05	9.52E-06	8.76838E-06	4.00611E-06
4 20416E-06	9 28585F-06	1 02E-05	1 1E-05	1 16E-05	1 17632E-05	1 16E-05	1 1E-05	1 02E-05	9 28585F-06	4 20416E-06
4.33715E-06	9.64044E-06	1.02E 05	1 16E-05	1.10E 05	1.1/052E 05	1.10E 05	1 16E-05	1.02E 05	9.64044E-06	4.33715E-06
4.39/10E 06	0.767265.06	1.000 05	1 100 05	1.220.05		1.220.05	1 100 05	1.000 05	0.767265.06	4.39/10E 06
4.384191-00	9.707202-00	1.060-05	1.160-05	1.236-05	1 245075 05	1.230-05	1.160-05	1.060-05	9.70720E-00	4.384191-00
4.33713E-00	9.04044E-00	1.000-05	1.102-05	1.226-05	1.24397E-05	1.220-05	1.102-05	1.000-05	9.04044E-00	4.33713E-00
4.20416E-06	9.28585E-06	1.02E-05	1.1E-05	1.10E-05	1.1/632E-05	1.10E-U5	1.1E-05	1.02E-05	9.28585E-06	4.20416E-06
4.00611E-06	8.76838E-06	9.52E-06	1.02E-05	1.06E-05	1.08059E-05	1.06E-05	1.02E-05	9.52E-06	8.76838E-06	4.00611E-06
3.76883E-06	8.16419E-06	8.77E-06	9.29E-06	9.64E-06	9.76726E-06	9.64E-06	9.29E-06	8.77E-06	8.16419E-06	3.76883E-06
1.75791E-06	3.76883E-06	4.01E-06	4.2E-06	4.34E-06	4.38419E-06	4.34E-06	4.2E-06	4.01E-06	3.76883E-06	1.75791E-06
1.63224E-06	3.51582E-06	3.//E-06	4.01E-06	4.2E-06	4.33715E-06	4.38E-06	4.34E-06	4.2E-06	4.00611E-06	1.88441E-06
3.46596E-06	7.53765E-06	8.16E-06	8.77E-06	9.29E-06	9.64044E-06	9.77E-06	9.64E-06	9.29E-06	8.76838E-06	4.0821E-06
3.65011E-06	8.01221E-06	8.77E-06	9.52E-06	1.02E-05	1.06389E-05	1.08E-05	1.06E-05	1.02E-05	9.51808E-06	4.38419E-06
3.80027E-06	8.40832E-06	9.29E-06	1.02E-05	1.1E-05	1.15534E-05	1.18E-05	1.16E-05	1.1E-05	1.01774E-05	4.64292E-06
3.89932E-06	8.6743E-06	9.64E-06	1.06E-05	1.16E-05	1.22154E-05	1.25E-05	1.22E-05	1.16E-05	1.06389E-05	4.82022E-06
3.93401E-06	8.76838E-06	9.77E-06	1.08E-05	1.18E-05	1.24597E-05	6.37E-06	1.25E-05	1.18E-05	1.08059E-05	4.88363E-06
3.89932E-06	8.6743E-06	9.64E-06	1.06E-05	1.16E-05	1.22154E-05	1.25E-05	1. 22E-05	1.16E-05	1.06389E-05	4.82022E-06
3.80027E-06	8.40832E-06	9.29E-06	1.02E-05	1.1E-05	1.15534E-05	1.18E-05	1.16E-05	1.1E-05	1.01774E-05	4.64292E-06
3.65011E-06	8.01221E-06	8.77E-06	9.52E-06	1.02E-05	1.06389E-05	1.08E-05	1.06E-05	1.02E-05	9.51808E-06	4.38419E-06
3.46596E-06	7.53765E-06	8.16E-06	8.77E-06	9.29E-06	9.64044E-06	9.77E-06	9.64E-06	9.29E-06	8.76838E-06	4.0821E-06
1.63224E-06	3.51582E-06	3.77E-06	4.01E-06	4.2E-06	4.33715E-06	4.38E-06	4.34E-06	4.2E-06	4.00611E-06	1.88441E-06
1.5128E-06	3.26448E-06	3.52E-06	3.77E-06	4.01E-06	4.20416E-06	4.34E-06	4.38E-06	4.34E-06	4.20416E-06	2.00305E-06
3.18522E-06	6.93192E-06	7.54E-06	8.16E-06	8.77E-06	9.28585E-06	9.64E-06	9.77E-06	9.64E-06	9.28585E-06	4.38419E-06
3.32782E-06	7.30022E-06	8.01E-06	8.77E-06	9.52E-06	1.01774E-05	1.06E-05	1.08E-05	1.06E-05	1.01774E-05	4.75904E-06
3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E- 05	1.09803E-05	1.16E-05	1.18E-05	1.16E-05	1.09803E-05	5.0887E-06
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.15534E-05	1.22E-05	1.25E-05	1.22E-05	1.15534E-05	5.31943E-06
3.54154E-06	7.86801E-06	8.77E-06	9.77E-06	1.08E-05	1.17632E-05	1.25E-05	6.37E-06	1.25E-05	1.17632E-05	5.40295E-06
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.15534E-05	1.22E-05	1.25E-05	1.22E-05	1.15534E-05	5.31943E-06
3 44179F-06	7 60055E-06	8 41 E-06	9 29F-06	1 02E-05	1 09803E-05	1 16E-05	1 18F-05	1 16E-05	1 09803E-05	5 0887F-06
3 32782F-06	7 30022E-06	8.01E-06	8 77E-06	9.52E-06	1 01774E-05	1.06E-05	1.08E-05	1.06E-05	1.01774E-05	4 75904E-06
3 18522E-06	6 93192E-06	7 54E-06	8 16E-06	8 77E-06	9 285855-06	9.64E-06	9 77E-06	9.64E-06	9 285855-06	1 38/19E-06
1 5128E-06	3 26448E-06	3.525-06	3 77E-06	4.01E-06	4 20416E-06	1 34E-06	4 38E-06	4 34E-06	4 20416E-06	2.00305E-06
1.51202 00	5.204402 00	J.JZL 00	5.772 00	4.01L 00	4.204102 00	4.542 00	4.30L 00	4.541 00	4.204102 00	2.005052 00
1.40237E-06	3.0256E-06	3.26E-06	3.52E-06	3.77E-06	4.00611E-06	4.2E-06	4.34E-06	4.38E-06	4.33715E-06	2.10208E-06
2 93132E-06	6 37045E-06	6 93E-06	7 54E-06	8 16E-06	8 76838E-06	9 29F-06	9 64F-06	9 77F-06	9 64044F-06	4 64292F-06
3 0422E-06	6 65564E-06	7 3E-06	8 01E-06	8 77E-06	9 51808E-06	1.02E-05	1 06E-05	1 08E-05	1.06389E-05	5 0887E-06
2 120225-06	6 88357E-06	7.52.00	8 /1E-06	0.772.00	1.017746-05	1 1 1 - 0 5	1.00E 05	1 195-05	1.005052.05	5 40016E-06
2 18522E-06	0.88357E-00	7.00-00	8.41L-00	9.291-00	1.01774E-05	1.165-05	1.101-05	1.101-05	1.13334E-05	5 77675-06
3.105221-00	7.03104E-00	7.01-00	0.07L-00	0.775.06	1.003892-05	1.100-05	1.220-05	6.275.06	1.221341-05	5.7707E-00
3.20451E-00	7.08508E-00	7.072-00	0.77E-00	9.772-00	1.06039E-05	1.100-05	1.235-05	1.255.05	1.24397E-05	5.881582-00
3.18522E-06	7.03164E-06	7.82-00	0.07E-00	9.04E-00	1.003892-05	1.10E-05	1.22E-05	1.25E-05	1.22154E-05	5.7707E-00
3.12933E-06	6.88357E-06	7.66-06	8.41E-06	9.292-06	1.01774E-05	1.1E-05	1.16E-05	1.18E-05	1.15534E-05	5.49016E-06
3.0422E-06	6.65564E-06	7.3E-06	8.01E-06	8.//E-06	9.51808E-06	1.02E-05	1.06E-05	1.08E-05	1.06389E-05	5.0887E-06
2.93132E-06	6.37045E-06	6.93E-06	7.54E-06	8.16E-06	8.76838E-06	9.29E-06	9.64E-06	9.77E-06	9.64044E-06	4.64292E-06
1.40237E-06	3.0256E-06	3.26E-06	3.52E-06	3.77E-06	4.00611E-06	4.2E-06	4.34E-06	4.38E-06	4.33715E-06	2.10208E-06
	2 204755-06	2 025 06	2 265 06	2 5 25 06	2 768925 06	4.015.06	4 25 06	4 245 06	4 284105 06	2 169595 06
1.30195E-06	2.80475E-06	5.03E-00	5.20E-00	3.52E-00	3.70883E-00	4.012-06	4.22-00	4.34E-00	4.38419E-00	2.10858E-00
2.70475E-06	5.86263E-06	0.3/E-Ub	6.93E-06	7.54E-06	8.16419E-06	8.//E-Ub	9.29E-06	9.64E-06	9.76726E-06	4.82022E-06
2./9165E-06	ь.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.76838E-06	9.52E-06	1.02E-05	1.06E-05	1.08059E-05	5.31943E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.28585E-06	1.02E-05	1.1E-05	1.16E-05	1.17632E-05	5.7767E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64044E-06	1.06E-05	1.16E-05	1.22E-05	1.24597E-05	6.10771E-06
2.91642E-06	6.40902E-06	7.08E-06	7.87E-06	8.77E-06	9.76726E-06	1.08E-05	1.18E-05	1.25E-05	6.3683E-06	6.22986E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64044E-06	1.06E-05	1.16E-05	1.22E-05	1.24597E-05	6.10771E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.28585E-06	1.02E-05	1.1E-05	1.16E-05	1.17632E-05	5.7767E-06
2.79165E-06	6.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.76838E-06	9.52E-06	1.02E-05	1.06E-05	1.08059E-05	5.31943E-06
2.70475E-06	5.86263E-06	6.37E-06	6.93E-06	7.54E-06	8.16419E-06	8.77E-06	9.29E-06	9.64E-06	9.76726E-06	4.82022E-06
1.30195E-06	2.80475E-06	3.03E-06	3.26E-06	3.52E-06	3.76883E-06	4.01E-06	4.2E-06	4.34E-06	4.38419E-06	2.16858E-06

3.26448E-06	7.03164E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	8.67E-06	8.41E-06	8.01E-06	3.76883E-06
1.52953E-06	3.26448E-06	3.47E-06	3.65E-06	3.8E-06	3.9E-06	3.93E-06	3.9E-06	3.8E-06	3.65E-06	1.73298E-06
1.59261E-06	3.46596E-06	3.77E-06	4.08E-06	4.38E-06	4.64E-06	4.82E-06	4.88E-06	4.82E-06	4.64E-06	2.19209E-06
3.32782E-06	7.30022E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	1.02E-05	4.75904E-06
3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	1.1E-05	5.0887E-06
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E- 0 5	1.16E-05	1.22E-05	1.25E-05	1.22E-05	1.16E-05	5.31943E-06
3.54154E-06	7.86801E-06	8.77E-06	9.77E- 06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	1.25E-05	1.18E-05	5.40295E-06
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	1.16E-05	5.31943E-06
3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	1.1E-05	5.0887E-06
3.32782E-06	7.30022E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	1.02E-05	4.75904E-06
3.18522E-06	6.93192E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	9.64E-06	9.29E-06	4.38419E-06
3.0256E-06	6.52895E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	8.67E-06	8.41E-06	4.00611E-06
1.42949E-06	3.05906E-06	3.26E-06	3.47E-06	3.65E-06	3.8E-06	3.9E-06	3.93E-06	3.9E-06	3.8E-06	1.82505E-06
1.46566E-06	3.18522E-06	3.47E-06	3.77E-06	4.08E-06	4.38E-06	4.64E-06	4.82E-06	4.88E-06	4.82E-06	2.32146E-06
3.0422E-06	6.65564E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	5.0887E-06
3.12933E-06	6.88357E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	5.49016E-06
3.18522E-06	7.03164E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	5.7767E-06
3.20451E-06	7.08308E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	1.25E-05	5.88158E-06
3.18522E-06	7.03164E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E- 05	1.22E-05	1.25E-05	1.22E-05	5.7767E-06
3.12933E-06	6.88357E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	5.49016E-06
3.0422E-06	6.65564E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	5.0887E-06
2.93132E-06	6.37045E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	9.64E-06	4.64292E-06
2.80475E-06	6.05121E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	8.67E-06	4.20416E-06
1.33493E-06	2.85899E-06	3.06E-06	3.26E-06	3.47E-06	3.65E-06	3.8E-06	3.9E-06	3.93E-06	3.9E-06	1.90014E-06
1.35237E-06	2.93132E-06	3.19E-06	3.47E-06	3.77E-06	4.08E-06	4.38E-06	4.64E-06	4.82E-06	4.88E-06	2.41011E-06
2.79165E-06	6.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	5.31943E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	5.7767E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.91642E-06	6.40902E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	6.22986E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	5.7767E-06
2.79165E-06	6.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	5.31943E-06
2.70475E-06	5.86263E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	4.82022E-06
2.60389E-06	5.60949E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	4.33715E-06
1.24724E-06	2.66987E-06	2.86E-06	3.06E-06	3.26E-06	3.47E-06	3.65E-06	3.8E-06	3.9E-06	3.93E-06	1.94966E-06

Gambar C.25. Settlement per gaya satu satuan untuk nodal 1-6

1.73298E-06
3.76883E-06
4.08E-06
4.38E-06
4.82E-06
4.82E-06
4.82E-06
4.64E-06
4.38E-06
2.04105E-06

3.65011E-06
8.01221E-06
8.77E-06
9.52E-06
1.02E-05
1.06E-05
1.06E-05
1.06E-05
1.06E-05
1.02E-05
9.52E-06
4.38419E-06

3.80027E-06
8.40832E-06
9.29E-06
1.02E-05
1.16E-05
1.02E-05
4.64292E-06

3.8932E-06
8.6743E-06
9.64E-06
1.06E-05
1.22E-05
1.22E-05</t

1.21146E-06	2.60389E-06	2.8E-06	3.03E-06	3.26E-06	3.51582E-06	3.77E-06	4.01E-06	4.2E-06	4.33715E-06	2.19209E-06
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.53765E-06	8.16E-06	8.77E-06	9.29E-06	9.64044E-06	4.88363E-06
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01221E-06	8.77E-06	9.52E-06	1.02E-05	1.06389E-05	5.40295E-06
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.40832E-06	9.29E-06	1.02E-05	1.1E-05	1.15534E-05	5.88158E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.6743E-06	9.64E-06	1.06E-05	1.16E-05	1.22154E-05	6.22986E-06
2.66987E-06	5.83285E-06	6.41E-06	7.08E-06	7.87E-06	8.76838E-06	9.77E-06	1.08E-05	1.18E-05	1.24597E-05	3.18415E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.6743E-06	9.64E-06	1.06E-05	1.16E-05	1.22154E-05	6.22986E-06
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.40832E-06	9.29E-06	1.02E-05	1.1E-05	1.15534E-05	5.88158E-06
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01221E-06	8.77E-06	9.52E-06	1.02E-05	1.06389E-05	5.40295E-06
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.53765E-06	8.16E-06	8.77E-06	9.29E-06	9.64044E-06	4.88363E-06
1.21146E-06	2.60389E-06	2.8E-06	3.03E-06	3.26E-06	3.51582E-06	3.77E-06	4.01E-06	4.2E-06	4.33715E-06	2.19209E-06

1.25194E-06	2.70475E-06	2.93E-06	3.19E-06	3.47E-06	3.77E-06	4.08E-06	4.38E-06	4.64E-06	4.82E-06	2.44182E-06		
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	5.40295E-06		
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06		
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06		
2.66987E-06	5.83285E-06	6.41E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	3.18415E-06		
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06		
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06		
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	5.40295E-06		
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	4.88363E-06		
2.42292E-06	5.20779E-06	5.61E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	4.38419E-06		
1.16688E-06	2.49448E-06	2.67E-06	2.86E-06	3.06E-06	3.26E-06	3.47E-06	3.65E-06	3.8E-06	3.9E-06	1.967E-06		
	~											
Gambar C.26. Settlement per gaya satu satuan untuk nodal 8-12												
				÷								
1.66391E-06	3.65011E-06	4.01E-06	4.38E-06	4.76E-06	5.09E-06	5.32E-06	5.4E-06	5.32E-06	5.09E-06	2.37952E-06		
3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	1.1E-05	5.0887E-06		
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	1.16E-05	5.31943E-06		
3.54154E-06	7.86801E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	1.25E-05	1.18E-05	5.40295E-06		
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	1.16E-05	5.31943E-06		
3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	1.1E-05	5.0887E-06		
3.32782E-06	7.30022E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	1.02E-05	4.75904E-06		
3.18522E-06	6.93192E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	9.64E-06	9.29E-06	4.38419E-06		
3 0256E-06	6.52895E-06	7.03E-06	7 54E-06	8 01E-06	8 41 E-06	8 67E-06	8 77E-06	8 67E-06	8 41 F-06	4 00611E-06		

3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	1.1E-05	5.0887E-06
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	1.16E-05	5.31943E-06
3.54154E-06	7.86801E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	1.25E-05	1.18E-05	5.40295E-06
3.51582E-06	7.79864E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	1.16E-05	5.31943E-06
3.44179E-06	7.60055E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	1.1E-05	5.0887E-06
3.32782E-06	7.30022E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	1.02E-05	4.75904E-06
3.18522E-06	6.93192E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	9.64E-06	9.29E-06	4.38419E-06
3.0256E-06	6.52895E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	8.67E-06	8.41E-06	4.00611E-06
2.85899E-06	6.11811E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	7.87E-06	7.8E-06	7.6E-06	3.65011E-06
1.34649E-06	2.85899E-06	3.03E-06	3.19E-06	3.33E-06	3.44E-06	3.52E-06	3.54E-06	3.52E-06	3.44E-06	1.66391E-06
1.5211E-06	3.32782E-06	3.65E-06	4.01E-06	4.38E-06	4.76E-06	5.09E-06	5.32E-06	5.4E-06	5.32E-06	2.54435E-06
3.12933E-06	6.88357E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	5.49016E-06
3.18522E-06	7.03164E-06	7.8E-06	8.67E-06	9.64E-06	1.06E- 05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	5.7767E-06
3.20451E-06	7.08308E-06	7.87E-06	8.77E- 0 6	9.77E- 0 6	1.08E-05	1.18E-05	1.25E-05	6.37E-06	1.25E-05	5.88158E-06
3.18522E-06	7.03164E-06	7.8E-06	8.67E-06	9.64E-06	1. 06 E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	5.7767E-06
3.12933E-06	6.88357E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	5.49016E-06
3.0422E-06	6.65564E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	5.0887E-06
2.93132E-06	6.37045E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	9.64E-06	4.64292E-06
2.80475E-06	6.05121E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	8.67E-06	4.20416E-06
2.66987E-06	5.71798E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	7.87E-06	7.8E-06	3.80027E-06
1.26634E-06	2.69297E-06	2.86E-06	3.03E-06	3.19E-06	3.33E-06	3.44E-06	3.52E-06	3.54E-06	3.52E-06	1.72089E-06
1.39583E-06	3.0422E-06	3.33E-06	3.65E-06	4.01E-06	4.38E-06	4.76E-06	5.09E-06	5.32E-06	5.4E-06	2.65971E-06
2.85899E-06	6.25865E-06	6.88E- 06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	5.7767E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.91642E-06	6.40902E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	6.22986E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	5.7767E-06
2.79165E-06	6.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	5.31943E-06
2.70475E-06	5.86263E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	4.82022E-06
2.60389E-06	5.60949E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	4.33715E-06
2.49448E-06	5.33973E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	7.87E-06	3.89932E-06
1.19058E-06	2.53268E-06	2.69E-06	2.86E-06	3.03E-06	3.19E-06	3.33E-06	3.44E-06	3.52E-06	3.54E-06	1.75791E-06
1.28633E-06	2.79165E-06	3.04E-06	3.33E-06	3.65E-06	4.01E-06	4.38E-06	4.76E-06	5.09E-06	5.32E-06	2.70147E-06
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06
2.66987E-06	5.83285E-06	6.41E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	3.18415E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	5.40295E-06
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	4.88363E-06
2.42292E-06	5.20779E-06	5.61E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	4.38419E-06
2.33376E-06	4.98896E-06	5.34E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	3.93401E-06
1.11998E-06	2.38117E-06	2.53E-06	2.69E-06	2.86E-06	3.03E-06	3.19E-06	3.33E-06	3.44E-06	3.52E-06	1.77077E-06

Gambar C.27. Settlement per gaya satu satuan untuk nodal 15-18

1.56466E-06	3.44179E-06	3.8E-06	4.2E-06	4.64E-06	5.09E-06	5.49E-06	5.78E-06	5.88E-06	5.78E-06	2.74508E-06
3.18522E-06	7.03164E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	5.7767E-06
3.20451E-06	7.08308E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	1.25E-05	5.88158E-06
3.18522E-06	7.03164E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	1.22E-05	5.7767E-06
3.12933E-06	6.88357E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	1.16E-05	5.49016E-06
3.0422E-06	6.65564E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	1.06E-05	5.0887E-06
2.93132E-06	6.37045E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	9.64E-06	4.64292E-06
2.80475E-06	6.05121E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	8.67E-06	4.20416E-06
2.66987E-06	5.71798E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	7.87E-06	7.8E-06	3.80027E-06
2.53268E-06	5.38595E-06	5.72E-06	6.05E-06	6.37E-06	6.66E-06	6.88E-06	7.03E-06	7.08E-06	7.03E-06	3.44179E-06
1.19881E-06	2.53268E-06	2.67E-06	2.8E-06	2.93E-06	3.04E-06	3.13E-06	3.19E-06	3.2E-06	3.19E-06	1.56466E-06
1.42949E-06	3.12933E-06	3.44E-06	3.8E-06	4.2E-06	4.64E-06	5.09E-06	5.49E-06	5.78E-06	5.88E-06	2.88835E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.91642E-06	6.40902E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	6.22986E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	5.7767E-06
2.79165E-06	6.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	5.31943E-06
2.70475E-06	5.86263E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	4.82022E-06
2.60389E-06	5.60949E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	4.33715E-06
2.49448E-06	5.33973E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	7.87E-06	3.89932E-06
2.38117E-06	5.06536E-06	5.39E-06	5.72E-06	6.05E-06	6.37E-06	6.66E-06	6.88E-06	7.03E-06	7.08E-06	3.51582E-06
1.13381E-06	2.39761E-06	2.53E-06	2.67E-06	2.8E-06	2.93E-06	3.04E-06	3.13E-06	3.19E-06	3.2E-06	1.59261E-06
4 242675 06	2 050005 00	2 4 2 5 0 5	2 445 00	2.05.00	4.35.00	4.545.05	F 005 00	F 405 0C	F 705 0C	2 0 40705 00
1.3126/E-06	2.85899E-06	3.13E-06	3.44E-06	3.8E-06	4.2E-06	4.64E-06	5.09E-06	5.49E-06	5.78E-06	2.94079E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06
2.66987E-06	5.83285E-06	6.41E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	3.18415E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.6/E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06
2.62535E-06	5./1/98E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	5.40295E-06
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	4.88363E-06
2.42292E-06	5.20779E-06	5.61E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	4.38419E-06
2.33376E-06	4.98896E-06	5.34E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	3.93401E-06
2.23995E-06	4.76233E-06	5.07E-06	5.39E-06	5.72E-06	6.05E-06	6.37E-06	6.66E-06	6.88E-06	7.03E-06	3.54154E-06
1.0 7223E-0 6	2.26762E-06	2.4E-06	2.53E-06	2.67E-06	2.8E-06	2.93E-06	3.04E-06	3.13E-06	3.19E-06	1.60226E-06

Gambar C.28. Settlement per gaya satu satuan untuk nodal 22-24

1.45087E-06	3.18522E-06	3.52E-06	3.9E-06	4.34E-06	4.82E-06	5.32E-06	5.78E-06	6.11E-06	6.23E-06	3.05385E-06
2.91642E-06	6.40902E-06	7.08E- 06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	6.37E-06	6.22986E-06
2.90175E-06	6.37045E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	1.25E-05	6.10771E-06
2.85899E-06	6.25865E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	1.18E-05	5.7767E-06
2.79165E-06	6.08439E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	1.08E-05	5.31943E-06
2.70475E-06	5.86263E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	9.77E-06	4.82022E-06
2.60389E-06	5.60949E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	8.77E-06	4.33715E-06
2.49448E-06	5.33973E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	7.87E-06	3.89932E-06
2.38117E-06	5.06536E-06	5.39E-06	5.72E-06	6.05E-06	6.37E-06	6.66E-06	6.88E-06	7.03E-06	7.08E-06	3.51582E-06
2.26762E-06	4.79523E-06	5.07E-06	5.34E-06	5.61E-06	5.86E-06	6.08E-06	6.26E-06	6.37E-06	6.41E-06	3.18522E-06
1.07825E-06	2.26762E-06	2.38E-06	2.49E-06	2.6E-06	2.7E-06	2.79E-06	2.86E-06	2.9E-06	2.92E-06	1.45087E-06
1.32926E-06	2.90175E-06	3.19E-06	3.52E-06	3.9E-06	4.34E-06	4.82E-06	5.32E-06	5.78E-06	6.11E-06	3.11493E-06
2.66987E-06	5.83285E-06	6.41E-06	7.08E-06	7.87E-06	8.77E-06	9.77E-06	1.08E-05	1.18E-05	1.25E-05	3.18415E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	5.40295E-06
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	4.88363E-06
2.42292E-06	5.20779E-06	5.61E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	4.38419E-06
2.33376E-06	4.98896E-06	5.34E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	3.93401E-06
2.23995E-06	4.76233E-06	5.07E-06	5.39E-06	5.72E-06	6.05E-06	6.37E-06	6.66E-06	6.88E-06	7.03E-06	3.54154E-06
2.14447E-06	4.53524E-06	4.8E-06	5.07E-06	5.34E-06	5.61E-06	5.86E-06	6.08E-06	6.26E-06	6.37E-06	3.20451E-06
1.02481E-06	2.1565E-06	2.27E-06	2.38E-06	2.49E-06	2.6E-06	2.7E-06	2.79E-06	2.86E-06	2.9E-06	1.45821E-06

Gambar C.29. Settlement per gaya satu satuan untuk nodal 29-30

1.33493E-06	2.91642E-06	3.2E-06	3.54E-06	3.93E-06	4.38E-06	4.88E-06	5.4E-06	5.88E-06	6.23E-06	1.59208E-06
2.65853E-06	5.8035E-06	6.37E-06	7.03E-06	7.8E-06	8.67E-06	9.64E-06	1.06E-05	1.16E-05	1.22E-05	6.22986E-06
2.62535E-06	5.71798E-06	6.26E-06	6.88E-06	7.6E-06	8.41E-06	9.29E-06	1.02E-05	1.1E-05	1.16E-05	5.88158E-06
2.57266E-06	5.5833E-06	6.08E-06	6.66E-06	7.3E-06	8.01E-06	8.77E-06	9.52E-06	1.02E-05	1.06E-05	5.40295E-06
2.50387E-06	5.4095E-06	5.86E-06	6.37E-06	6.93E-06	7.54E-06	8.16E-06	8.77E-06	9.29E-06	9.64E-06	4.88363E-06
2.42292E-06	5.20779E-06	5.61E-06	6.05E-06	6.53E-06	7.03E-06	7.54E-06	8.01E-06	8.41E-06	8.67E-06	4.38419E-06
2.33376E-06	4.98896E-06	5.34E-06	5.72E-06	6.12E-06	6.53E-06	6.93E-06	7.3E-06	7.6E-06	7.8E-06	3.93401E-06
2.23995E-06	4.76233E-06	5.07E-06	5.39E-06	5.72E-06	6.05E-06	6.37E-06	6.66E-06	6.88E-06	7.03E-06	3.54154E-06
2.14447E-06	4.53524E-06	4.8E-06	5.07E-06	5.34E-06	5.61E-06	5.86E-06	6.08E-06	6.26E-06	6.37E-06	3.20451E-06
2.04962E-06	4.31301E-06	4.54E-06	4.76E-06	4.99E-06	5.21E-06	5.41E-06	5.58E-06	5.72E-06	5.8E-06	2.91642E-06
9.78543E-07	2.04962E-06	2.14E-06	2.24E-06	2.33E-06	2.42E-06	2.5E-06	2.57E-06	2.63E-06	2.66E-06	1.33493E-06

Gambar C.30. Settlement per gaya satu satuan untuk nodal 36

Settlement nodal per gaya satu satuan untuk tiap nodal diakumulasi.

0.000698	0.000736	0.00077	0.000795	0.000811	0.000817	0.000811	0.000795	0.00077	0.000736	0.000698
0.000736	0.000778	0.000816	0.000846	0.000864	0.00087	0.000864	0.000846	0.000816	0.000778	0.000736
0.00077	0.000816	0.000859	0.000891	0.000911	0.00 <mark>0918</mark>	0.000911	0.000891	0.000859	0.000816	0.00077
0.000795	0.000846	0.000891	0.000926	0.000947	0.000954	0.000947	0.000926	0.000891	0.000846	0.000795
0.000811	0.000864	0.000911	0.000947	0.000969	0.000977	0.000969	0.000947	0.000911	0.000864	0.000811
0.000817	0.00087	0.000918	0.000954	0.000977	0.000985	0.000977	0.000954	0.000918	0.00087	0.000817
0.000811	0.000864	0.000911	0.000947	0.000969	0.000977	0.000969	0.000947	0.000911	0.000864	0.000811
0.000795	0.000846	0.000891	0.000926	0.000947	0.000954	0.000947	0.000926	0.000891	0.000846	0.000795
0.00077	0.000816	0.000859	0.000891	0.000911	0.000918	0.000911	0.000891	0.000859	0.000816	0.00077
0.000736	0.000778	0.000816	0.000846	0.000864	0.00087	0.000864	0.000846	0.000816	0.000778	0.000736
0.000698	0.000736	0.00077	0.000795	0.000811	0.000817	0.000811	0.000795	0.00077	0.000736	0.000698

Gambar C.31. Settlement per gaya satuan z = 7.5

2238.68	2122.787	2029.812	1964.59	1926.115	1913.419	1926.115	1964.59	2029.812	2122.787	2238.68
2122.787	2008.352	1913.8 98	1847.994	1809.277	1796.529	1809.277	1847.994	1913.898	2008.352	2122.787
2029.812	1913.898	1819.319	1753.584	1715.079	1702.421	1715.079	1753.584	1819.319	1913.898	2029.812
1964.59	1847.994	1753.584	1688.136	1649.873	1 637 .307	1649.873	1688.136	1753.584	1847.994	1964.59
1926.115	1809.277	1715.079	1649.873	1611.79	1599.29	1611.79	1649.873	1715.079	1809.277	1926.115
1913.419	1796.529	1702.421	1637.307	1599.29	1586.814	1599.29	1637.307	1702.421	1796.529	1913.419
1926.115	1809.277	1715.079	1649.873	1611.79	1599.29	1611.79	1649.873	1715.079	1809.277	1926.115
1964.59	1847.994	1753.584	1688.136	1649.873	1637.307	1649.873	1688.136	1753.584	1847.994	1964.59
2029.812	1913.898	1819.319	1753.584	1715.079	1702.421	1715.079	1753.584	1819.319	1913.898	2029.812
2122.787	2008.352	1913.898	1847.994	1809.277	1796.529	1809.277	1847.994	1913.898	2008.352	2122.787
2238.68	2122.787	2029.812	1964.59	1926.115	1913.419	1926.115	1964.59	2029.812	2122.787	2238.68

Ga	ambar C.32	2. Spring ta	nah full m	odel $z = 7.5$
700	1000 115	1004 500	2020.012	2422 707

				_	
956.709	1926.115	1964.590	2029.812	2122.787	2238.680
898.265	1809.277	1847.994	1913.898	2008.352	2122.787
851.211	1715.079	1753.584	1819.319	1913.898	2029.812
818.653	1649.873	1688.136	1753.584	1847.994	1964.590
799.645	1611.790	1649.873	1715.079	1809.277	1926.115
396.704	799.645	818.653	851.211	898.265	956.709

Gambar C.33. Spring tanah $\frac{1}{4}$ model z = 7.5

A.4. Input spring tanah z = 10

Jarak antarnodal sama dengan z = 1

1.59065E-06	3.35965E-06	3.52E-06	3.65E-06	3.73E-06	3.76001E-06	3.73E-06	3.65E-06	3.52E-06	3.35965E-06	1.59065E-06
3.35965E-06	7.13852E-06	7.52E-06	7.83E-06	8.03E-06	8.10437E-06	8.03E-06	7.83E-06	7.52E-06	7.13852E-06	3.35965E-06
3.51954E-06	7.52001E-06	7.96E-06	8.33E-06	8.57E-06	8.6554E-06	8.57E-06	8.33E-06	7.96E-06	7.52001E-06	3.51954E-06
3 64765E-06	7 82972F-06	8 33E-06	8 74F-06	9 02E-06	9 11717E-06	9.02E-06	8 74F-06	8 33E-06	7 82972F-06	3 64765E-06
3 73102E-06	8.03324E-06	8 57E-06	9.02E-06	9 32E-06	9.12803E-06	9 32E-06	9.02E-06	8 57E-06	8.03324E-06	3 73102E-06
2 76001E 06	0.05524E 00	0.572.00	0.125.06	0 425 06	4 7762E 06	0.425.06	0 125 06	0.57E 00	0.05524E 00	2 760015 06
3.70001E-00	8.10437E-00	0.000-00	9.122-00	9.450-00	4.7702E-00	9.435-00	9.122-00	0.000-00	8.10437E-00	3.70001E-00
3.73102E-00	8.03324E-00	0.57E-00	9.02E-06	9.32E-00	9.42803E-06	9.32E-00	9.022-00	8.57E-00	8.03324E-00	3.73102E-06
3.64765E-06	7.82972E-06	8.33E-06	8.74E-06	9.02E-06	9.11/1/E-06	9.02E-06	8.74E-06	8.33E-06	7.82972E-06	3.64765E-06
3.51954E-06	7.52001E-06	7.96E-06	8.33E-06	8.57E-06	8.6554E-06	8.57E-06	8.33E-06	7.96E-06	7.52001E-06	3.51954E-06
3.35965E-06	7.13852E-06	7.52E-06	7.83E-06	8.03E-06	8.10437E-06	8.03E-06	7.83E-06	7.52E-06	7.13852E-06	3.35965E-06
1.59065E-06	3.35965E-06	3.52E-06	3.65E-06	3.73E-06	3.76001E-06	3.73E-06	3.65E-06	3.52E-06	3.35965E-06	1.59065E-06
1.49796E-06	3.1813E-06	3.36E-06	3.52E-06	3.65E-06	3.73102E-06	3.76E-06	3.73E-06	3.65E-06	3.51954E-06	1.67982E-06
3.14518E-06	6.7193E-06	7.14E-06	7.52E-06	7.83E-06	8.03324E-06	8.1E-06	8.03E-06	7.83E-06	7.52001E-06	3.56926E-06
3.27698E-06	7.03907E-06	7.52E-06	7.96E-06	8.33E-06	8.57043E-06	8.66E-06	8.57E-06	8.33E-06	7.9638E-06	3.76001E-06
3.38125E-06	7.29531E-06	7.83E-06	8.33E-06	8.74E-06	9.01952E-06	9.12E-06	9.02E-06	8.74E-06	8.32853E-06	3.91486E-06
3.44845E-06	7.46205E-06	8.03E-06	8.57E-06	9.02E-06	9.32128E-06	9.43E-06	9.32E-06	9.02E-06	8.57043E-06	4.01662E-06
3.4717E-06	7.52001E-06	8.1E-06	8.66E-06	9.12E-06	9.42803E-06	4.78E-06	9.43E-06	9.12E-06	8.6554E-06	4.05218E-06
3.44845E-06	7.46205E-06	8.03E-06	8.57E-06	9.02E-06	9.32128E-06	9.43E-06	9. 32E-06	9.02E-06	8.57043E-06	4.01662E-06
3.38125E-06	7.29531E-06	7.83E-06	8.33E-06	8.74E-06	9.01952E-06	9.12E-06	9.02E-06	8.74E-06	8.32853E-06	3.91486E-06
3 27698F-06	7 03907E-06	7 52E-06	7 96E-06	8 33E-06	8 57043E-06	8 66E-06	8 57E-06	8 33E-06	7 9638F-06	3 76001E-06
3 1/1518E-06	6 7193E-06	7 14E-06	7.525-06	7 83E-06	8.03324E-06	8 1E-06	8.03E-06	7.83E-06	7 52001E-06	3 56926E-06
1 407065 06	2 19125 06	2 265 06	2 5 2 5 0 6	2 655 06	2 721025 06	2 765 06	2 725 06	2 655 06	2 E10E4E 06	1 670926 06
1.497902-00	5.18152-00	5.50E-00	5.52E-00	5.03E-00	3.73102E-00	5.70E-00	5.75E-00	5.03E-00	5.519542-00	1.079622-00
1 406075-06	2 005025-06	2 18E-06	2 26E-06	2 525-06	3 647655-06	2 72E-06	3 76E-06	3 725-06	3 647655-06	1 750775-06
2.025785.06	2.33333L-00	5.10L-00	7 145 06	7 525 06	7 920725 06	0 02E 06	0 1E 06	0.02E.06	7 920725 06	2 760015 06
2.933781-00	6 552075 06	7.045.06	7.141-00	7.020-00	9.329721-00	0.031-00	0.11-00	0.031-00	9.339525-00	3.700011-00
3.04342E-06	6.55397E-06	7.04E-06	7.52E-06	7.96E-06	8.32853E-06	8.57E-06	8.66E-06	8.57E-06	8.32853E-06	3.9819E-06
3.12755E-06	6.76249E-06	7.3E-06	7.83E-06	8.33E-06	8.74269E-06	9.02E-06	9.12E-06	9.02E-06	8.74269E-06	4.16427E-06
3.1813E-06	6.89691E-06	7.46E-06	8.03E-06	8.57E-06	9.01952E-06	9.32E-06	9.43E-06	9.32E-06	9.01952E-06	4.28522E-06
3.1998E-06	6.9434E-06	7.52E-06	8.1E-06	8.66E-06	9.11717E-06	9.43E-06	4.78E-06	9.43E-06	9.11717E-06	4.3277E-06
3.1813E-06	6.89691E-06	7.46E-06	8.03E-06	8.57E-06	9.01952E-06	9.32E-06	9.43E-06	9.32E-06	9.01952E-06	4.28522E-06
3.12755E-06	6.76249E-06	7.3E-06	7.83E-06	8.33E-06	8.74269E-06	9.02E-06	9.12E-06	9.02E-06	8.74269E-06	4.16427E-06
3.04342E-06	6.55397E-06	7.04E-06	7.52E-06	7.96E-06	8.32853E-06	8.57E-06	8.66E- 06	8.57E-06	8.32853E-06	3.9819E-06
2.93578E-06	6.29035E-06	6.72E-06	7.14E-06	7.52E-06	7.82972E-06	8.03E-06	8.1E-06	8.03E-06	7.82972E-06	3.76001E-06
1.40607E-06	2.99593E-06	3.18E-06	3.36E-06	3.52E-06	3.64765E-06	3.73E-06	3.76E-06	3.73E-06	3.64765E-06	1.75977E-06
1.31783E-06	2.81215E-06	3E-06	3.18E-06	3.36E-06	3.51954E-06	3.65E-06	3.73E-06	3.76E-06	3.73102E-06	1.82383E-06
2.73757E-06	5.87155E-06	6.29E-06	6.72E-06	7.14E-06	7.52001E-06	7.83E-06	8.03E-06	8.1E-06	8.03324E-06	3.91486E-06
2.82515E-06	6.08684E-06	6.55E-06	7.04E-06	7.52E-06	7.9638E-06	8.33E-06	8.57E-06	8.66E-06	8.57043E-06	4.16427E-06
2.89286E-06	6.25509E-06	6.76E-06	7.3E-06	7.83E-06	8.32853E-06	8.74E-06	9.02E-06	9.12E-06	9.01952E-06	4.37134E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57043E-06	9.02E-06	9.32E-06	9.43E-06	9.32128E-06	4.50976E-06
2 95049F-06	6 39961F-06	6.94F-06	7 52E-06	8 1F-06	8 6554E-06	9 12F-06	9.43F-06	4 78F-06	9 42803E-06	4 55859F-06
2 93578E-06	6 36259E-06	6 9E-06	7.465-06	8 03E-06	8 57043E-06	9.02E-06	9 32E-06	9 /3E-06	9 32128E-06	4 50976E-06
2.99376E-06	6.25500E-06	6.76E-06	7.35-06	7.825.06	8 32853E-06	9.02L 00	0.025-06	9.125-06	0.01052E-06	4.30370E 00
2.892801-00	0.23303L-00	6.FFF.06	7.31-00	7.032-00	7.06385.06	0.741-00	9.021-00	9.121-00	9.019321-00	4.371341-00
2.82515E-06	0.08084E-00	0.552-00	7.04E-00	7.52E-00	7.9038E-00	0.33E-00	0.57E-00	0.00E-00	8.57043E-00	4.10427E-00
2./3/5/E-06	5.87155E-06	6.29E-06	6./2E-06	7.14E-06	7.52001E-06	7.83E-06	8.03E-06	8.1E-06	8.03324E-06	3.91486E-06
1.31783E-06	2.81215E-06	3E-06	3.18E-06	3.36E-06	3.51954E-06	3.65E-06	3.73E-06	3.76E-06	3.73102E-06	1.82383E-06
1 22405 00	2 625665 06	2.015.06	25.00	2 105 00	2 250655 06	2 525 00	2 655 06	2 725 00	2 700015 00	1 005515 00
1.2349E-06	2.63566E-06	2.81E-06	3E-06	3.18E-06	3.35965E-06	3.52E-06	3.65E-06	3./3E-06	3.76001E-06	1.86551E-06
2.553/2E-06	5.47514E-06	5.87E-06	6.29E-06	6.72E-06	7.13852E-06	7.52E-06	7.83E-06	8.03E-06	8.10437E-06	4.01662E-06
2.625E-06	5.6503E-06	6.09E-06	6.55E-06	7.04E-06	7.52001E-06	7.96E-06	8.33E-06	8.57E-06	8.6554E-06	4.28522E-06
2.67959E-06	5.78572E-06	6.26E-06	6.76E-06	7.3E-06	7.82972E-06	8.33E-06	8.74E-06	9.02E-06	9.11717E-06	4.50976E-06
2.71395E-06	5.87155E-06	6.36E-06	6.9E-06	7.46E-06	8.03324E-06	8.57E-06	9.02E-06	9.32E-06	9.42803E-06	4.66064E-06
2.72569E-06	5.90098E-06	6.4E-06	6.94E-06	7.52E-06	8.10437E-06	8.66E-06	9.12E-06	9.43E-06	4.7762E-06	4.71401E-06
2.71395E-06	5.87155E-06	6.36E-06	6.9E-06	7.46E-06	8.03324E-06	8.57E-06	9.02E-06	9.32E-06	9.42803E-06	4.66064E-06
2.67959E-06	5.78572E-06	6.26E-06	6.76E-06	7.3E-06	7.82972E-06	8.33E-06	8.74E-06	9.02E-06	9.11717E-06	4.50976E-06
2.625E-06	5.6503E-06	6.09E-06	6.55E-06	7.04E-06	7.52001E-06	7.96E-06	8.33E-06	8.57E-06	8.6554E-06	4.28522E-06
2.55372E-06	5.47514E-06	5.87E-06	6.29E-06	6.72E-06	7.13852E-06	7.52E-06	7.83E-06	8.03E-06	8.10437E-06	4.01662E-06
1.2349E-06	2.63566E-06	2.81E-06	3E-06	3.18E-06	3.35965E-06	3.52E-06	3.65E-06	3.73E-06	3.76001E-06	1.86551E-06

1.15805E-06	2.46979E-06	2.64E-06	2.81E-06	3E-06	3.1813E-06	3.36E-06	3.52E-06	3.65E-06	3.73102E-06	1.88E-06
2.38533E-06	5.10743E-06	5.48E-06	5.87E-06	6.29E-06	6.7193E-06	7.14E-06	7.52E-06	7.83E-06	8.03324E-06	4.05218E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.03907E-06	7.52E-06	7.96E-06	8.33E-06	8.57043E-06	4.3277E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.29531E-06	7.83E-06	8.33E-06	8.74E-06	9.01952E-06	4.55859E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46205E-06	8.03E-06	8.57E-06	9.02E-06	9.32128E-06	4.71401E-06
2.52483E-06	5.45137E-06	5.9E-06	6.4E-06	6.94E-06	7.52001E-06	8.1E-06	8.66E-06	9.12E-06	9.42803E-06	2.3881E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46205E-06	8.03E-06	8.57E-06	9.02E-06	9.32128E-06	4.71401E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.29531E-06	7.83E-06	8.33E-06	8.74E-06	9.01952E-06	4.55859E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.03907E-06	7.52E-06	7.96E-06	8.33E-06	8.57043E-06	4.3277E-06
2.38533E-06	5.10743E-06	5.48E-06	5.87E-06	6.29E-06	6.7193E-06	7.14E-06	7.52E-06	7.83E-06	8.03324E-06	4.05218E-06
1.15805E-06	2.46979E-06	2.64E-06	2.81E-06	3E-06	3.1813E-06	3.36E-06	3.52E-06	3.65E-06	3.73102E-06	1.88E-06

Gambar C.34. Settlement per gaya satu satuan untuk nodal 1-6

1.57259E-06	3.35965E-06	3.57E-06	3.76E-06	3.91E-06	4.02E-06	4.05E-06	4.02E-06	3.91E-06	3.76E-06	1.78463E-06
3.27698E-06	7.03907E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	8.33E-06	7.96E-06	3.76001E-06
3.38125E-06	7.29531E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	8.74E-06	8.33E-06	3.91486E-06
3.44845E-06	7.46205E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	9.02E-06	8.57E-06	4.01662E-06
3.4717E-06	7.52001E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	9.43E-06	9.12E-06	8.66E-06	4.05218E-06
3.44845E-06	7.46205E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	9.02E-06	8.57E-06	4.01662E-06
3.38125E-06	7.29531E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	8.74E-06	8.33E-06	3.91486E-06
3.27698E-06	7.03907E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	8.33E-06	7.96E-06	3.76001E-06
3.14518E-06	6.7193E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	8.03E-06	7.83E-06	7.52E-06	3.56926E-06
2.99593E-06	6.36259E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	7.46E-06	7.3E-06	7.04E-06	3.35965E-06
1.41916E-06	2.99593E-06	3.15E-06	3.28E-06	3.38E-06	3.45E-06	3.47E-06	3.45E-06	3.38E-06	3.28E-06	1.57259E-06
1.46789E-06	3.14518E-06	3.36E-06	3.57E-06	3.76E-06	3.91E-06	4.02E-06	4.05E-06	4.02E-06	3.91E-06	1.88E-06
3.04342E-06	6.55397E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	8.33E-06	3.9819E-06
3.12755E-06	6.76249E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	8.74E-06	4.16427E-06
3.1813E-06	6.89691E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	9.02E-06	4.28522E-06
3.1998E-06	6.9434E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	9.43E-06	9.12E-06	4.3277E-06
3.1813E-06	6.89691E-06	7.46E-06	8.03E-06	8.57E-06	9. 02 E-06	9.32E-06	9.43E-06	9.32E-06	9.02E-06	4.28522E-06
3.12755E-06	6.76249E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	8.74E-06	4.16427E-06
3.04342E-06	6.55397E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	8.33E-06	3.9819E-06
2.93578E-06	6.29035E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	8.03E-06	7.83E-06	3.76001E-06
2.81215E-06	5.99186E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	7.46E-06	7.3E-06	3.51954E-06
1.33979E-06	2.83833E-06	3E-06	3.15E-06	3.28E-06	3.38E-06	3.45E-06	3.47E-06	3.45E-06	3.38E-06	1.63849E-06
1.36879E-06	2.93578E-06	3.15E- 06	3.36E-06	3.57E-06	3.76E-06	3.91E-06	4.02E-06	4.05E-06	4.02E-06	1.95743E-06
2.82515E-06	6.08684E-06	6.55E -06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	4.16427E-06
2.89286E-06	6.25509E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	4.37134E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	4.50976E-06
2.95049E-06	6.39961E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	9.43E-06	4.55859E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	4.50976E-06
2.89286E-06	6.25509E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	4.37134E-06
2.82515E-06	6.08684E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	4.16427E-06
2.73757E-06	5.87155E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	8.03E-06	3.91486E-06
2.63566E-06	5.62429E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	7.46E-06	3.64765E-06
1.26242E-06	2.67959E-06	2.84E-06	3E-06	3.15E-06	3.28E-06	3.38E-06	3.45E-06	3.47E-06	3.45E-06	1.69062E-06
1,27686F-06	2.73757E-06	2.94E-06	3.15E-06	3 36E-06	3.57E-06	3.76E-06	3.91F-06	4.02F-06	4.05F-06	2.00831F-06
2 625E-06	5 6503E-06	6.09E-06	6 55E-06	7.04F-06	7 52E-06	7.96E-06	8 33F-06	8 57E-06	8.66F-06	4 28522E-06
2.029E-06	5 78572E-06	6.26E-06	6.76E-06	7 3E-06	7.83E-06	8 33E-06	8 7/F-06	9.02E-06	9 12E-06	4.50976E-06
2 71395E-06	5.87155E-06	6.36E-06	6 9E-06	7.46E-06	8 03E-06	8.57E-06	9.02E-06	9.32E-06	9.12E-06	4.50570E 00
2.71555E 00	5.90098E-06	6.4E-06	6 9/F-06	7.40E 00	8 1E-06	8.66E-06	9.02E 00	9.32E 00	1 78E-06	4.00004E 00
2.72305E-06	5.90050E 00	6 36E-06	6 9E-06	7.52E 00	8 03E-06	8 57E-06	0.02E-06	0.32E-06	9.13E-06	4.66064E-06
2.71555E-00	5 78572F-06	6.26E-06	6 76E-06	7 3E-06	7 83E-06	8 33E-06	8 7/F-06	9.02E-00	9 12F-06	4 50976E-06
2.079391-00	5 6502E-00		6 55E-06		7.531-00	7 965-06	8 33E-UE	8 57E-06	8 66F-06	4.30570L-00
2.023L-00	5 4751/F-06	5.87F-06	6 29F-06	6 72F-06	7.32L-00	7.50L-00	7 83F-06	8 03E-06	8 1F-06	4.01662F-06
2.35372L-00	5 27133E_06	5.67E-00	5 99F-06	6 36E-06	6 72E-06	7.04E-06	7 3F-06	7.46E-06	7 52F-06	3 73102E-00
1 18867E-06	2 22/83E-00	2.02E-00	2.33E-00	3E-06	3.12E-00	2 28E-06	3 38E-06	2 45E-06	2 47E-06	1 72/225-00
T.1000/E-00	2.324036-00	2.00L-00	2.04L-00	36-00	2.12E-00	J.20L-00	3.30L-00	J.4JE-00	5.47E-00	1./24236-00

1.19267E-06	2.55372E-06	2.74E-06	2.94E-06	3.15E-06	3.36E-06	3.57E-06	3.76E-06	3.91E-06	4.02E-06	2.02609E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	4.3277E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	4.55859E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	4.71401E-06
2.52483E-06	5.45137E-06	5.9E-06	6.4E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	2.3881E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	4.71401E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	4.55859E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	4.3277E-06
2.38533E-06	5.10743E-06	5.48E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	4.05218E-06
2.31609E-06	4.93959E-06	5.27E-06	5.62E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	3.76001E-06
1.11947E-06	2.37734E-06	2.52E-06	2.68E-06	2.84E-06	3E-06	3.15E-06	3.28E-06	3.38E-06	3.45E-06	1.73585E-06

Gambar C.35. Settlement per gaya satu satuan untuk nodal 8-12

1.52171E-06	3.27698E-06	3.52E-06	3.76E-06	3.98E-06	4.16E-06	4.29E-06	4.33E-06	4.29E-06	4.16E-06	1.99095E-06
3.12755E-06	6.76249E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	8.74E-06	4.16427E-06
3.1813E-06	6.89691E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	9.02E-06	4.28522E-06
3.1998E-06	6.9434E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	9.43E-06	9.12E-06	4.3277E-06
3.1813E-06	6.89691E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	9.02E-06	4.28522E-06
3.12755E-06	6.76249E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	8.74E-06	4.16427E-06
3.04342E-06	6.55397E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	8.33E-06	3.9819E-06
2.93578E-06	6.29035E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	8.03E-06	7.83E-06	3.76001E-06
2.81215E-06	5.99186E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	7.46E-06	7.3E-06	3.51954E-06
2.67959E-06	5.67666E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	6.94E-06	6.9E-06	6.76E-06	3.27698E-06
1.27199E-06	2.67959E-06	2.81E-06	2.94E-06	3.04E-06	3.13E-06	3.18E-06	3.2E-06	3.18E-06	3.13E-06	1.52171E-06
1.41258E-06	3.04342E-06	3.28E-06	3.52E-06	3.76E-06	3.98E-06	4.16E-06	4.29E-06	4.33E-06	4.29E-06	2.08213E-06
2.89286E-06	6.25509E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	4.37134E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	4.50976E-06
2.95049E-06	6.39961E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	9.43E-06	4.55859E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	4.50976E-06
2.89286E-06	6.25509E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	4.37134E-06
2.82515E-06	6.08684E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	4.16427E-06
2.73757E-06	5.87155E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	8.03E-06	3.91486E-06
2.63566E-06	5.62429E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	7.46E-06	3.64765E-06
2.52483E-06	5.35917E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	6.94E-06	6.9E-06	3.38125E-06
1.20489E-06	2.54398E-06	2.68E-06	2.81E-06	2.94E-06	3.04E-06	3.13E-06	3.18E-06	3.2E-06	3.18E-06	1.56377E-06
1 3125E-06	2 82515E-06	3.04F-06	3 28E-06	3 52E-06	3 76E-06	3 98F-06	/ 16E-06	4 29E-06	4 33E-06	2 1/261E-06
2 67959E-06	5 78572E-06	6.26E-06	6 76E-06	7 3E-06	7.83E-06	8 33E-06	8 74F-06	9.02E-06	9.12E-06	4 50976E-06
2,71395E-06	5.87155E-06	6.36F-06	6.9E-06	7.46F-06	8.03E-06	8.57E-06	9.02F-06	9.32E-06	9.43E-06	4.66064F-06
2.72569E-06	5.90098E-06	6 4F-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	4.71401E-06
2.71395E-06	5.87155E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	4.66064F-06
2.67959E-06	5.78572E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74F-06	9.02E-06	9.12E-06	4.50976E-06
2.625E-06	5.6503E-06	6.09F-06	6.55E-06	7.04F-06	7.52E-06	7.96F-06	8.33E-06	8.57E-06	8.66F-06	4.28522E-06
2.55372E-06	5 47514E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1F-06	4.01662E-06
2.46979E-06	5 27133E-06	5.62E-06	5.99E-06	6.36F-06	6.72E-06	7.04F-06	7.3F-06	7.46E-06	7.52E-06	3.73102E-06
2.37734F-06	5.04966E-06	5.36E-06	5.68F-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	6.94F-06	3.44845E-06
1.14004E-06	2.40978E-06	2.54E-06	2.68E-06	2.81E-06	2.94E-06	3.04E-06	3.13E-06	3.18E-06	3.2E-06	1.59065E-06
1.22178E-06	2.625E-06	2.83E-06	3.04E-06	3.28E-06	3.52E-06	3.76E-06	3.98E-06	4.16E-06	4.29E-06	2.16385E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	4.55859E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	4.71401E-06
2.52483E-06	5.45137E-06	5.9E-06	6.4E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	2.3881E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	4.71401E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	4.55859E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	4.3277E-06
2.38533E-06	5.10743E-06	5.48E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	4.05218E-06
2.31609E-06	4.93959E-06	5.27E-06	5.62E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	3.76001E-06
2.23893E-06	4.75468E-06	5.05E-06	5.36E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	3.4717E-06
1 070205 06	2.28007E-06	2.41E-06	2.54E-06	2.68E-06	2.81E-06	2.94E-06	3.04E-06	3.13E-06	3.18E-06	1.5999E-06
1.078586-00	E1200072 00									

Gambar C.36. Settlement per gaya satu satuan untuk nodal 15-18

1.44643E-06	3.12755E-06	3.38E-06	3.65E-06	3.91E-06	4.16E-06	4.37E-06	4.51E-06	4.56E-06	4.51E-06	2.18567E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	4.50976E-06
2.95049E-06	6.39961E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	9.43E-06	4.55859E-06
2.93578E-06	6.36259E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	9.32E-06	4.50976E-06
2.89286E-06	6.25509E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	9.02E-06	4.37134E-06
2.82515E-06	6.08684E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	8.57E-06	4.16427E-06
2.73757E-06	5.87155E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	8.03E-06	3.91486E-06
2.63566E-06	5.62429E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	7.46E-06	3.64765E-06
2.52483E-06	5.35917E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	6.94E-06	6.9E-06	3.38125E-06
2.40978E-06	5.08796E-06	5.36E-06	5.62E-06	5.87E-06	6.09E-06	6.26E-06	6.36E-06	6.4E-06	6.36E-06	3.12755E-06
1.14714E-06	2.40978E-06	2.52E-06	2.64E-06	2.74E-06	2.83E-06	2.89E-06	2.94E-06	2.95E-06	2.94E-06	1.44643E-06
1.33979E-06	2.89286E-06	3.13E-06	3.38E-06	3.65E-06	3.91E-06	4.16E-06	4.37E-06	4.51E-06	4.56E-06	2.25488E-06
2.71395E-06	5.87155E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	4.66064E-06
2.72569E-06	5.90098E-06	6.4E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	4.71401E-06
2.71395E-06	5.87155E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	4.66064E-06
2.67959E-06	5.78572E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	9.12E-06	4.50976E-06
2.625E-06	5.6503E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	4.28522E-06
2.55372E-06	5.47514E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	4.01662E-06
2.46979E-06	5.27133E-06	5.62E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	3.73102E-06
2.37734E-06	5.04966E-06	5.36E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	6.94E-06	3.44845E-06
2.28007E-06	4.81957E-06	5.09E-06	5.36E-06	5.62E-06	5.87E-06	6.09E-06	6.26E-06	6.36E-06	6.4E-06	3.1813E-06
1.09055E-06	2.29428E-06	2.41E-06	2.52E-06	2.64E-06	2.74E-06	2.83E-06	2.89E-06	2.94E-06	2.95E-06	1.46789E-06
1 242895 00		2 005 00	2 125 00	2 205 00	2.000.00	2.015.00	4.105.00	4 275 00	4 515 00	2 270205 00
1.24566E-00	2.079592-00	Z.09E-00	5.150-00	5.30E-00	3.03E-00	3.91E-00	4.102-00	4.576-00	4.512-00	2.27929E-00
2.51541E-00	5.427692-00	5.072-00	0.30E-00	0.9E-00	7.402-00	0.03E-00	0.57E-00	9.022-00	9.52E-00	4.71401E-06
2.52465E-00	5.451572-00	5.92-00	6.46-00	0.94E-00	7.522-00	0.1E-00	0.00E-00	9.122-00	9.450-00	2.3001E-00
2.515412-00	5.427892-00	5.6/E-00	0.302-00	0.92-00	7.402-00	0.03E-00	0.375-00	9.022-00	9.522-00	4.71401E-06
2.48775E-06	5.35917E-06	5.79E-06	0.20E-00	0.76E-06	7.3E-06	7.83E-00	8.33E-00	8.74E-00	9.02E-06	4.55859E-06
2.44355E-06	5.25001E-06	5.05E-00	6.09E-06	0.55E-00	7.04E-06	7.52E-00	7.962-06	8.33E-06	8.57E-00	4.3277E-06
2.38533E-06	5.10743E-06	5.48E-00	5.872-00	6.29E-06	0.72E-00	7.14E-06	7.52E-06	7.83E-06	8.03E-06	4.05218E-06
2.31609E-06	4.93959E-06	5.27E-06	5.02E-06	5.99E-06	0.30E-06	0.72E-06	7.04E-06	7.3E-06	7.46E-06	3.76001E-06
2.23893E-06	4.75408E-06	5.05E-06	5.30E-06	5.08E-06	5.99E-06	0.29E-06	0.55E-06	0.70E-06	0.9E-06	3.4/1/E-06
2.15676E-06	4.56015E-06	4.82E-06	5.09E-06	5.36E-06	5.62E-06	5.8/E-06	0.09E-06	0.26E-06	0.36E-06	3.1998E-06
1.03000E-06	2.1811E-06	2.29E-06	2.41E-06	2.52E-06	2.64E-06	Z./4E-06	2.83E-06	2.89E-06	2.94E-06	1.4/525E-06

Gambar C.37. Settlement per gaya satu satuan untuk nodal 22-24

1.35697E-06	2.93578E-06	3.18E-06	3.45E-06	3.73E-06	4.02E-06	4.29E-06	4.51E-06	4.66E- 06	4.71E-06	2.33032E-06
2.72569E-06	5.90098E-06	6.4E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	4.78E-06	4.71401E-06
2.71395E-06	5.87155E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	9.43E-06	4.66064E-06
2.67959E-06	5.78572E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.0 2 E-06	9.12E-06	4.50976E-06
2.625E-06	5.6503E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	8.66E-06	4.28522E-06
2.55372E-06	5.47514E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	8.1E-06	4.01662E-06
2.46979E-06	5.27133E-06	5.62E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	7.52E-06	3.73102E-06
2.37734E-06	5.04966E-06	5.36E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	6.94E-06	3.44845E-06
2.28007E-06	4.81957E-06	5.09E-06	5.36E-06	5.62E-06	5.87E-06	6.09E-06	6.26E-06	6.36E-06	6.4E-06	3.1813E-06
2.1811E-06	4.58857E-06	4.82E-06	5.05E-06	5.27E-06	5.48E-06	5.65E-06	5.79E-06	5.87E-06	5.9E-06	2.93578E-06
1.04142E-06	2.1811E-06	2.28E-06	2.38E-06	2.47E-06	2.55E-06	2.63E-06	2.68E-06	2.71E-06	2.73E-06	1.35697E-06
1.25771E-06	2.71395E-06	2.94E-06	3.18E-06	3.45E-06	3.73E-06	4.02E-06	4.29E-06	4.51E-06	4.66E-06	2.35701E-06
2.52483E-06	5.45137E-06	5.9E-06	6.4E-06	6.94E-06	7.52E-06	8.1E-06	8.66E-06	9.12E-06	9.43E-06	2.3881E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	4.71401E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	4.55859E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	4.3277E-06
2.38533E-06	5.10743E-06	5.48E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	4.05218E-06
2.31609E-06	4.93959E-06	5.27E-06	5.62E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	3.76001E-06
2.23893E-06	4.75468E-06	5.05E-06	5.36E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	3.4717E-06
2.15676E-06	4.56015E-06	4.82E-06	5.09E-06	5.36E-06	5.62E-06	5.87E-06	6.09E-06	6.26E-06	6.36E-06	3.1998E-06
2.07212E-06	4.3622E-06	4.59E-06	4.82E-06	5.05E-06	5.27E-06	5.48E-06	5.65E-06	5.79E-06	5.87E-06	2.95049E-06
9.9353E-07	2.08284E-06	2.18E-06	2.28E-06	2.38E-06	2.47E-06	2.55E-06	2.63E-06	2.68E-06	2.71E-06	1.36284E-06

Gambar C.38. Settlement per gaya satu satuan untuk nodal 29-30

1.26242E-06	2.72569E-06	2.95E-06	3.2E-06	3.47E-06	3.76E-06	4.05E-06	4.33E-06	4.56E-06	4.71E-06	1.19405E-06
2.51541E-06	5.42789E-06	5.87E-06	6.36E-06	6.9E-06	7.46E-06	8.03E-06	8.57E-06	9.02E-06	9.32E-06	4.71401E-06
2.48775E-06	5.35917E-06	5.79E-06	6.26E-06	6.76E-06	7.3E-06	7.83E-06	8.33E-06	8.74E-06	9.02E-06	4.55859E-06
2.44355E-06	5.25001E-06	5.65E-06	6.09E-06	6.55E-06	7.04E-06	7.52E-06	7.96E-06	8.33E-06	8.57E-06	4.3277E-06
2.38533E-06	5.10743E-06	5.48E-06	5.87E-06	6.29E-06	6.72E-06	7.14E-06	7.52E-06	7.83E-06	8.03E-06	4.05218E-06
2.31609E-06	4.93959E-06	5.27E-06	5.62E-06	5.99E-06	6.36E-06	6.72E-06	7.04E-06	7.3E-06	7.46E-06	3.76001E-06
2.23893E-06	4.75468E-06	5.05E-06	5.36E-06	5.68E-06	5.99E-06	6.29E-06	6.55E-06	6.76E-06	6.9E-06	3.4717E-06
2.15676E-06	4.56015E-06	4.82E-06	5.09E-06	5.36E-06	5.62E-06	5.87E-06	6.09E-06	6.26E-06	6.36E-06	3.1998E-06
2.07212E-06	4.3622E-06	4.59E-06	4.82E-06	5.05E-06	5.27E-06	5.48E-06	5.65E-06	5.79E-06	5.87E-06	2.95049E-06
1.98706E-06	4.16568E-06	4.36E-06	4.56E-06	4.75E-06	4.94E-06	5.11E-06	5.25E-06	5.36E-06	5.43E-06	2.72569E-06
9.5159E-07	1.98706E-06	2.07E-06	2.16E-06	2.24E-06	2.32E-06	2.39E-06	2.44E-06	2.49E-06	2.52E-06	1.26242E-06

Gambar C.39. Settlement per gaya satu satuan untuk nodal 36

Settlement noual per gaya satu satuan untuk tiap noual ulakumula	Settlement nodal	l per gaya satu	i satuan untuk tiap) nodal diakumula	as
--	------------------	-----------------	---------------------	-------------------	----

0.00062	0.000646	0.000669	0.000686	0.000697	0.000701	0.000697	0.000686	0.000669	0.000646	0.00062
0.000646	0.000674	0.000699	0.000719	0.000731	0.000735	0.000731	0.000719	0.000699	0.000674	0.000646
0.000669	0.000699	0.000727	0.000748	0.000761	0.000766	0.000761	0.000748	0.000727	0.000699	0.000669
0.000686	0.000719	0.000748	0.00077	0.000784	0.000789	0.000784	0.00077	0.000748	0.000719	0.000686
0.000697	0.000731	0.000761	0.000784	0.000799	0.000804	0.000799	0.000784	0.000761	0.000731	0.000697
0.000701	0.000735	0.000766	0.000789	0.000804	0.000809	0.000804	0.000789	0.000766	0.000735	0.000701
0.000697	0.000731	0.000761	0.000784	0.000799	0.000804	0.000799	0.000784	0.000761	0.000731	0.000697
0.000686	0.000719	0.000748	0.00077	0.000784	0.000789	0.000784	0.00077	0.000748	0.000719	0.000686
0.000669	0.000699	0.000727	0.000748	0.000761	0.000766	0.000761	0.000748	0.000727	0.000699	0.000669
0.000646	0.000674	0.000699	0.000719	0.000731	0.000735	0.000731	0.000719	0.000699	0.000674	0.000646
0.00062	0.000646	0.000669	0.000686	0.000697	0.000701	0.000697	0.000686	0.000669	0.000646	0.00062

Gambar C.40. Settlement per gaya satuan z = 10

						/				
2521.959	2419.722	2336.354	2276.979	2241.494	2229.697	2241.494	2276.979	2336.354	2419.722	2521.959
2419.722	2319.45	2234.65	2174.404	2138.465	2126.529	2138.465	2174.404	2234.65	2319.45	2419.722
2336.354	2234.65	2149.388	2088.925	2052.909	2040.956	2052.909	2088.925	2149.388	223 4.65	2336.354
2276.979	2174.404	2088.925	2028.3 93	1992.372	1980.424	1992.372	2028.393	2088.925	2174.404	2276.979
2241.494	2138.465	2052.909	1992.372	1956.37	1944.432	1956.37	1992.372	2052.909	2138.465	2241.494
2229.697	2126.529	2040.956	1980.424	1944.432	1932.499	1944.432	1980.424	2040.956	2126.529	2229.697
2241.494	2 138.465	2052.909	1992.372	1956.37	1944.432	1956.37	1992.372	2052.909	2138.465	2241.494
2276.979	2174.404	2088.925	2028.393	1992.372	1980.424	1992.372	2028.393	2088.925	2174.404	2276.979
2336.354	2234.65	2149.388	2088.925	2052.909	2040.956	2052.909	2088.925	2149.388	2234.65	2336.354
2419.722	2319.45	2234.65	2174.404	2138.465	2126.529	2138.465	2174.404	2234.65	2319.45	2419.722
2521.959	2419.722	2336.354	2276.979	2241.494	2229.697	2241.494	2276.979	2336.354	2419.722	2521.959

Gambar	C.41	. Spri	ng tana	ah full 1	model z	= 10

G	ambar C.4	1. Spring ta	anah full m	nodel $z = 10$)
1114.849	2241.494	2276.979	2336.354	2419.722	2521.959
1063.265	2138.465	2174.404	2234.650	2319.450	2419.722
1020.478	2052.909	2088.925	2149.388	2234.650	2336.354
990.212	1992.372	2028.393	2088.925	2174.404	2276.979
972.216	1956.370	1992.372	2052.909	2138.465	2241.494
483.125	972.216	990.212	1020.478	1063.265	1114.849

Gambar C.42. Spring tanah $\frac{1}{4}$ model z = 10

B. Perhitungan input spring tiang

Ι ₀	Rk	Rh	Rv	Ip	d	P _P	Es	S
0.065	1.12	0.93	1	0.067704	0.5	1	1.00E+04	1.35408E-05
0.065	1.12	0.93	1	0.067704	0.5	1	1.00E+04	1.35408E-05
0.065	1.12	0.93	1	0.067704	0.5	1	1.00E+04	1.35408E-05
0.065	1.12	0.93	1	0.067704	0.5	1	1.00E+04	1.35408E-05
0.065	1.12	0.93	1	0.067704	0.5	1	1.00E+04	1.35408E-05
0.065	1.12	0.93	1	0.067704	0.5	1	1.00E+04	1.35408E-05

Tabel C.2a. Settlement tiang S akibat beban sendiri $K_p = 1000$

Tabel C.2b. Settlement tiang S akibat beban sendiri $K_p = 50$

۱ ₀	Rk	Rh	Rv	lp	d	P _P	Es	S
0.065	2.4	0.93	1	0.14508	0.5	1	1.00E+04	0.000029016
0.065	2.4	0.93	1	0.14508	0.5	1	1.00E+04	0.000029016
0.065	2.4	0.93	1	0.14508	0.5	1	1.00E+04	0.000029016
0.065	2.4	0.93	1	0.14508	0.5	1	1.00E+04	0.000029016
0.065	2.4	0.93	1	0.14508	0.5	1	1.00E+04	0.000029016
0.065	2.4	0.93	1	0.14508	0.5	1	1.00E+04	0.000029016

B.1. Input spring tiang $K_p = 1000$ dengan z = 1

	S	d	s/d	d/s	α_{F}
	2.5	0.5	5.00	0.20	0.4
	3.535 53 4	0.5	7.07	0.14	0.33
	5	0.5	10.00	0.10	0.275
	5.59017	0.5	11.18	0.09	0.25
	7.071068	0.5	14.14	0.071	0.22
)	7.5	0.5	15.00	0.067	0.2
	10	0.5	20.00	0.050	0.16
	9.013878	0.5	18.03	0.055	0.177
2	7.905694	0.5	15.81	0.063	0.19
	11.18034	0.5	22.36	0.045	0.146
	10.30776	0.5	20.62	0.049	0.162

Tabel C.3. Faktor	$\alpha_{\rm F}$ nodal	1, 3,	dan	5
-------------------	------------------------	-------	-----	---

8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905
7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
	_				0	4.05	0.5	0.75	-	
6.25	5	3.75	2.5	1.25	0	1.25	2.5	3.75	5	6.25
6.25 6.373774	5.153882	3.75 3.952847	2.5	1.25 1.767767	0 1.25	1.25	2.5	3.75 3.952847	5.153882	6.25 6.373774
6.25 6.373774 6.731456	5.153882 5.59017	3.75 3.952847 4.506939	2.5 2.795085 3.535534	1.25 1.767767 2.795085	0 1.25 2.5	1.25 1.767767 2.795085	2.5 2.795085 3.535534	3.75 3.952847 4.506939	5.153882 5.59017	6.25 6.373774 6.731456
6.25 6.373774 6.731456 7.28869	5.153882 5.59017 6.25	3.952847 4.506939 5.303301	2.5 2.795085 3.535534 4.506939	1.25 1.767767 2.795085 3.952847	1.25 2.5 3.75	1.25 1.767767 2.795085 3.952847	2.795085 3.535534 4.506939	3.952847 4.506939 5.303301	5.153882 5.59017 6.25	6.25 6.373774 6.731456 7.28869
6.25 6.373774 6.731456 7.28869 8.003905	5.153882 5.59017 6.25 7.071068	3.952847 4.506939 5.303301 6.25	2.5 2.795085 3.535534 4.506939 5.59017	1.25 1.767767 2.795085 3.952847 5.153882	1.25 2.5 3.75 5	1.25 1.767767 2.795085 3.952847 5.153882	2.795085 3.535534 4.506939 5.59017	3.952847 4.506939 5.303301 6.25	5.153882 5.59017 6.25 7.071068	6.25 6.373774 6.731456 7.28869 8.003905

Universitas Indonesia

10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869
10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25	2.5	3.75
8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869
12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25
11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.52443	10.30776	9.100137	7.90569 <mark>4</mark>	6.731456	5.59017	4.506939	3 <mark>.535534</mark>	2.795085	2.5	2.795085
11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774

Gambar C.43. Jarak spacing antara nodal tiang 1, 3, dan 5 terhadap nodal tiang lain dan nodal tanah

0.22	0.25	0.275	0.25	0.22
0.25	0.33	0.4	0.33	0.25
0.275	0.4	0	0.4	0.275
0.25	0.33	0.4	0.33	0.25
0.22	0.25	0.275	0.25	0.22
2.98E-06	3.39E-06	3.72E-06	3.39E-06	2.98E-06
3.39E-06	4.47E-06	5.42E-06	4.47E-06	3.39E-06
3.72E-06	5.42E-06	1.35E-05	5.42E-06	3.72E-06
3.39E-06	4.47E-06	5.42E-06	4.47E-06	3.39E-06
2.98E-06	3.39E-06	3.72E-06	3.39E-06	2.98E-06

0.25	0.275	0.25	0.22	0.177
0.33	0.4	0.33	0.25	0.19
0.4	0	0.4	0.275	0.2
0.33	0.4	0.33	0.25	0.19
0.25	0.275	0.25	0.22	0.177
3.39E-06	3.72E-06	3.39E-06	2.98E-06	2.4E-06
4.47E-06	5.42E-06	4.47E-06	3.39E-06	2.57E-06
5.42E-06	1.35E-05	5.42E-06	3. 72 E-06	2.71E-06
4.47E-06	5.42E-06	4.47E-06	3.39E-06	2.57E-06
3.39E-06	3.72E-06	3.39E-06	2.98E-06	2.4E-06
0.275	0.25	0.22	0.177	0.146
0.4	0.33	0.25	0.19	0.162
0	0.4	0.275	0.2	0.16
, 0.4	0.33	0.25	0.19	0.162
0.275	0.25	0.22	0.177	0.146
3.72E-06	3.39E-06	2.98E-06	2.4E-06	1.98E-06
5.42E-06	4.47E-06	3.39E-06	2.57E-06	2.19E-06
1.35E-05	5.42E-06	3.72E-06	2.71E-06	2.17E-06
5.42E-06	4.47E-06	3.39E-06	2.57E-06	2.19E-06
	2 205 06	2 085 06	2 45 06	1 095 06

Gambar C.44. Konversi spacing ke α_F (bagian atas) dan hasil settlement per gaya satu satuan pada nodal tiang 1, 3, dan 5 (bagian bawah)

Tabel C.4. Faktor α_F nodal 15, dan 17

S	d	s/d	d/s	α
7.90569415	0.5	15.81	0.063	0.19
5.59016994	0.5	11.18	0.09	0.25
3.53553391	0.5	7.07	0.14	0.33
2.5	0.5	5.00	0.20	0.4
7.5	0.5	15.00	0.067	0.2
5	0.5	10.00	0.10	0.275
7.07106781	0.5	14.14	0.071	0.22
9.01387819	0.5	18.03	0.055	0.177
10.6066017	0.5	21.21	0.047	0.154
10.3077641	0.5	20.62	0.049	0.162
10	0.5	20.00	0.050	0.16
11.1803399	0.5	22.36	0.045	0.146
12.5	0.5	2 5.00	0.040	0.13

9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25	2 .5	3.75
8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869
11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453	7.905694	8.385255
12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835	9.100137	9.519716
11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25
11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
12.31107	11.18034	10.07782	9.01387 <mark>8</mark>	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
14.25219	13.28768	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835
	9.519716 9.100137 8.838835 9.75 9.519716 10.07782 10.75291 11.52443 12.37437 11.85854 11.31923 11.31923 11.32443 11.31923 11.52443 11.52443 11.52443 11.85854 12.31107 12.86954 13.52082 14.25219	9.519716 8.385255 9.100137 7.905694 8.83835 7.603453 8.75 7.5 8.83835 7.603453 9.100137 7.905694 9.519716 8.385255 10.07782 9.013878 10.75291 9.762812 11.52443 10.6066 12.37437 11.52443 11.85854 10.68 11.31923 10.07782 11.31923 10.07782 11.52443 10.30776 11.31923 10.07782 11.52443 10.30776 11.31923 10.07782 11.52443 10.30776 11.85854 10.68 12.52443 10.30776 11.85854 10.68 12.31107 11.18034 12.86954 11.79248 13.52082 12.5 14.25219 13.28768	9.519716 8.385255 7.28869 9.100137 7.905694 6.731456 8.83835 7.603453 6.373774 8.75 7.5 6.25 8.83835 7.603453 6.373774 9.100137 7.905694 6.731456 9.519716 8.38525 7.28869 9.519716 8.38525 7.28869 10.07782 9.013878 8.03905 10.75291 9.762812 8.38835 10.5243 10.6066 9.762812 11.52443 10.6066 9.100137 11.52443 10.6076 9.109716 11.52443 10.07782 8.38835 11.52443 10.07782 8.38835 11.31923 10.07782 8.38835 11.52443 10.07782 8.38835 11.52443 10.07782 8.38835 11.52443 10.07782 8.38835 11.52443 10.30776 9.10137 11.85854 10.68 9.519716 11.52443	9.5197168.3852557.288696.259.1001377.9056946.7314565.590178.838357.6034536.3737745.1538828.757.56.2558.838357.6034536.3737745.1538829.1001377.9056946.7314565.590179.5197168.3852557.288696.2510.077829.0138788.0039057.07106810.752919.7628128.838358.00390511.5244310.60669.7628129.01387811.5244310.60669.7628129.01387811.5244310.60669.5197168.38525511.5244310.077828.3838357.60345311.5244310.077828.388357.60345311.3192310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.077828.3838357.60345311.5244310.307769.1011377.90569411.5244310.307769.5197168.38525512.3110711.1803410.077829.01387812.508211.5244310.752919.762812 <th>9.5197168.3852557.288696.255.3033019.1001377.9056946.7314565.590174.5069398.8383557.6034536.3737745.1538823.9528478.757.56.2553.758.8383557.6034536.3737745.1538823.9528479.101377.9056946.7314565.590174.5069399.5197168.3852557.288696.255.30330110.077829.0138788.0039057.0710686.2510.752919.7628128.838358.0039057.2886911.5244310.60669.7628129.0138788.38525512.3743711.5244310.7529110.077829.51971611.8585410.689.5197168.3852557.2886911.3192310.077828.838357.6034536.37377411.5244310.077828.838357.6034536.37377411.5244310.077828.838357.6034536.37377411.5244310.077829.101377.9056946.37347411.5244310.077829.101377.9056946.37347411.5244310.307769.101377.9056946.37347411.5244310.307769.101377.9056946.37347411.5244310.6089.5197168.3852557.2886912.310711.803410.077829.0138788.00390512.310711.803410.077829.0138788.00390512.3508211.7924</th> <th>9.5197168.3852557.288696.255.3033014.5069399.1001377.9056946.7314565.590174.5069393.5355348.8383557.6034536.3737745.1538823.9528472.7950858.757.56.255.590174.5069393.5355349.1001377.9056946.7314565.590174.5069393.5355349.101377.9056946.7314565.590174.5069393.535349.5197168.385257.28696.255.3033014.50693910.077829.0138788.0039057.0710686.255.5901710.752919.7628128.838358.0039057.28696.73145611.5244310.60669.7628129.0138788.3852557.90569411.5244310.6069.5197168.3852557.28696.2511.3192310.077828.388357.6034536.3737745.15388211.3192310.077828.388357.6034536.3737745.15388211.3192310.077828.388357.6034536.3737745.15388211.3192310.077828.388357.6034536.3737745.15388211.5244310.067829.0138788.0039057.07106811.3192310.077828.388357.6034536.373745.15388211.5244310.689.5197168.3852557.286696.2512.310711.803410.077829.0138788.0039057.07106812</th> <th>9.5197168.3852557.288696.255.3033014.5069393.5355342.7950859.1001377.9056946.7314565.590174.5069393.5355342.7950858.8383557.6034536.3737745.1538823.9528472.7950851.7677678.757.556.255.590174.5069393.5355342.7950859.1001377.9056946.7314565.590174.5069393.5355342.7950859.101377.9056946.7314565.590174.5069393.5355342.7950859.5197168.3852557.28696.6255.3033014.5069393.95284710.077829.0138788.0039057.0710686.255.590175.15388210.752919.7628129.0138788.3852557.286696.7314566.37374411.5244310.60669.7628129.0138788.3852557.286696.255.30330111.8585410.689.5197168.3852557.286696.255.30330111.3192310.077828.388357.6034536.3737745.1538823.95284711.3192310.077828.388357.6034536.3737745.1538823.95284711.3192310.077828.388357.6034536.373745.1538823.95284711.3192310.077829.101377.9056946.3734745.1538823.95284711.3192310.077828.388357.6034536.373745.1538823.95284711</th> <th>9.5197168.3852557.288696.255.3033014.5069393.5353342.9528473.759.1001377.9056946.7314565.590174.5069393.5355342.7950851.258.838357.6034536.3737745.1538823.9528472.7950851.7677671.258.838357.6034536.3737745.1538823.9528472.7950851.7677671.259.101377.9056946.7314565.590174.5069393.5355342.7950852.559.101377.9056946.7314565.590174.5069393.5355342.7950852.559.5197168.3852557.28696.255.303014.5069393.9528473.75510.077829.0138788.0039057.0710686.255.590175.1538825.510.752919.7628128.0339057.288696.7314566.3737746.2511.5244310.60669.7628129.0138788.3852557.288696.255.303014.50693911.5244310.67829.101377.9056946.7314565.590174.5069393.53553411.5244310.67829.101377.9056946.7314565.590174.5069393.53553411.3192310.077828.388357.6034536.3737745.1538823.9528472.79508511.3192310.077828.388357.6034536.3737745.1538823.9528472.79508511.5244310.077829.101377.905694<</th> <th>9.5197168.3852557.288696.255.3033014.5069393.9528473.753.9528479.1001377.9056946.7314565.590174.5069393.5355342.7950852.7950858.8388357.6034536.3737745.1538823.9528472.7950851.7677671.251.7677678.757.756.255.590174.5069393.5355342.7950852.7950851.7677671.251.7677679.1001377.9056946.7314565.590174.5069393.5355342.7950852.7950852.7950859.113768.3852557.28696.255.3033014.5069393.9528473.753.95284710.077829.0138788.0030057.0710686.255.590175.1538823.753.95284710.524310.60669.7628129.0138788.3852557.9056947.6034537.637.6345311.5244310.60669.7628129.0138788.3852557.9056947.6034537.638.3883511.5244310.60769.101777.9056946.7314565.590174.5069393.535542.79508511.3192310.077828.388357.6034536.3737745.1538823.9528472.7950851.76776711.5244310.077828.388357.6034536.3737745.1538823.9528472.7950851.76776711.3192310.077828.388357.6034536.3737745.1538823.9528472.7950851.767</th> <th>9.5197168.3852557.288696.255.3033014.5069393.9528473.753.9528474.5069399.1001377.9056946.7314565.590174.5069393.5355342.7950852.7950852.7950852.7950853.767762.7950858.838357.6034536.3737745.1538823.9528472.7950851.7677671.251.7677672.7950858.838357.6034536.3737745.1538823.9528472.7950851.7677671.251.7677672.7950859.1001377.9056946.7314565.590174.5069393.535342.7950852.7950852.7950853.535349.1077829.038788.039057.0710686.255.590175.590175.590175.590175.598175.3033014.5069393.555342.7950855.599175.598175.3033014.5069393.555342.7950855.298175.598175.138825.298175.598175.598175.598175.598175.598175.598175.598175.598175.59817</th>	9.5197168.3852557.288696.255.3033019.1001377.9056946.7314565.590174.5069398.8383557.6034536.3737745.1538823.9528478.757.56.2553.758.8383557.6034536.3737745.1538823.9528479.101377.9056946.7314565.590174.5069399.5197168.3852557.288696.255.30330110.077829.0138788.0039057.0710686.2510.752919.7628128.838358.0039057.2886911.5244310.60669.7628129.0138788.38525512.3743711.5244310.7529110.077829.51971611.8585410.689.5197168.3852557.2886911.3192310.077828.838357.6034536.37377411.5244310.077828.838357.6034536.37377411.5244310.077828.838357.6034536.37377411.5244310.077829.101377.9056946.37347411.5244310.077829.101377.9056946.37347411.5244310.307769.101377.9056946.37347411.5244310.307769.101377.9056946.37347411.5244310.6089.5197168.3852557.2886912.310711.803410.077829.0138788.00390512.310711.803410.077829.0138788.00390512.3508211.7924	9.5197168.3852557.288696.255.3033014.5069399.1001377.9056946.7314565.590174.5069393.5355348.8383557.6034536.3737745.1538823.9528472.7950858.757.56.255.590174.5069393.5355349.1001377.9056946.7314565.590174.5069393.5355349.101377.9056946.7314565.590174.5069393.535349.5197168.385257.28696.255.3033014.50693910.077829.0138788.0039057.0710686.255.5901710.752919.7628128.838358.0039057.28696.73145611.5244310.60669.7628129.0138788.3852557.90569411.5244310.6069.5197168.3852557.28696.2511.3192310.077828.388357.6034536.3737745.15388211.3192310.077828.388357.6034536.3737745.15388211.3192310.077828.388357.6034536.3737745.15388211.3192310.077828.388357.6034536.3737745.15388211.5244310.067829.0138788.0039057.07106811.3192310.077828.388357.6034536.373745.15388211.5244310.689.5197168.3852557.286696.2512.310711.803410.077829.0138788.0039057.07106812	9.5197168.3852557.288696.255.3033014.5069393.5355342.7950859.1001377.9056946.7314565.590174.5069393.5355342.7950858.8383557.6034536.3737745.1538823.9528472.7950851.7677678.757.556.255.590174.5069393.5355342.7950859.1001377.9056946.7314565.590174.5069393.5355342.7950859.101377.9056946.7314565.590174.5069393.5355342.7950859.5197168.3852557.28696.6255.3033014.5069393.95284710.077829.0138788.0039057.0710686.255.590175.15388210.752919.7628129.0138788.3852557.286696.7314566.37374411.5244310.60669.7628129.0138788.3852557.286696.255.30330111.8585410.689.5197168.3852557.286696.255.30330111.3192310.077828.388357.6034536.3737745.1538823.95284711.3192310.077828.388357.6034536.3737745.1538823.95284711.3192310.077828.388357.6034536.373745.1538823.95284711.3192310.077829.101377.9056946.3734745.1538823.95284711.3192310.077828.388357.6034536.373745.1538823.95284711	9.5197168.3852557.288696.255.3033014.5069393.5353342.9528473.759.1001377.9056946.7314565.590174.5069393.5355342.7950851.258.838357.6034536.3737745.1538823.9528472.7950851.7677671.258.838357.6034536.3737745.1538823.9528472.7950851.7677671.259.101377.9056946.7314565.590174.5069393.5355342.7950852.559.101377.9056946.7314565.590174.5069393.5355342.7950852.559.5197168.3852557.28696.255.303014.5069393.9528473.75510.077829.0138788.0039057.0710686.255.590175.1538825.510.752919.7628128.0339057.288696.7314566.3737746.2511.5244310.60669.7628129.0138788.3852557.288696.255.303014.50693911.5244310.67829.101377.9056946.7314565.590174.5069393.53553411.5244310.67829.101377.9056946.7314565.590174.5069393.53553411.3192310.077828.388357.6034536.3737745.1538823.9528472.79508511.3192310.077828.388357.6034536.3737745.1538823.9528472.79508511.5244310.077829.101377.905694<	9.5197168.3852557.288696.255.3033014.5069393.9528473.753.9528479.1001377.9056946.7314565.590174.5069393.5355342.7950852.7950858.8388357.6034536.3737745.1538823.9528472.7950851.7677671.251.7677678.757.756.255.590174.5069393.5355342.7950852.7950851.7677671.251.7677679.1001377.9056946.7314565.590174.5069393.5355342.7950852.7950852.7950859.113768.3852557.28696.255.3033014.5069393.9528473.753.95284710.077829.0138788.0030057.0710686.255.590175.1538823.753.95284710.524310.60669.7628129.0138788.3852557.9056947.6034537.637.6345311.5244310.60669.7628129.0138788.3852557.9056947.6034537.638.3883511.5244310.60769.101777.9056946.7314565.590174.5069393.535542.79508511.3192310.077828.388357.6034536.3737745.1538823.9528472.7950851.76776711.5244310.077828.388357.6034536.3737745.1538823.9528472.7950851.76776711.3192310.077828.388357.6034536.3737745.1538823.9528472.7950851.767	9.5197168.3852557.288696.255.3033014.5069393.9528473.753.9528474.5069399.1001377.9056946.7314565.590174.5069393.5355342.7950852.7950852.7950852.7950853.767762.7950858.838357.6034536.3737745.1538823.9528472.7950851.7677671.251.7677672.7950858.838357.6034536.3737745.1538823.9528472.7950851.7677671.251.7677672.7950859.1001377.9056946.7314565.590174.5069393.535342.7950852.7950852.7950853.535349.1077829.038788.039057.0710686.255.590175.590175.590175.590175.598175.3033014.5069393.555342.7950855.599175.598175.3033014.5069393.555342.7950855.298175.598175.138825.298175.598175.598175.598175.598175.598175.598175.598175.598175.59817

0.19	0.25	0.33	0.4	0.33
0.2	0.275	0.4	0	0.4
0.19	0.25	0.33	0.4	0.33
0.177	0.22	0.25	0.275	0.25
0.154	0.177	0.19	0.2	0.19
2.57E-06	3.39E-06	4.47E-06	5.42E-06	4.47E-06
2.71E-06	3.72E-06	5.42E-06	1.35E-05	5.42E-06
2.57E-06	3.39E-06	4.47E-06	5.42E-06	4.47E-06
2.4E-06	2.98E-06	3.39E-06	3.72E-06	3.39E-06
2.09E-06	2.4E-06	2.57E-06	2.71E-06	2.57E-06
0.162	0.19	0.25	0.33	0.4
0.16	0.2	0.275	0.4	0
0.162	0.19	0.25	0.33	0.4
0.146	0.177	0.22	0.25	0.275
0.13	0.154	0.177	0.19	0.2
2.19E-06	2.57E-06	3.39E-06	4.47E-06	5.42E-06

2.17E-06

2.19E-06

1.98E-06

3.72E-06

3.39E-06

2.98E-06

5.42E-06

4.47E-06

3.39E-06

satu satuan pada nodal tiang 15 dan 17 (bagian bawah)

2.71E-06

2.57E-06

2.4E-06

Tabel C.5. Faktor α_F nodal 29

Universitas Indonesia

1.35E-05

5.42E-06

3.72E-06

S	d	s/d	d/s	α	
7.90569415	0.5	15.81	0.063	0.19	
5.59016994	0.5	11.18	0.09	0.25	
3.53553391	0.5	7.07	0.14	0.33	
2.5	0.5	5.00	0.20	0.4	
7.5	0.5	15.00	0.067	0.2	
5	0.5	10.00	0.10	0.275	
7.07106781	0.5	14.14	0.071	0.22	
9.01387819	0.5	18.03	0.055	0.177	
10.6066017	0.5	21.21	0.047	0.154	
10.3077641	0.5	20.62	0.049	0.162	
10	0.5	20.00	0.050	0.16	
11.1803399	0.5	22.36	0.045	0.146	
12.5	0.5	25.00	0.040	0.13	

11.31923	10.07782219	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25
11.31923	10.07782219	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.85854	10.68000468	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
12.86954	11.79247642	10.75291	9.762812	8.83 883 5	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
14.25219	13.28768227	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835
15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10	10.07782
15.9099	15.05199322	14.25219	13.52082	12.86954	12.31107	11.85854	11.52443	11.31923	11.25	11.31923

Gambar C.47. Jarak spacing antara nodal tiang 29 terhadap nodal tiang lain dan nodal tanah

Universitas Indonesia

Analisis pondasi..., Azmi Mulki, FT UI, 2009

0.16	0.2	0.275	0.4	0
0.10	0.2	0.275	0.4	0
0.162	0.19	0.25	0.33	0.4
0.146	0.177	0.22	0.25	0.275
0.13	0.154	0.177	0.19	0.2
0 123	0.13	0 146	0 162	0.16
0.120	0.10	0.110	0.102	0.10
2.17E-06	2.71E-06	3.72E-06	5.42E-06	1.35E-05
2.19E-06	2.57E-06	3.39E-06	4.47E-06	5.42E-06
1.095.06	2 405 06	2 095 06	2 205 06	2 725 06
1.982-00	2.402-00	2.982-00	5.592-00	5.72E-00
1.76E-06	2.09E-06	2.40E-06	2.57E-06	2.71E-06
				00
1.67E-06	1.76E-06	1.98E-06	2.19E-06	2.17E-06

Gambar C.48. Konversi spacing ke α_F (bagian atas) dan hasil settlement per gaya satu satuan pada nodal tiang 29 (bagian bawah)

Settlement per gaya satu satuan pada nodal tiang diakumulasi.

8.13E-05	8.96E-05	9.26E-05	8.96E-05	8.13E-05
8.96E-05	9.96E-05	1.03E-04	9.96E-05	8.96E-05
9.26E-05	1.03E-04	1.07E-04	1.03E-04	9.26E-05
8.96E-05	9.96E-05	1.03E-04	9.96E-05	8.96E-05
8.13E-05	8.96E-05	9.26E-05	8.96E-05	8.13E-05

Gambar C.49. Settlement per gaya satuan $K_p = 1000$

19209.589	17436.083	16882.517	17436.083	19209.589
17436.083	15682.522	15145.295	15682.522	17436.083
16882.517	15145.295	14606.582	15145.295	16882.517
17436.083	15682.522	15145.295	15682.522	17436.083
19209.589	17436.083	16882.517	17436.083	19209.589

Gambar C.50. Spring tiang $K_p = 1000$

1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	20480.498	1159.916	18538.183	1072.899	17946.406	1072.899	18538.183	1159.916	20480.498	1459.855
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1283.049	18538.183	998.625	16627.663	918.413	16055.512	918.413	16627.663	998.625	18538.183	1283.049
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1240.125	17946.406	962.796	16055.512	883.883	15482.386	883.883	16055.512	962.796	17946.406	1240.125
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1283.049	18538.183	998.625	16627.663	918.413	16055.512	918.413	16627.663	998.625	18538.183	1283.049
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1459.855	20480.498	1159.916	18538.183	1072.899	17946.406	1072.899	18538.183	1159.916	20480.498	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar C.51. Spring tiang full model $K_p = 1000 + \text{spring tanah } z = 1$

620.062	1250.333	1283.049	1346.051	1459.855	1644.527
8973. 20 3	1072.899	18538.183	1159.916	20480.498	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
8027.756	918.413	16627.663	998.625	18538.183	1283.049
441.942	891.989	918.413	971.212	1072.899	12 50.333
3870.597	441.942	8027.756	481.398	8973.203	620.062

Gambar C.52. Spring tiang $\frac{1}{4}$ model K_p = 1000 + spring tanah z = 1

B.2. Input spring tiang $K_p = 1000$ dengan z = 0.5

1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	20480.498	1159.916	18538.183	1072.899	1 7946. 406	1072.899	18538.183	1159.916	20480.498	1459.855
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1283.049	18538.183	998.625	16627.663	918.413	16055.512	918.413	16627.663	998.625	18538.183	1283.049
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1240.125	17946.406	962.796	16055.512	883.883	15482.386	883.883	16055.512	962.796	17946.406	1240.125
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1283.049	18 538.183	998.625	16627.663	918.413	16055.512	918.413	16627.663	998.625	18538.183	1283.049
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1459.855	20480.498	1159.916	18538.183	1072.899	17946.406	1072.899	18538.183	1159.916	20480.498	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar C.53. Spring tiang full model $K_p = 1000 + spring tanah z = 0.5$

620.062	1250.333	1283.049	1346.051	1459.855	1644.527
8973.203	1072.899	18538.183	1159.916	20480.498	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
8027.756	918.413	16627.663	998.625	18538.183	1283.049
441.942	891.989	918.413	971.212	1072.899	1250.333
3870.597	441.942	8027.756	481.398	8973.203	620.062

Gambar C.54. Spring tiang $\frac{1}{4}$ model K_p = 1000 + spring tanah z = 0.5

B.3. Input spring tiang $K_p = 1000$ dengan z = 7.5

2238.680	2122.787	2029.812	1964.590	1926.115	1913.419	1926.115	1964.590	2029.812	2122.787	2238.680
2122.787	21217.941	1913.898	19284.077	1809.277	18679.046	1809.277	19284.077	1913.898	21217.941	2122.787
2029.812	1913.898	1819.319	1753.584	1715.079	1702.421	1715.079	1753.584	1819.319	1913.898	2029.812
1964.590	19284.077	1753.584	17370.659	1649.873	16782.602	1649.873	17370.659	1753.584	19284.077	1964.590
1926.115	1809.277	1715.079	1649.873	1611.790	1599.290	1611.790	1649.873	1715.079	1809.277	1926.115
1913.419	18679.046	1702.421	16782.602	1599.290	16193.397	1599.290	16782.602	1702.421	18679.046	1913.419
1926.115	1809.277	1715.079	1649.873	1611.790	1599.290	1611.790	1649.873	1715.079	1809.277	1926.115
1964.590	19284.077	1753.584	17370.659	1649.873	16782.602	1649.873	17370.659	1753.584	19284.077	1964.590
2029.812	1913.898	1819.319	1753.584	1715.079	1702.421	1715.079	1753.584	1819.319	1913.898	2029.812
2122.787	21217.941	1913.898	19284.077	1809.277	18679.046	1809.277	19284.077	1913.898	21217.941	2122.787
2238.680	2122.787	2029.812	1964.590	1926.115	1913.419	1926.115	1964.590	2029.812	2122.787	2238.680

Gambar C.55. Spring tiang full model $K_p = 1000 + \text{spring tanah } z = 7.5$

956.709	1926.115	1964.590	2029.812	2122.787	2238.680
9339.523	1809.277	19284.077	1913.898	21217.941	2122.787
851.211	1715.079	1753.584	1819.319	1913.898	2029.812
8391.301	1649.873	17370.659	1753.584	19284.077	1964.590
799.645	1611.790	1649.873	1715.079	1809.277	1926.115
4048.349	799.645	8391.301	851.211	9339.523	956.709

Gambar C.56. Spring tiang $\frac{1}{4}$ model K_p = 1000 + spring tanah z = 7.5

B.4. Input spring tiang $K_p = 1000$ dengan z = 10

2521.959	2419.722	2336.354	2276.979	2241.494	2229.697	2241.494	2276.979	2336.354	2419.722	2521.959
2419.722	2 1529.039	2234.650	19610.487	2138.465	19009.046	2138.465	19610.487	2234.650	21529.039	2419.722
2336.354	2234.650	2149.388	2088.925	2052.909	2040.956	2052.909	2088.925	2149.388	2234.650	2336.354
2276.979	19610.487	2088.925	17710.915	1992.372	17125.719	1992.372	17710.915	2088.925	19610.487	2276.979
2241.494	2138.465	2052.909	1992.372	1956.370	1944.432	1956.370	1992.372	2052.909	2138.465	2241.494
2229.697	19009.046	2040.956	17125.719	1944.432	16539.082	1944.432	17125.719	2040.956	19009.046	2229.697
2241.494	2138.465	2052.909	1992.372	1956.370	1944.432	1956.370	1992.372	2052.909	2138.465	2241.494
2276.97 9	196 10.487	2088.925	17710.915	1992.372	17125.719	1992.372	17710.915	2088.925	19610.487	2276.979
2336.354	2234.650	2149.388	2088.925	2052.909	2040.956	2052.909	2088.925	2149.388	2234.650	2336.354
2419.722	21529.039	2234.650	19610.487	2138.465	19009.046	2138.465	19610.487	2234.650	21529.039	2419.722
2521.959	2419.722	2336.354	2276.979	2241.494	2229.697	2241.494	2276.979	2336.354	2419.722	2521.959

Gambar C.55. Spring tiang full model $K_p = 1000 + spring tanah z = 10$

1114.849	2241.494	2276.979	2336.354	2419.722	2521.959
9504.523	2138.465	19610.487	2234.650	21529.039	2419.722
1020.478	2052.909	2088.925	2149.388	2234.650	2336.354
8562.859	1992.372	17710.915	2088.925	19610.487	2276.979
972.216	1956.370	1992.372	2052.909	2138.465	2241.494
4134.770	972.216	8562.859	1020.478	9504.523	1114.849

Gambar C.56. Spring tiang $\frac{1}{4}$ model $K_p = 1000 + \text{spring tanah } z = 10$

B.5. Input spring tiang $K_p = 1000$ dengan faktor x0.55

10565.274	9589.846	9285.384	9589.846	10565.274
9589.846	8625.387	8329.912	8625.387	9589.846
9285.384	8329.912	8033.620	8329.912	9285.384
9589.846	8625.387	8329.912	8625.387	9589.846
10565.274	9589.846	9285.384	9589.846	10565.274

Gambar C.57. Spring tiang $K_p = 1000 \text{ x}0.55$

1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	11836.18 <mark>3</mark>	1159.916	10691.945	1072.899	10349.273	1072.899	10691.945	1159.916	11836.183	1459.855
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1283.049	10691.945	998.625	9570.528	918.413	924 0.129	918.413	9570.528	998.625	10691.945	1283.049
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1240.125	1034 9.273	962.796	9240.129	883.883	8909.424	883.883	9240.129	962.796	10349.273	1240.125
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1283.049	10691.945	998.625	9570.528	918.413	9240.129	918.413	9570.528	998.625	10691.945	1283.049
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1459.855	11836.183	1159.916	10691.945	1072.899	10349.273	1072.899	10691.945	1159.916	11836.183	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar C.58. Spring tiang full model $K_p = 1000 \times 0.55$

620.062	1250.333	1283.049	1346.051	1459.855	1644.527
5174.637	1072.899	10691.945	1159.916	11836.183	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
4620.064	918.413	9570.528	998.625	10691.945	1283.049
441.942	891.989	918.413	971.212	1072.899	1250.333
2227.356	441.942	4620.064	481.398	5174.637	620.062

Gambar C.59. Spring tiang $\frac{1}{4}$ model K_p = 1000 x0.55

B.6. Input spring tiang $K_p = 50$ dengan z = 1

Tabel C.6. Faktor α_F nodal 1, 3, dan 5

S	d	s/d	d/s	α
2.5	0.5	5.00	0.20	0.267
3.535534	0.5	7.07	0.14	0.217
5	0.5	10.00	0.10	0.169
5.59017	0.5	11.18	0.09	0.162
7.071068	0.5	14.14	0.071	0.131
7.5	0.5	15.00	0.067	0.123
10	0.5	20.00	0.050	0.1
9.013878	0.5	18.03	0.055	0.108
7.905694	0.5	15.81	0.063	0.115
11.18034	0.5	22.36	0.045	0.092
10.30776	0.5	20.62	0.049	0.098

				-							
	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905
	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
	6.25	5	3.75	2.5	1.25	0	1.25	2.5	3.75	5	6.25
	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774
	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456
	7.28869	6.25	5.303301	4.506939	3.952 847	3.75	3.952847	4.506939	5.303301	6.25	7.28869
	8.003905	7.071068	6.25	5.59017	5.1538 82	5	5.153882	5.59017	6.25	7.071068	8.003905
	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835
	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869
	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
5	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
l	8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25	2.5	3.75
	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847
	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939
	9.519/16	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301
	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882	5.59017	6.25
	10.75291	9.762812	8.838835	8.003905	7.28869	6./31456	6.3/3//4	6.25	6.3/3//4	6./31456	7.28869
	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
ſ	11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25
	11.31923	10.07782	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
	11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
	11.85854	10.68	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
	12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
	12.86954	11.79248	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774

Gambar C.60. Jarak spacing antara nodal tiang 1, 3, dan 5 terhadap nodal tiang lain dan nodal tanah

0.131	0.162	0.169	0.162	0.131
0.162	0.217	0.267	0.217	0.162
0.169	0.267	0	0.267	0.169
0.162	0.217	0.267	0.217	0.162
0.131	0.162	0.169	0.162	0.131
3.8E-06	4.7E-06	4.9E-06	4.7E-06	3.8E-06
4.7E-06	6.3E-06	7.75E-06	6.3E-06	4.7E-06
4.9E-06	7.75E-06	2.9E-05	7.75E-06	4.9E-06
4.7E-06	6.3E-06	7.75E-06	6.3E-06	4.7E-06
3.8E-06	4.7E-06	4.9E-06	4.7E-06	3.8E-06
0.108	0.131	0.162	0.169	0.162
0.108	0.131	0.162 0.217	0.169	0.162
0.108 0.115 0.123	0.131 0.162 0.169	0.162 0.217 0.267	0.169 0.267 0	0.162 0.217 0.267
0.108 0.115 0.123 0.115	0.131 0.162 0.169 0.162	0.162 0.217 0.267 0.217	0.169 0.267 0 0.267	0.162 0.217 0.267 0.217
0.108 0.115 0.123 0.115 0.108	0.131 0.162 0.169 0.162 0.131	0.162 0.217 0.267 0.217 0.217 0.162	0.169 0.267 0 0.267 0.267 0.169	0.162 0.217 0.267 0.217 0.217 0.162
0.108 0.115 0.123 0.115 0.108	0.131 0.162 0.169 0.162 0.131	0.162 0.217 0.267 0.217 0.162	0.169 0.267 0 0.267 0.267 0.169	0.162 0.217 0.267 0.217 0.217 0.162
0.108 0.115 0.123 0.115 0.108 3.13E-06	0.131 0.162 0.169 0.162 0.131 3.8E-06	0.162 0.217 0.267 0.217 0.162 4.7E-06	0.169 0.267 0 0.267 0.267 0.169 4.9E-06	0.162 0.217 0.267 0.217 0.217 0.162 4.7E-06
0.108 0.115 0.123 0.115 0.108 3.13E-06 3.34E-06	0.131 0.162 0.169 0.162 0.131 3.8E-06 4.7E-06	0.162 0.217 0.267 0.217 0.162 4.7E-06 6.3E-06	0.169 0.267 0 0.267 0.267 0.169 4.9E-06 7.75E-06	0.162 0.217 0.267 0.217 0.217 0.162 4.7E-06 6.3E-06
0.108 0.115 0.123 0.115 0.108 3.13E-06 3.34E-06 3.57E-06	0.131 0.162 0.169 0.162 0.131 3.8E-06 4.7E-06 4.9E-06	0.162 0.217 0.267 0.217 0.162 4.7E-06 6.3E-06 7.75E-06	0.169 0.267 0 0.267 0.267 0.169 4.9E-06 7.75E-06 2.9E-05	0.162 0.217 0.267 0.217 0.162 4.7E-06 6.3E-06 7.75E-06
0.108 0.115 0.123 0.115 0.108 3.13E-06 3.34E-06 3.34E-06	0.131 0.162 0.169 0.162 0.162 0.131 3.8E-06 4.7E-06 4.9E-06 4.7E-06	0.162 0.217 0.267 0.217 0.162 4.7E-06 6.3E-06 7.75E-06 6.3E-06	0.169 0.267 0 0.267 0.169 4.9E-06 7.75E-06 2.9E-05 7.75E-06	0.162 0.217 0.267 0.217 0.162 4.7E-06 6.3E-06 7.75E-06 6.3E-06

0.131	0.162	0.169
0.162	0.217	0.267
0.169	0.267	0

0.1	0.123	0.169	0.267	0
0.098	0.115	0.162	0.217	0.267
0.092	0.108	0.131	0.162	0.169
2.67E-06	3.13E-06	3.8E-06	4.7E-06	4.9E-06
2.84E-06	3.34E-06	4.7E-06	6.3E-06	7.75E-06
2.9E-06	3.57E-06	4.9E-06	7.75E-06	2.9E-05
2.84E-06	3.34E-06	4.7E-06	6.3E-06	7.75E-06
2.67E-06	3.13E-06	3.8E-06	4.7E-06	4.9E-06

0.108

0.115

0.092

0.098

satu satuan pada nodal tiang 1, 3, dan 5 (bagian bawah)

S	d	s/d	d/s	α
7.90569415	0.5	15.81	0.063	0.115
5.59016994	0.5	11.18	0.09	0.162
3.53553391	0.5	7.07	0.14	0.217
2.5	0.5	5.00	0.20	0.267
7.5	0.5	15.00	0.067	0.123
5	0.5	10.00	0.10	0.169
7.07106781	0.5	14.14	0.071	0.131
9.01387819	0.5	18.03	0.055	0.108
10.6066017	0.5	21.21	0.047	0.095
10.3077641	0.5	20.62	0.049	0.098
10	0.5	20.00	0.050	0.1
11.1803399	0.5	22.36	0.045	0.092
12.5	0.5	25.00	0.040	0.083

Tabel C.7. Faktor α_F nodal 15, dan 17

5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869	8.385255	9.519716
4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456	7.905694	9.100137
3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774	7.603453	8.838835
3.75	2.5	1.25	0	1.25	2.5	3.75	5	6.25	7.5	8.75
3.952847	2.795085	1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774	7.603453	8.838835
4.506939	3.535534	2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456	7.905694	9.100137
5.303301	4.506939	3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869	8.385255	9.519716
6.25	5.59017	5.153882	5	5.153882	5.59017	6.25	7.071068	8.003905	9.013878	10.07782
7.28869	6.731456	6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835	9.762812	10.75291
8.385255	7.905694	7.603453	7.5	7.603453	7.905694	8.385255	9.013878	9.762812	10.6066	11.52443
9.519716	9.100137	8.838835	8.75	8.838835	9.100137	9.519716	10.07782	10.75291	11.52443	12.37437
3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869	8.385255	9.519716	10.68	11.85854
2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456	7.905694	9.100137	10.30776	11.52443
1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774	7.603453	8.838835	10.07782	11.31923
1.25	0	1.25	2.5	3.75	5	6.25	7.5	8.75	10	11.25
1.767767	1.25	1.767767	2.795085	3.952847	5.153882	6.373774	7.603453	8.838835	10.07782	11.31923
2.795085	2.5	2.795085	3.535534	4.506939	5.59017	6.731456	7.905694	9.100137	10.30776	11.52443
3.952847	3.75	3.952847	4.506939	5.303301	6.25	7.28869	8.385255	9.519716	10.68	11.85854
5.153882	5	5.153882	5.59017	6.25	7.07 1068	8.003905	9.013878	10.07782	11.18034	12.31107
6.373774	6.25	6.373774	6.731456	7.28869	8.003905	8.838835	9.762812	10.75291	11.79248	12.86954
7.603453	7.5	7.603453	7.905694	8.385255	9.013878	9.762812	10.6066	11.5 2 443	12.5	13.52082
8.838835	8.75	8.838835	9.100137	9.519716	10.07782	10.75291	11.52443	12.37437	13.28768	14.25219

Gambar C.62. Jarak spacing antara nodal tiang 15 dan 17 terhadap nodal tiang lain dan nodal tanah

0.115	0.162	0.217	0.267	0.217
0.123	0.169	0.267	0	0.267
0.115	0.162	0.217	0.267	0.217
0.108	0.131	0.162	0.169	0.162
0.095	0.108	0.115	0.123	0.115
3.34E-06	4.7E-06	6.3E-06	7.75E-06	6.3E-06
3.57E-06	4.9E-06	7.75E-06	2.9E-05	7.75E-06
3.34E-06	4.7E-06	6.3E-06	7.75E-06	6.3E-06
3.13E-06	3.8E-06	4.7E-06	4.9E-06	4.7E-06
2.76E-06	3.13E-06	3.34E-06	3.57E-06	3.34E-06

Gambar C.63. Konversi spacing ke α_F (bagian atas) dan hasil settlement per gaya satu satuan pada nodal tiang 15 dan 17 (bagian bawah)

Universitas Indonesia

0.098	0.115	0.162	0.217	0.267
0.1	0.123	0.169	0.267	0
0.098	0.115	0.162	0.217	0.267
0.092	0.108	0.131	0.162	0.169
0.083	0.095	0.108	0.115	0.123
2.84E-06	3.34E-06	4.7E-06	6.3E-06	7.75E-06
2.9E-06	3.57E-06	4.9E-06	7.75E-06	2.9E-05
2.84E-06	3.34E-06	4.7E-06	6.3E-06	7.75E-06
2.67E-06	3.13E-06	3.8E-06	4.7E-06	4.9E-06
2.41E-06	2.76E-06	3.13E-06	3.34E-06	3.57E-06

Tabel C.8. Faktor α_F nodal 29

Tabel C.8. Faktor α_F nodal 29										
S	d	s/d	d/s	α						
10	0.5	20.00	0.05	0.1						
7.5	0.5	15.00	0.067	0.123						
5	0.5	10.00	0.10	0.169						
2.5	0.5	5.00	0.20	0.267						
10.30776	0.5	20.62	0.049	0.098						
7.905694	0.5	15.81	0.063	0.115						
5.59017	0.5	11.18	0.09	0.162						
3.535534	0.5	7.07	0.14	0.217						
11.18034	0.5	22.36	0.045	0.092						
9.013878	0.5	18.03	0.055	0.108						
7.071068	0.5	14.14	0.071	0.131						
12.5	0.5	25.00	0.040	0.083						
10.6066	0.5	21.21	0.047	0.095						
14.14214	0.5	28.28	0.035	0.067						
11.31923	10.07782219	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
----------	-------------	----------	----------	----------	----------	----------	----------	----------	-------	----------
11.25	10	8.75	7.5	6.25	5	3.75	2.5	1.25	0	1.25
11.31923	10.07782219	8.838835	7.603453	6.373774	5.153882	3.952847	2.795085	1.767767	1.25	1.767767
11.52443	10.30776	9.100137	7.905694	6.731456	5.59017	4.506939	3.535534	2.795085	2.5	2.795085
11.85854	10.68000468	9.519716	8.385255	7.28869	6.25	5.303301	4.506939	3.952847	3.75	3.952847
12.31107	11.18034	10.07782	9.013878	8.003905	7.071068	6.25	5.59017	5.153882	5	5.153882
12.86954	11.79247642	10.75291	9.762812	8.838835	8.003905	7.28869	6.731456	6.373774	6.25	6.373774
13.52082	12.5	11.52443	10.6066	9.762812	9.013878	8.385255	7.905694	7.603453	7.5	7.603453
14.25219	13.28768227	12.37437	11.52443	10.75291	10.07782	9.519716	9.100137	8.838835	8.75	8.838835
15.05199	14.14214	13.28768	12.5	11.79248	11.18034	10.68	10.30776	10.07782	10	10.07782
15.9099	15.05199322	14.25219	13.52082	12.86954	12.31107	11.85854	11.52443	11.31923	11.25	11.31923

Gambar C.64. Jarak spacing antara nodal tiang 29 terhadap nodal tiang lain dan nodal tanah

Gambar C.65. Konversi spacing ke α_F (bagian atas) dan hasil settlement per gaya satu satuan pada nodal tiang 29 (bagian bawah)

Settlement per gaya satu satuan pada nodal tiang diakumulasi.

1.20E-04	0.000132	1.36E-04	0.000132	1.20E-04
0.000132	0.000147	1.52E-04	0.000147	0.000132
1.36E-04	1.52E-04	1.58E-04	1.52E-04	1.36E-04
0.000132	0.000147	1.52E-04	0.000147	0.000132
1.20E-04	0.000132	1.36E-04	0.000132	1.20E-04

Gambar C.66. Settlement per gaya satuan $K_p = 50$

12994.595	11801.359	11454.925	11801.359	12994.595				
11801.359	10621.223	10264.888	10621.223	11801.359				
11454.925	10264.888	9913.402	10264.888	11454.925				
11801.359	10621.223	10264.888	10621.223	11801.359				
12994.595	11801.359	11454.925	11801.359	12994.595				
Gambar C 67 Spring tiang $K_p = 50$								

1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	14265.504	1159.916	12903.458	1072.899	12518.814	1072.899	12903.458	1159.916	14265.504	1459.855
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1283.049	12903.458	998.625	11566.364	918.413	11175.104	918.413	11566.364	998.625	12903.458	1283.049
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1240.125	12518.814	962.796	11175.104	883.883	10789.206	883.883	11175.104	962.796	12518.814	1240.125
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1283.049	12903.458	998.625	11566.364	918.413	11175.104	918.413	11566.364	998.625	12903.458	1283.049
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1459.855	14265.504	1159.916	12903.458	1072.899	12518.814	1072.899	12903.458	1159.916	14265.504	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar C.68. Spring tiang full model $K_p = 50 + \text{spring tanah } z = 1$

	620.062	1250.333	1283.049	1346.051	1459.855	1644.527
	6259.407	1072.899	12903.458	1159.916	14265.504	1459.855
	481.398	971.212	998.625	1053.443	1159.916	1346.051
	5587.552	918.413	11566.364	998.625	12903.458	1283.049
	441.942	891.989	918.413	971.212	1072.899	1250.333
	2697.302	441.942	5587.552	481.398	6259.407	620.062
- 15						

Gambar C.69. Spring tiang $\frac{1}{4}$ model K_p = 50 + spring tanah z = 1

B.5. Input spring tiang $K_p = 50$ dengan faktor x0.48

10565.274	9589.846	9285.384	9589.846	10565.274
9589.846	8625.387	8329.912	8625.387	9589.846
9285.384	8329.912	8033.620	8329.912	9285.384
9589.846	8625.387	8329.912	8625.387	9589.846
10565.274	9589.846	9285.384	9589.846	10565.274

Gambar C.70. Spring tiang $K_p = 50 \times 0.48$

1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527
1459.855	7508.314	1159.916	6766.751	1072.899	6562.253	1072.899	6766.751	1159.916	7508.314	1459.855
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1283.049	6766.751	998.625	6043.328	918.413	5837.363	918.413	6043.328	998.625	6766.751	1283.049
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1240.125	6562.253	962.796	5837.363	883.883	5634.237	883.883	5837.363	962.796	6562.253	1240.125
1250.333	1072.899	971.212	918.413	891.989	883.883	891.989	918.413	971.212	1072.899	1250.333
1283.049	6766.751	998.625	6043.328	918.413	5837.363	918.413	6043.328	998.625	6766.751	1283.049
1346.051	1159.916	1053.443	998.625	971.212	962.796	971.212	998.625	1053.443	1159.916	1346.051
1459.855	7508.314	1159.916	6766.751	1072.899	6562.253	1072.899	6766.751	1159.916	7508.314	1459.855
1644.527	1459.855	1346.051	1283.049	1250.333	1240.125	1250.333	1283.049	1346.051	1459.855	1644.527

Gambar C.71. Spring tiang full model $K_p = 50 \times 0.48$

				_	
620.062	1250.333	1283.049	1346.051	1459.855	1644.527
3281.127	1072.899	6766.751	1159.916	7508.314	1459.855
481.398	971.212	998.625	1053.443	1159.916	1346.051
2918.681	918.413	6043.328	998.625	6766.751	1283.049
441.942	891.989	918.413	971.212	1072.899	1250.333
1408.559	441.942	2918.681	481.398	3281.127	620.062

Gambar C.72. Spring tiang $\frac{1}{4}$ model K_p = 50 x0.48

LAMPIRAN D Langkah-langkah simulasi dengan SAP2000

- Menentukan geometri dan satuan yang digunakan.
 File New Model Initialize Model from Default with Units (Kip, in, F → kN, m, C) Grid Only Edit Grid Ok
- 2. Menentukan properti material dan area Define – Materials – Add New Materials – Design (Steel → None) – Mass per unit Volume (→ 0) – Weight per unit Volume (→ 0) – Modulus of Elasticity (sesuai K_r) – Poisson's Ratio (→ 0.3) Define – Area Sections – Add New Section – Type (→ Plate – Thin) – Material Name – Thickness Membrane (0→1.1754) – Thickness Bending (0→1.1754) – Ok
- 3. Menggambar area

Draw – Draw Rectangular Area

- 4. Memberi boundary condition Assign – Joint – Joint Restraints
- 5. Memberi spring Assign – Joint – Springs
- 6. Mendefinisikan pembebanan Define – Load Cases – Self-Weight Multiplier $(1 \rightarrow 0)$ - Modify Load
- 7. Memberi beban

Assign – Area Loads – Uniform (Shell) – Load (0→22.7)

8. Menjalankan perhitungan
Analyze – Set Analysis Option (→ Plane Grid XY Plane) – Run Analysis
– Modal – Run/Do Not Run Case (→ action do not run) – Run Now

LAMPIRAN E Output SAP2000

Universitas Indonesia

169

Piled-Raft Kp 1

<u>Z = 1</u>

$\frac{K_{\underline{r}} = 0.01 \ \underline{z} = 1}{\text{Table: Element Forces - Area Shells, Part 1 of 3}}$

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	40.9483
1	21	Plate-Thin	2	DEAD	LinStatic	39.6025
1	21	Plate-Thin	8	DEAD	LinStatic	39.1697
1	21	Plate-Thin	7	DEAD	LinStatic	40.4910
2	22	Plate-Thin	2	DEAD	LinStatic	39.6050
2	22	Plate-Thin	3	DEAD	LinStatic	35.3605
2	22	Plate-Thin	9	DEAD	LinStatic	35.0031
2	22	Plate-Thin	8	DEAD	LinStatic	39.1716
3	23	Plate-Thin	3	DEAD	LinStatic	35.3656
3	23	Plate-Thin	4	DEAD	LinStatic	27.6685
3	23	Plate-Thin	10	DEAD	LinStatic	27.4359
3	23	Plate-Thin	9	DEAD	LinStatic	35.0075
4	24	Plate-Thin	4	DEAD	LinStatic	27.6754
4	24	Plate-Thin	5	DEAD	LinStatic	15.8913
4	24	Plate-Thin	11	DEAD	LinStatic	15.8025
4	24	Plate-Thin	10	DEAD	LinStatic	27.4428
5	25	Plate-Thin	5	DEAD	LinStatic	15.8964
5	25	Plate-Thin	6	DEAD	LinStatic	0.0161
5	25	Plate-Thin	12	DEAD	LinStatic	0.0184
5	25	Plate-Thin	11	DEAD	LinStatic	15.8093
Table: Joi	nt Displace	ements				
Joint	OutputCase	CaseType	U3	R1	R2	R3

Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.034221	0.000000	0.000000	0.000000
2	DEAD	LinStatic	-0.033789	0.000000	-0.000687	0.000000
36	DEAD	LinStatic	-0.016152	0.002384	-0.002384	0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	7.493
3	DEAD	LinStatic	14.805
5	DEAD	LinStatic	14.951
13	DEAD	LinStatic	14.805
15	DEAD	LinStatic	29.154
17	DEAD	LinStatic	29.109
25	DEAD	LinStatic	14.951
27	DEAD	LinStatic	29.109
29	DEAD	LinStatic	27.815

$K_r =$: 0.1	Z =	1

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	70.6587
1	21	Plate-Thin	2	DEAD	LinStatic	67.5723
1	21	Plate-Thin	8	DEAD	LinStatic	66.9180
1	21	Plate-Thin	7	DEAD	LinStatic	69.9896
2	22	Plate-Thin	2	DEAD	LinStatic	67.5744
2	22	Plate-Thin	3	DEAD	LinStatic	58.4011
2	22	Plate-Thin	9	DEAD	LinStatic	57.8042
2	22	Plate-Thin	8	DEAD	LinStatic	66.9194
3	23	Plate-Thin	3	DEAD	LinStatic	58.4067
3	23	Plate-Thin	4	DEAD	LinStatic	43.4477
3	23	Plate-Thin	10	DEAD	LinStatic	42.9750
3	23	Plate-Thin	9	DEAD	LinStatic	57.8094
4	24	Plate-Thin	4	DEAD	LinStatic	43.4584
4	24	Plate-Thin	5	DEAD	LinStatic	23.4236
4	24	Plate-Thin	11	DEAD	LinStatic	23.1571
4	24	Plate-Thin	10	DEAD	LinStatic	42.9867
5	25	Plate-Thin	5	DEAD	LinStatic	23.4397
5	25	Plate-Thin	6	DEAD	LinStatic	0.0555
5	25	Plate-Thin	12	DEAD	LinStatic	0.0447
5	25	Plate-Thin	11	DEAD	LinStatic	23.1752

Table: Joint Displacements

ς.							
	Joint	OutputCase	CaseType	U3	R1	R2	R3
	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.027339	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.024181	0.000423	-0.000423	0.000000

Table: Joint Reactions

 Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	28.299
3	DEAD	LinStatic	28.661
5	DEAD	LinStatic	29.298
13	DEAD	LinStatic	28.661
15	DEAD	LinStatic	29.004
17	DEAD	LinStatic	29.645
25	DEAD	LinStatic	29.298
27	DEAD	LinStatic	29.645
29	DEAD	LinStatic	30.308

$K_{r} = 1 \ z = 1$

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	76.2017

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	2	DEAD	LinStatic	72.7888
1	21	Plate-Thin	8	DEAD	LinStatic	72.0995
1	21	Plate-Thin	7	DEAD	LinStatic	75.5004
2	22	Plate-Thin	2	DEAD	LinStatic	72.7907
2	22	Plate-Thin	3	DEAD	LinStatic	62.6953
2	22	Plate-Thin	9	DEAD	LinStatic	62.0579
2	22	Plate-Thin	8	DEAD	LinStatic	72.1008
3	23	Plate-Thin	3	DEAD	LinStatic	62.7009
3	23	Plate-Thin	4	DEAD	LinStatic	46.3899
3	23	Plate-Thin	10	DEAD	LinStatic	45.8735
3	23	Plate-Thin	9	DEAD	LinStatic	62.0631
4	24	Plate-Thin	4	DEAD	LinStatic	46.4012
4	24	Plate-Thin	5	DEAD	LinStatic	24.8353
4	24	Plate-Thin	11	DEAD	LinStatic	24.5345
4	24	Plate-Thin	10	DEAD	LinStatic	45.8860
5	25	Plate-Thin	5	DEAD	LinStatic	24.8534
5	25	Plate-Thin	6	DEAD	LinStatic	0.0632
5	25	Plate-Thin	12	DEAD	LinStatic	0.0497
5	25	Plate-Thin	11	DEAD	LinStatic	24.5548

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1 🚽	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.026072	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.025731	0.000046	-0.000046	0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	5.709
3	DEAD	LinStatic	11.852
5	DEAD	LinStatic	13.811
13	DEAD	LinStatic	11.852
15	DEAD	LinStatic	24.583
17	DEAD	LinStatic	28.576
25	DEAD	LinStatic	13.811
27	DEAD	LinStatic	28.576
29	DEAD	LinStatic	32.841

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	76.8049
1	21	Plate-Thin	2	DEAD	LinStatic	73.3564
1	21	Plate-Thin	8	DEAD	LinStatic	72.6634
1	21	Plate-Thin	7	DEAD	LinStatic	76.1001
2	22	Plate-Thin	2	DEAD	LinStatic	73.3583
2	22	Plate-Thin	3	DEAD	LinStatic	63.1626
2	22	Plate-Thin	9	DEAD	LinStatic	62.5207
2	22	Plate-Thin	8	DEAD	LinStatic	72.6647
3	23	Plate-Thin	3	DEAD	LinStatic	63.1682
3	23	Plate-Thin	4	DEAD	LinStatic	46.7101

Universitas Indonesia

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11				
Text	Text	Text	Text	Text	Text	KN-m/m				
3	23	Plate-Thin	10	DEAD	LinStatic	46.1889				
3	23	Plate-Thin	9	DEAD	LinStatic	62.5260				
4	24	Plate-Thin	4	DEAD	LinStatic	46.7214				
4	24	Plate-Thin	5	DEAD	LinStatic	24.9890				
4	24	Plate-Thin	11	DEAD	LinStatic	24.6845				
4	24	Plate-Thin	10	DEAD	LinStatic	46.2015				
5	25	Plate-Thin	5	DEAD	LinStatic	25.0074				
5	25	Plate-Thin	6	DEAD	LinStatic	0.0641				
5	25	Plate-Thin	12	DEAD	LinStatic	0.0503				
5	25	Plate-Thin	11	DEAD	LinStatic	24.7051				
Table: Joi	Table: Joint Displacements									

R2 R3 Joint OutputCase CaseType U3 **R1** Text Text Text Radians Radians Radians m DEAD 1 LinStatic -0.025935 0.000000 0.000000 0.000000 36 DEAD LinStatic -0.025900 4.619E-06 -4.619E-06 0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	5.678
3	DEAD	LinStatic	11.802
5	DEAD	LinStatic	13.790
13	DEAD	LinStatic	11.802
15	DEAD	LinStatic	24.506
17	DEAD	LinStatic	28.567
25	DEAD	LinStatic	13.790
27	DEAD	LinStatic	28.567
29	DEAD	LinStatic	32.931
		К	L = 100 z = 100
		<u></u>	<u>1 100 E</u>

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	76.8657
1	21	Plate-Thin	2	DEAD	LinStatic	73.4136
1	21	Plate-Thin	8	DEAD	LinStatic	72.7203
1	21	Plate-Thin	7	DEAD	LinStatic	76.1606
2	22	Plate-Thin	2	DEAD	LinStatic	73.4156
2	22	Plate-Thin	3	DEAD	LinStatic	63.2097
2	22	Plate-Thin	9	DEAD	LinStatic	62.5674
2	22	Plate-Thin	8	DEAD	LinStatic	72.7216
3	23	Plate-Thin	3	DEAD	LinStatic	63.2153
3	23	Plate-Thin	4	DEAD	LinStatic	46.7424
3	23	Plate-Thin	10	DEAD	LinStatic	46.2207
3	23	Plate-Thin	9	DEAD	LinStatic	62.5727
4	24	Plate-Thin	4	DEAD	LinStatic	46.7537
4	24	Plate-Thin	5	DEAD	LinStatic	25.0045
4	24	Plate-Thin	11	DEAD	LinStatic	24.6996
4	24	Plate-Thin	10	DEAD	LinStatic	46.2334
5	25	Plate-Thin	5	DEAD	LinStatic	25.0229

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11		
Text	Text	Text	Text	Text	Text	KN-m/m		
5	25	Plate-Thin	6	DEAD	LinStatic	0.0642		
5	25	Plate-Thin	12	DEAD	LinStatic	0.0503		
5	25	Plate-Thin	11	DEAD	LinStatic	24.7202		
Table: Joint Displacements								

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.025921	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.025917	4.624E-07	-4.624E-07	0.000000

Joint	OutputCase	CaseType	F3	
Text	Text	Text	KN	
1	DEAD	LinStatic	5.675	
3	DEAD	LinStatic	11.797	
5	DEAD	LinStatic	13.788	
13	DEAD	LinStatic	11.797	
15	DEAD	LinStatic	24.498	
17	DEAD	LinStatic	28.566	
25	DEAD	LinStatic	13.788	
27	DEAD	LinStatic	28.566	
29	DEAD	LinStatic	32.940	

$$Z = 0.5$$

$$K_r = 0.01 z = 0.5$$

Target: Displacement maksimum mendekati FE PCG = -0.01975

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.035728	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.017027	0.002473	-0.002473	0.000000

Spring tanah malah makin lemah karena displacement maksimum makin besar.

Error = 80.90126582 %

$K_{r} = 0.01 \ z = 10$

Target: Displacement maksimum mendekati FE PCG = -0.01975

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.017664	0.000000	0.000000	0.000000

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
36	DEAD	LinStatic	-0.008075	0.001300	-0.001300	0.000000

Spring sudah makin besar namun terlalu keras jika dibanding FE PCG.

Error = 10.56202532 %

$K_r = 0.01 \ z = 7.5$

Target: Displacement maksimum mendekati FE PCG = -0.01975

Table: Joint Displacements

	Joint	OutputCase	e CaseType	U3	R1	R2	R3
	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.020847	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.009554	0.001512	-0.001512	0.000000
-							

Errornya terhadap FE PCG paling kecil = 5.55443038%

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	24.9466
1	21	Plate-Thin	2	DEAD	LinStatic	24.4013
1	21	Plate-Thin	8	DEAD	LinStatic	24.1765
1	21	Plate-Thin	7	DEAD	LinStatic	24.7040
2	22	Plate-Thin	2	DEAD	LinStatic	24.4031
2	22	Plate-Thin	3	DEAD	LinStatic	22.5316
2	22	Plate-Thin	9	DEAD	LinStatic	22.3596
2	22	Plate-Thin	8	DEAD	LinStatic	24.1779
3	23	Plate-Thin	3	DEAD	LinStatic	22.5349
3	23	Plate-Thin	4	DEAD	LinStatic	18.6363
3	23	Plate-Thin	10	DEAD	LinStatic	18.5457
3	23	Plate-Thin	9	DEAD	LinStatic	22.3623
4	24	Plate-Thin	4	DEAD	LinStatic	18.6399
4	24	Plate-Thin	5	DEAD	LinStatic	11.5932
4	24	Plate-Thin	11	DEAD	LinStatic	11.5805
4	24	Plate-Thin	10	DEAD	LinStatic	18.5492
5	25	Plate-Thin	5	DEAD	LinStatic	11.5938
5	25	Plate-Thin	6	DEAD	LinStatic	0.0033
5	25	Plate-Thin	12	DEAD	LinStatic	0.0075
5	25	Plate-Thin	11	DEAD	LinStatic	11.5824

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	8.270
3	DEAD	LinStatic	16.213
5	DEAD	LinStatic	15.249

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
13	DEAD	LinStatic	16.213
15	DEAD	LinStatic	31.696
17	DEAD	LinStatic	29.516
25	DEAD	LinStatic	15.249
27	DEAD	LinStatic	29.516
29	DEAD	LinStatic	26.477

$K_r =$	0.1	z =	7.5
---------	-----	-----	-----

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	54.0248
1	21	Plate-Thin	2	DEAD	LinStatic	51.7449
1	21	Plate-Thin	8	DEAD	LinStatic	51.2227
1	21	Plate-Thin	7	DEAD	LinStatic	53.4881
2	22	Plate-Thin	2	DEAD	LinStatic	51.7467
2	22	Plate-Thin	3	DEAD	LinStatic	44.9611
2	22	Plate-Thin	9	DEAD	LinStatic	44.4918
2	22	Plate-Thin	8	DEAD	LinStatic	51.2241
3	23	Plate-Thin	3	DEAD	LinStatic	44.9658
3	23	Plate-Thin	4	DEAD	LinStatic	33.8411
3	23	Plate-Thin	10	DEAD	LinStatic	33.4786
3	23	Plate-Thin	9	DEAD	LinStatic	44.4961
4	24	Plate-Thin	4	DEAD	LinStatic	33.8496
4	24	Plate-Thin	5	DEAD	LinStatic	18.6905
4	24	Plate-Thin	11	DEAD	LinStatic	18.4939
4	24	Plate-Thin	10	DEAD	LinStatic	33.4876
5	25	Plate-Thin	5	DEAD	LinStatic	18.7024
5	25	Plate-Thin	6	DEAD	LinStatic	0.0395
5	25	Plate-Thin	12	DEAD	LinStatic	0.0322
5	25	Plate-Thin	11	DEAD	LinStatic	18.5072
Table: lei	int Dicolar	omonte				

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.016909	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.014502	0.000322	-0.000322	0.000000

Table: Joint Reactions

OutputCase	CaseType	F3
Text	Text	KN
DEAD	LinStatic	6.708
DEAD	LinStatic	13.662
DEAD	LinStatic	14.488
DEAD	LinStatic	13.662
DEAD	LinStatic	27.794
DEAD	LinStatic	29.365
DEAD	LinStatic	14.488
DEAD	LinStatic	29.365
DEAD	LinStatic	30.672
	OutputCase Text DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEA	OutputCaseCaseTypeTextTextDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStaticDEADLinStatic

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	60.8943
1	21	Plate-Thin	2	DEAD	LinStatic	58.1987
1	21	Plate-Thin	8	DEAD	LinStatic	57.6152
1	21	Plate-Thin	7	DEAD	LinStatic	60.2985
2	22	Plate-Thin	2	DEAD	LinStatic	58.2005
2	22	Plate-Thin	3	DEAD	LinStatic	50.2439
2	22	Plate-Thin	9	DEAD	LinStatic	49.7095
2	22	Plate-Thin	8	DEAD	LinStatic	57.6165
3	23	Plate-Thin	3	DEAD	LinStatic	50.2489
3	23	Plate-Thin	4	DEAD	LinStatic	37.4187
3	23	Plate-Thin	10	DEAD	LinStatic	36.9923
3	23	Plate-Thin	9	DEAD	LinStatic	49.7140
4	24	Plate-Thin	4	DEAD	LinStatic	37.4283
4	24	Plate-Thin	5	DEAD	LinStatic	20.3702
4	24	Plate-Thin	11	DEAD	LinStatic	20.1274
4	24	Plate-Thin	10	DEAD	LinStatic	37.0025
5	25	Plate-Thin	5	DEAD	LinStatic	20.3849
5	25	Plate-Thin	6	DEAD	LinStatic	0.0488
5	25	Plate-Thin	12	DEAD	LinStatic	0.0382
5	25	Plate-Thin	11	DEAD	LinStatic	20.1434
Table: Io	int Displac	omonte				

Table: Joint Displacements

Ĵ	Join	t	Οι	utputCa	se CaseType	U3	F	11	R2		R3
	Text	t		Text	Text	m	Radiar	าร	Radians	F	Radians
	1			DEAD	LinStatic	-0.015986	0.00000	00	0.000000	0.0	000000
	36			DEAD	LinStatic	-0.015714	0.00003	36	-0.000036	0.	000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3_
Text	Text	Text	KN
1	DEAD	LinStatic	6.342
3	DEAD	LinStatic	13.067
5	DEAD	LinStatic	14.281
13	DEAD	LinStatic	13.067
15	DEAD	LinStatic	26.902
17	DEAD	LinStatic	29.330
25	DEAD	LinStatic	14.281
27	DEAD	LinStatic	29.330
29	DEAD	LinStatic	31.735

 $K_{r} = 10 \ z = 7.5$

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	61.6771
1	21	Plate-Thin	2	DEAD	LinStatic	58.9341
1	21	Plate-Thin	8	DEAD	LinStatic	58.3437

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	7	DEAD	LinStatic	61.0747
2	22	Plate-Thin	2	DEAD	LinStatic	58.9358
2	22	Plate-Thin	3	DEAD	LinStatic	50.8458
2	22	Plate-Thin	9	DEAD	LinStatic	50.3039
2	22	Plate-Thin	8	DEAD	LinStatic	58.3449
3	23	Plate-Thin	3	DEAD	LinStatic	50.8507
3	23	Plate-Thin	4	DEAD	LinStatic	37.8263
3	23	Plate-Thin	10	DEAD	LinStatic	37.3926
3	23	Plate-Thin	9	DEAD	LinStatic	50.3085
4	24	Plate-Thin	4	DEAD	LinStatic	37.8360
4	24	Plate-Thin	5	DEAD	LinStatic	20.5617
4	24	Plate-Thin	11	DEAD	LinStatic	20.3136
4	24	Plate-Thin	10	DEAD	LinStatic	37.4029
5	25	Plate-Thin	5	DEAD	LinStatic	20.5767
5	25	Plate-Thin	6	DEAD	LinStatic	0.0498
5	25	Plate-Thin	12	DEAD	LinStatic	0.0389
5	25	Plate-Thin	11	DEAD	LinStatic	20.3299

Table: Joint Displacements

4	Joint	OutputCase	CaseType	U3	R1	R2	R3
	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.015881	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.015853	3.673E-06	-3.673E-06	0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	6.300
3	DEAD	LinStatic	12.999
5	DEAD	LinStatic	14.257
13	DEAD	LinStatic	12.999
15	DEAD	LinStatic	26.800
17	DEAD	LinStatic	29.326
25	DEAD	LinStatic	14.257
27	DEAD	LinStatic	29.326
29	DEAD	LinStatic	31.856

 $K_{\underline{r}} = 100 \ z = 7.5$

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	61.7565
1	21	Plate-Thin	2	DEAD	LinStatic	59.0086
1	21	Plate-Thin	8	DEAD	LinStatic	58.4176
1	21	Plate-Thin	7	DEAD	LinStatic	61.1534
2	22	Plate-Thin	2	DEAD	LinStatic	59.0104
2	22	Plate-Thin	3	DEAD	LinStatic	50.9068
2	22	Plate-Thin	9	DEAD	LinStatic	50.3642
2	22	Plate-Thin	8	DEAD	LinStatic	58.4188
3	23	Plate-Thin	3	DEAD	LinStatic	50.9117
3	23	Plate-Thin	4	DEAD	LinStatic	37.8676
3	23	Plate-Thin	10	DEAD	LinStatic	37.4332
3	23	Plate-Thin	9	DEAD	LinStatic	50.3687

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
4	24	Plate-Thin	4	DEAD	LinStatic	37.8773
4	24	Plate-Thin	5	DEAD	LinStatic	20.5811
4	24	Plate-Thin	11	DEAD	LinStatic	20.3324
4	24	Plate-Thin	10	DEAD	LinStatic	37.4435
5	25	Plate-Thin	5	DEAD	LinStatic	20.5962
5	25	Plate-Thin	6	DEAD	LinStatic	0.0499
5	25	Plate-Thin	12	DEAD	LinStatic	0.0390
5	25	Plate-Thin	11	DEAD	LinStatic	20.3489

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.015870	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.015867	3.678E-07	-3.678E-07	0.000000

Table: Joint Reactions

Piled-Raft Kp 1000

<u>Z = 1</u>

$K_{r} 0.001 \ z = 1$

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-15.0617
1	21	Plate-Thin	2	DEAD	LinStatic	12.8700
1	21	Plate-Thin	8	DEAD	LinStatic	3.3954
1	21	Plate-Thin	7	DEAD	LinStatic	2.9501
2	22	Plate-Thin	2	DEAD	LinStatic	12.8561
2	22	Plate-Thin	3	DEAD	LinStatic	-14.7063
2	22	Plate-Thin	9	DEAD	LinStatic	2.9460
2	22	Plate-Thin	8	DEAD	LinStatic	3.4097
3	23	Plate-Thin	3	DEAD	LinStatic	-14.6833
3	23	Plate-Thin	4	DEAD	LinStatic	11.5125
3	23	Plate-Thin	10	DEAD	LinStatic	2.3512
3	23	Plate-Thin	9	DEAD	LinStatic	2.9260
4	24	Plate-Thin	4	DEAD	LinStatic	11.4240
4	24	Plate-Thin	5	DEAD	LinStatic	-17.0924
4	24	Plate-Thin	11	DEAD	LinStatic	-0.6161
4	24	Plate-Thin	10	DEAD	LinStatic	2.4428
5	25	Plate-Thin	5	DEAD	LinStatic	-16.4341
5	25	Plate-Thin	6	DEAD	LinStatic	0.5872
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5845
5	25	Plate-Thin	11	DEAD	LinStatic	-1.2720
Table: Ioi	int Displac	omonte				

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.007780	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.005084	0.000285	-0.000285	0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	30.113
3	DEAD	LinStatic	58.815
5	DEAD	LinStatic	56.783
13	DEAD	LinStatic	58.815
15	DEAD	LinStatic	115.065
17	DEAD	LinStatic	110.883
25	DEAD	LinStatic	56.783
27	DEAD	LinStatic	110.883
29	DEAD	LinStatic	103.060

Kr	0.0)1	Ζ	=	1

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-8.1904
1	21	Plate-Thin	2	DEAD	LinStatic	17.8516
1	21	Plate-Thin	8	DEAD	LinStatic	8.6231
1	21	Plate-Thin	7	DEAD	LinStatic	8.7739
2	22	Plate-Thin	2	DEAD	LinStatic	17.8527
2	22	Plate-Thin	3	DEAD	LinStatic	-10.2691
2	22	Plate-Thin	9	DEAD	LinStatic	6.7252
2	22	Plate-Thin	8	DEAD	LinStatic	8.6250
3	23	Plate-Thin	3	DEAD	LinStatic	-10.2714
3	23	Plate-Thin	4	DEAD	LinStatic	13.3767
3	23	Plate-Thin	10	DEAD	LinStatic	4.1563
3	23	Plate-Thin	9	DEAD	LinStatic	6.7309
4	24	Plate-Thin	4	DEAD	LinStatic	13.3234
4	24	Plate-Thin	5	DEAD	LinStatic	-17.3498
4	24	Plate-Thin	11	DEAD	LinStatic	-0.5071
4	24	Plate-Thin	10	DEAD	LinStatic	4.2181
5	25	Plate-Thin	5	DEAD	LinStatic	-16.6860
5	25	Plate-Thin	6	DEAD	LinStatic	0.6112
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5960
5	25	Plate-Thin	11	DEAD	LinStatic	-1.1656
Table: Joi	nt Displac	ements				

Table: Joint Displacements

Ĵ	Joint	OutputCas	se CaseType	U3	R1	R2	R3
	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.007368	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.004973	0.000264	-0.000264	0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3	
Text	Text	Text	KN	
1	DEAD	LinStatic	28.517	
3	DEAD	LinStatic	56.892	
5	DEAD	LinStatic	58.218	
13	DEAD	LinStatic	56.892	
15	DEAD	LinStatic	113.216	
17	DEAD	LinStatic	114.963	
25	DEAD	LinStatic	58.218	
27	DEAD	LinStatic	114.963	
29	DEAD	LinStatic	113.538	

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	5.4185
1	21	Plate-Thin	2	DEAD	LinStatic	28.0109
1	21	Plate-Thin	8	DEAD	LinStatic	19.3940
1	21	Plate-Thin	7	DEAD	LinStatic	20.5256

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
2	22	Plate-Thin	2	DEAD	LinStatic	28.0278
2	22	Plate-Thin	3	DEAD	LinStatic	-0.3567
2	22	Plate-Thin	9	DEAD	LinStatic	15.1604
2	22	Plate-Thin	8	DEAD	LinStatic	19.3791
3	23	Plate-Thin	3	DEAD	LinStatic	-0.3868
3	23	Plate-Thin	4	DEAD	LinStatic	18.2823
3	23	Plate-Thin	10	DEAD	LinStatic	9.3024
3	23	Plate-Thin	9	DEAD	LinStatic	15.1948
4	24	Plate-Thin	4	DEAD	LinStatic	18.2663
4	24	Plate-Thin	5	DEAD	LinStatic	-14.9326
4	24	Plate-Thin	11	DEAD	LinStatic	1.4200
4	24	Plate-Thin	10	DEAD	LinStatic	9.3289
5	25	Plate-Thin	5	DEAD	LinStatic	-14.2849
5	25	Plate-Thin	6	DEAD	LinStatic	0.6170
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5810
5	25	Plate-Thin	11	DEAD	LinStatic	0.7849

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.006640	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.005921	0.000085	-0.000085	0.000000

Table: Joint Reactions

Join	t OutputCas	e CaseType	F3
Tex	t Text	Text	KN
1	DEAD	LinStatic	25.701
3	DEAD	LinStatic	52.695
5	DEAD	LinStatic	57.385
13	DEAD	LinStatic	52.695
15	DEAD	LinStatic	107.861
17	DEAD	LinStatic	117.009
25	DEAD	LinStatic	57.385
27	DEAD	LinStatic	117.009
29	DEAD	LinStatic	125.315

<u> $K_r 1 z = 1$ </u>

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	10.3148
1	21	Plate-Thin	2	DEAD	LinStatic	31.6951
1	21	Plate-Thin	8	DEAD	LinStatic	23.2983
1	21	Plate-Thin	7	DEAD	LinStatic	24.7736
2	22	Plate-Thin	2	DEAD	LinStatic	31.7170
2	22	Plate-Thin	3	DEAD	LinStatic	3.2519
2	22	Plate-Thin	9	DEAD	LinStatic	18.2394
2	22	Plate-Thin	8	DEAD	LinStatic	23.2778
3	23	Plate-Thin	3	DEAD	LinStatic	3.2124
3	23	Plate-Thin	4	DEAD	LinStatic	20.0916
3	23	Plate-Thin	10	DEAD	LinStatic	11.2042
3	23	Plate-Thin	9	DEAD	LinStatic	18.2836

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
4	24	Plate-Thin	4	DEAD	LinStatic	20.0884
4	24	Plate-Thin	5	DEAD	LinStatic	-14.0016
4	24	Plate-Thin	11	DEAD	LinStatic	2.1553
4	24	Plate-Thin	10	DEAD	LinStatic	11.2183
5	25	Plate-Thin	5	DEAD	LinStatic	-13.3602
5	25	Plate-Thin	6	DEAD	LinStatic	0.6183
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5749
5	25	Plate-Thin	11	DEAD	LinStatic	1.5292

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.006385	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.006296	0.000011	-0.000011	0.000000

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	24.715
3	DEAD	LinStatic	51.185
5	DEAD	LinStatic	57.026
13	DEAD	LinStatic	51.185
15	DEAD	LinStatic	105.859
17	DEAD	LinStatic	117.621
25	DEAD	LinStatic	57.026
27	DEAD	LinStatic	117.621
29	DEAD	LinStatic	129.454

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	10.9365
1	21	Plate-Thin	2	DEAD	LinStatic	32.1633
1	21	Plate-Thin	8	DEAD	LinStatic	23.7944
1	21	Plate-Thin	7	DEAD	LinStatic	25.3133
2	22	Plate-Thin	2	DEAD	LinStatic	32.1859
2	22	Plate-Thin	3	DEAD	LinStatic	3.7106
2	22	Plate-Thin	9	DEAD	LinStatic	18.6309
2	22	Plate-Thin	8	DEAD	LinStatic	23.7733
3	23	Plate-Thin	3	DEAD	LinStatic	3.6699
3	23	Plate-Thin	4	DEAD	LinStatic	20.3219
3	23	Plate-Thin	10	DEAD	LinStatic	11.4462
3	23	Plate-Thin	9	DEAD	LinStatic	18.6764
4	24	Plate-Thin	4	DEAD	LinStatic	20.3203
4	24	Plate-Thin	5	DEAD	LinStatic	-13.8826
4	24	Plate-Thin	11	DEAD	LinStatic	2.2492
4	24	Plate-Thin	10	DEAD	LinStatic	11.4588
5	25	Plate-Thin	5	DEAD	LinStatic	-13.2420
5	25	Plate-Thin	6	DEAD	LinStatic	0.6185
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5741

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
5	25	Plate-Thin	11	DEAD	LinStatic	1.6242
Table: Joi	int Displac	ements				

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.006353	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.006344	1.086E-06	-1.086E-06	0.000000

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	24.590
3	DEAD	LinStatic	50.993
5	DEAD	LinStatic	56.980
13	DEAD	LinStatic	50.993
15	DEAD	LinStatic	105.604
17	DEAD	LinStatic	117.697
25	DEAD	LinStatic	56.980
27	DEAD	LinStatic	117.697
29	DEAD	LinStatic	129.978

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	11.0003
1	21	Plate-Thin	2	DEAD	LinStatic	32.2113
1	21	Plate-Thin	8	DEAD	LinStatic	23.8454
1	21	Plate-Thin	7	DEAD	LinStatic	25.3687
2	22	Plate-Thin	2	DEAD	LinStatic	32.2340
2	22	Plate-Thin	3	DEAD	LinStatic	3.7577
2	22	Plate-Thin	9	DEAD	LinStatic	18.6712
2	22	Plate-Thin	8	DEAD	LinStatic	23.8242
3	23	Plate-Thin	3	DEAD	LinStatic	3.7169
3	23	Plate-Thin	4	DEAD	LinStatic	20.3455
3	23	Plate-Thin	10	DEAD	LinStatic	11.4711
3	23	Plate-Thin	9	DEAD	LinStatic	18.7167
4	24	Plate-Thin	4	DEAD	LinStatic	20.3441
4	24	Plate-Thin	5	DEAD	LinStatic	-13.8704
4	24	Plate-Thin	11	DEAD	LinStatic	2.2588
4	24	Plate-Thin	10	DEAD	LinStatic	11.4835
5	25	Plate-Thin	5	DEAD	LinStatic	-13.2299
5	25	Plate-Thin	6	DEAD	LinStatic	0.6185
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5741
5	25	Plate-Thin	11	DEAD	LinStatic	1.6340
T - 1 - 1 - 1 - 1						

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.006350	0.000000	0.000000	0.000000
2	DEAD	LinStatic	-0.006350	0.000000	-3.953E-08	0.000000

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	24.577
3	DEAD	LinStatic	50.973
5	DEAD	LinStatic	56.975
13	DEAD	LinStatic	50.973
15	DEAD	LinStatic	105.578
17	DEAD	LinStatic	117.705
25	DEAD	LinStatic	56.975
27	DEAD	LinStatic	117.705
29	DEAD	LinStatic	130.032

<u>Z =7.5</u>

$$K_r 0.001 z = 7.5$$

Target: Displacement maksimum mendekati FE PCG = -0.01217

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.006709	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.004003	0.000396	-0.000396	0.000000

Hasilnya malah spring makin kuat dan displacement makin kecil dan perbedaan keduanya antara z = 1 dengan z = 7.5 tidak begitu jauh (-0.00778 \rightarrow -0.006709). Hasilnya akan lebih baik bila menggunakan faktor pengali khusus untuk spring tiang saja sehingga spring tiang dapat lebih lunak.

<u>x0.55</u>

$K_r = 0.001 \ z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.012285	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.005864	0.000941	-0.000941	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-12.5019
1	21	Plate-Thin	2	DEAD	LinStatic	11.8147
1	21	Plate-Thin	8	DEAD	LinStatic	3.5796
1	21	Plate-Thin	7	DEAD	LinStatic	3.1506
2	22	Plate-Thin	2	DEAD	LinStatic	11.8037
2	22	Plate-Thin	3	DEAD	LinStatic	-12.0309

186

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
2	22	Plate-Thin	9	DEAD	LinStatic	3.3594
2	22	Plate-Thin	8	DEAD	LinStatic	3.5913
3	23	Plate-Thin	3	DEAD	LinStatic	-12.0022
3	23	Plate-Thin	4	DEAD	LinStatic	11.0897
3	23	Plate-Thin	10	DEAD	LinStatic	3.2301
3	23	Plate-Thin	9	DEAD	LinStatic	3.3331
4	24	Plate-Thin	4	DEAD	LinStatic	10.9966
4	24	Plate-Thin	5	DEAD	LinStatic	-13.1985
4	24	Plate-Thin	11	DEAD	LinStatic	0.6966
4	24	Plate-Thin	10	DEAD	LinStatic	3.3254
5	25	Plate-Thin	5	DEAD	LinStatic	-12.6345
5	25	Plate-Thin	6	DEAD	LinStatic	0.4942
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4947
5	25	Plate-Thin	11	DEAD	LinStatic	0.1332

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	27.363
3	DEAD	LinStatic	53.672
5	DEAD	LinStatic	50.091
13	DEAD	LinStatic	53.672
15	DEAD	LinStatic	105.373
17	DEAD	LinStatic	98.153
25	DEAD	LinStatic	50.091
27	DEAD	LinStatic	98.153
29	DEAD	LinStatic	88.534

 $K_r = 0.01 \ z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.011480	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.006930	0.000570	-0.000570	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-1.6433
1	21	Plate-Thin	2	DEAD	LinStatic	20.5371
1	21	Plate-Thin	8	DEAD	LinStatic	12.5928
1	21	Plate-Thin	7	DEAD	LinStatic	12.8482
2	22	Plate-Thin	2	DEAD	LinStatic	20.5367
2	22	Plate-Thin	3	DEAD	LinStatic	-3.9666
2	22	Plate-Thin	9	DEAD	LinStatic	10.5293
2	22	Plate-Thin	8	DEAD	LinStatic	12.5965
3	23	Plate-Thin	3	DEAD	LinStatic	-3.9620
3	23	Plate-Thin	4	DEAD	LinStatic	15.3474
3	23	Plate-Thin	10	DEAD	LinStatic	7.5125
3	23	Plate-Thin	9	DEAD	LinStatic	10.5288
4	24	Plate-Thin	4	DEAD	LinStatic	15.2944
4	24	Plate-Thin	5	DEAD	LinStatic	-12.1060
4	24	Plate-Thin	11	DEAD	LinStatic	2.0508

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
4	24	Plate-Thin	10	DEAD	LinStatic	7.5745
5	25	Plate-Thin	5	DEAD	LinStatic	-11.5442
5	25	Plate-Thin	6	DEAD	LinStatic	0.5152
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4981
5	25	Plate-Thin	11	DEAD	LinStatic	1.4947

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	25.571
3	DEAD	LinStatic	50.894
5	DEAD	LinStatic	51.233
13	DEAD	LinStatic	50.894
15	DEAD	LinStatic	101.009
17	DEAD	LinStatic	100.812
25	DEAD	LinStatic	51.233
27	DEAD	LinStatic	100.812
29	DEAD	LinStatic	97.558

$$K_r = 0.1 z = 1$$

Table: Joint Displacements

<u> </u>							
	Joint	OutputCase	CaseType	U3	R1	R2	R3
U	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.010069	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.008946	0.000141	-0.000141	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	16.2230
1	21	Plate-Thin	2	DEAD	LinStatic	34.5538
1	21	Plate-Thin	8	DEAD	LinStatic	27.2567
1	21	Plate-Thin	7	DEAD	LinStatic	28.7123
2	22	Plate-Thin	2	DEAD	LinStatic	34.5684
2	22	Plate-Thin	3	DEAD	LinStatic	9.3650
2	22	Plate-Thin	9	DEAD	LinStatic	22.2126
2	22	Plate-Thin	8	DEAD	LinStatic	27.2443
3	23	Plate-Thin	3	DEAD	LinStatic	9.3409
3	23	Plate-Thin	4	DEAD	LinStatic	22.4439
3	23	Plate-Thin	10	DEAD	LinStatic	14.8739
3	23	Plate-Thin	9	DEAD	LinStatic	22.2421
4	24	Plate-Thin	4	DEAD	LinStatic	22.4321
4	24	Plate-Thin	5	DEAD	LinStatic	-8.5723
4	24	Plate-Thin	11	DEAD	LinStatic	5.0206
4	24	Plate-Thin	10	DEAD	LinStatic	14.8982
5	25	Plate-Thin	5	DEAD	LinStatic	-8.0294
5	25	Plate-Thin	6	DEAD	LinStatic	0.5238
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4772
5	25	Plate-Thin	11	DEAD	LinStatic	4.4937

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	22.428
3	DEAD	LinStatic	46.009
5	DEAD	LinStatic	50.181
13	DEAD	LinStatic	46.009
15	DEAD	LinStatic	94.223
17	DEAD	LinStatic	102.378
25	DEAD	LinStatic	50.181
27	DEAD	LinStatic	102.378
29	DEAD	LinStatic	109.831

 $K_{r} = 1 \ z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.009670	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.009538	0.000016	-0.000016	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	21.3280
1	21	Plate-Thin	2	DEAD	LinStatic	38.5646
1	21	Plate-Thin	8	DEAD	LinStatic	31.4550
1	21	Plate-Thin	7	DEAD	LinStatic	33.2534
2	22	Plate-Thin	2	DEAD	LinStatic	38.5832
2	22	Plate-Thin	3	DEAD	LinStatic	13.1832
2	22	Plate-Thin	9	DEAD	LinStatic	25.5610
2	22	Plate-Thin	8	DEAD	LinStatic	31.4381
3	23	Plate-Thin	3	DEAD	LinStatic	13.1511
3	23	Plate-Thin	4	DEAD	LinStatic	24.4850
3	23	Plate-Thin	10	DEAD	LinStatic	16.9946
3	23	Plate-Thin	9	DEAD	LinStatic	25.5987
4	24	Plate-Thin	4	DEAD	LinStatic	24.4842
4	24	Plate-Thin	5	DEAD	LinStatic	-7.5185
4	24	Plate-Thin	11	DEAD	LinStatic	5.8911
4	24	Plate-Thin	10	DEAD	LinStatic	17.0085
5	25	Plate-Thin	5	DEAD	LinStatic	-6.9812
5	25	Plate-Thin	6	DEAD	LinStatic	0.5257
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4707
5	25	Plate-Thin	11	DEAD	LinStatic	5.3729

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	21.538
3	DEAD	LinStatic	44.615
5	DEAD	LinStatic	49.813
13	DEAD	LinStatic	44.615
15	DEAD	LinStatic	92.294
17	DEAD	LinStatic	102.771
25	DEAD	LinStatic	49.813

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
27	DEAD	LinStatic	102.771
29	DEAD	LinStatic	113.359

$$K_r = 10 \ z = 1$$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.009622	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.009609	1.676E-06	-1.676E-06	0.000000

 Table: Element Forces - Area Shells, Part 1 of 3

	Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
	Text	Text	Text	Text	Text	Text	KN-m/m
	1	21	Plate-Thin	1	DEAD	LinStatic	21.9357
	1	21	Plate-Thin	2	DEAD	LinStatic	39.0421
	1	21	Plate-Thin	8	DEAD	LinStatic	31.9549
	1	21	Plate-Thin	7	DEAD	LinStatic	33.7941
	2	22	Plate-Thin	2	DEAD	LinStatic	39.0612
	2	22	Plate-Thin	3	DEAD	LinStatic	13.6378
	2	22	Plate-Thin	9	DEAD	LinStatic	25.9597
	2	22	Plate-Thin	8	DEAD	LinStatic	31.9375
	3	23	Plate-Thin	3	DEAD	LinStatic	13.6048
	3	23	Plate-Thin	4	DEAD	LinStatic	24.7281
	3	23	Plate-Thin	10	DEAD	LinStatic	17.2473
	3	23	Plate-Thin	9	DEAD	LinStatic	25.9984
1	4	24	Plate-Thin	4	DEAD	LinStatic	24.7287
	4	24	Plate-Thin	5	DEAD	LinStatic	-7.3926
	4	24	Plate-Thin	11	DEAD	LinStatic	5.9950
	4	24	Plate-Thin	10	DEAD	LinStatic	17.2599
	5	25	Plate-Thin	5	DEAD	LinStatic	-6.8559
	5	25	Plate-Thin	6	DEAD	LinStatic	0.5259
	5	25	Plate-Thin	12	DEAD	LinStatic	-0.4699
	5	25	Plate-Thin	11	DEAD	LinStatic	5.4778

Table: Joint Reactions

		-	
Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	21.432
3	DEAD	LinStatic	44.449
5	DEAD	LinStatic	49.769
13	DEAD	LinStatic	44.449
15	DEAD	LinStatic	92.064
17	DEAD	LinStatic	102.817
25	DEAD	LinStatic	49.769
27	DEAD	LinStatic	102.817
29	DEAD	LinStatic	113.779

 $K_r = 100 \ z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.009617	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.009616	1.679E-07	-1.679E-07	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	21.9976
1	21	Plate-Thin	2	DEAD	LinStatic	39.0907
1	21	Plate-Thin	8	DEAD	LinStatic	32.0058
1	21	Plate-Thin	7	DEAD	LinStatic	33.8492
2	22	Plate-Thin	2	DEAD	LinStatic	39.1099
2	22	Plate-Thin	3	DEAD	LinStatic	13.6841
2	22	Plate-Thin	9	DEAD	LinStatic	26.0003
2	22	Plate-Thin	8	DEAD	LinStatic	31.9884
3	23	Plate-Thin	3	DEAD	LinStatic	13.6510
3	23	Plate-Thin	4	DEAD	LinStatic	24.7529
3	23	Plate-Thin	10	DEAD	LinStatic	17.2731
3	23	Plate-Thin	9	DEAD	LinStatic	26.0392
4	24	Plate-Thin	4	DEAD	LinStatic	24.7536
4	24	Plate-Thin	5	DEAD	LinStatic	-7.3797
4	24	Plate-Thin	11	DEAD	LinStatic	6.0056
4	24	Plate-Thin	10	DEAD	LinStatic	17.2855
5	25	Plate-Thin	5	DEAD	LinStatic	-6.8431
5	25	Plate-Thin	6	DEAD	LinStatic	0.5260
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4698
5	25	Plate-Thin	11	DEAD	LinStatic	5.4885
Table: Joi	nt Reactio	ns				

Tab	le:	Joint	React	tions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	21.421
3	DEAD	LinStatic	44.432
5	DEAD	LinStatic	49.764
13	DEAD	LinStatic	44.432
15	DEAD	LinStatic	92.041
17	DEAD	LinStatic	102.822
25	DEAD	LinStatic	49.764
27	DEAD	LinStatic	102.822
29	DEAD	LinStatic	113.822

Piled-Raft K_p 50

<u>Z = 1</u>

$K_{r} 0.001 \ z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.010540	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.005592	0.000694	-0.000694	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-13.5136
1	21	Plate-Thin	2	DEAD	LinStatic	12.2038
1	21	Plate-Thin	8	DEAD	LinStatic	3.4881
1	21	Plate-Thin	7	DEAD	LinStatic	3.0543
2	22	Plate-Thin	2	DEAD	LinStatic	12.1915
2	22	Plate-Thin	3	DEAD	LinStatic	-13.0837
2	22	Plate-Thin	9	DEAD	LinStatic	3.1813
2	22	Plate-Thin	8	DEAD	LinStatic	3.5007
3	23	Plate-Thin	3	DEAD	LinStatic	-13.0567
3	23	Plate-Thin	4	DEAD	LinStatic	11.2506
3	23	Plate-Thin	10	DEAD	LinStatic	2.8927
3	23	Plate-Thin	9	DEAD	LinStatic	3.1569
4	24	Plate-Thin	4	DEAD	LinStatic	11.1586
4	24	Plate-Thin	5	DEAD	LinStatic	-14.6668
4	24	Plate-Thin	11	DEAD	LinStatic	0.2096
4	24	Plate-Thin	10	DEAD	LinStatic	2.9877
5	25	Plate-Thin	5	DEAD	LinStatic	-14.0669
5	25	Plate-Thin	6	DEAD	LinStatic	0.5295
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5286
5	25	Plate-Thin	11	DEAD	LinStatic	-0.3892

Table: Joint Reactions

	In Reaction	13	
Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	28.428
3	DEAD	LinStatic	55.670
5	DEAD	LinStatic	52.620
13	DEAD	LinStatic	55.670
15	DEAD	LinStatic	109.207
17	DEAD	LinStatic	102.901
25	DEAD	LinStatic	52.620
27	DEAD	LinStatic	102.901
29	DEAD	LinStatic	93.810

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.009915	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.006217	0.000451	-0.000451	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-4.2729
1	21	Plate-Thin	2	DEAD	LinStatic	19.4402
1	21	Plate-Thin	8	DEAD	LinStatic	10.9967
1	21	Plate-Thin	7	DEAD	LinStatic	11.1967
2	22	Plate-Thin	2	DEAD	LinStatic	19.4396
2	22	Plate-Thin	3	DEAD	LinStatic	-6.4365
2	22	Plate-Thin	9	DEAD	LinStatic	9.0265
2	22	Plate-Thin	8	DEAD	LinStatic	11.0003
3	23	Plate-Thin	3	DEAD	LinStatic	-6.4339
3	23	Plate-Thin	4	DEAD	LinStatic	14.5764
3	23	Plate-Thin	10	DEAD	LinStatic	6.2130
3	23	Plate-Thin	9	DEAD	LinStatic	9.0277
4	24	Plate-Thin	4	DEAD	LinStatic	14.5232
4	24	Plate-Thin	5	DEAD	LinStatic	-14.1148
4	24	Plate-Thin	11	DEAD	LinStatic	1.0801
4	24	Plate-Thin	10	DEAD	LinStatic	6.2756
5	25	Plate-Thin	5	DEAD	LinStatic	-13.5142
5	25	Plate-Thin	6	DEAD	LinStatic	0.5518
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5353
5	25	Plate-Thin	11	DEAD	LinStatic	0.4850
Table: Join	nt Reactio	ns				

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	26.745
3	DEAD	LinStatic	53.220
5	DEAD	LinStatic	53.918
13	DEAD	LinStatic	53.220
15	DEAD	LinStatic	105.684
17	DEAD	LinStatic	106.030
25	DEAD	LinStatic	53.918
27	DEAD	LinStatic	106.030
29	DEAD	LinStatic	103.287

$$K_r = 0.1 \ z = 1$$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.008784	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.007815	0.000119	-0.000119	0.000000

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	12.0709
1	21	Plate-Thin	2	DEAD	LinStatic	32.0461
1	21	Plate-Thin	8	DEAD	LinStatic	24.2463
1	21	Plate-Thin	7	DEAD	LinStatic	25.5676
2	22	Plate-Thin	2	DEAD	LinStatic	32.0609
2	22	Plate-Thin	3	DEAD	LinStatic	5.6716
2	22	Plate-Thin	9	DEAD	LinStatic	19.5286
2	22	Plate-Thin	8	DEAD	LinStatic	24.2335
3	23	Plate-Thin	3	DEAD	LinStatic	5.6453
3	23	Plate-Thin	4	DEAD	LinStatic	20.8629
3	23	Plate-Thin	10	DEAD	LinStatic	12.7601
3	23	Plate-Thin	9	DEAD	LinStatic	19.5599
4	24	Plate-Thin	4	DEAD	LinStatic	20.8502
4	24	Plate-Thin	5	DEAD	LinStatic	-11.0022
4	24	Plate-Thin	11	DEAD	LinStatic	3.6572
4	24	Plate-Thin	10	DEAD	LinStatic	12.7851
5	25	Plate-Thin	5	DEAD	LinStatic	-10.4198
5	25	Plate-Thin	6	DEAD	LinStatic	0.5593
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5166
5	25	Plate-Thin	11	DEAD	LinStatic	3.0895

Table: Element Forces - Area Shells, Part 1 of 3

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	23.694
3	DEAD	LinStatic	48.537
5	DEAD	LinStatic	52.959
13	DEAD	LinStatic	48.537
15	DEAD	LinStatic	99.323
17	DEAD	LinStatic	107.790
25	DEAD	LinStatic	52.959
27	DEAD	LinStatic	107.790
29	DEAD	LinStatic	115.507

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.008441	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.008326	0.000014	-0.000014	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	17.0911
1	21	Plate-Thin	2	DEAD	LinStatic	35.9285
1	21	Plate-Thin	8	DEAD	LinStatic	28.3285
1	21	Plate-Thin	7	DEAD	LinStatic	29.9922
2	22	Plate-Thin	2	DEAD	LinStatic	35.9477
2	22	Plate-Thin	3	DEAD	LinStatic	9.4070
2	22	Plate-Thin	9	DEAD	LinStatic	22.7718

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
2	22	Plate-Thin	8	DEAD	LinStatic	28.3108
3	23	Plate-Thin	3	DEAD	LinStatic	9.3722
3	23	Plate-Thin	4	DEAD	LinStatic	22.8143
3	23	Plate-Thin	10	DEAD	LinStatic	14.7961
3	23	Plate-Thin	9	DEAD	LinStatic	22.8119
4	24	Plate-Thin	4	DEAD	LinStatic	22.8133
4	24	Plate-Thin	5	DEAD	LinStatic	-9.9961
4	24	Plate-Thin	11	DEAD	LinStatic	4.4759
4	24	Plate-Thin	10	DEAD	LinStatic	14.8100
5	25	Plate-Thin	5	DEAD	LinStatic	-9.4196
5	25	Plate-Thin	6	DEAD	LinStatic	0.5610
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5103
5	25	Plate-Thin	11	DEAD	LinStatic	3.9171

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	22.768
3	DEAD	LinStatic	47.100
5	DEAD	LinStatic	52.596
13	DEAD	LinStatic	47.100
15	DEAD	LinStatic	97.362
17	DEAD	LinStatic	108.259
25	DEAD	LinStatic	52.596
27	DEAD	LinStatic	108.259
29	DEAD	LinStatic	119.250

$$K_r = 10 z = 10$$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.008399	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.008388	1.451E-06	-1.451E-06	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	17.7000
1	21	Plate-Thin	2	DEAD	LinStatic	36.3995
1	21	Plate-Thin	8	DEAD	LinStatic	28.8239
1	21	Plate-Thin	7	DEAD	LinStatic	30.5291
2	22	Plate-Thin	2	DEAD	LinStatic	36.4193
2	22	Plate-Thin	3	DEAD	LinStatic	9.8603
2	22	Plate-Thin	9	DEAD	LinStatic	23.1655
2	22	Plate-Thin	8	DEAD	LinStatic	28.8055
3	23	Plate-Thin	3	DEAD	LinStatic	9.8245
3	23	Plate-Thin	4	DEAD	LinStatic	23.0512
3	23	Plate-Thin	10	DEAD	LinStatic	15.0434
3	23	Plate-Thin	9	DEAD	LinStatic	23.2066
4	24	Plate-Thin	4	DEAD	LinStatic	23.0517
4	24	Plate-Thin	5	DEAD	LinStatic	-9.8735
4	24	Plate-Thin	11	DEAD	LinStatic	4.5756
4	24	Plate-Thin	10	DEAD	LinStatic	15.0560
5	25	Plate-Thin	5	DEAD	LinStatic	-9.2977

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
5	25	Plate-Thin	6	DEAD	LinStatic	0.5612
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5095
5	25	Plate-Thin	11	DEAD	LinStatic	4.0178
-	1					

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	22.656
3	DEAD	LinStatic	46.926
5	DEAD	LinStatic	52.551
13	DEAD	LinStatic	46.926
15	DEAD	LinStatic	97.124
17	DEAD	LinStatic	108.315
25	DEAD	LinStatic	52.551
27	DEAD	LinStatic	108.315
29	DEAD	LinStatic	119.704

 $K_r = 100 \ z = 1$

Table: Joint Displacements

I.	Joint	OutputCase	CaseType	U3	R1	R2	R3
	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.008395	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.008394	1.454E-07	-1.454E-07	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	17.7622
1	21	Plate-Thin	2	DEAD	LinStatic	36.4476
1	21	Plate-Thin	8	DEAD	LinStatic	28.8744
1	21	Plate-Thin	7	DEAD	LinStatic	30.5839
2	22	Plate-Thin	2	DEAD	LinStatic	36.4675
2	22	Plate-Thin	3	DEAD	LinStatic	9.9066
2	22	Plate-Thin	9	DEAD	LinStatic	23.2057
2	22	Plate-Thin	8	DEAD	LinStatic	28.8560
3	23	Plate-Thin	3	DEAD	LinStatic	9.8707
3	23	Plate-Thin	4	DEAD	LinStatic	23.0754
3	23	Plate-Thin	10	DEAD	LinStatic	15.0687
3	23	Plate-Thin	9	DEAD	LinStatic	23.2469
4	24	Plate-Thin	4	DEAD	LinStatic	23.0760
4	24	Plate-Thin	5	DEAD	LinStatic	-9.8609
4	24	Plate-Thin	11	DEAD	LinStatic	4.5857
4	24	Plate-Thin	10	DEAD	LinStatic	15.0811
5	25	Plate-Thin	5	DEAD	LinStatic	-9.2852
5	25	Plate-Thin	6	DEAD	LinStatic	0.5612
5	25	Plate-Thin	12	DEAD	LinStatic	-0.5094
5	25	Plate-Thin	11	DEAD	LinStatic	4.0281

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	22.645
3	DEAD	LinStatic	46.908

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
5	DEAD	LinStatic	52.547
13	DEAD	LinStatic	46.908
15	DEAD	LinStatic	97.100
17	DEAD	LinStatic	108.321
25	DEAD	LinStatic	52.547
27	DEAD	LinStatic	108.321
29	DEAD	LinStatic	119.751

 $K_p = 50$ mengikuti $K_p = 1000$ yang menggunakan faktor pengali untuk memodifikasi spring tiang.

x0.48

 $K_r = 0.001 \ z = 1$

Target: Displacement maksimum mendekati FE PCG = -0.01742

Table: Joint Displacements

	Joint	OutputCase	CaseType	U3	R1	R2	R3
U	Text	Text	Text	m	Radians	Radians	Radians
	1	DEAD	LinStatic	-0.017328	0.000000	0.000000	0.000000
	36	DEAD	LinStatic	-0.006542	0.001632	-0.001632	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	-9.6261
1	21	Plate-Thin	2	DEAD	LinStatic	10.7847
1	21	Plate-Thin	8	DEAD	LinStatic	3.9258
1	21	Plate-Thin	7	DEAD	LinStatic	3.4673
2	22	Plate-Thin	2	DEAD	LinStatic	10.7739
2	22	Plate-Thin	3	DEAD	LinStatic	-8.8495
2	22	Plate-Thin	9	DEAD	LinStatic	3.9934
2	22	Plate-Thin	8	DEAD	LinStatic	3.9371
3	23	Plate-Thin	3	DEAD	LinStatic	-8.8185
3	23	Plate-Thin	4	DEAD	LinStatic	10.6647
3	23	Plate-Thin	10	DEAD	LinStatic	4.2087
3	23	Plate-Thin	9	DEAD	LinStatic	3.9644
4	24	Plate-Thin	4	DEAD	LinStatic	10.5765
4	24	Plate-Thin	5	DEAD	LinStatic	-9.2916
4	24	Plate-Thin	11	DEAD	LinStatic	1.9942
4	24	Plate-Thin	10	DEAD	LinStatic	4.2984
5	25	Plate-Thin	5	DEAD	LinStatic	-8.8290
5	25	Plate-Thin	6	DEAD	LinStatic	0.3990
5	25	Plate-Thin	12	DEAD	LinStatic	-0.4024
5	25	Plate-Thin	11	DEAD	LinStatic	1.5313

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	24.408
3	DEAD	LinStatic	47.790
5	DEAD	LinStatic	43.417
13	DEAD	LinStatic	47.790
15	DEAD	LinStatic	93.682
17	DEAD	LinStatic	84.888
25	DEAD	LinStatic	43.417
27	DEAD	LinStatic	84.888
29	DEAD	LinStatic	74.627

 $K_{r} = 0.01 \ z = 1$

Table: Joint Displacements

Joint	OutputCas	se CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.015840	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.008851	0.000907	-0.000907	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	5.8783
1	21	Plate-Thin	2	DEAD	LinStatic	23.7978
1	21	Plate-Thin	8	DEAD	LinStatic	17.2492
1	21	Plate-Thin	7	DEAD	LinStatic	17.6501
2	22	Plate-Thin	2	DEAD	LinStatic	23.7961
2	22	Plate-Thin	3	DEAD	LinStatic	3.1621
2	22	Plate-Thin	9	DEAD	LinStatic	14.9107
2	22	Plate-Thin	8	DEAD	LinStatic	17.2543
3	23	Plate-Thin	3	DEAD	LinStatic	3.1704
3	23	Plate-Thin	4	DEAD	LinStatic	17.5853
3	23	Plate-Thin	10	DEAD	LinStatic	11.2101
3	23	Plate-Thin	9	DEAD	LinStatic	14.9075
4	24	Plate-Thin	4	DEAD	LinStatic	17.5393
4	24	Plate-Thin	5	DEAD	LinStatic	-6.6814
4	24	Plate-Thin	11	DEAD	LinStatic	4.7199
4	24	Plate-Thin	10	DEAD	LinStatic	11.2663
5	25	Plate-Thin	5	DEAD	LinStatic	-6.2269
5	25	Plate-Thin	6	DEAD	LinStatic	0.4173
5	25	Plate-Thin	12	DEAD	LinStatic	-0.3972
5	25	Plate-Thin	11	DEAD	LinStatic	4.2720

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	22.312
3	DEAD	LinStatic	44.249
5	DEAD	LinStatic	44.142
13	DEAD	LinStatic	44.249
15	DEAD	LinStatic	87.536
17	DEAD	LinStatic	86.390
25	DEAD	LinStatic	44.142

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
27	DEAD	LinStatic	86.390
29	DEAD	LinStatic	82.440

$$K_r = 0.1 \ z = 1$$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.013574	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.012040	0.000198	-0.000198	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

	Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
	Text	Text	Text	Text	Text	Text	KN-m/m
	1	21	Plate-Thin	1	DEAD	LinStatic	27.1876
	1	21	Plate-Thin	2	DEAD	LinStatic	41.2065
	1	21	Plate-Thin	8	DEAD	LinStatic	35.2514
	1	21	Plate-Thin	7	DEAD	LinStatic	37.0258
	2	22	Plate-Thin	2	DEAD	LinStatic	41.2182
	2	22	Plate-Thin	3	DEAD	LinStatic	19.2718
	2	22	Plate-Thin	9	DEAD	LinStatic	29.3985
	2	22	Plate-Thin	8	DEAD	LinStatic	35.2422
	3	23	Plate-Thin	3	DEAD	LinStatic	19.2538
	3	23	Plate-Thin	4	DEAD	LinStatic	26.6868
	3	23	Plate-Thin	10	DEAD	LinStatic	20.5538
	3	23	Plate-Thin	9	DEAD	LinStatic	29.4230
1	4	24	Plate-Thin	4	DEAD	LinStatic	26.6800
	4	24	Plate-Thin	5	DEAD	LinStatic	-2.1128
	4	24	Plate-Thin	11	DEAD	LinStatic	8.6900
	4	24	Plate-Thin	10	DEAD	LinStatic	20.5755
	5	25	Plate-Thin	5	DEAD	LinStatic	-1.6766
	5	25	Plate-Thin	6	DEAD	LinStatic	0.4291
	5	25	Plate-Thin	12	DEAD	LinStatic	-0.3717
	5	25	Plate-Thin	11	DEAD	LinStatic	8.2736

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	19.120
3	DEAD	LinStatic	39.190
5	DEAD	LinStatic	42.893
13	DEAD	LinStatic	39.190
15	DEAD	LinStatic	80.240
17	DEAD	LinStatic	87.366
25	DEAD	LinStatic	42.893
27	DEAD	LinStatic	87.366
29	DEAD	LinStatic	93.933

$K_{r} = 1 \ z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.013018	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.012844	0.000022	-0.000022	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	32.4475
1	21	Plate-Thin	2	DEAD	LinStatic	45.5047
1	21	Plate-Thin	8	DEAD	LinStatic	39.6994
1	21	Plate-Thin	7	DEAD	LinStatic	41.8152
2	22	Plate-Thin	2	DEAD	LinStatic	45.5195
2	22	Plate-Thin	3	DEAD	LinStatic	23.2478
2	22	Plate-Thin	9	DEAD	LinStatic	32.9762
2	22	Plate-Thin	8	DEAD	LinStatic	39.6866
3	23	Plate-Thin	3	DEAD	LinStatic	23.2235
3	23	Plate-Thin	4	DEAD	LinStatic	28.9375
3	23	Plate-Thin	10	DEAD	LinStatic	22.8669
3	23	Plate-Thin	9	DEAD	LinStatic	33.0073
4	24	Plate-Thin	4	DEAD	LinStatic	28.9397
4	24	Plate-Thin	5	DEAD	LinStatic	-0.9525
4	24	Plate-Thin	11	DEAD	LinStatic	9.6840
4	24	Plate-Thin	10	DEAD	LinStatic	22.8804
5	25	Plate-Thin	5	DEAD	LinStatic	-0.5210
5	25	Plate-Thin	6	DEAD	LinStatic	0.4318
5	25	Plate-Thin	12	DEAD	LinStatic	-0.3649
5	25	Plate-Thin	11	DEAD	LinStatic	9.2755

Table: Joint Reactions

Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
1	DEAD	LinStatic	18.336
3	DEAD	LinStatic	37.946
5	DEAD	LinStatic	42.527
13	DEAD	LinStatic	37.946
15	DEAD	LinStatic	78.467
17	DEAD	LinStatic	87.579
25	DEAD	LinStatic	42.527
27	DEAD	LinStatic	87.579
29	DEAD	LinStatic	96.834

$$K_r = 10 \ z = 1$$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.012954	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.012936	2.274E-06	-2.274E-06	0.000000

Universitas Indonesia

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	33.0523
1	21	Plate-Thin	2	DEAD	LinStatic	45.9990
1	21	Plate-Thin	8	DEAD	LinStatic	40.2110
1	21	Plate-Thin	7	DEAD	LinStatic	42.3660
2	22	Plate-Thin	2	DEAD	LinStatic	46.0141
2	22	Plate-Thin	3	DEAD	LinStatic	23.7050
2	22	Plate-Thin	9	DEAD	LinStatic	33.3876
2	22	Plate-Thin	8	DEAD	LinStatic	40.1977
3	23	Plate-Thin	3	DEAD	LinStatic	23.6799
3	23	Plate-Thin	4	DEAD	LinStatic	29.1963
3	23	Plate-Thin	10	DEAD	LinStatic	23.1330
3	23	Plate-Thin	9	DEAD	LinStatic	33.4194
4	24	Plate-Thin	4	DEAD	LinStatic	29.1996
4	24	Plate-Thin	5	DEAD	LinStatic	-0.8187
4	24	Plate-Thin	11	DEAD	LinStatic	9.7984
4	24	Plate-Thin	10	DEAD	LinStatic	23.1456
5	25	Plate-Thin	5	DEAD	LinStatic	-0.3877
5	25	Plate-Thin	6	DEAD	LinStatic	0.4321
5	25	Plate-Thin	12	DEAD	LinStatic	-0.3641
5	25	Plate-Thin	11	DEAD	LinStatic	9.3909

Table: Element Forces - Area Shells, Part 1 of 3

Table: Joint Reactions

J	oint	OutputCase	CaseType	F3
	Text	Text	Text	KN
	1	DEAD	LinStatic	18.246
	3	DEAD	LinStatic	37.803
	5	DEAD	LinStatic	42.484
	13	DEAD	LinStatic	37.803
	15	DEAD	LinStatic	78.263
	17	DEAD	LinStatic	87.603
	25	DEAD	LinStatic	42.484
	27	DEAD	LinStatic	87.603
	29	DEAD	LinStatic	97.169

$K_r = 100 z = 1$

Table: Joint Displacements

Joint	OutputCase	CaseType	U3	R1	R2	R3
Text	Text	Text	m	Radians	Radians	Radians
1	DEAD	LinStatic	-0.012947	0.000000	0.000000	0.000000
36	DEAD	LinStatic	-0.012945	2.277E-07	-2.277E-07	0.000000

Table: Element Forces - Area Shells, Part 1 of 3

Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
Text	Text	Text	Text	Text	Text	KN-m/m
1	21	Plate-Thin	1	DEAD	LinStatic	33.1137
1	21	Plate-Thin	2	DEAD	LinStatic	46.0491
1	21	Plate-Thin	8	DEAD	LinStatic	40.2629
1	21	Plate-Thin	7	DEAD	LinStatic	42.4219
2	22	Plate-Thin	2	DEAD	LinStatic	46.0643
2	22	Plate-Thin	3	DEAD	LinStatic	23.7514
2	22	Plate-Thin	9	DEAD	LinStatic	33.4294
Area	AreaElem	ShellType	Joint	OutputCase	CaseType	M11
------	----------	------------	-------	------------	-----------	---------
Text	Text	Text	Text	Text	Text	KN-m/m
2	22	Plate-Thin	8	DEAD	LinStatic	40.2496
3	23	Plate-Thin	3	DEAD	LinStatic	23.7263
3	23	Plate-Thin	4	DEAD	LinStatic	29.2226
3	23	Plate-Thin	10	DEAD	LinStatic	23.1600
3	23	Plate-Thin	9	DEAD	LinStatic	33.4613
4	24	Plate-Thin	4	DEAD	LinStatic	29.2260
4	24	Plate-Thin	5	DEAD	LinStatic	-0.8051
4	24	Plate-Thin	11	DEAD	LinStatic	9.8101
4	24	Plate-Thin	10	DEAD	LinStatic	23.1725
5	25	Plate-Thin	5	DEAD	LinStatic	-0.3741
5	25	Plate-Thin	6	DEAD	LinStatic	0.4321
5	25	Plate-Thin	12	DEAD	LinStatic	-0.3640
5	25	Plate-Thin	11	DEAD	LinStatic	9.4026

Table: Joint Reactions

Joint	OutputCase	CaseType	F3	
Text	Text	Text	KN	
1	DEAD	LinStatic	18.237	
3	DEAD	LinStatic	37.788	
5	DEAD	LinStatic	42.480	
13	DEAD	LinStatic	37.788	
15	DEAD	LinStatic	78.242	
17	DEAD	LinStatic	87.606	
25	DEAD	LinStatic	42.480	
27	DEAD	LinStatic	87.606	
29	DEAD	LinStatic	97.203	

Universitas Indonesia

LAMPIRAN E

Fine mesh 10x10

Contoh ini berupa input spring tanah pada z = 1 yang dibuat dalam mesh lebih halus.

0.003834	0.004111	0.004357	0.004556	0.004715	0.004842	0.004941	0.005016	0.005068	0.005098	0.005109	0.005098	0.005068	0.005016	0.004941	0.004842	0.004715	0.004556	0.004357	0.004111	0.003834
0.004111	0.004446	0.004743	0.004975	0.005158	0.005301	0.005412	0.005495	0.005552	0.005586	0.005598	0.005586	0.005552	0.005495	0.005412	0.005301	0.005158	0.004975	0.004743	0.004446	0.004111
0.004357	0.004743	0.005081	0.005343	0.005546	0.005704	0.005826	0.005917	0.00598	0.006017	0.006029	0.006017	0.00598	0.005917	0.005826	0.005704	0.005546	0.005343	0.005081	0.004743	0.004357
0.004556	0.004975	0.005343	0.005627	0.005848	0.00602	0.006152	0.006249	0.006317	0.006356	0.00637	0.006356	0.006317	0.006249	0.006152	0.00602	0.005848	0.005627	0.005343	0.004975	0.004556
0.004715	0.005158	0.005546	0.005848	0.006083	0.006266	0.006406	0.00651	0.006582	0.006624	0.006638	0.006624	0.006582	0.00651	0.006406	0.006266	0.006083	0.005848	0.005546	0.005158	0.004715
0.004842	0.005301	0.005704	0.00602	0.006266	0.006458	0.006605	0.006714	0.006789	0.006833	0.006847	0.006833	0.006789	0.006714	0.006605	0.006458	0.006266	0.00602	0.005704	0.005301	0.004842
0.004941	0.005412	0.005826	0.006152	0.006406	0.006605	0.006757	0.00687	0.006948	0.006994	0.007009	0.006994	0.006948	0.00687	0.006757	0.006605	0.006406	0.006152	0.005826	0.005412	0.004941
0.005016	0.005495	0.005917	0.006249	0.00651	0.006714	0.00687	0.006986	0.007067	0.007114	0.007129	0.007114	0.007067	0.006986	0.00687	0.006714	0.00651	0.006249	0.005917	0.005495	0.005016
0.005068	0.005552	0.00598	0.006317	0.006582	0.006789	0.006948	0.007067	0.007148	0.007197	0.007212	0.007197	0.007148	0.007067	0.006948	0.006789	0.006582	0.006317	0.00598	0.005552	0.005068
0.005098	0.005586	0.006017	0.006356	0.006624	0.006833	0.006994	0.007114	0.007197	0.007245	0.0 07 261	0.007245	0.007197	0.007114	0.006994	0.006833	0.006624	0.006356	0.006017	0.005586	0.005098
0.005109	0.005598	0.006029	0.00637	0.006638	0.006847	0.007009	0.007129	0.007212	0.007261	0.0 07 277	0.007261	0.007212	0.007129	0.007009	0.006847	0.006638	0.00637	0.006029	0.005598	0.005109
0.005098	0.005586	0.006017	0.006356	0.006624	0.006833	0.006994	0.007114	0.007197	0.007245	0.007261	0 .007245	0.007197	0.007114	0.006994	0.006833	0.006624	0.006356	0.006017	0.005586	0.005098
0.005068	0.005552	0.00598	0.006317	0.006582	0.006789	0.006948	0.007067	0.007148	0.007197	0.007212	0.007197	0.007148	0.007067	0.006948	0.006789	0.006582	0.006317	0.00598	0.005552	0.005068
0.005016	0.005495	0.005917	0.006249	0.00651	0.006714	0.00687	0.006986	0.007067	0.007114	0.007129	0.007114	0.007067	0.006986	0.00687	0.006714	0.00651	0.006249	0.005917	0.005495	0.005016
0.004941	0.005412	0.005826	0.006152	0.006406	0.006605	0.006757	0.00687	0.006948	0.006994	0.007009	0.006994	0.006948	0.00687	0.006757	0.006605	0.006406	0.006152	0.005826	0.005412	0.004941
0.004842	0.005301	0.005704	0.00602	0.006266	0.006458	0.006605	0.006714	0.006789	0.006833	0.006847	0.006833	0.006789	0.006714	0.006605	0.006458	0.006266	0.00602	0.005704	0.005301	0.004842
0.004715	0.005158	0.005546	0.005848	0.006083	0.006266	0.006406	0.00651	0.006582	0.006624	0.006638	0.006624	0.006582	0.00651	0.006406	0.006266	0.006083	0.005848	0.005546	0.005158	0.004715
0.004556	0.004975	0.005343	0.005627	0.005848	0.00602	0.006152	0.006249	0.006317	0.006356	0.00637	0.006356	0.006317	0.006249	0.006152	0.00602	0.005848	0.005627	0.005343	0.004975	0.004556
0.004357	0.004743	0.005081	0.005343	0.005546	0.005704	0.005826	0.005917	0.00598	0.006017	0.006029	0.006017	0.00598	0.005917	0.005826	0.005704	0.005546	0.005343	0.005081	0.004743	0.004357
0.004111	0.004446	0.004743	0.004975	0.005158	0.005301	0.005412	0.005495	0.005552	0.005586	0.005598	0.005586	0.005552	0.005495	0.005412	0.005301	0.005158	0.004975	0.004743	0.004446	0.004111
0.003834	0.004111	0.004357	0.004556	0.004715	0.004842	0.004941	0.005016	0.005068	0.005098	0.005109	0.005098	0.005068	0.005016	0.004941	0.004842	0.004715	0.004556	0.004357	0.004111	0.003834

Universitas Indonesia

202

101.8015 95.02432 88.5532 85.74783 82.5104 80.67580 75.7337 73.8817 70.90793 80.67869 82.8104 85.74783 89.65532 85.74783 89.5532 85.74783 89.5532 85.74783 75.7337 73.8671 71.08794 70.35147 69.92466 69.92466 69.92166 65.32561 66.40870 72.17631 73.1467 79.73878 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86783 82.35768 87.86733 87.8673 82.35768 87.86733 82.35768 87.86733 82.35768 87.86733 82.35768 87.86733 82.35768 87.86733 82.35768 87.86733 82.35768 82.35768 82.35768 82.357																					
95 92.8282 82.38768 78.51037 75.3375 78.51037 75.3375 78.51037 75.3375 78.51037 75.3175 78.51037 75.3175 78.51037 75.3175 78.51037 75.3175 78.51037 75.11467 69.40405 66.01812 61.32728 64.38245 65.32561 68.4779 64.8848 6.79305 64.1212 65.32561 64.39216 61.32728 61.32728 61.32728 61.32828 62.32561 64.9216 62.3399 64.8848 62.3399 64.3407 76.3417 <	101.8915	95.02432	89.65532	85.74783	82.85104	80.67869	79.05793	77.88142	77.08148	76.61653	76.46394	76.61653	77.08148	77.88142	79.05793	80.67869	82.85104	85.74783	89.65532	95.02432	101.8915
82.3578 82.3578 76.8793 73.11467 70.4307 68.4779 67.04516 66.01212 65.32561 64.9206 64.92516 65.32561 64.0121 67.04516 68.4779 70.4307 73.11467 76.8793 82.35768 96.5532 85.7783 78.51037 73.11467 69.41526 67.9705 64.2121 66.37905 64.2121 67.9705 64.2121 67.9705 70.4307 77.9375 82.85104 80.67869 73.68671 68.4779 64.8848 62.399 60.9012 59.14398 57.1681 57.0464 57.1681 57.3967 58.101 50.0412 62.0369 60.49251 64.4848 68.4779 73.68671 80.7893 82.8578 58.8507 55.3905 55.85091 55.1025 55.85091 55.1025 55.85091 55.1025 55.85091 55.1025 55.9102 5	95.02432	87.86551	82.35768	78.51037	75.73375	73.68671	72.17631	71.08794	70.35147	69.92466	69.78478	69.92466	70.35147	71.08794	72.17631	73.68671	75.73375	78.51037	82.35768	87.86551	95.02432
85.74783 78.51037 73.11467 66.79305 64.8848 63.9925 62.5063 63.8925 63.8929 63.8930 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.8929 63.9925 63.8848 66.29309 64.2121 66.79307 77.337 82.85104 80.67869 73.68671 63.4925 60.9766 59.14398 58.18411 57.3867 55.1305 55.85091 56.21913 56.85787 59.1438 60.9766 63.49925 67.04516 77.0814 77.0814 70.35147 55.2708 55.1708 54.91102 55.2708 55.1205 55.85091 57.1805 55.85091 57.1805 56.21913 57.3967 59.1438 60.9246 60.0121 61.0532 60.9124 61.4534 64.92516 61.4534 54.9102 54.27983 54.9102 55.8797 56.8501 57.1861 58.9994 61.4514 58.9994 61.4514 64.92516 61.4534 64.92516 61.4534 54.9102 54.9102 54.9102 54.9102 54.9102	89.65532	82.35768	76.87983	73.11467	70.43407	68.4779	67.04516	66.01812	65.32561	64.92516	64.79406	64.92516	65.32561	66.01812	67.04516	68.4779	70.43407	73.11467	76.87983	82.35768	89.65532
82.85104 75.73375 70.43407 66.79305 64.2121 62.3399 64.2121 62.73395 54.87398 59.37395 59.37395 59.37395 59.37395 59.37395 59.37395 59.37395 59.37395 59.37395 59.37395 59.37395 59.3139 60.49037 62.3399 64.8749 63.4894 64.8749 73.68671 80.7793 73.8142 59.1393 56.85787 57.1681 57.39567 57.3957 57.8997 57.1395 55.85091 55.21013 56.85787 55.1305 55.85091 55.91205 55.85091 55.91205 55.85091 55.91205 55.85091 55.91205 55.85091 55.91205 55.85091 55.91205 55.85091 57.1818 88.8807 61.8389 63.892 63.8925 63.8181 60.0012 63.99246 64.92516 64.434 89.9398 57.1801 58.8007 54.4452 54.9733 54.4652 55.9708 54.9102 55.9708 54.9102 55.9708 54.9102 55.9105 55.9105 55.8705 55.8101 57.8056 57.3056 57.3056 57.3056 57.3056 57.3056 57.3056	85.74783	78.51037	73.11467	69.41526	66.79305	64.88848	63.49925	62.50663	61.83892	61.4534	61.32728	61.4534	61.83892	62.50663	63.49925	64.88848	66.79305	69.41526	73.11467	78.51037	85.74783
80.67869 73.68671 68.4779 64.8888 62.3399 60.49037 59.1439 57.1681 57.0464 57.1681 57.3085 58.18411 50.4393 60.49037 62.3393 64.8888 68.4779 73.8671 80.67869 70.05737 72.1761 67.04516 63.49925 60.9766 59.1439 57.8977 56.2191 55.85091 56.85787 58.18411 60.0402 62.3086 64.8488 60.4925 67.0456 60.4925 67.0456 77.0814 77.8814 77.8814 75.3975 56.2191 55.27708 54.1902 55.27708 56.2191 55.27708 54.1902 55.27708 56.2191 55.8575 70.8144 77.88142 77.3814 60.92466 64.92516 61.4534 58.9798 57.1681 57.3965 57.3965 57.3965 57.1681 57.3967 56.1913 58.3971 61.4534 69.9246 64.92516 61.4534 58.9798 51.1681 58.3979 51.1681 58.3979 51.1681 58.3979 61.4534 69.92466 60.92464<	82.85104	75.73375	70.43407	66.79305	64.21212	62.3399	60.9766	60.00412	59.35083	58.97398	58.85077	58.97398	59.35083	60.00412	60.9766	62.3399	64.21212	66.79305	70.43407	75.73375	82.85104
79.05793 72.17631 67.04516 63.49925 60.9766 59.14398 57.8093 55.85091 55.85091 55.85091 56.8578 57.8093 59.14398 60.9766 63.49925 67.04516 72.17631 79.05793 77.88142 71.08794 66.0121 62.5063 60.00412 58.8787 55.91205 55.27708 54.9110 55.27708 54.9120 55.27708 54.9120 55.27708 56.4293 54.64925 52.7708 56.1913 57.3067 57.3067 59.2406 64.92516 61.4534 58.9793 57.1661 58.9794 53.9159 53.79694 53.9159 54.27983 54.16102 54.27983 54.16102 54.7913 55.3055 57.0464 58.8077 61.4534 64.92516 61.4534 58.9798 57.1661 58.9798 54.1602 54.7913 55.3055 57.1681 58.9798 61.4534 64.92516 61.4534 58.9798 51.205 55.27708 54.1602 54.7913 55.2708 57.1681 58.9079 57.1681 58.9079 57.1681 58.9091 57.1681 58.9091 57.1681 58.9091 57.1681 <td>80.67869</td> <td>73.68671</td> <td>68.4779</td> <td>64.88848</td> <td>62.3399</td> <td>60.49037</td> <td>59.14398</td> <td>58.18411</td> <td>57.53967</td> <td>57.1681</td> <td>57.04664</td> <td>57.1681</td> <td>57.53967</td> <td>58.18411</td> <td>59.14398</td> <td>60.49037</td> <td>62.3399</td> <td>64.88848</td> <td>68.4779</td> <td>73.68671</td> <td>80.67869</td>	80.67869	73.68671	68.4779	64.88848	62.3399	60.49037	59.14398	58.18411	57.53967	57.1681	57.04664	57.1681	57.53967	58.18411	59.14398	60.49037	62.3399	64.88848	68.4779	73.68671	80.67869
77.88142 71.08794 66.01812 62.50663 60.00412 58.18411 56.8778 58.18411 60.00412 62.0663 60.1812 71.08794 77.88142 77.08148 70.35147 65.32561 61.83892 59.35083 57.3967 56.1113 55.27708 54.16062 54.27983 54.16062 54.27983 54.91102 55.27708 56.21913 57.3967 59.3508 61.4534 68.3892 63.3892 63.3892 63.3892 63.3892 63.4334 64.92516 61.4534 58.97798 54.1602 54.77983 54.9102 54.7983 54.9102 55.8705 57.1681 58.8779 61.4534 64.92516 61.4534 58.97798 57.1681 57.3965 57.4664 58.8779 54.1913 54.1913 55.27708 54.1602 54.79137 54.9102 54.7933 54.91102 55.87051 57.1681 58.8798 61.4534 68.9798 61.4534 69.9246 67.61533 70.6163 69.9246 61.3574 55.8796 56.1913 55.27708 54.1602 54.2793 54.46452 52.87987 58.1811 60.0412 59.3083 </td <td>79.05793</td> <td>72.17631</td> <td>67.04516</td> <td>63.49925</td> <td>60.9766</td> <td>59.14398</td> <td>57.80937</td> <td>56.85787</td> <td>56.21913</td> <td>55.85091</td> <td>55.73055</td> <td>55.85091</td> <td>56.21913</td> <td>56.85787</td> <td>57.80937</td> <td>59.14398</td> <td>60.9766</td> <td>63.49925</td> <td>67.04516</td> <td>72.17631</td> <td>79.05793</td>	79.05793	72.17631	67.04516	63.49925	60.9766	59.14398	57.80937	56.85787	56.21913	55.85091	55.73055	55.85091	56.21913	56.85787	57.80937	59.14398	60.9766	63.49925	67.04516	72.17631	79.05793
77.08148 70.35147 65.32561 61.83892 59.35083 57.3967 56.21913 57.3967 59.35083 61.83892 65.32561 70.35147 70.8148 76.61653 69.92466 64.92516 61.4534 58.73085 57.1681 58.8071 57.1681 58.8071 57.1681 58.8071 57.1681 58.8071 57.1681 58.7095 54.1708 54.1	77.88142	71.08794	66.01812	62.50663	60.00412	58. 18 411	56.85787	55.91205	55.27708	54.91102	54.79137	54.91102	55.27708	55.91205	56.85787	58. 1 8411	60.00412	62.50663	66.01812	71.08794	77.88142
76.61653 69.92466 64.92516 61.4534 58.97398 57.1681 55.85091 57.1681 58.97398 64.92516 69.92466 64.92516 61.4534 69.92466 64.92516 61.4534 58.97398 57.1681 55.85091 57.1681 58.97398 61.4534 64.92516 69.92466 64.92516 61.4534 58.97398 57.1681 55.85091 57.1681 58.85077 57.04664 58.85077 61.32728 64.79406 69.92466 64.92516 64.92316 64.92516 64.911	77.08148	70.35147	65.32561	61.83892	59.35083	57.53967	56.21913	55.27708	54.64452	54.27983	54.16062	54.27983	54.64452	55.27708	56.21913	57.53967	59.35083	61.83892	65.32561	70.35147	77.08148
76.46394 69.78478 64.79406 61.32728 58.8507 57.04664 55.7305 54.79137 54.16062 53.79694 54.16062 54.79137 55.7305 57.04664 58.85077 61.32728 64.9406 69.78478 76.46394 76.6153 69.92466 64.92516 61.4334 58.9739 57.168 55.8501 57.168 58.9739 61.4324 64.92516 69.92467 77.08148 70.3517 65.3256 61.83892 59.3508 57.168 58.9707 55.2770 54.4125 54.27983 54.1062 54.27983 54.9102 55.27708 56.85787 58.1841 60.0412 63.4992 60.0412 61.4339 61.4314 64.9256 60.0412 57.3957 54.9102 55.8705 55.1013 55.9125 55.8775 54.1102 55.8705 56.8787 56.1313 56.8787 51.4138 60.9412 63.4992 60.9466 63.4992 60.9466 63.4992 64.8848 68.479 73.6867 73.6867 73.1847 75.1681 57.58675	76.61653	69.92466	64.92516	61.4534	58.97398	57.1681	55.85091	54.91102	54.27983	53.9159	53.79694	53.9159	54.27983	54.91102	55.85091	57.1681	58.97398	61.4534	64.92516	69.92466	76.61653
76.61653 69.92466 64.92516 61.4534 58.97398 57.1681 55.85091 57.1681 58.97398 61.4534 64.92516 64.92516 64.92516 64.92516 64.92516 64.92516 64.92516 64.92516 64.92516 58.7798 54.21983 54.21913 55.27708 54.21913 55.27708 54.91102 55.27708 54.91102 55.27708 54.91102 55.27708 54.91102 55.27708 54.91102 55.27708 55.9113 56.8587 58.1811 60.0412 70.8143 70.8143 70.05793 71.681 64.8794 64.9025 60.9067 59.14398 58.2877 58.1811 57.3667 58.1841 57.3667 58.1841 59.1438 64.9256 64.9426 61.9426 70.4516 64.9926 61.9826<	76.46394	69.78478	64.79406	61.32728	58.85077	57.04664	55.73055	54.79137	54.16062	53.79694	53.67806	53.79694	54.16062	54.79137	55.73055	57.04664	58.85077	61.32728	64.79406	69.78478	76.46394
77.08148 70.35147 65.32561 61.83892 59.35083 57.3967 56.21913 57.3967 56.21913 57.3967 59.35083 61.83892 65.32561 70.35147 77.08148 77.08148 70.35147 60.01812 62.0663 60.00412 58.18411 56.8578 55.27708 56.21913 57.53967 59.35083 61.83892 65.32561 70.35147 77.08148 70.05793 72.17631 67.04516 63.49925 60.9766 59.14398 57.80937 56.21913 57.80937 59.14398 60.9766 63.49925 67.04516 71.08794 72.17631 70.45147 70.8749 73.6867 57.1681 57.3055 55.1708 56.21913 56.85787 58.18411 60.0912 63.49925 67.04516 72.17631 70.4546 57.1681 57.3055 55.1708 50.1313 50.4933 60.4933 64.2339 64.4824 68.4779 73.6867 75.3357 82.85104 57.3785 50.1313 50.4935 60.0912 69.3508 50.3795 60.4912 60.4935 64.21212 67.3357 75.1681 57.3687 58.1939 <t< td=""><td>76.61653</td><td>69.92466</td><td>64.92516</td><td>61.4534</td><td>58.97398</td><td>57.1681</td><td>55.85091</td><td>54.91102</td><td>54.27983</td><td>53.9159</td><td>53.79694</td><td>53.9159</td><td>54.27983</td><td>54.91102</td><td>55.85091</td><td>57.1681</td><td>58.97398</td><td>61.4534</td><td>64.92516</td><td>69.92466</td><td>76.61653</td></t<>	76.61653	69.92466	64.92516	61.4534	58.97398	57.1681	55.85091	54.91102	54.27983	53.9159	53.79694	53.9159	54.27983	54.91102	55.85091	57.1681	58.97398	61.4534	64.92516	69.92466	76.61653
77.88142 71.08794 66.01812 62.50663 60.00412 58.18411 56.85787 55.91205 56.85787 58.18411 60.00412 62.5063 60.1812 71.08794 77.88142 79.05793 72.17631 67.04516 63.49925 60.9766 59.14398 57.80937 56.85787 58.18411 60.00412 62.5063 60.1812 71.08794 77.88142 79.05793 72.17631 67.04516 63.49925 60.9766 59.14398 57.80937 55.27708 55.27708 55.91205 55.85091 56.85787 58.18411 60.00412 63.49925 67.04516 72.17631 70.05793 80.67807 75.03575 70.43407 64.8848 62.3399 60.49037 59.14398 58.18411 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.1681 57.3055 58.18411 59.14398 60.49037 62.3399 64.21212 66.7305 70.43407 75.7375 82.85104 85.74783 78.51037 <t< td=""><td>77.08148</td><td>70.35147</td><td>65.32561</td><td>61.83892</td><td>59.35083</td><td>57.53967</td><td>56.21913</td><td>55.27708</td><td>54.64452</td><td>54.27983</td><td>54.16062</td><td>54.27983</td><td>54.64452</td><td>55.27708</td><td>56.21913</td><td>57.53967</td><td>59.35083</td><td>61.83892</td><td>65.32561</td><td>70.35147</td><td>77.08148</td></t<>	77.08148	70.35147	65.32561	61.83892	5 9.35 083	57.53967	56.21913	55.27708	54.64452	54.27983	54.16062	54.27983	54.64452	55.27708	56.21913	57.53967	59. 35 083	61.83892	65.32561	70.35147	77.08148
79.05793 72.17631 67.04516 63.49925 60.9766 59.14398 57.80937 59.14398 50.8787 56.85787 56.21913 55.85091 55.85091 56.85787 56.85787 56.21913 55.85091 56.85787 56.85787 56.21913 55.85091 56.85787 56.85787 57.3055 55.85091 56.85787 57.80937 59.14398 60.9766 63.49925 67.04516 72.17631 79.05793 80.67869 73.68671 68.4779 64.88848 62.3399 60.49037 59.14398 60.49037 62.3399 64.88848 68.4779 73.68671 75.73575 73.4801 59.14398 60.49037 62.3399 64.2121 66.79305 70.4307 75.73375 82.85104 85.74783 78.51037 73.11467 69.4125 63.39925 62.20663 61.83892 61.4534 61.83892 61.4534 61.83892 62.06142 63.49925 62.3193 63.49256 64.3140 75.3175 73.11467 73.11467 78.1037 85.4783 89.45532 82.35768 76.48798 62.4914 64.92456 64.92456 64.92456 64.924	77.88142	71.08794	66.01812	62.50663	60.00412	58.18411	56.85787	55.91205	55.27708	54.91102	54.79137	54.91102	55.27708	55.91205	56.85787	58.18411	60.00412	62.50663	66.01812	71.08794	77.88142
80.67869 73.68671 68.4879 64.88848 62.3399 60.49037 59.14398 58.18411 57.5367 57.1681 57.04664 57.1681	79.05793	72.17631	67.04516	63.49925	60.9766	59.14398	57.80937	56.85787	56.21913	55.85091	55.73055	55.85091	56.21913	56.85787	57.80937	59.14398	60.9766	63.49925	67.04516	72.17631	79.05793
82.85104 75.73375 70.43407 66.79305 64.21212 62.3399 60.9766 60.00412 59.35083 58.97398 58.97398 59.35083 60.00412 60.9766 62.3399 64.21212 66.79305 70.43407 75.73375 82.85104 85.74783 78.51037 73.11467 69.41526 66.79305 64.88848 63.49925 62.50663 61.43272 61.4534 61.83892 62.50663 63.49925 64.88848 66.79305 69.41526 67.9107 78.51037 78.51037 85.74783 89.65532 82.35768 76.87983 73.11467 70.43407 68.4779 67.04516 64.92516 64.92516 65.32561 60.01812 67.04517 69.2452 68.4779 70.43407 78.9798 82.85768 89.65532 95.02432 87.86551 82.35768 75.73375 73.68671 72.17631 71.08794 70.3147 70.8748 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69	80.67869	73.68671	68.4779	64.88848	62.3399	60.49037	59.14398	58.18411	57.53967	57.1681	57.04664	57.1681	57.53967	58.18411	59.14398	60.49037	62.3399	64.88848	68.4779	73.68671	80.67869
85.74783 78.51037 73.11467 69.41526 66.79305 64.88848 63.49925 62.50663 61.43892 61.4534 61.83892 62.50663 63.49925 69.41526 73.11467 78.51037 78.51037 85.74783 89.65532 82.35768 76.87983 73.11467 70.43407 68.4779 67.04516 64.01812 65.32561 64.92516 64.92516 65.32561 60.1812 67.04516 68.4779 70.43407 78.7893 82.35768 89.65532 95.02432 87.86551 82.35768 75.73375 73.68671 72.17631 70.8794 70.8148 76.61653 76.46394 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 70.87147 71.08794 72.17631 73.68671 75.73375 78.51037 82.35768 87.86551 95.02432 101.8915 95.02432 89.65532 85.74783 82.85104 80.67869 79.05793 77.88142 77.08148 77.8142 79.05793 80.67869 82.85104 85.5532 95.02432 101.8915	82.85104	75.73375	70.43407	66.79305	64.21212	62.3399	60.9766	60.00412	59.35083	58.97398	58.85077	58.97398	59.35083	60.00412	60.9766	62.3399	64.21212	66.79305	70.43407	75.73375	82.85104
89.65532 82.35768 76.87983 73.11467 70.43407 68.4779 67.04516 66.01812 65.32561 64.92516 64.92516 65.32561 66.01812 67.04516 68.4779 70.43407 73.11467 76.87983 82.35768 89.65532 95.02432 87.86551 82.35768 75.73375 73.68671 72.17631 71.08794 70.35147 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 69.78478 69.92466 70.35147 71.08794 72.17631 73.68671 75.73375 78.51037 82.35768 87.86551 95.02432 101.8915 95.02432 89.65532 85.74783 82.85104 80.67869 79.05793 77.08148 77.08148 77.08148 77.8142 79.05793 80.67869 82.85104 85.5532 95.02432 101.8915 101.8915 101.8915	85.74783	78.51037	73.11467	69.41526	66.79305	64.88848	63.49925	62.50663	61.83892	61.4534	61.32728	61.4534	61.83892	62.50663	63.49925	64.88848	66.79305	69.41526	73.11467	78.51037	85.74783
95.02432 87.86551 82.35768 78.51037 75.73375 73.68671 72.17631 71.08794 70.35147 69.92466 69.78478 69.92466 70.35147 71.08794 72.17631 73.68671 75.73375 78.51037 82.35768 87.86551 95.02432 101.8915 95.02432 89.65532 85.74783 82.85104 80.67869 79.05793 77.88142 77.08148 76.61653 76.46394 76.61653 77.08148 77.88142 79.05793 80.67869 82.85104 85.74783 89.65532 95.02432 101.8915	89.65532	82.35768	76.87983	73.11467	70.43407	68.4779	67.04516	66.01812	65.32561	64.92516	64. 79 406	64. 92 516	65.32561	66.01812	67.04516	68.4779	70.43407	73.11467	76.87983	82.35768	89.65532
101.8915 95.02432 89.65532 85.74783 82.85104 80.67869 79.05793 77.88142 77.08148 76.61653 76.46394 76.61653 77.08148 77.88142 79.05793 80.67869 82.85104 85.74783 89.65532 95.02432 101.8915	95.02432	87.86551	82.35768	78.51037	75.73375	73.68671	72.17631	71.08794	70.35147	69. 924 66	69. 78 478	69.92466	70.35147	71.08794	72.17631	73.68671	75.73375	78.51037	82.35768	87.86551	95.02432
	101.8915	95.02432	89.65532	85.74783	82.85104	80.67869	79.05793	77.88142	77.08148	76.61653	76 .46 394	76 .61653	77.08148	77.88142	79.05793	80.67869	82.85104	85.74783	89.65532	95.02432	101.8915

Gambar E.2. Spring tanah full model z = 1

Selanjutnya akan dibandingkan dengan hasil K_p 1000 mesh 5x5. Hasil di atas ditambah dengan spring tiang K_p 1000.

101.8915	95.02432	89.65532	85.74783	82.85104	80.67869	79.05793	77.88142	77.08148	76.61653	76.463939	76.61653	77.08148	77.88142	79.057932	80.67869	82.85104	85.74783	89.655324	95.02432	101.8915
95.02432	87.86551	82.35768	78.51037	75.73375	73.68671	72.17631	71.08794	70.35147	69.92466	69.784779	69.92466	70.35147	71.08794	72.176308	73.68671	75.73375	78.51037	82.35768	87.86551	95.02432
89.65532	82.35768	4879.277	73.11467	70.43407	68.4779	4426.066	66.01812	65.32561	64.92516	4285.4232	64.92516	65.32561	66.01812	4426.066	68.4779	70.43407	73.11467	4879.277	82.35768	89.65532
85.74783	78.51037	73.11467	69.41526	66.79305	64.88848	63.49925	62.50663	61.83892	61.4534	61.327281	61.4534	61.83892	62.50663	63.499247	64.88848	66.79305	69.41526	73.114669	78.51037	85.74783
82.85104	75.73375	70.43407	66.79305	64.21212	62.3399	60.9766	60.00412	59.35083	58.97398	58.850765	58.97398	59.35083	60.00412	60.9766	62.3399	64.21212	66.79305	70.434071	75.73375	82.85104
80.67869	73.68671	68.4779	64.88848	62.3399	60.49037	59.14398	58.18411	57.53967	57.1681	57.04664	57.1681	57.53967	58.18411	59.14398	60.49037	62.3399	64.88848	68.477903	73.68671	80.67869
79.05793	72.17631	4426.066	63.49925	60.9766	59.14398	3978.44	56.85787	56.21913	55.85091	3842.0542	55.85091	56.21913	56.85787	3978.44	59.14398	60.9766	63.49925	4426.066	72.17631	79.05793
77.88142	71.08794	66.01812	62.50663	60.00412	58.18411	56.857 87	55.91205	55.27708	54.91102	54.791369	54.91102	55.27708	55.91205	56.857865	58.18411	60.00412	62.50663	66.018123	71.08794	77.88142
77.08148	70.35147	65.32561	61.83892	59.35083	57.53967	56.21913	55.27708	54.64452	54.27983	54.160624	54.27983	54.64452	55.27708	56.219128	57.53967	59.35083	61.83892	65.325612	70.35147	77.08148
76.61653	69.92466	64.92516	61.4534	58.97398	57.1681	55.85091	54.91102	54.27983	53.9159	53.796945	53.9159	54.27983	54.91102	55.850907	57.1681	58.97398	61.4534	64.925159	69.92466	76.61653
76.46394	69.78478	4285.423	61.32728	58.85077	57.04664	3842.054	54.79137	54.16062	53.79694	3705.3236	53.79694	54.16062	54.79137	3842.0542	57.04664	58.85077	61.32728	4285.4232	69.78478	76.46394
76.61653	69.92466	64.92516	61.4534	58.97398	57.1681	55.85091	54.91102	54.27983	53.9159	53.796945	53.9159	54.27983	54.91102	55.850907	57.1681	58.97398	61.4534	64.925159	69.92466	76.61653
77.08148	70.35147	65.32561	61.83892	59.35083	57.53967	56.21913	55.27708	54.64452	54.27983	54.160624	54.27983	54.64452	55.27708	56.219128	57.53967	59.35083	61.83892	65.325612	70.35147	77.08148
77.88142	71.08794	66.01812	62.50663	60.00412	58.18411	56.85787	55.91205	55.27708	54.91102	54.791369	54.91102	55.27708	55.91205	56.857865	58.18411	60.00412	62.50663	66.018123	71.08794	77.88142
79.05793	72.17631	4426.066	63.49925	60.9766	59.14398	3978.44	56.85787	56.21913	55.85091	3 842.0542	55.85091	56.21913	56.85787	3978.44	59.14398	60.9766	63.49925	4426.066	72.17631	79.05793
80.67869	73.68671	68.4779	64.88848	62.3399	60.49037	59.14398	58.18411	57.53967	57.1681	57.04664	57.1681	57.53967	58.18411	59.14398	60.49037	62.3399	64.88848	68.477903	73.68671	80.67869
82.85104	75.73375	70.43407	66.79305	64.21212	62.3399	60.9766	60.00412	59.350 83	58.97398	58.850765	58.97398	59.35083	60.00412	60.9766	62.3399	64.21212	66.79305	70.434071	75.73375	82.85104
85.74783	78.51037	73.11467	69.41526	66.79305	64.88848	63.49925	62.50663	61.83892	61.4534	61.327281	61.4534	61.83892	62.50663	63.499247	64.88848	66.79305	69.41526	73.114669	78.51037	85.74783
89.65532	82.35768	4879.277	73.11467	70.43407	68.4779	4426.066	66.01812	65.32561	64.92516	4285.4232	64.92516	65.32561	66.01812	4426.066	68.4779	70.43407	73.11467	4879.277	82.35768	89.65532
95.02432	87.86551	82.35768	78.51037	75.73375	73.68671	72.17631	71.08794	70.35147	69.92466	69.784779	69.92466	70.35147	71.08794	72.176308	73.68671	75.73375	78.51037	82.35768	87.86551	95.02432
101.8915	95.02432	89.65532	85.74783	82.85104	80.67869	79.05793	77.88142	77.08148	76.61653	76.463939	76.61653	77.08148	77.88142	79.057932	80.67869	82.85104	85.74783	89.655324	95.02432	101.8915

Universitas Indonesia

38.232	76.617	77.081	77.881	79.058	80.679	82.851	85.748	89.655	95.024	101.891
34.892	69.925	70.351	71.088	72.176	73.687	75.734	78.510	82.358	87.866	95.024
2142.712	64.925	65.326	66.018	4426.066	68.478	70.434	73.115	4879.277	82.358	89.655
30.664	61.453	61.839	62.507	63.499	64.888	66.793	69.415	73.115	78.510	85.748
29.425	58.974	59.351	60.004	60.977	62.340	64.212	66.793	70.434	75.734	82.851
28.523	57.168	57.540	58.184	59.144	60.490	62.340	64.888	68.478	73.687	80.679
1921.027	55.851	56.219	56.858	3978.440	59.144	60.977	63.499	4426.066	72.176	79.058
27.396	54.911	55.277	55.912	56.858	58.184	60.004	62.507	66.018	71.088	77.881
27.080	54.280	54.645	55.277	56.219	57.540	59.351	61.839	65.326	70.351	77.081
26.898	53.916	54.280	54.911	55.851	57.168	58.974	61.453	64.925	69.925	76.617
926.331	26.898	27.080	27.396	1921.027	28.523	29.425	30.664	2142.712	34.892	38.232

Gambar E.3. Spring tiang + tanah full model z = 1

Gambar E.4. Spring tiang + tanah $\frac{1}{4}$ model z = 1

- Output displacement maksimum fine mesh 10×10 K_p 1000 K_r 0.01 = -0.027948 (error 148.43%)
- Output displacement maksimum mesh $5x5 \text{ K}_p 1000 \text{ K}_r 0.01 = -0.007368 \text{ (error } 34.51\%)$
- Output FE PCG = -0.01125

Ternyata hasil yang diperoleh dari fine mesh jauh terlalu besar atau dengan kata lain spring menjadi terlampau lemah. Dan selisihnya dengan FE PCG malah lebih besar dibandingkan mesh 5x5. Penyebabnya karena pada mesh 10x10 interaksi antarnodal yang dihitung dengan Mindlin menjadi terlampau banyak sehingga settlement per gaya satu satuannya menjadi sangat besar yang akhirnya mengakibatkan spring menjadi sangat kecil.

Universitas Indonesia