PEMODELAN DAN ANALISIS PENGARUH KEBIJAKAN NILAI TUKAR TERHADAP PERUBAHAN PRODUKSI SEKTOR MANUFAKTUR

SKRIPSI

RIZKY PURNAMA INDAH 0606077516

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI DEPOK JUNI 2010

Universitas Indonesia

UNIVERSITAS INDONESIA

Pemodelan dan Analisis Pengaruh Kebijakan Nilai Tukar terhadap Perubahan Produksi Sektor Manufaktur

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

RIZKY PURNAMA INDAH 0606077516

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI DEPOK JUNI 2010

Universitas Indonesia

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Rizky Purnama Indah

NPM : 0606077516

Tanda Tangan:

Tanggal : 23 Juni 2010

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh :
Nama : Rizky Purnama Indah
NPM : 0606077516
Program Studi : Teknik Industri
Judul Skripsi : Pemodelan dan Analisis Pengaruh Kebijakan Nilai Tukar terhadap Perubahan Produksi Sektor Manufaktur
Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima
sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar
Sarjana Teknik pada Program Studi Teknik Industri, Fakultas Teknik,
Universitas Indonesia
DEWAN PENGUJI
Pembimbing: Ir. Sri Bintang Pamungkas, MSISE., PhD (
Penguji : Ir. Yadrifil, M.Sc. ()
Penguji : Ir. Erlinda Muslim, MEE ()
Penguji : Ir. Rahmat Nurcahyo, M.Eng.Sc ()
Ditetapkan di : Depok
Tanggal : Juli 2010
Tanggar . Juli 2010

KATA PENGANTAR

Puji syukur ke hadirat Allah SWT karena hanya dengan izin-Nya skripsi ini dapat diselesaikan tepat waktu. Penulis ingin mengucapkan terima kasih kepada pihakpihak yang telah membantu dalam penyusunan skripsi ini, yaitu:

- 1. Bapak Ir. Sri Bintang Pamungkas, MSISE., PhD selaku pembimbing skripsi yang telah banyak membantu penulis dalam menyusun skripsi baik dalam hal transfer pengetahuan secara langsung maupun juga dalam hal memfasilitasi penulis dengan banyak literatur sehingga penulis termudahkan dalam penyusunan skripsi ini.
- Bapak Rahmat, Bapak Dendi, Bapak Akhmad, Ibu Ian dan Bapak Komar atas segala saran dan masukan yang berguna bagi proses penyusunan skripsi.
- 3. Pihak BPS dan Bank Indonesia yang telah memudahkan penulis dalam mengumpulkan data.
- 4. Ijul, Arip Muttaqien, Fajar, Jaji, Nadia, dan Gifar yang telah bersedia menjadi tempat diskusi dan tempat penulis mencari jawaban atas pertanyaan-pertanyaan teknis.
- 5. Ibu, Papa, Al, Kakak, Da Ron dan Uni yang telah tidak pernah lelah berdoa untuk kelancaran penyusunan skripsi ini.
- 6. Fitri, Mutia, Kania Devi dan Lintang sebagai teman satu bimbingan, tempat berbagi kegalauan dan semangat.
- 7. Yunika, Tuty, Eki, Debbie, Kurnia, Anisa 'Bahar', Nina, Sekar, Okky, Billy, Norman dan Steven sebagai tempat penulis membuang letih, menemukan tenang dan mendapatkan berkantung semangat.
- 8. Anton dan Monfi sebagai teman seperjuangan 'regresi'.
- 9. Teman-teman TI06 yang telah berbagi galau dan semangat.

- 10. Bu Har, Mba Willy, Mba Anna, Mas Iwan, Pak Mursyid dan semua pihak sekretariat Departemen Teknik Industri UI atas bantuannya selama ini.
- 11. Dan semua pihak yang tidak dapat disebutkan satu persatu, terima kasih atas doa dan semangat yang telah dipercikkan.

Penulis menyadari skripsi ini masih memiliki banyak kekurangan. Oleh karena itu saran dan kritik penulis harapkan dari para pembaca sebagai masukan yang bermanfaat di masa datang. Semoga skripsi ini dapat berguna bagi yang membacanya.

Depok, 21 Juni 2010

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan dibawah ini:

Nama : Rizky Purnaman Indah

NPM : 0606077516

Program Studi: Teknik Industri Departemen: Teknik Industri

Fakultas : Teknik Jenis karya : Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah yang berjudul:

Pemodelan dan Analisis Pengaruh Kebijakan Nilai Tukar terhadap Perubahan Produksi Sektor Manufaktur

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (datahouse), merawat, dan mempublikasikan tugas akhir saya tanpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal: 30 Juni 2010

Yang menyatakan

(Rizky Purnama Indah)

ABSTRAK

Nama : Rizky Purnama Indah

Program Studi: Teknik Industri

Judul : Pemodelan dan Analisis Pengaruh Kebijakan Nilai Tukar

terhadap Perubahan Produksi Sektor Manufaktur

Krisis ekonomi tahun 1997 menurunkan nilai tukar rupiah terhadap dolar secara signifikan, namun tidak meningkatkan jumlah ekspor produksi sektor manufaktur secara signifikan. Bisa jadi, hal ini dikarenakan penetapan sistem nilai tukar Indonesia yang tidak mendukung peningkatan ekspor sektor manufaktur.

Penulisan ini bertujuan menganalisa pengaruh kebijakan ekonomi khususnya nilai tukar, terhadap perubahan produksi sektor manufaktur dengan menggunakan model simulasi. Tidak hanya kebijakan nilai tukar yang menjadi fokus utama penelitian, tetapi juga dapat dilihat pengaruh kebijakan pemerintah lainnya terhadap perubahan produksi sektor manufaktur.

Model nantinya diharapkan dapat menjadi medium untuk menganalisa kebijakan pemerintah terkait pengaruhnya terhadap produksi manufaktur.

Kata Kunci: Ekonomi Makro, Model, Kebijakan Ekonomi, Kebijakan Nilai Tukar, Persamaan Simultan, Gauss-Seidel

ABSTRACT

Name : Rizky Purnama Indah Study Program : Industrial Engineering

Title : Modeling and Analysis Influence of Exchange Rate Policy

to Manufacturing Production

The economy crisis of 1997 significantly decreased rupiah's exchange rate but not significantly increased the export and the production of manufacturing products. Probably it is because the Indonesia's Exchange Rate policy rate on exchange rate and industry, did not support the manufacturing sector.

The purpose of this study is to analyze the influence of economic policy related to the manufacturing production. The study is modeling a simulation that can predict the quantity of manufacturing production appropriate with certain policy.

The model is expected to be an instrument which can be used to analyze government policy.

Keyword: Macro Economic, Model, Economic Policy, Exchange Rate, Simultaneous Equation, Gauss-Seidel

DAFTAR ISI

JU	DUL		i
\mathbf{H}	ALAMAN	PERNYATAAN ORISINALITAS	ii
\mathbf{H}	ALAMAN	PENGESAHAN	iii
		GANTAR	
LF	EMBAR PI	ERNYATAAN PERSETUJUAN PUBLIKASI ILMIAH UNTUK	S
		GAN AKADEMIS	
		I	
		AMBAR	
		ABEL	
1.		IULUAN	
		Belakang	
1		usan Masalah	
	1.3 Diagra	nm Keterkaitan Masalah	3
		n Penelitian	
	1.5 Tujuai	n Penelitian	5
		ah-langkah dan Metodologi Penelitian	
	1.7 Sistem	natika Penulisan	7
2.		GKA TEORI DAN PEMODELAN EKONOMI	
		Ekonomi Makro	
		Persamaan-persamaan Ekonomi Makro	
	2.1.2	0	
		akan-kebijakan Ekonomi Makro	
	2.2.1	Variabel-variabel Eksogen	
	2.2.2	Kebijakan Moneter	
	2.2.3	Kebijakan Fiskal	
	2.2.4	Kebijakan Neraca Pembayaran (Balance of Payment)	
		mbangan Umum	
		lelan	
	2.4.1		
	2.4.2	Teknik Regresi	
	2.4.3		
•	2.4.4		
3.		OLOGI PENELITIAN	
		mpulan Data	
	_	lahan Data	
	3.2.1	Regresi	
	3.2.2	Persamaan Simultan dan Teknik Gauss-Seidel	
	3.2.3		
4.		A DAN PENGOLAHAN DATA	
		rio 1 – Pengaruh Penawaran Uang (M) terhadap PDB Manufaktur	
	4.2 Skena	rio 2 – Pengaruh Belanja Negara (G) terhadap PDB Manufaktur	04

6.	DAFTAR	REFERENSI	83
5.	KESIMP	ULAN DAN SARAN	82
	4.4.2	Sub Skenario 4 – Nilai Tukar Tetap	73
	4.4.1	Sub Skenario 4 – Nilai Tukar Mengambang	69
	4.4 Skena	rio 4 – Pengaruh Nilai Tukar (ER) terhadap PDB Manufaktur	68
	terhad	ap PDB Manufaktur	66
	4.3 Skena	rio 3 – Pengaruh Penawaran Uang (M) dan Belanja Negara	(G)

DAFTAR GAMBAR

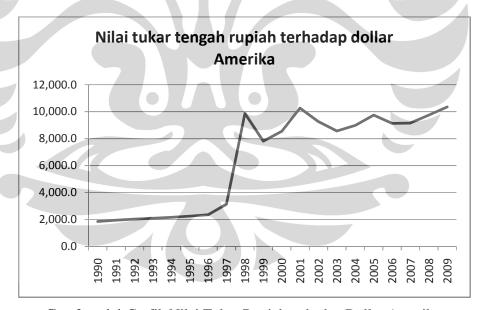
Gambar 1.1 Grafik Nilai Tukar Rupiah terhadap Dollar Amerika	1
Gambar 1.2 Grafik Perkembangan PDB Manufaktur Indonesia	2
Gambar 1.3 Diagram Keterkaitan Masalah	3
Gambar 1.4 Diagram Alir Metodologi Penelitian	8
Gambar 2.1 Grafik Fungsi Produksi	11
Gambar 2.2 Grafik Permintaan Tenaga Kerja	12
Gambar 2.3 Grafik IS-LM	12
Gambar 2.4 Grafik AD-AS	13
Gambar 2.5 Grafik IS-LM-BP	13
Gambar 2.6 Model Simultan Ekonomi Makro	A
Gambar 2.7 Model Simulasi	22
Gambar 3.1Uji Distribusi Normal pada Residual Konsumsi Nominal	28
Gambar 3.2 Area Uji Autokorelasi Konsumsi Nominal	29
Gambar 3.3 Uji Uji Heteroskedastisitas Konsumsi Nominal	30
Gambar 3.4 Uji Distribusi Normal pada Residual Konsumsi	31
Gambar 3.5 Area Uji Autokorelasi Konsumsi	
Gambar 3.6 Uji Heteroskedastisitas Konsumsi	33
Gambar 3.7 Uji Distribusi Normal pada Residual Investasi	35
Gambar 3.8 Area Uji Autokorelasi Investasi	36
Gambar 3.9 Uji Heteroskedastisitas Investasi	37
Gambar 3.10 Uji Distribusi Normal pada Residual Ekspor	39
Gambar 3.11 Area Uji Autokorelasi Ekspor	39
Gambar 3.12 Uii Heteroskedastisitas Ekspor	40

Gambar 3.13 Uji Distribusi Normal pada Residual Impor	42
Gambar 3.14 Area Uji Autokorelasi Impor	43
Gambar 3.15 Uji Heteroskedastisitas Impor.	44
Gambar 3.16 Uji Distribusi Normal pada Residual Suku Bunga	45
Gambar 3.17 Area Uji Autokorelasi Suku Bunga	46
Gambar 3.18 Uji Heteroskedastisitas Suku Bunga	47
Gambar 3.19 Uji Distribusi Normal pada Residual PDB Manufaktur	49
Gambar 3.20 Area Uji Autokorelasi PDB Manufaktur	50
Gambar 3.21 Uji Heteroskedastisitas PDB Manufaktur	51
Gambar 3.22 Persamaan Regresi Sebagai <i>Input</i> dari Model Persamaan Simultan	53
Gambar 3.23 Pemilihan Gauss-Seidel pada Software	53
Gambar 3.24 Tampilan Akhir Gauss-Seidel	54
Gambar 3.25 Grafik Basic Run Suku Bunga	56
Gambar 3.26 Grafik Basic Run Ekspor	57
Gambar 3.27 Grafik Basic Run Impor	57
Gambar 3.28 Grafik Basic Run Investasi	58
Gambar 3.29 Grafik Basic Run Konsumsi	58
Gambar 3.30 Grafik Basic Run Konsumsi Nominal	59
Gambar 3.31 Grafik Basic Run Log Natural PDB Manufaktur	59
Gambar 3.32 Grafik Basic Run PDB Manufaktur	60
Gambar 4.1 Grafik Pengaruh M terhadap Suku Bunga	62
Gambar 4.2 Grafik Pengaruh M terhadap PDB Manufaktur	63
Gambar 4.3 Grafik Pengaruh G terhadap PDB Manufaktur	65
Gambar 4.4 Grafik Pengaruh M dan G terhadap Suku Bunga	66
Gambar 4.5 Grafik Pengaruh M dan G terhadap PDB Manufaktur	67
Gambar 4.6 Grafik Pengaruh Nilai Tukar Mengambang terhadap Ekspor	69

Gambar 4.7 Grafik Pengaruh Nilai Tukar Mengambang terhadap Impor	70
Gambar 4.8 Grafik Pengaruh Nilai Tukar Mengambang terhadap Suku Bunga	71
Gambar 4.9 Grafik Pengaruh Nilai Tukar Mengambang terhadap PDB Manufaktur	72
Gambar 4.10 Grafik Pengaruh Nilai Tukar Tetap (Rp 8000/US\$) terhadap PDB Manufaktur	74
Gambar 4.11 Grafik Pengaruh Nilai Tukar Tetap (Rp 6000/US\$) terhadap PDB Manufaktur	75
Gambar 4.12 Grafik Pengaruh Nilai Tukar Tetap (Rp 2000/US\$) terhadap PDB Manufaktur	
Gambar 4.13 Grafik Pergerakan Pendapatan per Kapita	

DAFTAR TABEL

Tabel 3.1 GDP Defaltor 1997-2009	25
Tabel 3.2 Contoh Data Nominal menjadi Riil	26
Tabel 3.3 Data Regresi Konsumsi Nominal	27
Tabel 3.4 Hasil Regresi Konsumsi Nominal	27
Tabel 3.5 Uji Korelasi Variabel Independen Konsumsi Nominal	29
Tabel 3.6 Data Regresi Konsumsi	30
Tabel 3.7 Hasil Regresi Konsumsi	31
Tabel 3.8Uji Korelasi Variabel Independen Konsumsi	33
Tabel 3.9 Data Regresi Investasi	34
Tabel 3.10 Hasil Regresi Investasi	34
Tabel 3.11 Uji Korelasi Variabel Independen Investasi	36
Tabel 3.12 Data Regresi Ekspor	37
Tabel 3.13 Hasil Regresi Ekspor	38
Tabel 3.14 Uji Korelasi Variabel Independen Ekspor	40
Tabel 3.15 Data Regresi Impor	41
Tabel 3.16 Hasil Regresi Impor	41
Tabel 3.17 Uji Korelasi Variabel Independen Impor	43
Tabel 3.18 Data Regresi Suku Bunga	44
Tabel 3.19 Hasil Regresi Suku Bunga	45
Tabel 3.20 Uji Korelasi Variabel Independen Suku Bunga	46
Tabel 3.21Data Regresi PDB Manufaktur	48
Tabel 3.22 Hasil Regresi Suku Bunga	48
Tabel 3.23 Uji Korelasi Variabel Inpenden PDB Mnaufaktur	50
Tabel 3.24 Daftar Persamaan Regresi	52

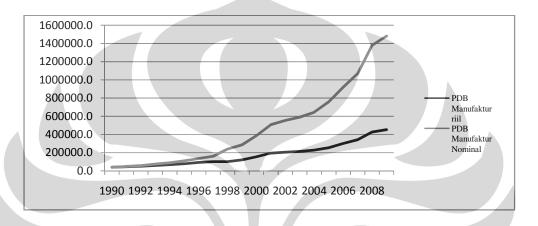

Tabel 3.25 Diagram Keterkaitan Variabel Persamaan Simultan	52
Tabel 3.26 Nilai Aktual Sebagai Input untuk Basic Run	55
Tabel 4.1 Skenario Simulasi Prediksi	61
Tabel 4.2 Pengaruh M terhadap Y	63
Tabel 4.3 Pengaruh G terhadap Y	64
Tabel 4.4 Pengaruh M dan G terhadap r	65
Tabel 4.5 Pengaruh M dan G terhadap Y	67
Tabel 4.6 Pengaruh M dan G terhadap PDB manufaktur	68
Tabel 4.7 Pengaruh nilai tukar mengambang terhadap ekspor	70
Tabel 4.8 Pengaruh nilai tukar mengambang terhadap impor	71
Tabel 4.9 Pengaruh nilai tukar mengambang terhadap suku bunga	72
Tabel 4.10 Pengaruh nilai tukar mengambang terhadap PDB manufaktur	73
Tabel 4.11 Pengaruh nilai tukar tetap (Rp 8000/US\$) terhadap PDB manufaktur	74
Tabel 4.12 Pengaruh nilai tukar tetap (Rp 6000/US\$) terhadap PDB manufaktur	76
Tabel 4.13 Pengaruh nilai tukar tetap (Rp 2000/US\$) terhadap PDB manufaktur	77
Tabel 4.14 Cadangan devisa dari tahun 1997-2009	
Tabel 4.15 Prediksi Cadangan Devisa tiap Skenario	78
Tabel 4.16 Prediksi Pertumbuhan PDB Total dan Kebijakan yang Diterapkan	79
Tabel 4.17 Data Historis dan Data Prediksi Pendapatan per Kapita	81
Tabel 4.18 Rata-rata Pertumbuhan Pendapatan per Kapita dalam 3 Periode	81

BAB 1 PENDAHULUAN

Bab ini berisi tentang bahasan awal dari permasalahan yang diangkat menjadi topik skripsi. Dalam bab ini terdapat latar belakang masalah, perumusan masalah, tujuan penelitian, langkah-langkah dan metodologi penelitian juga sistematika penulisan. Dalam bab ini pula disajikan gambaran permasalahan secara umum.

1.1 Latar Belakang

Di Triwulan III tahun 1997, Indonesia mengalami guncangan perekonomian. Nilai rupiah saat itu jatuh empat kali lipat dari sekitar Rp.2400/US\$¹ menjadi sekitar Rp.9500-Rp.10000 per US\$. Agar lebih dapat terlihat jelas perkembangan nilai tukar rupiah terhadap dollar Amerika, maka grafik nilai tukar disajikan di bawah ini:

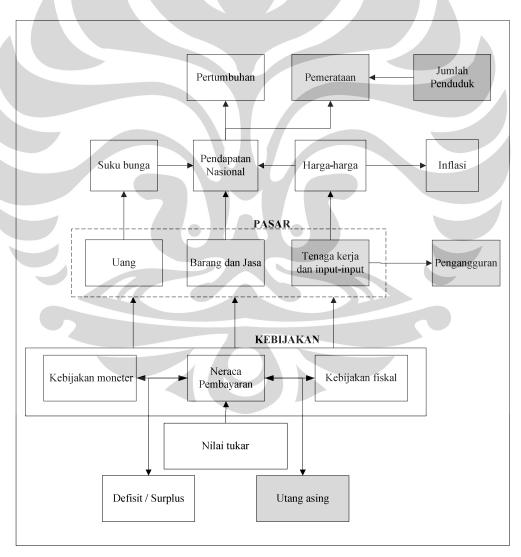

Gambar 1.1 Grafik Nilai Tukar Rupiah terhadap Dollar Amerika

(Sumber: Bank Indonesia)

_

¹ polhukam.kompasiana.com

Dari grafik kurs tengah tahunan di atas, dapat terlihat bahwa rupiah terus terdepresiasi sejak tahun 1997. Tidak hanya itu, dari data yang diperoleh, ternyata Pendapatan Domestik Bruto (PDB) Indonesia, khususnya PDB Manufaktur, tidak banyak berubah sejak pelemahan nilai rupiah tersebut hingga saat ini. Hal ini dapat disaksikan dari grafik PDB Manufaktur di bawah ini:


Gambar 1.2 Grafik Perkembangan PDB Manufaktur Indonesia

Jika ingin dilihat dengan cermat, sejak tahun 1997 memang terjadi peningkatan PDB manufaktur namun peningkatan yang dialami tidak signifikan seperti yang terjadi pada grafik nilai tukar. Hal ini menjadi pertanyaan tentang seberapa besar pengaruh depresiasi rupiah terhadap kegiatan industri, khususnya ekspor dan impor. Berdasarkan teori ekonomi makro, seharusnya ekspor Indonesia meningkat seiring dengan jatuhnya nilai rupiah di pasar global, peningkatan permintaan ekspor ini akan memicu juga produksi dalam negeri. Sangat mungkin, depresiasi rupiah empat kali lipat tehadap US dollar akan juga mempercepat perputaran mesin produksi empat kali lebih kencang namun hal itu tidak terjadi di 13 tahun belakangan ini. Tentu ada hal-hal lain yang dapat menghambat produktivitas barang dan jasa termasuk di dalamnya kebijakan fiskal dan kebijakan moneter dalam negeri.

1.2 Perumusan Masalah

Penelitian ini bermaksud mengkaji seberapa besar pengaruh kebijakan nilai tukar di Indonesia terhadap perubahan ekspor yang akhirnya mempengaruhi juga produksi sektor manufaktur. Lebih spesifik lagi, penelitian ini bermaksud menjawab pengaruh kebijakan *fixed* dan *floating exchange rate* terhadap PDB sektor manufaktur.

1.3 Diagram Keterkaitan Masalah

Gambar 1.3 Diagram Keterkaitan Masalah

Nilai tukar pada gambar di atas terlihat mempengaruhi neraca pembayaran di mana neraca pembayaran selain memberikan pengaruh kepada kebijakan fiskal dan kebijakan moneter juga mendapatkan pengaruh dari dua kebijakan tersebut. Interaksi tersebut menghasilkan dua keadaan bagi pemerintah yaitu surplus atau defisitnya anggaran pemerintah atau terjadi perubahan pada utang asing. Sebagai kebijakan, ketiga hal tersebut mempengaruhi pasar barang dan jasa, peredaran dan nilai uang, dan juga mempengaruhi pasar tenaga kerja dan inpu-input produksi.

Uang kemudian akan mempengaruhi tingkat suku bunga yang akhirnya mempengaruhi pendapatan nasional. Begitu juga dengan pasar tenaga kerja dan input-input produksi yang mempu mempengaruhi harga secara keseluruhan yang pada akhirnya juga mempengaruhi pendapatan nasional. Titik akhirnya adalah pertumbuhan ekonomi yang dipengaruhi oleh pendapatan nasional. Jika pertumbuhan ekonomi baik, maka dapat dilakukan pemerataan kesejahteraan penduduk yang dipengaruhi oleh jumlah penduduk.

Pada gambar 1.3 terdapat warna berbeda dari variabel ekonomi makro yang ditampilkan. Bentuk segi empat berwarna putih merupakan variabel ekonomi makro yang masuk ke dalam lingkup tinjauan dari penelitian ini. sedangkan bentuk segi empat yang berwarna abu-abu merupakan variabel ekonomi makro yang tidak masuk ke dalam lingkup tinjauan penelitian ini.

1.4 Batasan Penelitian

Penelitian ini memiliki batasan-batasan sebagai berikut:

- Produk Domestik Bruto diwakilkan oleh Produk Domestik Bruto (PDB) sektor manufaktur
- Data yang digunakan adalah data sekunder sejak tahun 1997 karena tahun tersebut merupakan tahun di mana rupiah mulai terdepresiasi secara signifikan.
- Simulasi prediksi dilakukan dalam kurun waktu 5 tahun mendatang (2010, 2011, 2012, 2013, dan 2014)
- Variabel eksogen yang digunakan adalah kebijakan nilai tukar, kebijakan penawaran uang, kebijakan belanja negara dan kebijakan pajak.

Kebijakan pajak tidak digunakan dalam skenario simulasi

1.5 Tujuan / Hasil / Manfaat Penelitian

Tujuan utama dari skripsi ini adalah untuk membandingkan pengaruh kebijakan *exchange rate*, baik *fixed exchange rate* atau *floating exchange rate*, terhadap kenaikan produksi manufaktur yang merupakan salah satu indikator membaiknya industri di suatu negara (dalam hal ini diwakili oleh PDB sektor manufaktur karena analisis dilakukan lebih spesifik). Selain tujuan utama di atas, penulis juga memiliki tujuan antara yaitu:

- Melihat perkembangan masing-masing kebijakan terhadap variabel-variabel ekonomi makro dengan membuat simulasi prediksi untuk masing-masing kebijakan dalam kurun waktu 5 tahun ke depan.
- Mencermati variabel lain terkait kebijakan moneter atau kebijakan fiskal yang dapat mempengaruhi pertumbuhan sektor manufaktur.

Adapun hasil dari penelitian ini adalah berupa model simulasi kebijakan yang berpengaruh terhadap perubahan produksi sektor manufaktur khusunya dan variabel endogen lainnya pada umumnya.

Manfaat dari penelitian ini salah satunya adalah untuk melihat pengaruh suatu kebijakan terhadap variabel ekonomi makro pada perekonomian suatu negara sebelum kebijakan tersebut diimplementasikan.

1.6 Langkah-langkah dan Metodologi Penelitian

Untuk melakukan analisis mendalam terhadap kebijakan pemerintah terkait *exchange rate*, penulis menggunakan metode sebagai berikut:

Perumusan Masalah

Dengan mendefinisikan masalah, penulis akan bekerja dengan lebih efektif dan efisien karena dapat lebih fokus pada batasan masalah yang dibangun terlebih dahulu.

Kerangka Teori danPemodelan

Pada tahap ini, penulis mencari dan menyusun literatur yang dapat mendukung dan memperkuat teori-teori yang dijadikan dasar analisis. Teori yang dikaji adalah teori-teori seputar ekonomi makro dan kebijakan-kebijakan yang termasuk di dalamnya.

• Pengumpulan dan Pengolahan Data

Data yang dibutuhkan adalah data sekunder yang bersumber pada Badan Pusat Statistik (BPS) dan situs-situs internet terkait. Data yang telah didapat kemudian dipelajari dan disortir sekiranya terdapat data yang tidak perlu dipakai dalam pengolahan. Data yang telah dipelajari dan disortir kemudian diolah agar siap menjadi input bagi model simulasi. Untuk keperluan penelitian, data yang digunakan adalah data dalam harga riil. Data yang digunakan terbatas pada variabel yang berpengaruh pada model.

Pembangunan Model dan Validasi Model

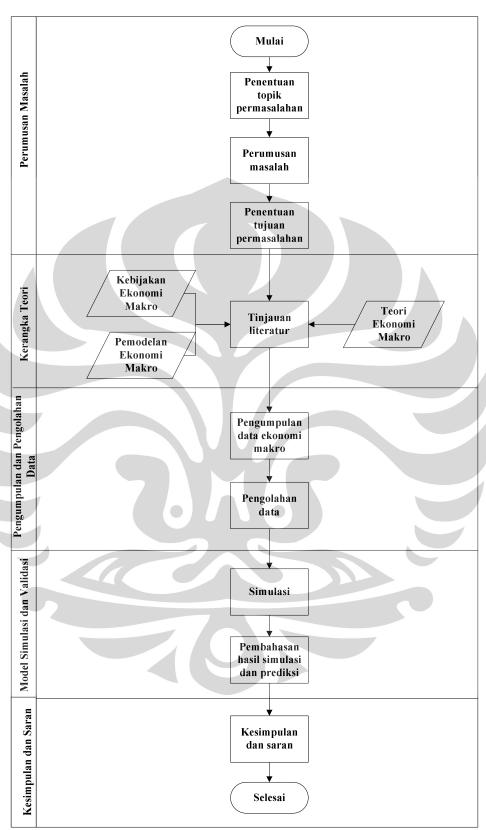
Model yang dibangun adalah berupa model persamaan simultan yang terdiri dari beberapa persamaan regresi. Oleh karena itu, sebelum membangun model, terlebih dahulu dilakukan tahap regresi bagi variabel endogen danvariabel eksogen yang digunakan. Model persamaan simultan yang digunakan menggunakan teknik Gauss-Seidel yang penjelasannya lebih lanjut dibahas dalam bab 2. Dalam tahap validasi model, penulis akan melakukan simulasi terhadap model berdasarkan hasil dari simulasi yang menggunakan masukan data aktual. Hasil berupa grafik dibandingkan antara grafik dari model dan grafik yang terbentuk dari data aktual. Beda atau jeda diantara keduanya yang kemudian dijadikan dasar dari validasi.

Pembahasan Hasil Simulasi dan Prediksi

Hasil dari simulasi yang telah dijalankan terhadap kebijakan nilai tukar kemudian dievaluasi dan diprediksi keadaan perekonomian untuk lima tahun ke depan terkait produksi sektor manufaktur yang diwakili oleh nilai Produk Domestik Bruto (PDB) sektor manufaktur. Prediksi produksi sektor manufaktur dilakukan dengan mensimulasikan model yang ada dengan berbagai skenario berbeda. Tidak hanya nilai tukar yang dilihat pengaruhnya terhadap PDB manufaktur, tetapi juga kebijakan pemerintah lainnya seperti

kebijakan penawaran uang (M) dan kebijakan belanja negara (G) yang merupakan bagian dari kebijakan fiskal.

Kesimpulan dan Saran


Pada tahap ini, penulis merangkum intisari dari pemodelan dan analisa dari model simulasi dan memberikan saran untuk lebih baiknya penelitian serupa di masa datang

Adapun diagram alir langkah-langkah penenelitian disajikan pada gambar 1.4.

1.7 Sistematika Penulisan

Tugas akhir ini tersusun dari lima bab, dengan rician sebagai berikut :

- Bab Pendahuluan, terdiri dari latar belakang permasalahan, diagram keterkaitan masalah, perumusan masalah, tujuan penelitian, metodologi penelitian, diagram alir metodologi penelitian, dan sistematika penelitian.
- Bab Kerangka Teori, tersusun dari teori yang mendukung tugas akhir ini seperti teori ekonomi makro, kebijakan ekonomi makro, dan pemodelan ekonomi makro.
- Bab Pengumpulan dan Pengolahan Data, terdiri dari pengumpulan data dan pengolahan data.
- Bab Analisa, terdiri dari pembangunan model simulasi, simulasi, dan pembahasan hasil simulasi.
- Bab Kesimpulan dan Saran, terdiri dari kesimpulan tugas akhir dan saran yang diajukan berdasarkan hasil simulasi.

Gambar 1.4 Diagram Alir Metodologi Penelitian

BAB 2

KERANGKA TEORI DAN PEMODELAN EKONOMI

Bab ini berisi teori-teori tidak hanya teori ekonomi makro tetapi juga teoriteori tentang regresi dan persamaan simultan (Gauss-Seidel) sebagai metode pemodelan ekonomi.

2.1 Teori Ekonomi Makro

Perbedaan yang mencolok pada pengertian ekonomi mikro dan makro jika halnya pada ekonomi mikro, pelaku terdiri dari satu agen atau perusahaan dengan sekelompok konsumen. Sedangkan pada ekonomi makro agen atau perusahaan berkumpul menjadi satu kesatuan besar sebagai produsen berbagai industry dengan kelompok besar konsumen yang juga merupakan kumpulan dari kelompok-kelompok konsumen pada tinjauan mikro.

2.1.1 Persamaan-persamaan Ekonomi Makro

Berikut adalah persamaan-persamaan terkait dengan teori ekonomi makro:

a. Persamaan Produksi

$$Y = f(K, N) \tag{2.1}$$

Di mana persamaan tersebut menerangkan bahwa Y dipengaruhi oleh teknologi (K) dan tenaga kerja (N) di mana dY/dK>0, yang berarti setiap peningkatan K diikuti juga oleh peningkatan Y. Selain itu, dY/dN>0, yang berarti setiap peningkatan N selalu diikuti oleh peningkatan Y. Hubungan terakhir bagi persamaan di atas adalah d²Y/dKdN=0, yang berarti setiap peningkatan K atau N akan menyebabkan Y meningkat sedangkan tidak ada hubungan antara K dan N.

b. Persamaan Permintaan Tenaga Kerja

$$W_N/P = f_N \tag{2.2}$$

 W_N mewakili upah nominal tenaga kerja, P mewakili harga dan f_N mewakili upah riil tenaga kerja di mana peningkatan P akan menyebabkan penurunan upah riil yang diterima oleh pekerja.

c. Persamaan Pendapatan Nasional

$$Y = C + I + G + X$$
 (2.3)

Di mana Y mewakili pendapatan nasional, C mewakili konsumsi rumah tangga, I mewakili investasi pihak swasta, G mewakili belanja negara oleh pemerintah, dan X mewakili ekspor bersih. Adapun masing-masing variabel pembentuk Y juga mempunyai fungsinya tersendiri, yaitu:

$$\bullet \quad C = f(Y, T) \tag{2.4}$$

Di mana T mewakili pajak pendapatan yang memiliki batasan dC/dT<0, yang berarti setiap peningkatan T akan menurunkan konsumsi. Ketentuan lainnya untuk persamaan konsumsi adalah 0<dC/dY<1, yang bermakna setiap peningkatan Y akan juga meningkatkan konsumsi namun tidak untuk keseluruhan peningkatan digunakan untuk konsumsi karena ada bagian dari pendapatan yang disimpan dalam bentuk simpanan.

$$\bullet \quad I = f(Y, r) \tag{2.5}$$

Di mana r mewakili suku bunga. Ketentuan yang berlaku bagi persamaan di atas adalah dI/dY>0, yang berarti setiap peningkatan Y akan juga meningkatkan I. Adapun ketentuan lainnya adalah dI/dr<0, yang berarti setiap peningkatan r akan menurunkan I.

$$\bullet \quad X = f(Y, Q.ER/P) \tag{2.6}$$

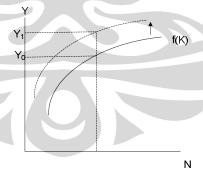
X mewakili ekspor bersih, Q mewakili harga luar negeri, dan ER mewakili nilai tukar. Adapun ketentuan persamaan di atas adalah dX/dY<0 yang menyatakan bahwa setiap peningkatan Y akan menurunkan X dan dX/d(QER/P)>0 yang menyatakan setiap peningkatan (Q.ER/P) akan meningkatkan X.

 G (belanja negara) sebagai penyusun persamaan pendapatan nasional merupakan variabel eksogen yang nilainya ditentukan berdasarkan kebijakan.

d. Persamaan Likuiditas

$$M/P = f(r, Y) \tag{2.7}$$

M mewakili penawaran uang, P mewakili harga, r mewakili suku bunga, dan Y mewakili produksi dengan d(M/P)/dr<0 yang berarti setiap peningkatan suku bunga akan menyebabkan penurunan (M/P). Ketentuan lainnya adalah d(M/P)/dY>0 yang menyatakan bahwa setiap peningkatan Y juga akan meningkatkan (M/P).

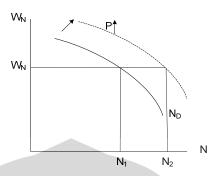

e. Persamaan Neraca Pembayaran (Balance of Payment)

$$B = P.x(P, ER) - Q.ER.m(Y, P, ER) - F(r)$$
(2.8)

B mewakili Neraca Pembayaran, P mewakili harga dalam negeri, x(P, ER) mewakili ekspor riil yang dipengaruhi oleh harga dalam negeri dan nilai tukar, Q mewakili harga luar negeri, ER mewakili nilai tukar, m(Y,P,ER) mewakili impor riil yang dipengaruhi oleh produksi (Y), harga dalam negeri dan nilai tukar, dan F(r) mewakili aliran dana ke luar negeri (*net capital outflow*) yang dipengaruhi oleh suku bunga dalam negeri. B dapat bernilai positif, minus atau 0. Ketika B bernilai 0, menunjukkan bahwa ekspor bersih sama dengan aliran dana keluar negeri.

2.1.2 Grafik Fungsi Ekonomi Makro

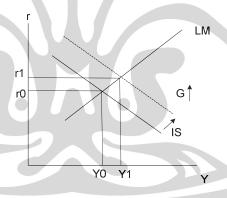
Grafik Fungsi Produksi



Gambar 2.1 Grafik Fungsi Produksi

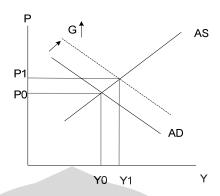
(Sumber: Modul Ekonomi Makro)

Pada jumlah tenaga kerja yang sama (N), kenaikan teknologi (K) akan meningkatkan produksi (Y).


Grafik Permintaan Tenaga kerja

Gambar 2.2 Grafik Permintaan Tenaga Kerja (Sumber: Modul Ekonomi Makro)

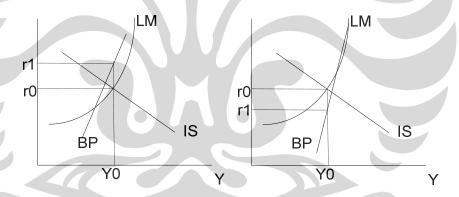
Pada upah buruh yang tetap (W_N) , kenaikan harga (P) akan meningkatkan jumlah tenaga kerja (N).


• Grafik Fungsi IS-LM

Gambar 2.3 Grafik IS-LM (Sumber: Modul Ekonomi Makro)

Dengan kebijakan peningkatan belanja negara (G), akan menaikan produksi (Y) juga suku bunga (r).

• Grafik Fungsi AD-AS



Gambar 2.4 Grafik AD-AS

(Sumber: Modul Ekonomi Makro)

Dengan kebijakan peningkatan belanja negara (G), akan meningkatkan produksi (Y) juga harga (P).

Grafik IS-LM-BP

Gambar 2.5 Grafik IS-LM-BP

(Sumber: Modul Ekonomi Makro)

Pada kurva sebelah kiri, kurva BP berada di kiri titik keseimbangan IS-LM yang menunjukkan terjadi defisit neraca pembayaran (BP) yang berakibat meningkatkan suku bunga (r). Karena hubungan negative antara aliran dana ke luar negeri (F) dan r, maka dapat juga dikatakan kurva di sebelah kiri menggambarkan keadaan di mana F lebih besar daaripada ekspor bersih. Untuk kurva di sebelah kanan, kurva BP berada di sebelah kanan titik keseimbangan IS-LM yang menunjukkan bahwa BP mengalami

surplus yang berakibat pada menurunnya suku bunga dalam negeri. Hal ini juga sebagai penggambaran keadaan di aman ekspor bersih berada dalam keadaan lebih besar daripada aliran dana ke luar negeri.

2.2 Kebijakan-kebijakan Ekonomi Makro

Kebijakan-kebijakan ini adalah kebijakan yang diambil oleh pemerintah guna menjaga kestabilan ekonomi secara makro. Adapun untuk berbicara hal selanjutnya tentang kebijakan ekonomi makro dapat ditinjau dari sub bab ini.

2.2.1 Variabel-variabel Eksogen

Variabel eksogen adalah variabel yang nilainya tidak ditentukan langsung dalam sistem. Variabel eksogen tidak terpengaruh oleh variabel lain. Variabel eksogen terbagi ke dalam dua kategori umum yaitu variabel yang berupa kebijakan (policy) dan variabel eksogen yang berupa pengaruh eksternal (externality). Variabel eksogen yang berupa kebijakan masih dapat "ditelusupi" oleh pengaruh dari si pemegang kebijakan. Sedangkan variabel eksogen yang berupa pengaruh eksternal tidak dapat dipengaruhi oleh hal apapun.

Dalam lingkup perekonomian suatu negara, kebijakan yang biasa digunakan sebagai variabel eksogen adalah penawaran uang (M), kebijakan fiskal belanja negara (G) dan kebijakan nilai tukar (ER).

2.2.2 Kebijakan Moneter

Kebijakan moneter adalah kebijakan yang dijadikan alat oleh bank sentral (Bank Indonesia) untuk mengontrol kuantitas uang dalam perekonomian dalam suatu negara². Kebijakan moneter dilakukan oleh pemegang otoritas dengan cara memanipulasi jumlah uang beredar (*money supply*) di masyarakat melalui instrument yang dimilikinya³. Secara umum, bank sentral memiliki tiga cara dalam usahanya mengubah penawaran uang, yaitu:

_

² Case, Karl E., & Fair, Ray C.2007. Case Fair, Prinsip-prinsip Ekonomi. Jakarta: Erlangga

³ Atmadja, Adwin Surya.2001.Free Foating Exchange Rate System dan Penerapannya pada Kebijaksanaan Ekonomi di Negara yang Berperekonomian Kecil dan Terbuka.

- Mengubah rasio cadangan minimum
- Mengubah tingkat diskonto
- Terlibat dalam operasi pasar terbuka

2.2.3 Kebijakan Fiskal

Kata fiskal berasal dari *fisc* yang berarti "harta benda" pemerintah⁴. Kebijakan fiskal dalam definisi adalah segala kebijakan pemerintah terkait belanja negara (G) dan kebijakan perpajakan (T). Adapula kebijakan fiskal bebas yang mempunyai definisi sebagai perubahan dalam pajak dan belanja negara secara sengaja sebagai tanggapan atas fluktuasi perekonomian. Adapun lingkup kebijakan fiskal secara umum dibagi ke dalam tiga kategori:

- Kebijakan pemerintah menyangkut pembelian pemerintah atas barang dan jasa
- Kebijakan pemerintah menyangkut pajak
- Kebijakan pemerintah menyangkut pembayaran transfer (tunjangan jaminan sosial, dana pension, dan lain-lain)

Selain pajak (T), seperti yang telah dijabarkan sebelumnya, terdapat belanja pemerintah (G) sebagai komponen kebijakan fiskal. Belanja pemerintah (G) berperan sebagai pengeluaran atau konsumsi yang dilakukan oleh pemerintah. Sedangkan pajak (T) berperan sebagai pendapatan pemerintah atas warga negara. Berdasarkan sumber pemasukkan dan pengeluaran tersebut, akan dijumpai istilah surplus anggaran dan defisit anggaran. Surplus anggaran yaitu keadaan dimana pemasukkan pemerintah (T) melebihi pengeluaran pemerintah (G). Sebaliknya, defisit anggaran adalah keadaan dimana pengeluaran pemerintah (G) lebih besar dari pemasukkan pemerintah (T). Jika terjadi defisit anggaran, maka pemerintah harus meminjam dari masyarakat untuk mendanai defisit tersebut dengan cara menjual obligasi pemerintah. Ketika keadaan itu terjadi, maka simpanan (saving) rumah tangga tidak hanya mengalir ke investasi perusahaan swasta, tetapi juga mengalir ke pemerintah.

_

⁴ Case, Karl E., & Fair, Ray C.2007. Case Fair, Prinsip-prinsip Ekonomi. Jakarta: Erlangga

2.2.4 Kebijakan Neraca Pembayaran (Balance of Payment)

Neraca pembayaran adalah neraca yang tersusun dari ekspor, impor dan aliran dana ke luar negeri yang persamaannya tertulis pada persamaan (2.8). Neraca pembayaran hanya berlaku pada negara dengan sistem perekonomian terbuka. Dalam kebijakan, neraca berpengaruh terhadap kebijakan nilai tukar yang dianut oleh suatu negara. Dengan B>0 akan terjadi surplus yang akan masuk menjadi cadangan negara (*reserve*), begitu pun sebaliknya jika B<1 yang berakibat pada terserapnya cadangan negara. Jika suatu negara menetapkan kebijakan nilai tukar tetap (*fixed exchange* rate) pada sistem perekonomiannya, maka cadangan negara harus cukup untuk menjaga nilai tukar berada tetap pada nilai tertentu. Pada keadaan ini cadangan negara akan berubah-ubah. Lain halnya jika suatu negara menetapkan kebijakan nilai tukar mengambang (*floating exchange rate*), maka yang berubah-ubah bukanlah cadangannya melainkan nilai tukar.

Berdasarkan gambar 2.5, dengan menggeser kurva BP dari keadaan defisit dapat dengan cara menurunkan P atau mendepresiasi rupiah sehingga BP dalam keadaan tidak defisit.

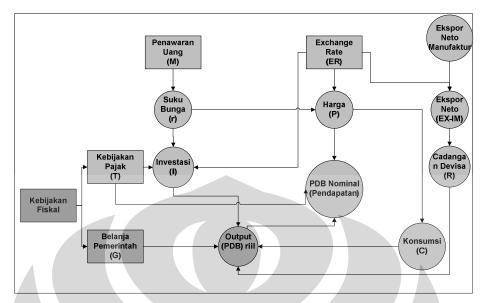
2.3 Keseimbangan Umum (General Equilibrium)

Keseimbangan umum (*General Equilbrium*) adalah sebuah cabang dari ekonomi neoklasik yang mencoba menerangkan perilaku penawaran, permintaan, dan harga dalam satu keseluruhan ekonomi dengan beberapa atau banyak pasar. Teori keseimbangan umum mempelajari ekonomi dengan menggunakan model dari keseimbangan pasar dan menentukan keadaan di mana keseimbangan itu terjadi.

Dalam kondisi ini, harga suatu barang tidak hanya mempengaruhi permintaan dan penawaran barang tu tersebut, tetapi juga mempengaruhi harga barang atau jasa lainnya dalam cakupan luas. Jika semua komoditi dalam suatu ekonomi dimasukkan dalam suatu model pasar yang komperhensif akan dihasilkan sebuah tipe model keseimbangan umum di mana kelebihan permintaan untuk setiap komoditi dipertimbangkan untuk menjadi sebuah fungsi harga dari keseluruhan komoditas dalam suatu perekonomian. Beberapa harga mungkin akan menjadi koefisien dengan nilai nol karena tidak mempunyai pengaruh terhadap penentuan kelebihan permitaan dalam pasar tertentu.

Jika model keseimbangan umum berbentuk koefisien numerikal, maka nilai keseimbangan juga akan diekspresikan dalam numerikal pula. Dan jika model keseimbangan umum berbentuk konstanta parametrik, maka nilai keseimbangan umum akan pula diekspresikan dalam bentuk konstanta parameter atau formula. Jika dijabarkan semua formula terkait faktor yang mempengaruhi keseimbangan umum, maka akan terlihat persamaan-persamaan tersebut terhubung secara simultan yang pada akhirnya akan memperlihatkan keadaan keseimbangan secara umum.

2.4 Pemodelan


Model memiliki pengertian sebagai representasi dari fenomena yang sebenarnya seperti sistem atau proses⁵. Model dibuat dengan tujuan analisis secara struktural, prediksi, dan evaluasi kebijakan.

2.4.1 Model Simultan Ekonomi Makro

Model simultan ekonomi makro adalah sebuah model yang terdiri dari variabel eksogen dan variabel endogen yang saling berkaitan satu sama lain. Jika variabel adalah variabel yang nilainya tidak ditentukan dalam sistem, variabel endogen adalah variabel yang nilainya ditentukan dalam sistem. Model simultan berfungsi sebagai kerangka acuan dalam melihat keterikatan antara variabel satu dengan variabel yang lainnya. Adapun model simultan ekonomi makro yang digunakan dalam skripsi ini adalah sebagai berikut:

⁵ Intriligator, Michael D.1978. *Econometric Models, Tehniques, & Application*. New Jersey: Prentice-Hall

_

Gambar 2.6 Model Simultan Ekonomi Makro

(Sumber: Prinsip-prinsip Ekonomi)

Variabel yang diwakili oleh bangun segi empat adalah variabel eksogen. Adapun variabel eksogen yang digunakan adalah kebijakan pajak (T), belanja pemerintah (G), penawaran uang (M), dan kebijakan nilai tukar (ER). Keempat variabel tersebut dipilih menajadi variabel eksogen karena sifatnya yang berupa kebijakan dan keadaan eksternal yang tidak dapat dikendalikan. Selain sistem nilai tukar, tiga variabel eksogen lainnya merupakan kebijakan pemerintah. Sedangkan sistem nilai tukar dapat dipandang sebagai keadaan eksternal yang tidak dapat dikendalikan jika pemerintah Indonesia menggunakan sistem nilai tukar mengambang bebas (floating exchange rate). Namun sistem nilai tukar dapat juga dipandang sebagai kebijakan yang dapat dikendalikan oleh pemerintah jika pemerintah menggunakan sistem nilai tukar tetap (fixed exchange rate).

Adapun variabel endogen yang digunakan, diwakili oleh bentuk lingkaran, adalah konsumsi (C), investasi (I), ekspor bersih (X), suku bunga (r), harga (P), produk domestik bruto (Y) dan cadangan devisa (R). Variabel-variabel ini muncul karena secara teori mereka berkaitan tidak hanya dengan sesama variabel endogen, tetapi juga berkaitan dengan variabel eksogen. Dalam model di atas terdapat bentuk lingkaran yang mempunyai warna berbeda dengan lingkaran lainnya yaitu PDB nominal dan Ekspor Neto Manufaktur. Kedua variabel tersebut

tampil dalam model namun tidak dimasukkan dalam persamaan yang nantinya akan diolah menggunakan metode regresi dan metode Persamaan Simultan (Gauss-Seidel) karena kedua variabel tersebut dianggap telah diwakili oleh variabel endogen yang lainnya yang juga terdapat dalam model. Untuk PDB nominal, dapat diwakilkan oleh PDB riil. Sedangkan Ekspor Neto Manufaktur telah diwakilkan oleh Ekspor Neto Total. Cadangan devisa tidak dimasukkan ke dalam model karena tinjauan yang dilakukan tidak memungkinkan cadangan devisa untuk masuk ke dalamnya namun karena untuk menjaga keterkaitannya dengan variabel yang lain, dalam model umum di atas cadangan devisa masih ditampilkan.

Variabel harga memiliki bentuk lingkaran yang menandakan variabel tersebut endogen namun berwarna hijau muda seperti eksogen. Hal ini menunjukkan bahwa sebenarnya variabel harga bersifat endogen, namun untuk keperluan model simulasi harga dijadikan sebagai variabel eksogen.

2.4.2 Teknik Regresi

Model regresi linier sederhana dapat digunakan untuk mempelajari hubungan antara dua variabel yang biasanya diwakili oleh y dan x sebagai perwakilan dari beberapa populasi dengan y merupakan variabel respon atau variabel tergantung dan x adalah variabel kontrol, variabel bebas, atau variabel prediktor. Selain untuk mengetahui hubungan antara variabel respon dan variabel prediktor, model regresi juga dapat digunakan untuk mengukur kekuatan hubungan antara variabel respon dan variabel prediktor dan juga berguna untuk memprediksi pengaruh suatu variabel atau beberapa variabel prediktor terhadap variabel respon⁶. Persamaan sederhana yang biasanya digunakan dalam menggambarkan hubungan antara x dan y ini adalah sebagai berikut:

$$y = \beta_0 + \beta_1 x + u \tag{2.11}$$

Persamaan di atas juga biasa disebut dengan model regresi linier sederhana atau juga biasa disebut model regresi linier dua variabel karena melibatkan hanya

-

⁶ Iriawan, Nur & Astuti, Septin Puji. *Mengolah Data Statistik dengan Mudah menggunakan Minitab 14*. Yoyakarta: Andi

dua variabel x dan y. Dalam pesamaan tersebut terlihat bahwa y terpengaruh pada perubahan nilai x. Sedangkan u disebut juga sebagai error atau *disturbance* dalam hubungan x dan y dimana u merepresentasikan faktor lain selain x yang juga mempengaruhi y namun tidak dalam cakupan observasi. β_0 disebut juga intersep (karena merupakan tempat bertemunya garis persamaan di Y-axis) atau konstanta yang memiliki memberikan nilai pada y sebesar nilai dirinya (β_0) jika nilai x adalah 0. Dengan memperkirakan nilai β_0 dan β_1 , didapatlah persamaan *Ordinary Least Square* (OLS) seperti di bawah ini:

$$\hat{\mathbf{y}}_{i} = \hat{\boldsymbol{\beta}}_{0} + \hat{\boldsymbol{\beta}}_{1} \hat{\mathbf{x}}_{i} \tag{2.12}$$

Dalam persamaan di atas terdapat residual yang diasumsikan mengikuti distribusi normal dengan rata-rata yang mendekati nol dan memiliki standar deviasi tertentu ($\hat{u} \sim N(\mu, \sigma)$). Residual adalah jarak antara nilai sebenarnya dengan garis model taksiran yang dirumuskan $\hat{u} = (y - \hat{y})^7$. Residual yang mendekati nol memiliki arti jarak antara nilai prediksi dengan nilai sebenarnya sekecil mungkin. Dengan jarak yang mendekati nol, nilai prediksi mendekati nilai yang sebenarnya

Selain regresi linier, terdapat pula regresi berganda (*multiple regression*) yang digunakan untuk melihat hubungan variabel respon dan variabel prediktor di mana variabel prediktor yang dimiliki jumlahnya lebih dari satu. Persamaan regresi berganda dapat dilihat pada persamaan di bawah ini:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (2.13)

Dengan memprediksi nilai koefisien parameternya, didapat OLS untuk regresi berganda seperti di bawah ini:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \hat{x}_1 + \hat{\beta}_2 \hat{x}_2 + \dots + \hat{\beta}_k \hat{x}_k$$
 (2.14)

Seperti juga dalam regresi linier sederhana, residual dari persamaan regresi berganda di atas diasumsikan terdistribusi normal dengan rata-rata mendekati 0 dan dengan standar deviasi tertentu. Asumsi lain pada regresi berganda ini adalah

Universitas Indonesia

⁷ Iriawan, Nur & Astuti, Septin Puji. *Mengolah Data Statistik dengan Mudah menggunakan Minitab 14*. Yoyakarta: Andi

tidak terdapatnya korelasi antar variabel prediktor. Jika terdapat korelasi diantara variabel prediktor, maka taksiran model regresi berganda tidak tepat. Keadaan terdapatnya korelasi antara variabel prediktor disebut dengan multikolinear.

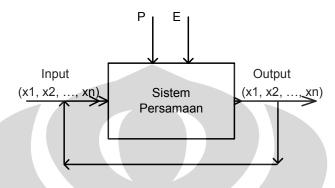
Pada beberapa model regresi, terdapat variabel *lag* yang terkait dengan *time series data*. Variabel *lag* atau keterlambatan adalah variabel pada waktu sebelumnya yang berperan sebagai variabel independen dalam model regresi. Variabel ini dapat menjelaskan keterlambatan efek kebijakan pada suatu variabel tergantung karena pada kenyataannya dibutuhkan waktu untuk melihat efek dari kebijakan tersebut.

2.4.3 Teknik Simulasi

Simulasi menurut KBBI adalah penggambaran suatu sistem atau proses dengan peragaan model statistik atau pemeranan⁸. Cara simulasi bekerja didasari oleh tipe simulasi yang digunakan. Ada banyak jenis simulasi yang secara umum digunakan, diantaranya:

- Simulasi statis atau dinamis
- Simulasi stokastik atau deterministik
- Simulasi pada kejadian diskret atau berkelanjutan (discrete event or continous)⁹

Simulasi statis adalah simulasi yang tidak berdasarkan waktu. Pada simulasi ini sering digunakan sampel acak untuk membangkitkan hasil secara statistik. Sedangkan simulasi dinamis adalah bentuk simulasi yang memasukkan faktor perjalanan waktu, seperti perubahan yang terjadi sepanjang waktu.


Simulasi stokastik adalah simulasi dimana masukan dari modelnya berupa nilai acak yang akan menghasilkan keluaran yang juga acak dengan tujuan dapat memperlihatkan bagaimana suatu model itu berperilaku. Sedangkan simulasi deterministik adalah simulasi yang hampir mirip dengan simulasi stokastik

⁸ http://pusatbahasa.diknas.go.id

⁹ Harrell, Charles., Gosh, Biman.K., Bowden,Royce.O.2004.Simulation Using Promodel.New York:McGraw Hill

kecuali simulasi ini tidak memasukan input yang acak sehingga hasil yang didapat pun merupakan nilai yang tidak acak.

Dalam konteks model simultan ekonomi makro, simulasi dapat digambarkan seperti di bawah ini:

Gambar 2.7 Model Simulasi

Dari gambar di atas terdapat input yang berupa persamaan-persamaan ekonomi yang terdiri dari variabel endogen yang disimulasikan dengan mengubah variabel eksogen (P dan E) sehingga dihasilkan output yang berupa nilai endogen sebagai pengaruh dari eksogen. Simulasi dapat dilakukan berulang dengan berbagai skenario perubahan P dan E sehingga didapat hasil yang berbeda.

2.4.4 Teknik Gauss-Seidel

Teknik Gauss-Seidel merupakan salah satu teknik persamaan simultan yang menggunakan prosedur heuristik di mana prosedur heuristik itu adalah prosedur coba-coba (*trial and error*) atau melalui teknik pendekatan. Teknik pendekatan dengan menggunakan metode Gauss-Seidel memungkinkan didapatkannya hasil dengan proses yang lebih cepat. Adapun kelemahan dari Gauss-Seidel adalah terdapat kemungkinan tidak berlangsungnya konvergensi pada output sehingga solusi tidak bisa didapat dikarenakan peletakan susunan persamaan.

Teknik Gauss-Seidel digunakan untuk sistem persamaan baik linier maupun non linier dengan memberikan nilai awal kepada masing-masing endogen sebagai input. Dengan iterasi heuristik, di mana setiap mendapatkan output di tiap iterasi akan menjadi input atau masukan bagi iterasi selanjutnya. Proses berhenti ketika telah dihasilkan solusi unik untuk variabel tersebut.

BAB 3

METODOLOGI PENELITIAN

Bab ini berisi tentang langkah-langkah pengerjaan skripsi di mana langkah-langkah tersebut adalah pembuatan model, pengolahan data menggunakan metode regresi, dan pengolahan data menggunakan metode persamaan simultan (Gauss-Seidel).

3.1 Pengumpulan Data

Data yang dibutuhkan adalah data ekonomi makro dari tahun 1997 sampai dengan tahun 2009. Adapun data yang diperlukan adalah:

- Data konsumsi rumah tangga Indonesia
- Data investasi pihak swasta Indonesia, baik di bidang manufaktur maupun investasi secara total
- Data belanja negara Indonesia
- Data Produk Domestik Bruto (PDB) Indonesia, baik untuk sektor manufaktur maupun PDB secara total
- Data suku bunga kredit Indonesia
- Data nilai tukar rupiah Indonesia terhadap dolar Amerika
- Data penawaran uang Indonesia
- Data pajak Indonesia, baik pajak penghasilan maupun pajak secara total
- Data ekspor dan impor Indonesia
- Data inflasi Indonesia
- Data Indeks Harga Konsumen Indonesia

Sumber data berasal dari Badan Pusat Statistik (BPS) dan Bank Indonesia (BI). Data yang dikumpulkan berdasarkan harga yang berlaku pada tahun ketika data dipublikasikan, dengan kata lain data yang digunakan adalah data nominal.

3.2 Pengolahan Data

Data yang telah dikumpulkan kemudian diubah dalam bentuk riil dengan menggunakan bantuan *gdp deflator* dari data inflasi yang telah diperoleh. Dengan

menetapkan tahun dasar (tahun 1997) dan mengubah bentuk prosentase inflasi menjadi decimal, maka didapatlah rangkaian *gdp deflator* sebagai berikut:

Tabel 3.1 *GDP Defaltor* 1997-2009

Tahun	Inflasi	GDP Deflator
1997	0.1105	1
1998	0.7763	1.7763
1999	0.0201	1.7964
2000	0.0935	1.8899
2001	0.1255	2.0154
2002	0.1003	2.1157
2003	0.0506	2.1663
2004	0.0640	2.2303
2005	0.1711	2.4014
2006	0.0660	2.4674
2007	0.0659	2.5333
2008	0.1106	2.6439
2009	0.0278	2.6717

(Sumber: Badan Pusat Statistik)

Dengan menggunakan *gdp deflator* di atas yang menggunakan tahun 1997 sebagai tahun dasar, data yang masih dalam nilai nominal dapat diubah menjadi nilai riil. Adapun contoh data yang telah diubah nilainya dapat dilihat pada gambar 3.2.

Setelah data yang diperlukan diubah nilainya menajdi riil, tahap selanjutnya adalah proses regresi dan persamaan simultan (Gauss-Seidel). Data yang telah dikumpulkan diolah menggunakan metode regresi dan persamaan simultan (Gauss-Seidel).

Dengan proses regresi, dicari persamaan untuk masing-masing variabel endogen di mana persamaan tersebut memperlihatkan hubungan antara variabel endogen dan variabel eksogen. Dengan bermodal persamaan tersebut, penulis melanjutkan kembali pengolahan data menggunakan metode persamaan simultan sebagai bentuk dari model kuasi-dinamis.

Tabel 3.2 Contoh Data Nominal menjadi Riil

Tahun	Harga N	Iominal	Harga I	Harga Riil	
Talluli	Pajak Penghasilan	Belanja Negara	Pajak Penghasilan	Belanja Negara	
1997	34,388.0	89,610.0	34388.0	89610.0	
1998	49,388.0	147,717.0	27803.9	83159.9	
1999	72,729.0	231,878.0	40486.0	129079.3	
2000	57,073.0	221,468.0	30199.0	117185.0	
2001	94,576.0	341,564.0	46926.7	169477.0	
2002	101,873.0	322,180.0	48151.0	152280.6	
2003	115,016.0	376,505.0	53093.3	173801.0	
2004	134,889.0	436,406.0	60480.2	195671.4	
2005	175,380.0	509,419.0	73032.4	212134.2	
2006	213,698.0	699,099.0	86608.6	283334.3	
2007	251,748.0	752,373.0	99375.5	296993.2	
2008	318,028.0	1,022,621.0	120287.5	386785.1	
2009	957,401.0	1,037,067.0	358349.0	388167.5	

(Sumber: Badan Pusat Statistik, telah diolah kembali)

3.2.1 Regresi

Sebagai tahap awal, regresi dilakukan untuk melihat hubungan antara variabel endogen dan variabel eksogen dalam bentuk persamaan matematis.

Adapun hubungan umum dari regresi variabel ekonomi makro adalah :

- $\bullet \ Y = C + I + G + Ex Im$
- \bullet C = f (Y, T)
- \bullet I = (Y, r)
- Ex = (Y, ER, P)
- Im = (Y, ER)
- r = (M, r, Y, ER)

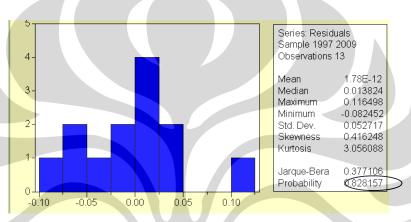
Persamaan-persamaan di atas merupakan persamaan umum dari ekonomi makro, namun bisa jadi variabel-variabel yang terkandung di dalamnya tidak signifikan mempengaruhi, oleh karenanya masing-masing variabel endogen yang akan diproses menggunakan persamaan simultan harus terlebih dahulu di cari persamaan regresinya.

Persamaan Konsumsi Nominal

lnCn = 0.073 + 0.979lnYn - 0.017lnTn

Tabel 3.3 Data Regresi Konsumsi Nominal

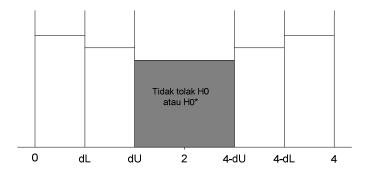
Tahun	Cn	InCn	Yn	lnYn	Tn	InTn
1997	388722.3	12.87062	625505.9	13.34632	34388	10.44546
1998	647823.6	13.38137	955753.5	13.77026	49388	10.80746
1999	813183.3	13.60871	1099732	13.91058	72729	11.1945
2000	856798.3	13.66096	1389770	14.14465	57073	10.95209
2001	1039655	13.8544	1684280	14.33685	94576	11.45716
2002	1231964	14.02412	1863275	14.43785	101873	11.53148
2003	1372078	14.13184	2045854	14.53133	115016	11.65283
2004	1532888	14.24266	2303031	14.64974	134889	11.81221
2005	1789596	14.3975	2774281	14.8359	175380	12.07471
2006	2092656	14.55394	3339217	15.02125	2 13698	12.27232
2007	2510504	14.73599	39508 93	15.18945	251748	12.43618
2008	2999957	14.91411	4951357	15.41517	318028	12.66989
2009	3290843	15.00665	5613400	15.54067	957401	13.77198


Tabel 3.4 Hasil Regresi Konsumsi Nominal

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.073114	0.579177	0.126239	0.9020
LNPDBTOTNOMINA	0.978812	0.085455	11.45416	0.0000
L				
LNPAJAKNOMINAL	-0.017574	0.063004	-0.278943	0.7860
R-squared	0.992954	Mean deper	ndent var	14.10638
Adjusted R-squared	0.991544	S.D. depend	dent var	0.628005
S.E. of regression	0.057748	Akaike info	criterion	-2.666268
Sum squared resid	0.033349	Schwarz cri	terion	-2.535895
Log likelihood	20.33074	F-statistic		704.5750
Durbin-Watson stat	1.840372	Prob(F-stati	stic)	0.000000

LnCn dalam persamaan mewakili variabel log natural konsumsi nominal, lnYn mewakili log natural Produk Domestik Bruto (PDB) total nominal, lnTn mewakili log natural pajak nominal dan C dalam tabel mewakili konstanta (dalam Eviews konstanta selalu diwakili oleh huruf C). Model regresi memiliki nilai probabilitas 0.0000 di mana angka tersebut berada di bawah 0.05 (pada $\alpha = 5\%$) yang menunjukkan bahwa model tersebut telah mewakili data yang ada. Dengan nilai R-squared sebesar 0.99 menandakan bahwa 99% variasi dari total lnCn dapat diterangkan oleh lnYn dan lnTn. Meskipun dalam teori ekonomi makro konsumi rumah tangga dibentuk oleh pendapatan (Y) dan pajak penghasilan (T), dalam tabel hasil model regresi diperlihatkan bahwa variabel pajak (T) tidak berpengaruh signifkan pada model. Hal ini berarti pajak tidak terlalu mempengaruhi keputusan seseorang dalam mengkonsumsi.

Dengan menggunakan bentuk log natural, persamaan regresi diinterpretasikan sebagai bentuk pertumbuhan dalam presentase. Persamaan regresi di atas menjelaskan bahwa ketika pendapatan total nominal naik sebesar 10%, maka konsumsi nominal akan naik sebesar 9.79%. Jika pajak nominal naik sebesar 10%, maka konsumsi nominal akan turun sebesar 0.17%.


Selanjutnya dilakukan uji normalitas berdasarkan asumsi *Multiple Linier Regression (MLR)* bahwa residual model regresi diasumsikan terdistribusi normal. Uji normalitas menggunakan histogram yang hasilnya terdapat di bawah ini:

Gambar 3.1 Uji Distribusi Normal pada Residual Regresi Konsumsi Nominal

Angka probabilitas di atas menunjukkan angka 0.828 yang berarti melebihi pada 5%. Residual terdistribusi normal.

Selanjutnya dilakukan uji autokorelasi di mana asumsi awal (H_0) mengatakan bahwa tidak terdapat hubungan antara residual baik dalam seri tersebut atau antar seri. Uji autokorelasi dilakukan menggunakan tes Durbin-Watson. Pada tabel 3.3 terdapat angka Durbin-Watson sebesar 1.84. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.715 dan angka d_U sebesar 1.816 dengan k (jumlah parameter yang digunakan, sudah termasuk intersep) = 3 dan n (jumlah observasi) = 13. Berdasarkan angka-angka tersebut, diketahui bahwa residual berada di daerah penerimaan terhadap H_0 maupun H_0^* (H_0 = tidak terdapat autokorelasi positif; H_0^* = tidak terdapat autokorelasi negatif) seperti yang ditunjukkan pada gambar di bawah:

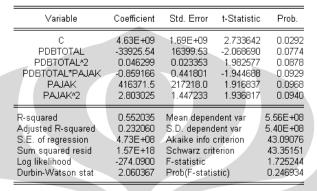
Gambar 3.2 Area Uji Autokorelasi Konsumsi Nominal

Selanjutnya dilakukan uji multikolinear sempurna di mana suatu model regresi dikatakan mengandung multikolinear sempurna jika terdapat hubungan sempurna antar variabel independen pembentuknya (r_{x1x2} =1).

Tabel 3.5 Uji Korelasi Variabel Independen Konsumsi Nominal

		Correlation Matrix		
	PDBTOTAL	PAJAK		
PDBTOTAL	1.000000	0.829120		
PAJAK	0.829120	1.000000		

Dari gambar di atas, diketahui bahwa antara Y dan T tidak terdapat hubungan sempurna (r = 0.829).


Uji selanjutnya adalah uji Heteroskedastisitas di mana pada regresi linier berganda diasumsikan varian dari residual adalah konstan. Uji heteroskedastisitas dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar 3.3.

Pada gambar 3.3, diketahui probabilitas tes adalah 0.207 di mana probabilitas tersebut melebihi α pada 5% yang berarti residual model regresi konsumsi nominal ada pada keadaan homoskedastisitas.

White Heteroskedasticity Test:

F-statistic 1.725244 Probability 0.246934 Obs*R-squared 7.176455 Probability 0.207844

Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date: 06/11/10 Time: 05:33 Sample: 1997 2009 Included observations: 13

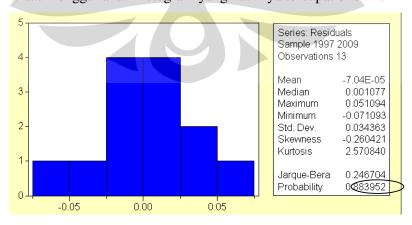
Gambar 3.3 Uji Heteroskedastisitas Konsumsi Nominal

Persamaan Konsumsi

LnC = 1.49lnCn - 1.39lnP

Tabel 3.6 Data Regresi Konsumsi

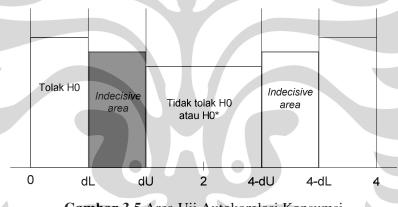
Tahun	Cn	InCn	C	InC	Р	InP
1997	388722.3	12.87062	388722.3	12.87062	100	4.60517
1998	647823.6	13.38137	364703.9	12.80684	177.63	5.179703
1999	813183.3	13.60871	452673.8	13.02293	181.2	5.199601
2000	856798.3	13.66096	453356.4	13.02443	198.14	5.288974
2001	1039655	13.8544	515855.4	13.15358	223.01	5.407217
2002	1231964	14.02412	582296.4	13.27473	245.38	5.502808
2003	1372078	14.13184	633374	13.35882	257.79	5.552145
2004	1532888	14.24266	687301.4	13.44053	274.29	5.614186
2005	1789596	14.3975	745230.4	13.52145	321.22	5.772126
2006	2092656	14.55394	848121.8	13.65078	342.42	5.836038
2007	2510504	14.73599	991001.4	13.80647	364.99	5.89987
2008	2999957	14.91411	1134671	13.94185	405.36	6.004776
2009	3290843	15.00665	1231741	14.02394	416.63	6.032199


Tabel 3.7 Hasil Regresi Konsumsi

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNKONSUMSINOMI	1.495000	0.024989	59.82585	0.0000
NAL				
LNHARGA	-1.394531	0.063644	-21.91150	0.0000
R-squared	0.992596	Mean deper	ndent var	13.37669
Adjusted R-squared	0.991923	S.D. depend	dent var	0.399350
S.E. of regression	0.035891	Akaike info	criterion	-3.676017
Sum squared resid	0.014170	Schwarz cri	terion	-3.589102
Log likelihood	25.89411	Durbin-Wats	son stat	1.321226

LnC dalam persamaan mewakili variabel log natural konsumsi, lnCn mewakili log log natural konsumsi nominal, lnP mewakili log natural harga dan C dalam tabel mewakili konstanta (dalam Eviews konstanta selalu diwakili oleh huruf C). Nilai *R-squared* sebesar 0.99 menandakan bahwa 99% variasi dari total lnC dapat diterangkan oleh lnCn dan lnP. Kedua variabel independen memiliki probabilitas 0.0000 yang menandakan bahwa kedua varaibel tersebut berpengaruh signifikan terhadap lnC.

Dengan menggunakan bentuk log natural. persamaan regresi diinterpretasikan sebagai bentuk pertumbuhan dalam presentase. Persamaan regresi di atas menjelaskan bahwa ketika konsumsi nominal naik sebesar 10%, maka konsumsi akan naik sebesar 14.9%. Jika harga naik sebesar 10%, maka konsumsi akan turun sebesar 13.9%.


Selanjutnya dilakukan uji normalitas berdasarkan asumsi *Multiple Linier Regression (MLR)* bahwa residual model regresi diasumsikan terdistribusi normal. Uji normalitas menggunakan histogram yang hasilnya terdapat di bawah ini:

Gambar 3.4 Uji Distribusi Normal pada Residual Regresi Konsumsi

Angka probabilitas di atas menunjukkan angka 0.884 yang berarti melebihi α pada 5%. Residual terdistribusi normal.

Selanjutnya dilakukan uji autokorelasi di mana asumsi awal (H_0) mengatakan bahwa tidak terdapat hubungan antara residual baik dalam seri tersebut atau antar seri. Uji autokorelasi dilakukan menggunakan tes Durbin-Watson. Pada tabel 3.4 terdapat angka Durbin-Watson sebesar 1.32. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.861 dan angka d_U sebesar 1.562 dengan k (jumlah parameter) = 2 dan n (jumlah observasi) = 13. Berdasarkan angka-angka tersebut, diketahui bahwa residual berada di daerah *Indecisive* di mana autokorelasi tidak dibangkitkan oleh *first-order autoregressive*.

Gambar 3.5 Area Uji Autokorelasi Konsumsi

Untuk melihat apakah autokorelasi yang terjadi positif, negative, atau keduanya digunakan tes modifikasi D-W. Jika nilai $d < d_U$, maka terdapat autokorelasi positif dan tidak terdapat korelasi positif jika $d > d_U$. Jika $(4-d) < d_U$, maka terdapat autokorelasi negatif pada residual model, sebaliknya jika $(4-d) > d_U$ tidak terdapat autokorelasi negatif. Dari nilai yang telah didapat diketahui bahwa terdapat autokorelasi positif pada residual (1.32 < 1.562).

Selanjutnya dilakukan uji multikolinear sempurna di mana suatu model regresi dikatakan mengandung multikolinear sempurna jika terdapat hubungan sempurna antar variabel independen pembentuknya ($r_{x1x2}=1$).

Tabel 3.8Uji Korelasi Variabel Independen Konsumsi

Correlation Matrix					
	LNHARGA	LNKONSU			
LNHARGA	1.000000	0.980406			
LNKONSU	0.980406	1.000000			

Dari gambar di atas, diketahui bahwa antara Y dan T tidak terdapat hubungan sempurna (r = 0.98).

Uji selanjutnya adalah uji Heteroskedastisitas di mana pada regresi linier berganda diasumsikan varian dari residual adalah konstan. Uji heteroskedastisitas dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar 3.9.

Pada gambar di atas, diketahui probabilitas tes adalah 0.374 di mana probabilitas tersebut melebihi pada 5% yang berarti residual model regresi konsumsi ada pada keadaan homoskedastisitas.

7					
	White Heteroskedastici	ty Test:			
	F-statistic Obs*R-squared	0.978374 5.347712	Probability Probability		0.491382 0.374934
	Test Equation: Dependent Variable: RE Method: Least Squares Date: 06/21/10 Time: Sample: 1997 2009 Included observations:	13:20	0 5		
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C LNKONSUMSINOMI LNKONSUMSINOMI LNKONSUMSINOMI LNHARGA LNHARGA^2	-3.487676 1.408924 -0.131043 0.412226 -2.321562 -0.314866	2.911159 1.229369 0.117542 0.375988 2.079019 0.290529	-1.198037 1.146054 -1.114860 1.096381 -1.116662 -1.083769	0.2699 0.2894 0.3017 0.3092 0.3010 0.3144
I	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.411362 -0.009093 0.001429 1.43E-05 70.73440 2.141516	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		0.001090 0.001423 -9.959138 -9.698392 0.978374 0.491382

Gambar 3.6 Uji Heteroskedastisitas Konsumsi

Persamaan Investasi

376

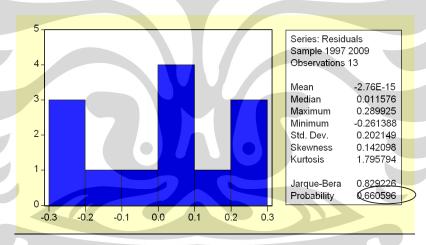
lnI = 0.259 + 1.02lnY - 0.245lnr

Tabel 3.9 Data Regresi Investasi

Tahun	I	lnI	Υ	InY	r	Inr
1997	177700.4	12.08785	159747.7	11.98135	16.24	2.787477
1998	136825.6	11.82646	134491.4	11.80926	23.16	3.142427
1999	123286.7	11.72227	159137.1	11.97752	22.93	3.132446
2000	142160.6	11.86471	204030.8	12.22603	16.59	2.8088
2001	160700.3	11.9873	251225.4	12.43411	17.9	2.884801
2002	167304.9	12.02757	261732.1	12.47508	17.82	2.880321
2003	178285.1	12.09114	272377.5	12.51494	15.68	2.752386
2004	231081.6	12.35053	288904	12.57385	14.05	2.642622
2005	273113.3	12.51764	316632.5	12.6655	15.66	2.75111
2006	326559.5	12.69637	372675.4	12.82846	15.1	2.714695
2007	389116.1	12.87163	421842.6	12.95239	13.01	2.565718
2008	518376.5	13.15846	522225.9	13.16586	14.4	2.667228
2009	652589	13.3887	554293.3	13.22545	13.22	2.581731

Tabel 3.10 Hasil Regresi Investasi

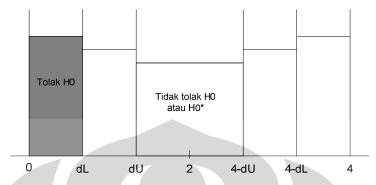
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.258809	4.775249	0.054198	0.9578
LNPDB	1.020414	0.256340	3.980705	0.0026
LNBUNGA	-0.245860	0.630334	-0.390047	0.7047
R-squared	0.856927	Mean deper	ndent var	12.35313
Adjusted R-squared	0.828313	S.D. dependent var		0.534434
S.E. of regression	0.221444	Akaike info criterion		0.021876
Sum squared resid	0.490373	Schwarz cri	terion	0.152249
Log likelihood	2.857804	F-statistic		29.94731
Durbin-Watson stat	0.386915	Prob(F-stati	stic)	0.000060


I dalam persamaan mewakili variabel investasi, Y mewakili Produk Domestik Bruto (PDB) Manufaktur, r mewakili suku bunga kredit dan C dalam tabel mewakili konstanta (dalam Eviews konstanta selalu diwakili oleh huruf C). Pada persamaan regresi di atas digunakan lnI, lnY dan lnr. Hal ini dikarenakan investasi, produksi dan suku bunga memiliki satuan yang berbeda, olehkarenanya perlu untuk diubah bentuk persamaannya menjadi bentuk log natural. Model regresi investasi memiliki nilai probabilitas sebesar 0.0006 yang berada di bawah 0.05 (pada $\alpha = 5\%$) yang menunjukkan bahwa model tersebut telah mewakili data yang ada. Dengan nilai *R-squared* sebesar 0.856 menandakan bahwa 85.6% variasi dari total I dapat diterangkan oleh Y dan r. Meskipun dalam teori ekonomi makro investasi dibentuk oleh produksi (Y) dan suku bunga kredit (r), dalam tabel

hasil model regresi diperlihatkan bahwa variabel suku bunga kredit (r) tidak berpengaruh signifkan pada model. Hal ini berarti suku bunga tidak terlalu mempengaruhi keputusan seseorang dalam berinvestasi.

Dengan menggunakan bentuk log natural, persamaan regresi diinterpretasikan sebagai bentuk pertumbuhan dalam presentase. Persamaan regresi di atas menjelaskan bahwa ketika produksi manufaktur (Y) naik sebesar 10%, maka investasi akan naik sebesar 10.2%. Jika suku bunga kredit (r) naik sebesar 10%, maka investasi akan turun sebesar 2.45%.

Selanjutnya dilakukan uji normalitas berdasarkan asumsi *Multiple Linier Regression (MLR)* bahwa residual model regresi diasumsikan terdistribusi normal. Uji normalitas menggunakan histogram yang hasilnya terdapat pada gambar 3.10.


Angka probabilitas di atas menunjukkan angka 0.66 yang berarti melebihi pada 5%. Residual terdistribusi normal.

Gambar 3.7 Uji Distribusi Normal pada Residual Investasi

Selanjutnya dilakukan uji autokorelasi yang informasinya dapat diperoleh dari tabel 3.5 di mana terdapat angka Durbin-Watson sebesar 0.38. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.715 dan angka d_U sebesar 1.816 dengan k (jumlah parameter yang digunakan, sudah termasuk intersep) = 3 dan n (jumlah observasi) = 13. Berdasarkan angka-angka tersebut, diketahui bahwa residual berada di daerah penolakan H_0 (H_0 = tidak terdapat autokorelasi

positif) yang berarti residual mengandung autokorelasi positif seperti yang ditunjukkan pada gambar di bawah:

Gambar 3.8 Area Uji Autokorelasi Investasi

Selanjutnya dilakukan uji multikolinear sempurna dengan menggunakan tabel korelasi antar variabel-variabel independen yang membentuk model regresi investasi.

Tabel 3.11 Uji Korelasi Variabel Independen Investasi

	Correlation			,
	PDB	BUNGA		
PDB	1.000000	-0.747309		
BUNGA	-0.747309	1.000000		

Dari tabel di atas, diketahui korelasi antara suku bunga dan PDB Manufaktur adalah -0.747 (tanda negatif menyatakan hubungan negatif) sehingga tidak terdapat multikolinear sempurna pada model regresi investasi.

Uji selanjutnya adalah uji Heteroskedastisitas yang dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar 3.8.

Pada gambar 3.8, diketahui probabilitas tes adalah 0.2817 di mana probabilitas tersebut melebihi α pada 5% yang berarti residual model regresi investasi ada pada keadaan homoskedastisitas.

White Heteroskedasticity Test:								
F-statistic		Probability	0.362189					
Obs*R-squared		Probability	0.281774					

Test Equation:
Dependent Variable: RESID*2
Method: Least Squares
Date: 06/11/10 Time: 06:41
Sample: 1997 2009
Included observations: 13

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-63.76484	66.25693	-0.962387	0.3679
LNPDB	4.203735	6.289666	0.668356	0.5253
LNPDB*2	-0.041093	0.150629	-0.272811	0.7929
LNPDB*LNBUNGA	-1.167686	0.975000	-1.197627	0.2700
LNBUNGA	27.27970	20.20977	1.349827	0.2191
LNBUNGA*2	-2.274397	1.473275	-1.543769	0.1666
R-squared	0.481506	Mean dependent var		0.037721
Adjusted R-squared	0.111153	S.D. dependent var		0.035024
S.E. of regression	0.033020	Akaike info criterion		3.679367
Sum squared resid	0.007632	Schwarz criterion		3.418621
Log likelihood	29.91588	F-statistic		1.300128
Durbin-Watson stat	1.350167	Prob(F-statistic)		0.362189

Gambar 3.9 Uji Heteroskedastisitas Investasi

Persamaan Ekspor

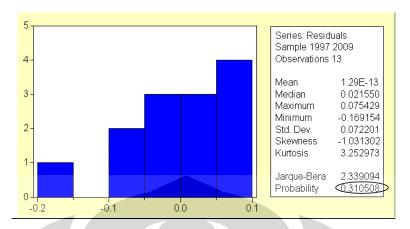
lnEx = 1.82 + 0.63lnY + 0.307lnER + 0.08ln

Tabel 3.12 Data Regresi Ekspor

Tahun	Ex	InEx	Υ	InY	П	In∏	ER	InER
1997	174871.3	12.07181	159747.7	11.98135	11.05	2.40243	3133.3	8.049842
1998	284999.6	12.56024	134491.4	11.80926	77.63	4.351954	9874.6	9.197721
1999	217412.7	12.28955	159137.1	11.97752	2.01	0.698135	7808.9	8.963019
2000	287312.8	12.56833	204030.8	12.22603	9.35	2.235376	8534.4	9.05186
2001	318842.2	12.67245	251225.4	12.43411	12.55	2.529721	10265.7	9.236564
2002	281473.7	12.54779	261732.1	12.47508	10.03	2.305581	9261.2	9.133589
2003	289463.6	12.57578	272377.5	12.51494	5.06	1.621366	8571.2	9.056163
2004	331632.2	12.71178	288904	12.57385	6.4	1.856298	8985.4	9.103356
2005	393571.2	12.88302	316632.5	12.6655	17.11	2.839663	9750.6	9.185084
2006	419939.6	12.94787	372675.4	12.82846	6.6	1.88707	9141.3	9.120558
2007	459141.4	13.03711	421842.6	12.95239	6.59	1.885553	9163.7	9.123005
2008	557891.4	13.23192	522225.9	13.16586	11.06	2.403335	9756.8	9.18572
2009	508456.3	13.13913	554293.3	13.22545	2.78	1.022451	10356.2	9.245341

Ex dalam persamaan mewakili variabel ekspor, Y mewakili Produk Domestik Bruto (PDB) Manufaktur, ER mewakili nilai tukar, ∏ mewakili inflasi dan C dalam tabel mewakili konstanta (dalam Eviews konstanta selalu diwakili oleh huruf C).

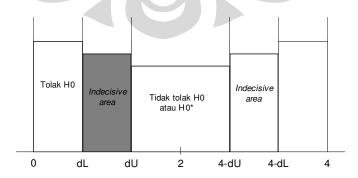
Tabel 3.13 Hasil Regresi Ekspor


Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.822454	0.835253	2.181919	0.0570
LNPDBMAN	0.632424	0.066712	9.479967	0.0000
LNTUKAR	0.307695	0.089754	3.428197	0.0075
LNINFLASI	0.084404	0.029883	2.824469	0.0199
R-squared	0.952695	Mean deper		12.71052
Adjusted R-squared	0.936926	S.D. depend		0.331961
S.E. of regression	0.083370	Sum square	d resid	0.062556
F-statistic	60.41770	Durbin-Wats	son stat	0.732070
Prob(F-statistic)	0.000003			

Pada persamaan regresi di atas digunakan $\ln Ex$, $\ln Y$, $\ln ER$, dan $\ln \Pi$. Hal ini dikarenakan ekspor, produksi, nilai tukar, dan inflasi memiliki satuan yang berbeda, olehkarenanya model regresi perlu untuk diubah bentuknya menjadi log natural. Model regresi ekspor memiliki nilai probabilitas 0.000003 yang berada di bawah 0.05 (pada $\alpha = 5\%$) yang menunjukkan bahwa model mewakili data yang ada. Dengan nilai *R-squared* sebesar 0.952 menandakan bahwa 95.2% variasi dari total Ex dapat diterangkan oleh Y, ER, dan Π . Masing-masing variabel independen memiliki nilai probabilitas di bawah 0.05 ($\alpha = 5\%$) yang menandakan bahwa keseluruhan variabel independen berpengaruh signifikan pada model.

Dengan menggunakan bentuk log natural, persamaan regresi diinterpretasikan sebagai bentuk pertumbuhan dalam presentase. Persamaan regresi di atas menjelaskan bahwa ketika produksi naik sebesar 10%, maka ekspor akan naik sebesar 6.3%. Jika nilai tukar naik sebesar 10%, maka ekspor juga akan naik sebesar 3.07%. Dan jika inflasi naik sebesar 10%, maka ekspor juga akan naik sebesar 0.08%.

Selanjutnya dilakukan uji normalitas menggunakan histogram yang hasilnya dapat dilihat pada gambar 3.13.


Angka probabilitas pada gambar tersebut menunjukkan angka 0.310 yang berarti melebihi α pada 5%. Residual terdistribusi normal.

Gambar 3.10 Uji Distribusi Normal pada Residual Ekspor

Selanjutnya dilakukan uji autokorelasi yang informasinya dapat diperoleh dari tabel 3.6 di mana terdapat angka Durbin-Watson sebesar 0.732. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.574 dan angka d_U sebesar 2.094 untuk k (jumlah parameter yang digunakan, sudah termasuk intersep) = 4 dan n (jumlah observasi) = 13. Berdasarkan angka-angka tersebut, diketahui bahwa residual berada di daerah tidak terdapat keputusan (*indecisive area*) di mana tidak terdeteksi *first-order autocorrelation* seperti terlihat pada gambar 3.11.

Olehkarena itu, digunakan tes modifikasi dari tes D-W yang mendeteksi autokorelasi dengan melihat apakah nilai d (angka D-W)<d_U atau (4-d)<d_U. Jika nilai d<d_U, maka terdapat autokorelasi positif dan tidak terdapat korelasi positif jika d>d_U. Jika (4-d)<d_U, maka terdapat autokorelasi negatif pada residual model, sebaliknya jika (4-d)>d_U tidak terdapat autokorelasi negatif. Dari nilai yang telah didapat diketahui bahwa terdapat autokorelasi positif pada residual (0.732<2.094).

Gambar 3.11 Area Uji Autokorelasi Ekspor

Selanjutnya dilakukan uji multikolinear sempurna dengan menggunakan tabel korelasi antar variabel-variabel independen yang membentuk model regresi ekspor.

Tabel 3.14 Uji Korelasi Variabel Independen Ekspor

Correlation Matrix									
	LNINFLASI	LNPDBMAN	LNTUKAR						
LNINFLASI	1.000000	-0.359264	0.040225						
LNPDBMAN	-0.359264	1.000000	0.456138						
LNTUKAR	0.040225	0.456138	1.000000						

Dari tabel di atas, diketahui tidak terdapat korelasi antar variabel independen yang bernilai 1, oleh karena itu tidak terdapat multikolinear sempurna pada model regresi ekspor.

Uji selanjutnya adalah uji Heteroskedastisitas yang dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar di bawah:

White Heteroskedastic	ity Test:			
F-statistic	0.228000	Probability		
Obs*R-squared	5.280284	Probability		
Test Equation: Dependent Variable: Rt Method: Least Squares Date: 06/21/10 Time: Sample: 1997-2009 Included observations:	13:44	6		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LNPDBMAN LNPDBMAM*2 LNPDBMAN*LNINFL LNPDBMAN*LNINFL LNTUKAR LNTUKAR*2 LNTUKAR*ENINFLASI LNINFLASI LNINFLASI	-124.4532	108.2168 -1.150036		0.3335
	10.49795	9.203061 1.140702		0.3368
	0.130332	0.125580 1.037837		0.3757
	-1.559239	1.368479 -1.139396		0.3373
	0.194863	0.170387 1.142473		0.3362
	11.36071	9.915180 1.145789		0.3350
	0.568947	0.516881 1.100731		0.3514
	-0.999384	0.869707 -1.149104		0.3338
	6.413758	5.572417 1.50983		0.3332
	0.059854	0.054548 1.097273		0.3527
R-squared	0.406176	Mean dependent var		0.004812
Adjusted R-squared	-1.375297	S.D. dependent var		0.007518
S.E. of regression	0.011586	Akaike info criterion		-6.005883
Sum squared resid	0.000403	Schwarz criterion		-5.571307
Log likelihood	49.03824	F-statistic		0.228000
Durbin-Watson stat	1.840517	Prob(F-statistic)		0.963370

Gambar 3.12 Uji Heteroskedastisitas Ekspor

Pada gambar di atas, diketahui probabilitas tes adalah 0.809 di mana probabilitas tersebut melebihi pada 5% yang berarti residual model regresi ekspor ada pada keadaan homoskedastisitas.

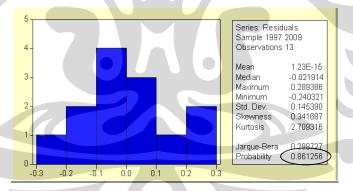
Persamaan Impor

lnIm = 2.66 + 0.68lnY + 0.144lnER

Tabel 3.15 Data Regresi Impor

Tahun	Im		Υ	lnY	ER	InER
1997	176599.8	12.08164	159747.7	11.98135	3133.3	8.049842
1998	232538.5	12.35681	134491.4	11.80926	9874.6	9.197721
1999	167921.4	12.03125	159137.1	11.97752	7808.9	8.963019
2000	215374.6	12.28013	204030.8	12.22603	8534.4	9.05186
2001	251278.3	12.43432	251225.4	12.43411	10265.7	9.236564
2002	227260.7	12.33385	261732.1	12.47508	9261.2	9.133589
2003	217420.4	12.28959	27 2377.5	12.51494	8571.2	9.056163
2004	283538.6	12.5551	288904	12.57385	8985.4	9.103356
2005	345666.4	12.753 2 3	316632.5	12.6655	9750.6	9.185084
2006	346724.2	12.75628	372675.4	12.82846	9141.3	9.120558
2007	395978.3	12.88911	421842.6	12.95239	9163.7	9.123005
2008	538227.6	13.19604	522225. 9	13.16586	9756.8	9.18572
2009	448155.9	13.0129	554 293 .3	13.2 2545	10356.2	9.245341

Tabel 3.16 Hasil Regresi Impor

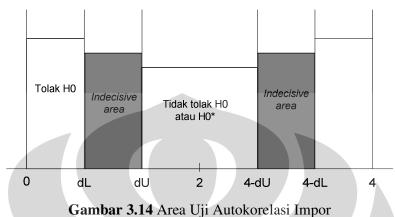

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2.661237	1.539454	1.728688	0.1146
LNPDB	0.684272	0.115380	5.930588	0.0001
LNTUKAR	0.144106	0.166204	0.867039	0.4062
R-squared	0.836828	Mean deper	dent var	12.53617
Adjusted R-squared	0.804194	S.D. depend	lent var	0.359926
S.E. of regression	0.159267	Akaike info	criterion	-0.637294
Sum squared resid	0.253660	Schwarz criterion		-0.506921
Log likelihood	7.142412	F-statistic		25.64255
Durbin-Watson stat	1.540091	Prob(F-statis	stic)	0.000116

Im dalam persamaan mewakili variabel impor, Y mewakili Produk Domestik Bruto (PDB) Manufaktur, ER mewakili nilai tukar dan C dalam tabel mewakili konstanta (dalam Eviews konstanta selalu diwakili oleh huruf C). Pada persamaan regresi di atas digunakan lnIm, lnY dan lnER. Hal ini dikarenakan

impor, produksi dan nilai tukar memiliki satuan yang berbeda, olehkarenanya model perlu untuk diubah ke dalam bentuk log natural. Model regresi impor memiliki nilai probabilitas 0.000116 yang berada di bawah 0.05 (pada = 5%) menunjukkan bahwa model mewakili data yang ada. Dengan nilai *R-squared* sebesar 0.836 menandakan bahwa 83.6% variasi dari total Im dapat diterangkan oleh Y dan ER. Variabel independen yang memiliki nilai probabilitas di bawah 0.05 (= 5%) menandakan bahwa variabel independen berpengaruh signifikan pada model. Untuk variabel nilai tukar, probabilitas sebesar 0.406 berada di bawah 0.05 yang menandakan bahwa variabel nilai tukar tidak berpengaruh signifikan pada model impor

Dengan menggunakan bentuk log natural, persamaan regresi diinterpretasikan sebagai bentuk pertumbuhan dalam presentase. Persamaan regresi di atas menjelaskan bahwa ketika produksi masnufaktur naik sebesar 10%, maka impor turut naik sebesar 6.8%. Jika nilai tukar naik sebesar 10%, maka impor akan naik sebesar 1.44%.

Selanjutnya dilakukan uji normalitas menggunakan histogram yang hasilnya dapat dilihat di bawah ini:



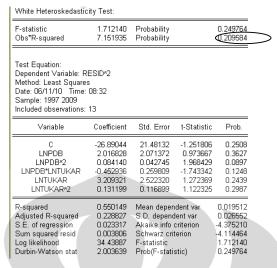
Gambar 3.13 Uji Distribusi Normal pada Residual Impor

Angka probabilitas di atas menunjukkan angka 0.861 yang berarti melebihi pada 5%. Residual terdistribusi normal.

Selanjutnya dilakukan uji autokorelasi yang informasinya dapat diperoleh dari tabel 3.7 di mana terdapat angka Durbin-Watson sebesar 1.54. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.715 dan angka d_U sebesar 1.816 untuk k (jumlah parameter yang digunakan, sudah termasuk intersep) = 3

dan n (jumlah observasi) = 13. Berdasarkan angka-angka tersebut, diketahui bahwa residual berada di daerah tidak terdapat keputusan (*indecisive area*) di mana tidak terdeteksi *first-order autocorrelation*.

Olehkarena itu, digunakan tes modifikasi dari tes D-W yang mendeteksi autokorelasi dengan melihat apakah nilai d (angka D-W)<d $_U$ atau (4-d)<d $_U$. Jika nilai d<d $_U$, maka terdapat autokorelasi positif dan tidak terdapat korelasi positif jika d>d $_U$. Jika (4-d)<d $_U$, maka terdapat autokorelasi negatif pada residual model, sebaliknya jika (4-d)>d $_U$ tidak terdapat autokorelasi negatif. Dari nilai yang telah didapat diketahui bahwa terdapat autokorelasi positif pada residual (1.54<1.816).


Selanjutnya dilakukan uji multikolinear sempurna dengan menggunakan tabel korelasi antar variabel-variabel independen yang membentuk model regresi impor.

Tabel 3.17 Uji Korelasi Variabel Independen Impor

			Correlation M	atrix
	PDB	TUKAR		
PDB	1.000000	0.466478		
TUKAR	0.466478	1.000000		

Dari tabel di atas, diketahui korelasi antara nilai tukar dan PDB Manufaktur adalah 0.466 sehingga tidak terdapat multikolinear sempurna pada model regresi impor.

Uji selanjutnya adalah uji Heteroskedastisitas yang dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar di bawah:

Gambar 3.15 Uji Heteroskedastisitas Impor

Pada gambar di atas, diketahui probabilitas tes adalah 0.209 di mana probabilitas tersebut melebihi pada 5% yang berarti residual model regresi impor ada pada keadaan homoskedastisitas.

Persamaan Penawaran Uang

LnrM = 3.73 + 0.41Y + 0.189lnr - 0.78lnP

Tabel 3.18 Data Regresi Penawaran Uang

Tahun	М	InM	Υ	InY	r	Inr	Р	InP
1997	355643.0	12.782	159747.7	11.981	16.24	2.7875	100.00	4.60517
1998	577381.0	13.266	134491.4	11.809	23.16	3.1424	177.63	5.179703
1999	646205.0	13.379	159137.1	11.978	22.93	3.1324	181.20	5.199603
2000	747028.0	13.524	204030.8	12.226	16.59	2.8088	198.14	5.288987
2001	786741.0	13.576	251 22 5.4	12.434	17.9	2.8848	223.01	5.407214
2002	849401.1	13.652	261732.1	12 .475	17.82	2.880 3	245.38	5.502797
2003	903986.7	13.715	272377.5	12.515	15.68	2.7524	257.79	5.552159
2004	970838.2	13.786	288904	12.574	14.05	2.6426	274.29	5.614194
2005	1092068.8	13.904	316632.5	12.665	15.66	2.7511	321.22	5.772138
2006	1260444.7	14.047	372675.4	12.828	15.1	2.7147	342.42	5.836051
2007	1461509.9	14.195	421842.6	12.952	13.01	2.5657	364.99	5.89987
2008	1697269.3	14.345	522225.9	13.166	14.4	2.6672	405.36	6.004771
2009	1975828.7	14.496	554293.3	13.225	13.22	2.5817	416.63	6.032191

-2.106774

184.1372

0.000000

Variable Coefficient Std. Error t-Statistic Prob. C 3.731089 2.233299 1.670662 0.1291 **LNPDBMAN** 0.412368 0.184933 2.229817 0.0527 LNBUNGA 0.189180 0.240305 0.787248 0.4514 **LNHARGA** 0.780951 0.146423 5.333516 0.0005 R-squared 0.983969 Mean dependent var 13.74351 Adjusted R-squared 0.978625 S.D. dependent var 0.467527 S.E. of regression Akaike info criterion 0.068353 -2.280605

0.042049

18.82393

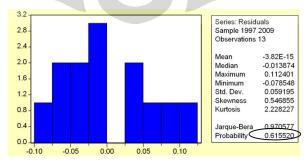
1.244253

Schwarz criterion

Prob(F-statistic)

F-statistic

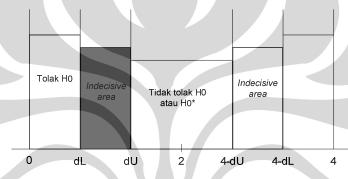
Sum squared resid


Durbin-Watson stat

Log likelihood

Tabel 3.19 Hasil Regresi Penawaran Uang

r dalam persamaan mewakili variabel suku bunga, M mewakili penawaran uang, Y mewakili PDB Manufaktur, P mewakili tingkat harga dan C dalam tabel mewakili konstanta (dalam Eviews konstanta selalu diwakili oleh huruf C). Pada persamaan regresi di atas digunakan lnr, lnY, lnP dan lnM hal ini dikarenakan suku bunga, pdb manufaktur, tingkat harga dan penawaran uang memiliki satuan yang berbeda, olehkarenanya model perlu untuk diubah ke dalam bentuk log natural. Model regresi ini memiliki nilai probabilitas 0.000253 yang berada di bawah 0.05 (pada = 5%) menunjukkan bahwa model telah mewakili data yang ada. Dengan nilai R-squared sebesar 0.98 menandakan bahwa 98% variasi dari total M dapat diterangkan oleh Y, P dan r. Variabel independen yang memiliki nilai probabilitas di bawah 0.05 (= 5%) menandakan bahwa variabel independen berpengaruh signifikan pada model namun tidak pada variabel harga dan pdb manufaktur. Kedua varibel tersebut bisa jadi memiliki pengaruh dengan variabel independen yang lainnya karena secara teori seharusnya mereka berpengaruh signifikan terhadap penawaran uang.


Selanjutnya dilakukan uji normalitas menggunakan histogram yang hasilnya dapat dilihat di bawah ini:

Gambar 3.16 Uji Distribusi Normal pada Residual Penawaran Uang

Angka probabilitas di atas menunjukkan angka 0.615 yang berarti melebihi α pada 5%. Residual terdistribusi normal.

Selanjutnya dilakukan uji autokorelasi yang informasinya dapat diperoleh dari tabel 3.19 di mana terdapat angka Durbin-Watson sebesar 1.244. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.574 dan angka d_U sebesar 2.094 untuk k (jumlah parameter yang digunakan, sudah termasuk intersep) = 4 dan n (jumlah observasi) = 13. Berdasarkan angka-angka tersebut, diketahui bahwa residual berada di daerah tidak terdapat keputusan (*indecisive area*) di mana tidak terdeteksi *first-order autocorrelation*.

Gambar 3.17 Area Uji Autokorelasi Suku Bunga

Olehkarena itu, digunakan tes modifikasi dari tes D-W yang mendeteksi autokorelasi dengan melihat apakah nilai d (angka D-W)<d $_U$ atau (4-d)<d $_U$. Jika nilai d<d $_U$, maka terdapat autokorelasi positif dan tidak terdapat korelasi positif jika d>d $_U$. Jika (4-d)<d $_U$, maka terdapat autokorelasi negatif pada residual model, sebaliknya jika (4-d)>d $_U$ tidak terdapat autokorelasi negatif. Dari nilai yang telah didapat diketahui bahwa terdapat autokorelasi positif pada residual (1.244<1.816).

Selanjutnya dilakukan uji multikolinear sempurna dengan menggunakan tabel korelasi antar variabel-variabel independen yang membentuk model regresi penawaran uang.

Tabel 3.20 Uji Korelasi Variabel Independen Penawaran Uang

					(Correlation Ma	atrix
	LNPDBMAN	LNBUNGA	LNHARGA				
LNPDBMAN	1.000000	-0.830562	0.910076				
LNBUNGA	-0.830562	1.000000	-0.620410				
LNHARGA	0.910076	-0.620410	1.000000				

Dari tabel di atas, diketahui korelasi antar tiap variabel independen cukup besar namun tidak menyentuh angka 1 sehingga tidak terjadi multikolinear sempurna. Besarnya angka korelasi antar variabel independen menjelaskan kecilnya pengaruh harga terhadap penawaran uang, karena dianggap telah diwakilkan oleh variabel lainnya.

Uji selanjutnya adalah uji Heteroskedastisitas yang dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar 3.18.

Pada gambar 3.18, diketahui probabilitas tes adalah 0.727 di mana probabilitas tersebut melebihi pada 5% yang berarti residual model regresi penawaran uang ada pada keadaan homoskedastisitas.

White Heteroskedasticity Test:										
F-statistic Obs*R-squared	0.297116 Probability 0.9314 6.126593 Probability 0.7271									
Test Equation: Dependent Variable: F Method: Least Square Date: 07/07/10 Time Sample: 1997 2009 Included observations	es : 22:33									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
		1.01								

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LNPDBMAN LNPDBMAN*2 LNPDBMAN*LNBUN LNPDBMAN*LNHAR LNBUNGA LNBUNGA*2 LNBUNGA*LNHARGA LNHARGA LNHARGA	-14.66860 1.458118 -0.073055 -0.105692 0.118472 4.583451 -0.379177 -0.207309 -0.279368 -0.056747	34.36918 7.664481 0.369661 0.744964 0.668054 5.715889 0.316949 0.972197 7.917728 0.273525	-0.426795 0.190244 -0.197627 -0.141875 0.177339 0.801879 -1.196337 -0.213238 -0.035284 -0.207466	0.6983 0.8613 0.8560 0.8962 0.8705 0.4813 0.3175 0.8448 0.9741 0.8489
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.471276 -1.114894 0.005426 8.83E-05 58.90023 2.023104	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion cerion	0.003235 0.003731 -7.523112 -7.088536 0.297116 0.931442

Gambar 3.18 Uji Heteroskedastisitas Penawaran Uang

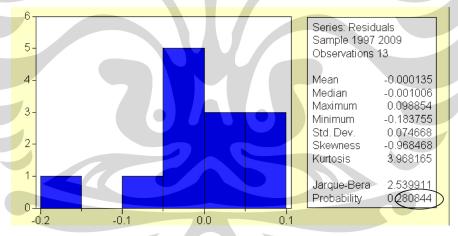
Persamaan PDB Manufaktur

lnY = 0.48lnC + 0.06lnI + 0.408lnG + 0.027lnEx - 0.0025lnIm

Tabel 3.21Data Regresi PDB Manufaktur

Tahun	G	InG	Υ	InY	С	InC
1997	89610	11.403	159747.7	11.981	388722.3	12.871
1998	83159.9	11.329	134491.4	11.809	364703.9	12.807
1999	129079.3	11.768	159137.1	11.978	452673.8	13.023
2000	117185	11.672	204030.8	12.226	453356.4	13.024
2001	169477	12.040	251225.4	12.434	515855.4	13.154
2002	152280.6	11.933	261732.1	12.475	582296.4	13.275
2003	173801	12.066	272377.5	12.515	633374	13.359
2004	195671.4	12.184	288904	12.574	687301.4	13.441
2005	212134.2	12.265	316632.5	12.665	745230.4	13.521
2006	283334.3	12.554	372675.4	12.828	848121.8	13.651
2007	296993.2	12.601	421842.6	12.952	991001.4	13.806
2008	386785.1	12.866	522225.9	13.166	1134671	13.942
2009	388167.5	12.869	554293.3	13.225	1231741	14.024

Tabel 3.21 Data Regresi PDB Manufaktur (Lanjutan)

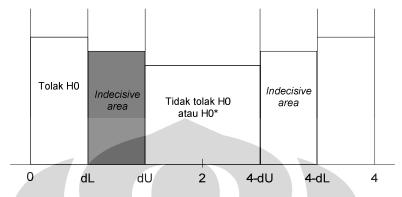

Tahun	1	Ini	Ex	InEx	lm	InIm
1997	177700.4	12.09	174871.3	12.07	176599.8	12.08
1998	136825.6	11.83	284999.6	12.56	2325 38.5	12.36
1999	123286.7	11.72	217412.7	12.29	167921.4	12.03
2000	142160.6	11.86	287312.8	12.57	215374.6	12.28
2001	160700.3	11.99	318842.2	12.67	251278.3	12.43
2002	167304.9	12.0 3	281473.7	12. 55	227260.7	12.33
2003	178285.1	12.09	289463.6	12.58	217420.4	12.29
2004	231081.6	12.35	331632.2	12.71	283538.6	12.56
2005	273113.3	12.52	393571.2	12.88	345666.4	12.75
2006	326559.5	12.70	419939.6	12.95	346724.2	12.76
2007	389116.1	12.87	459141.4	13.04	395978.3	12.89
2008	518376.5	13.16	557891.4	13.23	538227.6	13.20
2009	652589	13.39	508456.3	13.14	448155.9	13.01

Tabel 3.22 Hasil Regresi PDB Manufaktur

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNKONSUMSI	0.486485	0.282173	1.724070	0.1230
LNINVTOT	0.061115	0.224772	0.271897	0.7926
LNG	0.408022	0.195318	2.089016	0.0701
LNEKSPORTOT	0.027501	0.501684	0.054817	0.9576
LNIMPOR	-0.002514	0.542518	-0.004634	0.9964
R-squared	0.972193	Mean deper	ndent var	12.52537
Adjusted R-squared	0.958289	S.D. depend	dent var	0.447774
S.E. of regression	0.091450	Akaike info criterion		-1.662328
Sum squared resid	0.066905	Schwarz crit	terion	-1.445040
Log likelihood	15.80513	Durbin-Wats	son stat	1.558624

Y dalam persamaan mewakili PDB Manufaktur dalam permintaan barang dan jasa, C mewakili konsumsi, I mewakili investasi, G mewakili belanja negara, Ex mewakili ekspor dan Im mewakili impor. Dalam persamaan regresi digunakan ln sebagai penetral satuan variable independen dan dependen yang berbeda. Model regresi pdb manufaktur memiliki R-squared sebesar 0.972 yang berarti 97.2% variasi total Y dapat dijelaskan oleh C, I, G, Ex dan Im. Nilai probabilitas dari kesemua variabel independen berada di atas 0.05 (α = 5%) namun tidak berarti mereka tidak mempunyai pengaruh signifikan terhadap Y melainkan karena pengaruh multikolinear yang tinggi (walaupun tidak sempurna). Persamaan ini tidak seharusnya diperlakukan sebagai model regresi karena sesungguhnya ia adalah identitas namun karena berbentuk log natural, maka diproses menggunakan model regresi.

Selanjutnya dilakukan uji normalitas menggunakan histogram yang hasilnya dapat dilihat di bawah ini:



Gambar 3.19 Uji Distribusi Normal pada Residual PDB Manufaktur

Angka probabilitas di atas menunjukkan angka 0.280 yang berarti melebihi pada 5%. Residual terdistribusi normal.

Selanjutnya dilakukan uji autokorelasi yang informasinya dapat diperoleh dari tabel 3.8 di mana terdapat angka Durbin-Watson sebesar 1.55. Berdasarkan tabel Durbin-Watson diperoleh angka d_L sebesar 0.445 dan angka d_U sebesar 2.390 untuk k (jumlah parameter) = 5 dan n (jumlah observasi) = 13. Berdasarkan

angka-angka tersebut, diketahui bahwa residual berada di daerah tidak terdapat keputusan (*indecisive area*) di mana tidak terdeteksi *first-order autocorrelation*.

Gambar 3.20 Area Uji Autokorelasi PDB Manufaktur

Olehkarena itu, digunakan tes modifikasi dari tes D-W yang mendeteksi autokorelasi dengan melihat apakah nilai d (angka D-W)<d_U atau (4-d)<d_U. Jika nilai d<d_U, maka terdapat autokorelasi positif dan tidak terdapat korelasi positif jika d>d_U. Jika (4-d)<d_U, maka terdapat autokorelasi negatif pada residual model, sebaliknya jika (4-d)>d_U tidak terdapat autokorelasi negatif. Dari nilai yang telah didapat diketahui bahwa terdapat autokorelasi positif pada residual (1.55<2.390).

Selanjutnya dilakukan uji multikolinear sempurna dengan menggunakan tabel korelasi antar variabel-variabel independen yang membentuk model regresi pdb manufaktur.

Tabel 3.23 Uji Korelasi Variabel Inpenden PDB Manufaktur

Ī						
				Correlatio	n Matrix	
		LNINVTOT	LNKONSU	LNIMPOR	LNEKSPO	LNG
	LNINVTOT	1.000000	0.942976	0.929550	0.858995	0.909360
	LNKONSU	0.942976	1.000000	0.913098	0.903895	0.986229
	LNIMPOR	0.929550	0.913098	1.000000	0.969201	0.900024
	LNEKSPO	0.858995	0.903895	0.969201	1.000000	0.905286
	LNG	LNG 0.909360		0.900024	0.905286	1.000000

Dari tabel di atas, diketahui korelasi yang terjadi antar masing-masing variabel independen sangat besar sehingga mengandung multikolineritas yang parah namun belum sampai tahap multikolinearitas sempurna. Hal ini terjadi karena selain berdasarkan teori makro mereka memiliki hubungan, mereka juga memiliki tren yang serupa.

Uji selanjutnya adalah uji Heteroskedastisitas yang dilakukan dengan menggunakan tes White Heteroskedasticity yang hasilnya ditampilkan pada gambar 3.28.

Pada gambar 3.28, diketahui probabilitas tes adalah 0.408 di mana probabilitas tersebut melebihi pada 5% yang berarti residual model regresi produksi ada pada keadaan homoskedastisitas.

Secara umum, hasil regresi yang didapat telah cukup baik merepresentasikan data yang ada. Perihal autokorelasi dimungkinkan terjadi karena terkaitnya pesamaan yang satu dengan yang lainnya.

3.2.2 Persamaan Simultan dan Teknik Gauss-Seidel

White Heteroskedasticity Test:

Persamaan simultan yang merupakan himpunan persamaan akan digunakan sebagai tahap selanjutnya dalam pengolahan data. Persamaan yang digunakan adalah persamaan dari hasil regresi di awal pengolahan data. Adapun daftar persamaan regresi tersebut tersajikan dalam tabel 3.9.

	F-statistic Obs*R-squared	0.790521 10.37512	Probability Probability		0.676221 0.408222
D M D S	est Equation: ependent Variable: R ethod: Least Square ate: 06/21/10 Time: ample: 1997 2009 cluded observations:	14:40	5		
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C LNKONSUMSI LNKONSUMSI'2 LNINVTOT LNINVTOT'2 LNG LNG'2 LNEKSPORTOT LNEKSPORTOT-2 LNIMPOR LNIMPOR'2	9.624281 -1.312420 0.049805 -0.292838 0.010082 0.371620 -0.014484 0.272425 -0.012069 -0.464875 0.019311	19.10030 5.428448 0.201929 1.600708 0.061945 1.986496 0.082083 7.020845 0.279882 4.990165 0.197557	0.503881 -0.241767 0.246645 -0.182943 0.162758 0.187073 -0.176459 0.038802 -0.043122 -0.093158 0.097747	0.6644 0.8315 0.8282 0.8717 0.8857 0.8689 0.8762 0.9726 0.9695 0.9343
Adj S.E Sui Log	squared justed R-squared E. of regression m squared resid g likelihood rbin-Watson stat	0.798086 -0.211484 0.010170 0.000207 53.36833 1.693341	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	0.005147 0.009240 -6.518205 -6.040171 0.790521 0.676221

Gambar 3.21 Uji Heteroskedastisitas PDB Manufaktur

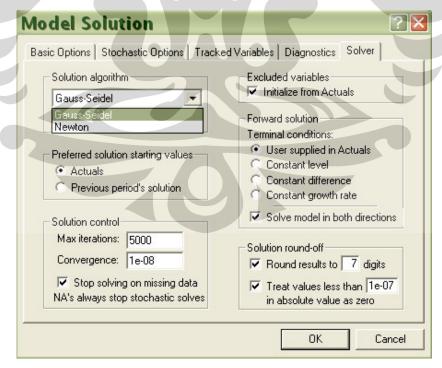
Tabel 3.24 Daftar Persamaan Regresi

Nomor	Persamaan Regresi
1	lnCn = 0.073 + 0.979lnYn - 0.017lnTn
2	LnC = 1.49lnCn - 1.39lnP
3	lnI = 0.259 + 1.02lnY - 0.245lnr
4	lnEx = 1.82 + 0.63lnY + 0.307lnER + 0.08ln
5	lnIm = 2.66 + 0.68lnY + 0.144lnER
6	Lnr = 6.87 - 0.73lnY + 0.34lnM + 0.06lnP
7	lnY = 0.48lnC + 0.06lnI + 0.408lnG + 0.027lnEx - 0.0025lnIm

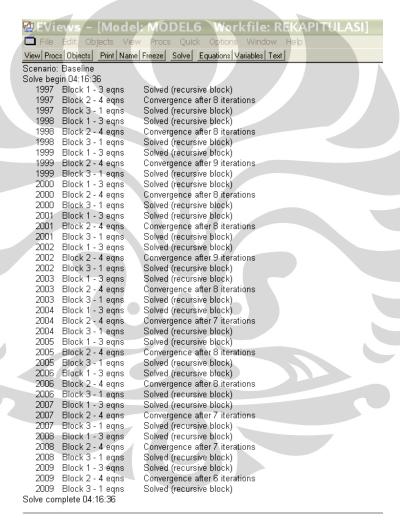
Pada persamaan nomor 6, digunakan persamaan suku bunga alih-alih persamaan penawaran uang karena penawaran uang akan diperlakukan sebagai variabel eksogen. Adapun daftar variabel yang membentuk persamaan berikut keterkaitannya ditampilkan dalam bentuk tabel di bawah ini:

Tabel 3.25 Diagram Keterkaitan Variabel Persamaan Simultan

	Endogen						Eksogen								
	С	Cn	Ι	Ex	Im	r	Y	G	Tn	ER	M	П	Yn	P	Konstanta
С		*												*	
Cn									*				*		*
I						*	*								*
Ex							*			*		*			*
Im							*			*					*
r							*				*			*	*
Y	*		*	*	*			*							


Dalam tabel di atas terdapat daftar endogen dan eksogen yang membentuk persamaan. Pada kolom pertama adalah endogen yang terdefinisikan oleh persamaan dan kolom-kolom berikutnya adalah variabel-variabel yang mempengaruhinya. Dengan jumlah variabel endogen yang sama dengan persamaan (dalam tabel diwakili oleh endogen pada kolom pertama) diharapkan akan didapatkan solusi yang unik dari tiap-tiap variabel endogen. Tanda asterik (*) menandakan hubungan antara variabel satu dengan yang lainnya. Cara membaca table di atas adalah dimulai dari kolom pertama yang berisi variabel yang terdefinisikan dari persamaan regresi: C dipengaruhi oleh Cn dan P. Dan begitu seterusnya.

Semua persamaan hasil regresi di atas dimasukkan ke dalam model persamaan simultan seperti yang terlihat dalam gambar di bawah ini:


Gambar 3.22 Persamaan Regresi sebagai Input Model Persamaan Simultan

Dari gambar di atas terlihat bahwa terdapat 8 persamaan sebagai masukan dari model persamaan simultan dengan 7 diantaranya merupakan persamaan regresi (berlambang tanda (=) dalam kotak) dan 1 sisanya merupakan persamaan identitas (yang bertuliskan 'TXT'). Jika pada persamaan regresi mengizinkan terjadinya eror, tidak demikian dengan persamaan identitas sama sekali tidak mengizinkan terjadinya eror karena ia merupakan suatu kepastian. Setelah dimasukkan kedelapan persamaan tersebut ke dalam model, langkah selanjutnya adalah menyetel metode persamaan simultan seperti yang terlihat dalam gambar di bawah ini:

Gambar 3.23 Pemilihan Gauss-Seidel pada Software

Karena software ini mempunyai dua tawaran algoritma (Gauss-Seidel dan Newton) untuk menyelesaikan persamaan simultan, maka penting untuk menyetel terlebih dahulu jenis algoritma yang akan digunakan. Software akan melakukan iterasi hingga didapat nilai yang konvergen untuk masing-masing variabel endogen. Adapun laporan dari proses Gauss-Seidel tersebut dapat dilihat pada gambar di bawah:

Gambar 3.24 Tampilan Akhir Gauss-Seidel

Gambar di atas menunjukkan bahwa telah dilakukan iterasi untuk persamaan simultan dan menghasilkan hasil yang konvergen.

3.3.3 Basic Run dan Validasi

Setelah dijalankan, akan keluar nilai tahunan untuk masing-masing variabel endogen. Untuk mencek apakah model tersebut sudah dapat mewakili data aktual, maka perlu dilakukan *basic run. Basic run* merupakan simulasi menggunakan data aktual sebagai masukan. Adapun nilai aktual yang digunakan untuk *basic run* tersaji dalam tabel di bawah ini:

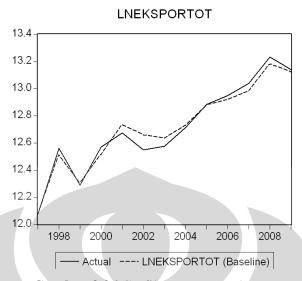
Tabel 3.26 Nilai Aktual Sebagai Input untuk Basic Run

Tahun	lnr	lnEx	lnG	lnP	lnIm	ln∏	lnI	lnC
1997	2.787	12.072	11.403	4.605	12.082	2.402	12.088	12.871
1998	3.142	12.560	11.329	5.180	12.357	4.352	11.826	12.807
1999	3.132	12.290	11.768	5.200	12.031	0.698	11.722	13.023
2000	2.809	12.568	11.672	5.289	12.280	2.235	11.865	13.024
2001	2.885	12.672	12.040	5.407	12.434	2.530	11.987	13.154
2002	2.880	12.548	11.933	5.503	12.334	2.306	12.028	13.275
2003	2.752	12.576	12.066	5.552	12.290	1.621	12.091	13.359
2004	2.643	12.712	12.184	5.614	12.555	1.856	12.351	13.441
2005	2.751	12.883	12.265	5.772	12.753	2.840	12.518	13.521
2006	2.715	12.948	12.554	5.836	12.756	1.887	12.696	13.651
2007	2.566	13.037	12.601	5.900	12.889	1.886	12.872	13.806
2008	2.667	13.232	12.866	6.005	13.196	2.403	13.158	13.942
2009	2.582	13.139	12.869	6.032	13.013	1.022	13.389	14.024

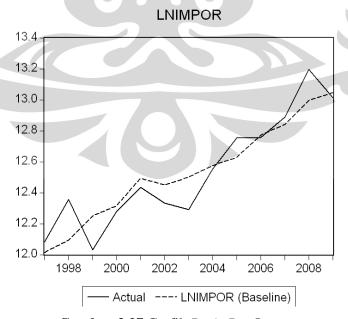
Tabel 3.26 Nilai Aktual Sebagai *Input* untuk *Basic Run* (Lanjutan)

Tahun	lnCn	lnM	lnTn	lnY	lnYn	lnER	Y
1997	12.871	12.782	10.445	11.981	13.346	8.050	159747.700
1998	13.381	13.266	10.807	11.809	13.770	9.198	134491.400
1999	13.609	13.379	11.195	11.978	13.911	8.963	159137.100
2000	13.661	13.524	10.952	12.226	14.145	9.052	204030.800
2001	13.854	13.576	11.457	12.434	14.337	9.237	251225.400
2002	14.024	13.652	11.531	12.475	14.438	9.134	261732.100
2003	14.132	13.715	11.653	12.515	14.531	9.056	272377.500
2004	14.243	13.786	11.812	12.574	14.650	9.103	288904.000
2005	14.398	13.904	12.075	12.666	14.836	9.185	316632.500
2006	14.554	14.047	12.272	12.828	15.021	9.121	372675.400
2007	14.736	14.195	12.436	12.952	15.189	9.123	421842.600
2008	14.914	14.345	12.670	13.166	15.415	9.186	522225.900
2009	15.007	14.497	13.772	13.225	15.541	9.245	554293.300

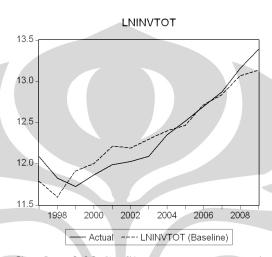
Setelah dihasilkan nilai tiap variabel endogen dari *basic run*, dilakukan validasi terhadap hasil dari simulasi. Validasi dilakukan dengan membandingkan data tahunan aktual variabel endogen dengan nilai endogen yang dihasilkan dari


model. Adapun data aktual yang menjadi inputan bagi model simulasi dapat dilihat di lampiran laporan skripsi ini.

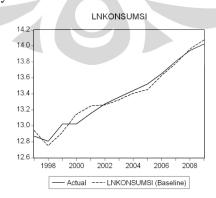
Validasi disajikan dalam bentuk delapan grafik yang mewakili delapan endogen secara berturut-turut seperti dapat dilihat di bawah ini:


Gambar 3.25 Grafik Basic Run Suku Bunga

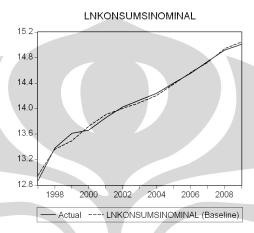
Dari gambar grafik log natural suku bunga di atas terlihat bahwa log natural suku bunga dari model tidak terlalu cocok dengan log natural suku bunga aktual. Garis grafik putus-putus mewakili regresi log natural suku bunga dan garis hitam solid mewakili log natural suku bunga aktual. Dari gambar di atas juga dapat terlihat bahwa model regresi tidak terlalu menghasilkan grafik yang bergejolak seperti grafik suku bunga aktual. Hal ini bisa jadi dikarenakan pada model regresi terdapat faktor yang tidak dimasukkan ke dalam model karena tidak termasuk dalam pengamatan penulis. Jika dilihat dari tren grafik suku bunga regresi yang naik ketika aktual suku bunga naik, penulis menganggap model regresi suku bunga sudah cukup merepresentasikan keadaan aktual.


Gambar 3.26 Grafik Basic Run Ekspor

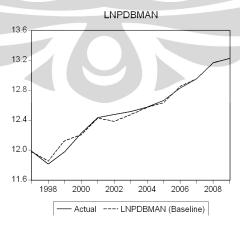
Grafik di atas merupakan grafik validasi regresi log natural ekspor (grafik putus-putus) dengan log natural ekspor aktual (grafik solid). Dari gambar di atas terlihat bahwa beda (*gap*) dari model regresi log natural ekspor dan log natural ekspor aktual tidak terlalu besar. Selain itu tren pergerakan grafik model regresi cocok dengan tren pergerakan ekspor aktual. Hal ini menunjukkan bahwa model regresi dianggap dapat mereprentasikan kenyataan yang ada untuk variabel ekspor.


Gambar 3.27 Grafik Basic Run Impor

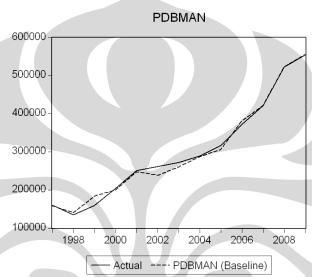
Grafik di atas merupakan grafik validasi regresi log natural impor (grafik putus-putus) dengan log natural impor aktual (grafik solid). Dari gambar di atas terlihat bahwa log natural impor aktual bergerak lebih fluktuatif dibandingkan dengan model regresi log natural impor. Dapat dikatakan bahwa model regresi log natural impor cukup mewakili log natural impor aktual.


Gambar 3.28 Grafik Basic Run Investasi

Grafik di atas merupakan grafik validasi regresi log natural investasi (grafik putus-putus) dengan log natural investasi aktual (grafik solid). Dari gambar di atas terlihat bahwa log natural investasi aktual bergerak cukup fluktuatif dibandingkan dengan model regresi log natural investasi. Karena beda antara model log natural investasi dan log natural investasi tidak terlalu jauh, maka dapat dikatakan model regresi log natural investasi cukup dapat mewakili keadaan yang sebenarnya.


Gambar 3.29 Grafik Basic Run Konsumsi

Grafik di atas merupakan grafik validasi regresi log natural konsumsi (grafik putus-putus) dengan log natural konsumsi aktual (grafik solid). Dari gambar di atas terlihat bahwa regresi log natural konsumsi tidak berbeda jauh dengan log natural konsumsi aktual. Hal ini menunjukkan bahwa regresi log natural konsumsi dapat mewakili keadaan yang sebenarnya.


Gambar 3.30 Grafik Basic Run Konsumsi Nominal

Grafik di atas merupakan grafik validasi regresi log natural konsumsi nominal (grafik putus-putus) dengan log natural konsumsi nominal aktual (grafik solid). Dari gambar di atas terlihat bahwa regresi log natural konsumsi nominal hampir sesuai dengan log natural konsumsi nominal aktual. Hal ini menunjukkan bahwa regresi log natural konsumsi nominal dapat mewakili keadaan yang sebenarnya.

Gambar 3.31 Grafik Basic Run Log Natural PDB Manufaktur

Grafik di atas merupakan grafik validasi regresi log natural PDB Manufaktur (grafik putus-putus) dengan log natural PDB Manufaktur aktual (grafik solid). Dari gambar di atas terlihat bahwa regresi log natural PDB Manufaktur hampir sesuai dengan log natural PDB Manufaktur aktual. Hal ini menunjukkan bahwa regresi log natural PDB Manufaktur dapat mewakili keadaan yang sebenarnya.

Gambar 3.32Grafik Basic Run PDB Manufaktur

Grafik di atas merupakan grafik validasi regresi PDB Manufaktur (grafik putus-putus) dengan PDB Manufaktur aktual (grafik solid). Dari gambar di atas terlihat bahwa regresi PDB Manufaktur hampir sesuai dengan PDB Manufaktur aktual. Hal ini menunjukkan bahwa regresi PDB Manufaktur dapat mewakili keadaan yang sebenarnya.

Dari tampilan dan pembahasan kedelapan grafik di atas, dapat disimpulkan bahwa model persamaan simultan (yang masukannya merupakan model persamaan regresi) cukup valid untuk menggambarkan keadaaan yang sebenarnya.

BAB 4 ANALISA DAN PEMODELAN

Bab ini akan menjelaskan tentang analisa terhadap model yang memiliki skenario khusus. Model memiliki empat skenario yang disimulasikan untuk prediksi tiga tahun ke depan yang dari keempat skenario tersebut akan dilihat perubahan PDB Manufaktur yang terjadi berikut analisanya.

Tabel 4.1 Skenario Simulasi Prediksi

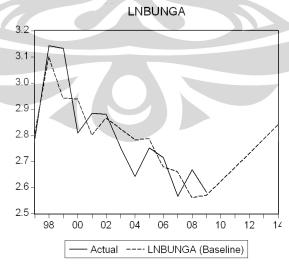
	Ske	enario 1	Sk	enario 2
Tahun		Pertumbuhan		Pertumbuhan
	M (miliar)	(%)	G (miliar)	(%)
2009	1975828.7		388167.5	
2010	2301840.4	16.5%	442510.9	14%
2011	2686247.7	16.70%	508887.5	15%
2012	3142909.9	17.00%	590309.5	16%
2013	3683490.4	17.20%	690662.2	17%
2014	4328101.2	17.50%	814981.4	18%

Tabel 4.1 Skenario Simulasi Prediksi (Lanjutan)

		Clya	nario 3	
Tahun	_	Pertumbuhan		Pertumbuhan
	M (miliar)	(%)	G (miliar)	(%)
2009	1975828.7		388167.5	
2010	2301840.4	16.5%	442510.9	14%
2011	2686247.7	16.70%	508887.5	15%
2012	3142909.9	17.00%	590309.5	16%
2013	3683490.4	17.20%	690662.2	17%
2014	4328101.2	17.50%	814981.4	18%

Tabel 4.1 Skenario Simulasi Prediksi (Lanjutan)

		Skenario 4						
Tahun	ER (Rp/\$)							
I alluli	mengamba	Pertumbuhan	ER (Rp/\$)	Pertumbuhan				
	ng	(%)	tetap	(%)				
2009	10356.2		10356.2					
2010	10439.0	0.80%	8000.0	-22.75%				
2011	10543.4	1.00%	8000.0	0.00%				
2012	10669.9	1.20%	8000.0	0.00%				
2013	10808.6	1.30%	8000.0	0.00%				
2014	10970.8	1.50%	8000.0	0.00%				

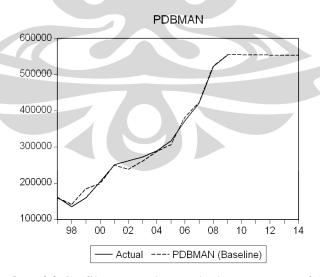

Tabel 4.1 Skenario Simulasi Prediksi (Lanjutan)

		Skenario 4							
Tahun	ER (Rp/\$)	Pertumbuhan	ER (Rp/\$)	Pertumbuhan					
	tetap	(%)	tetap	(%)					
2009	10356.2		10356.2						
2010	6000	-42.06%	2000	-80.69%					
2011	6000	0.00%	2000	0.00%					
2012	6000	0.00%	2000	0.00%					
2013	6000	0.00%	2000	0.00%					
2014	6000	0.00%	2000	0.00%					

Berdasarkan tabel di atas, keseluruhan skenario terhadap model mengasumsikan nilai eksogen yang lain tetap dan masing-masing kebijakan ditetapkan dengan tren meningkat tiap tahunnya kecuali kebijakan nilai tukar tetap.

4.1 Skenario 1 – Pengaruh Penawaran Uang (M) terhadap PDB Manufaktur

Dalam skenario ini eksogen dari penawaran uang (M) akan ditetapkan untuk lima tahun ke depan (2010, 2011, 2012, 2013, dan 2014) dan nilai eksogen lain yang berpengaruh terhadap model dibiarkan tetap seperti tahun 2009. Skenario ini bermaksud melihat pengaruh kebijakan penawaran uang (M) terhadap variabel endogen yang terkait secara langsung dan variabel PDB Manufaktur secara khususnya. Hasil dari skenario ini dapat dilihat dari grafik yang ada di bawah ini:



Gambar 4.1 Grafik Pengaruh M terhadap Suku Bunga

Pada grafik di atas terlihat pengaruh positif signifikan M terhadap suku bunga. Ketika diberi kebijakan yaitu M naik dengan nilai eksogen yang lain nilainya adalah tetap, suku bunga naik signifikan. Hal ini sangat berbeda dengan toeri yang mengatakan bahwa M memiliki hubungan negatif dengan r. Hal ini bisa terjadi dikarenakan pengaruh waktu yang menyebabkan kurva bergeser sehingga tidak lagi dapat digunakan sebagai acuan. Untuk melihat dengan jelas rincian nilai dan pertumbuhannya, dapat dilihat dari tabel di bawah:

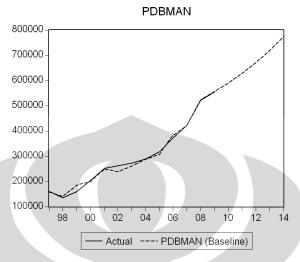
Tabel 4.2 Pengaruh M terhadap suku bunga

				Pertumbuha		7	pertumbuhan
	Tahun	ln M	M (miliar)	n (%)	ln r	r (%)	(%)
	1997	12.7816827	355643.0		2.806399	16.545	
4	1998	13.2662576	577381.0	62.3%	3.100802	22.209	34.23%
	1999	13.3788721	646205.0	11.9%	2.940433	18.918	-14.82%
	2000	13.5238579	747028.0	15.6%	2.937397	18.861	-0.30%
	2001	13.5756544	786741.0	5.3%	2.800998	16.456	-12.75%
	2002	13.6522868	849401.1	8.0%	2.865208	17.547	6.63%
	2003	13.7145699	903986.7	6.4%	2.823439	16.830	-4.09%
	2004	13.7859151	970838.2	7.4%	2.7807	16.126	-4.18%
	2005	13.9035845	1092068.8	12.5%	2.785834	16.209	0.51%
	2006	14.0469751	1260444.7	15.4%	2.678403	14.558	-10.19%
	2007	14.1949806	1461509.9	16.0%	2.658915	14.277	-1.93%
	2008	14.3445312	1697269.3	16.1%	2.560769	12.942	-9.35%
	2009	14.4964984	1975828.7	16.4%	2.570701	13.072	1.00%
	2010	14.6492195	2301840.4	16.5%	2.623336	13.778	5.40%
	2011	14.8036559	2686247.7	16.70%	2.676562	14.531	5.47%
	2012	14.9606596	3142909.9	17.00%	2.730674	15.339	5.56%
	2013	15.1193713	3683490.4	17.20%	2.785374	16.201	5.62%
	2014	15.2806395	4328101.2	17.50%	2.840955	17.127	5.71%

Gambar 4.2 Grafik Pengaruh M terhadap PDB Manufaktur

Dari gambar di atas dapat dilihat PDB Manufaktur cenderung menurun ketika nilai eksogen yang lain tetap dan penawaran uang meningkat. Dari grafik mungkin tidak terlalu terlihat jelas penurunan yang dialami oleh PDB Manufaktur, oleh karenanya penulis sajikan pertumbuhan negatif PDB Manufaktur akibat kenaikan M pada tabel di bawah ini:

Tabel 4.3 Pengaruh M terhadap PDB manufaktur


Т	ahun	ln M	M (miliar)	Pertumbuha n (%)	ln Y	Y (miliar)	pertumbuhan
	1997	12.7816827	355643.0		11.97127	157949.204	(1-)
	1998	13.2662576	577381.0	62.3%	11.84797	139628.632	-11.60%
	1999	13.3788721	646205.0	11.9%	12.12223	183684.174	31.55%
	2000	13.5238579	747028.0	15.6%	12.20248	199030.786	8.35%
	2001	13.5756544	786741.0	5.3%	12.42475	248565.519	24.89%
	2002	13.6522868	849401.1	8.0%	12.3815	238045.291	-4.23%
ΛŒ	2003	13.7145699	903986.7	6.4%	12.47247	260713.348	9.52%
N	2004	13.7859151	970838.2	7.4%	12.5702	287476.578	10.27%
	2005	13.9035845	1092068.8	12.5%	12.63295	306091.747	6.48%
	2006	14.0469751	1260444.7	15.4%	12.85315	381481.384	24.63%
	2007	14.1949806	1461509.9	16.0%	12.95496	422361.463	10.72%
	2008	14.3445312	1697269.3	16.1%	13.16918	523249.96	23.89%
	2009	14.4964984	1975828.7	16.4%	13.22908	555546.92	6.17%
	2010	14.6492195	2301840.4	16.5%	13.22822	555069.41	-0.0860%
	2011	14.8036559	2686247.7	16.70%	13.22736	554592.30	-0.0860%
	2012	14.9606596	3142909.9	17.00%	13.22647	554098.99	-0.0890%
	2013	15.1193713	3683490.4	17.20%	13.22558	553606.11	-0.0890%
	2014	15.2806395	4328101.2	17.50%	13.22468	553108.14	-0.0900%

Dari tabel di atas dapat diketahui bahwa prediksi PDB Manufaktur jika M dinaikan adalah mengalami penurunan yang tidak signifikan. Pertumbuhan negatif dialami Y pada tahun 2010 sebesar 0.086%, 0.086% pada tahun 2011, 0.089% pada tahun 2012, 0.089% pada tahun 2013 dan 0.09% pada tahun 2014.

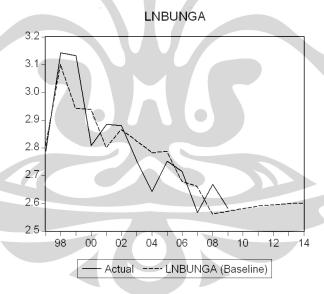
4.2 Skenario 2 – Pengaruh Belanja Negara (G) terhadap PDB Manufaktur

Dalam skenario kali ini eksogen dari belanja negara (G) akan ditetapkan untuk lima tahun ke depan (2010, 2011, 2012, 2013, dan 2014) dan nilai eksogen lain yang berpengaruh terhadap model dibiarkan tetap seperti tahun 2009. Skenario ini bermaksud melihat pengaruh kebijakan belanja negara (G) terhadap variabel PDB Manufaktur. Setelah model dijalankan dengan nilai G telah

ditetapkan seperti yang tertera pada tabel 4.1, didapat hasil seperti yang dapat dilihat dari grafik di bawah ini:

Gambar 4.3 Grafik Pengaruh G terhadap PDB Manufaktur

Pada gambar di atas terlihat hubungan positif antara G dan Y di mana ketika G naik, maka Y akan naik secara signifikan. Hal ini terkait dengan hubungan langsung antara G dan Y. Agar dapat melihat jelas nilai tahunan dari prediksi dalam 5 tahun tersebut terhadap nilai PDB manufaktur, maka penulis sajikan pengaruh G terhadap Y manufaktur pada tabel di bawah:


Tabel 4.4 Pengaruh G terhadap PDB manufaktur

4						
		9	Pertumbuha			pertumbuha
Tahun	ln G	G (miliar)	n (%)	ln Y	Y (miliar)	n (%)
1997	11.403222	89610.0		11.97127	157949.204	
1998	11.328521	83159.9	-7.2%	11.84797	139628.632	-11.60%
1999	11.768182	129079.3	55.2%	12.12223	183684.174	31.55%
2000	11.671509	117185.0	-9.2%	12.20248	199030.786	8.35%
2001	12.040473	169477.0	44.6%	12.42475	248565.519	24.89%
2002	11.93348	152280.6	-10.1%	12.3815	238045.291	-4.23%
2003	12.065666	173801.0	14.1%	12.47247	260713.348	9.52%
2004	12.184192	195671.4	12.6%	12.5702	287476.578	10.27%
2005	12.264974	212134.2	8.4%	12.63295	306091.747	6.48%
2006	12.554383	283334.3	33.6%	12.85315	381481.384	24.63%
2007	12.601465	296993.2	4.8%	12.95496	422361.463	10.72%
2008	12.865624	386785.1	30.2%	13.16918	523249.96	23.89%
2009	12.869192	388167.5	0.4%	13.22908	555546.92	6.17%
2010	13.00022	442510.9	14%	13.28777	589124.18	6.0440%
2011	13.139982	508887.5	15%	13.35036	627171.80	6.4583%
2012	13.288402	590309.5	16%	13.41684	670278.71	6.8732%
2013	13.445406	690662.2	17%	13.48716	719104.23	7.2844%
2014	13.610921	814981.4	18%	13.56129	774431.05	7.6939%

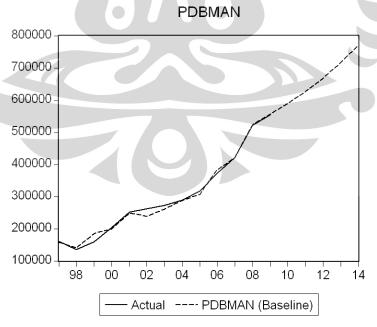
Dari tabel di atas dapat dilihat bahwa jika skenario kenaikan G pada tabel 4.1 diimplementasikan, maka akan dihasilkan pertumbuhan positif PDB manufaktur sebesar 6.04% pada tahun 2010, 6.46% pada tahun 2011, 6.87% pada tahun 2012, 7.28% pada tahun 2013 dan 7.7% pada tahun 2014.

4.3 Skenario 3 – Pengaruh Penawaran Uang (M) dan Belanja Negara (G) terhadap PDB Manufaktur

Dalam skenario kali ini eksogen dari penawaran uang (M) dan belanja negara (G) akan ditetapkan untuk lima tahun ke depan (2010, 2011, 2012, 2013, dan 2014) dan nilai eksogen lain yang berpengaruh terhadap model dibiarkan tetap seperti tahun 2009. Skenario ini bermaksud melihat pengaruh M dan G terhadap variabel PDB Manufaktur. Setelah model dijalankan dengan nilai M dan G telah ditetapkan seperti yang tertera pada tabel 4.1, didapat hasil seperti yang dapat dilihat dari grafik di bawah ini:

Gambar 4.4 Grafik Pengaruh M dan G terhadap Suku Bunga

Dari gambar di atas terlihat pengaruh kebijakan M dan G terhadap suku bunga kredit. Dengan dinaikannya nilai M dan G secara bersama-sama dengan nilai eksogen yang lain tetap seperti tahun 2009, suku bunga mengalami kenaikan.


Agar dapat dilihat dengan sangat jelas, penulis sajikan dalam bentuk tabel di bawah ini:

Tabel 4.5 Pengaruh M dan G terhadap Suku Bunga

Tahun	ln M	M (miliar)	Pertumbuha n (%)	ln G	G (miliar)	Pertumbuha n (%)	ln r	r (%)	pertumbuha n (%)
1997	12.781683	355643.0		11.403222	89610.0		2.806399	16.545	
1998	13.266258	577381.0	62.3%	11.328521	83159.9	-7.2%	3.100802	22.209	34.23%
1999	13.378872	646205.0	11.9%	11.768182	129079.3	55.2%	2.940433	18.918	-14.82%
2000	13.523858	747028.0	15.6%	11.671509	117185.0	-9.2%	2.937397	18.861	-0.30%
2001	13.575654	786741.0	5.3%	12.040473	169477.0	44.6%	2.800998	16.456	-12.75%
2002	13.652287	849401.1	8.0%	11.93348	152280.6	-10.1%	2.865208	17.547	6.63%
2003	13.71457	903986.7	6.4%	12.065666	173801.0	14.1%	2.823439	16.830	-4.09%
2004	13.785915	970838.2	7.4%	12.184192	195671.4	12.6%	2.7807	16.126	-4.18%
2005	13.903584	1092068.8	12.5%	12.264974	212134.2	8.4%	2.785834	16.209	0.51%
2006	14.046975	1260444.7	15.4%	12.554383	283334.3	33.6%	2.678403	14.558	-10.19%
2007	14.194981	1461509.9	16.0%	12.601465	296993.2	4.8%	2.658915	14.277	-1.93%
2008	14.344531	1697269.3	16.1%	12.865624	386785.1	30.2%	2.560769	12.942	-9.35%
2009	14.496498	1975828.7	16.4%	12.869192	388167.5	0.4%	2.570701	13.072	1.00%
2010	14.64922	2301840.4	16.5%	13.00022	442510.9	14%	2.580523	13.201	0.99%
2011	14.803656	2686247.7	16.70%	13.139982	508887.5	15%	2.588083	13.301	0.76%
2012	14.96066	3142909.9	17.00%	13.288402	590309.5	16%	2.593699	13.376	0.56%
2013	15.119371	3683490.4	17.20%	13.445406	690662.2	17%	2.5971	13.421	0.34%
2014	15.280639	4328101.2	17.50%	13.610921	814981.4	18%	2.5986	13.441	0.15%

Dari tabel di atas terlihat jelas pertumbuhan positif pada suku bunga jika M dan G secara bersama-sama dinaikkan. Jika M dan G dikeluarkan sebesar yang terdapat pada tabel di atas, suku bunga kredit akan naik 0.99% pada tahun 2010, 0.76% pada tahun 2011, 0.56% pada tahun 2012, 0.34% pada tahun 2013 dan 0.15% pada tahun 2014.

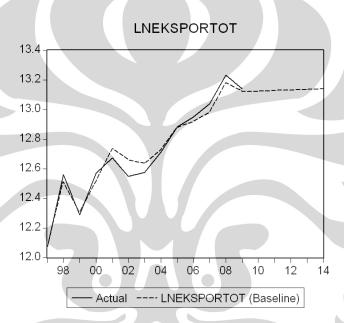
Adapun pengaruh M dan G terhadap Y digambarkan oleh grafik di bawah ini:

Gambar 4.5 Grafik Pengaruh M dan G terhadap PDB Manufaktur

Dari gambar di atas terlihat pengaruh positif kombinasi kebijakan M dan G terhadap produksi sektor manufaktur di mana ketika nilai endogen yang lain tetap dan kombinasi M dan G naik, maka produksi sektor manufaktur akan naik. Hal ini dimungkinkan karena pengaruh langsung kebijakan G terhadap PDB Manufaktur dan pengaruh tidak langsung kebijakan M terhadap PDB Manufaktur. Nilai prediksi tahunan PDB Manufaktur sebagai reaksi dari kebijakan naiknya M dan G ditampilkan pada tabel di bawah ini:

Tabel 4.6 Pengaruh M dan G terhadap PDB manufaktur

Tahun	Λ	ln M	M (miliar)	Pertumbuha n (%)	ln G	G (miliar)	Pertumbuha n (%)	ln Y	Y (miliar)	pertumbuha n (%)
	1997	12.781683			11.403222	89610.0		11.97127	157949.204	
_	1998	13.266258				83159.9		11.84797		-11.60%
	1999	13.378872	646205.0	11.9%	11.768182	129079.3	55.2%	12.12223	183684.174	31.55%
	2000	13.523858	747028.0	15.6%	11.671509	117185.0	-9.2%	12.20248	199030.786	8.35%
	2001	13.575654	786741.0	5.3%	12.040473	169477.0	44.6%	12.42475	248565.519	24.89%
	2002	13.652287	849401.1	8.0%	11.93348	152280.6	-10.1%	12.3815	238045.291	-4.23%
	2003	13.71457	903986.7	6.4%	12.065666	173801.0	14.1%	12.47247	260713.348	9.52%
	2004	13.785915	970838.2	7.4%	12.184192	195671.4	12.6%	12.5702	287476.578	10.27%
	2005	13.903584	1092068.8	12.5%	12.264974	212134.2	8.4%	12.63295	306091.747	6.48%
	2006	14.046975	1260444.7	15.4%	12.554383	283334.3	33.6%	12.85315	381481.384	24.63%
	2007	14.194981	1461509.9	16.0%	12.601465	296993.2	4.8%	12.95496	422361.463	10.72%
	2008	14.344531	1697269.3	16.1%	12.865624	386785.1	30.2%	13.16918	523249.96	23.89%
	2009	14.496498	1975828.7	16.4%	12.869192	388167.5	0.4%	13.22908	555546.92	6.17%
	2010	14.64922	2301840.4	16.5%	13.00022	442510.9	14%	13.28691	588617.80	5.9529%
	2011	14.803656	2686247.7	16.70%	13.139982	508887.5	15%	13.34864	626094.10	6.3668%
	2012	14.96066	3142909.9	17.00%	13.288402	590309.5	16%	13.41423	668531.74	6.7782%
	2013	15.119371	3683490.4	17.20%	13.445406	690662.2	17%	13.48366	716592.03	7.1889%
	2014	15.280639	4328101.2	17.50%	13.610921	814981.4	18%	13.55689	771031.39	7.5970%

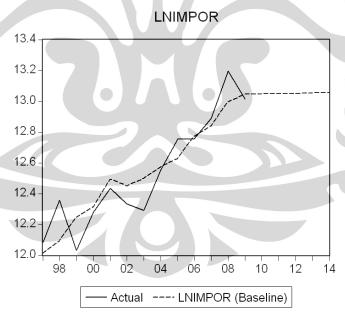

Dari tabel di atas dapat dilihat bahwa jika skenario kenaikan M dan G pada tabel 4.1 diimplementasikan, maka akan dihasilkan pertumbuhan positif PDB manufaktur sebesar 5.953% pada tahun 2010, 6.36% pada tahun 2011, 6.77% pada tahun 2012, 7.189% pada tahun 2013 dan 7.59% pada tahun 2014.

4.4 Skenario 4 – Pengaruh Nilai Tukar (ER) terhadap PDB Manufaktur

Skenario ini bertujuan melihat pengaruh kebijakan nilai tukar pada sektor produksi manufaktur. Untuk lebih dalam melihat pengaruh nilai tukar pada produksi sektor manufaktur, penulis membuat dua sub skenario di mana sub skenario tersebut adalah keadaan kebijakan nilai tukar dibiarkan mengambang (floating exchange rate) dan keadaan nilai tukar yang dijaga tetap nilainya (fixed exchange rate).

4.4.1 Sub Skenario 4 – Nilai Tukar Mengambang

Pada skenario ini, akan diberikan nilai tukar untuk tahun 2010 hingga 2014 dengan asumsi nilai-nilai tersebut adalah nilai yang terjadi jika nilai tukar dibiarkan mengambang. Seperti yang sudah ditunjukkan pada tabel 4.1, nilai tukar tengah tahunan diasumsikan naik untuk 5 tahun ke depan. Kebijakan ini terlihat pengaruhnya terhadap PDB Manufaktur dan variabel endogen lain yang terpengaruh secara langusng oleh perubahan nilai tukar tersajikan oleh grafik di bawah ini:


Gambar 4.6 Grafik Pengaruh Nilai Tukar Mengambang terhadap Ekspor

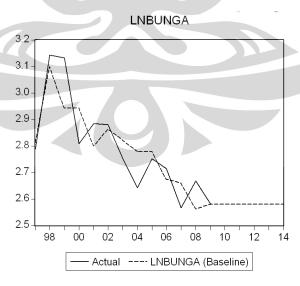
Gambar di atas menunjukkan grafik log natural ekspor sebagai pengaruh dari nilai tukar mengambang yang diasumsikan naik tiap tahunnya. Dari grafik terlihat bahwa ekspor mengalami kenaikan ketika nilai tukar mengambang naik (dengan eksogen yang lainnya adalah tetap). Informasi lengkap tentang hubungan nilai tukar dan ekspor ditampilkan dalam tabel 4.7.

Dari tabel dapat dilihat bahwa jika nilai tukar dibiarkan mengambang dengan nilai tukar tengah pada lima tahun setelah 2009 berada pada sekitar Rp 10,000/US\$, maka ekspor akan tumbuh sebesar 0.25% di tahun 2010, 0.31% di tahun 2011, 0.37% di tahun 2012, 0.4% di tahun 2013 dan 0.47% di tahun 2014.

Tabel 4.7 Pengaruh nilai tukar mengambang terhadap ekspor

		ER (Rp/\$)				
			Pertumbuha			pertumbuha
Tahun	ln ER	g	n (%)	ln Ex	Ex (miliar)	n (%)
1997	8.049842	3130.6858		12.073	174861.274	
1998	9.197721	9865.1867	215.11%	12.51281	271444.403	55.23%
1999	8.963019	7801.6433	-20.92%	12.30562	220652.446	-18.71%
2000	9.05186	8526.3911	9.29%	12.51343	271612.733	23.10%
2001	9.236564	10255.878	20.28%	12.73575	339228.603	24.89%
2002	9.133589	9252.4346	-9.78%	12.6578	313792.615	-7.50%
2003	9.056163	8563.1554	-7.45%	12.63376	306339.756	-2.38%
2004	9.103356	8976.9201	4.83%	12.72992	337256.858	10.09%
2005	9.185084	9741.3175	8.52%	12.87778	390992.938	15.93%
2006	9.120558	9132.6606	-6.25%	12.91676	406533.142	3.97%
2007	9.123005	9155.0332	0.24%	12.98172	433815.236	6.71%
2008	9.18572	9747.5143	6.47%	13.18019	529042.169	21.95%
2009	9.245337	10346.24	6.14%	13.11979	498037.017	-5.86%
2010	9.253306	10429.01	0.80%	13,12228	499278.545	0.25%
2011	9.263256	10533.285	1.00%	13.1254	500838.565	0.31%
2012	9.275185	10659.676	1.20%	13.12914	502715.013	0.37%
2013	9.288101	10798.235	1.30%	13.13319	504754.926	0.41%
2014	9.302989	10960.185	1.50%	13.13785	507112.328	0.47%

Gambar 4.7 Grafik Pengaruh Nilai Tukar Mengambang terhadap Impor

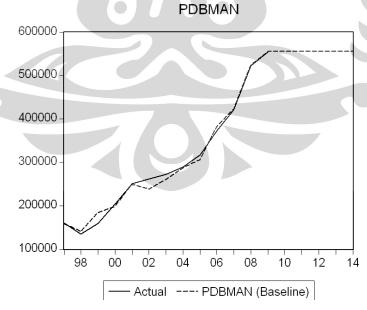

Dari gambar di atas terlihat pengaruh positif (walaupun tidak signifikan) nilai tukar mengambang terhadap impor di mana ketika nilai tukar naik (nilai eksogen yang lain tetap), maka impor juga naik yang dalam grafik ditunjukkan oleh peningkatan log natural dari impor. Untuk lebih jelasnya, disajikan nilai

prediksi impor berdasarkan skenario nilai tukar mengambang dalam tabel di bawah ini:

Tabel 4.8 Pengaruh nilai tukar mengambang terhadap impor

		ER (Rp/\$)				
		mengamban	Pertumbuha			pertumbuha
Tahun	ln ER	g	n (%)	ln Im	Im (miliar)	n (%)
1997	8.049842	3130.6858		12.01283	164651.181	
1998	9.197721	9865.1867	215.11%	12.09392	178557.517	8.45%
1999	8.963019	7801.6433	-20.92%	12.24774	208244.907	16.63%
2000	9.05186	8526.3911	9.29%	12.31542	222825.244	7.00%
2001	9.236564	10255.878	20.28%	12.49421	266442.715	19.57%
2002	9.133589	9252.4346	-9.78%	12.44979	254867.518	-4.34%
2003	9.056163	8563.1554	-7.45%	12.50088	268225.643	5.24%
2004	9.103356	8976.9201	4.83%	12.57456	288732.582	7.65%
2005	9.185084	9741.3175	8.52%	12.62931	304979.713	5.63%
2006	9.120558	9132.6606	-6.25%	12.77066	351278.939	15.18%
2007	9.123005	9155.0332	0.24%	12.84063	376735.500	7.25%
2008	9.18572	9747.5143	6.47%	12.99624	440159.524	16.84%
2009	9.245337	10346.24	6.14%	13.04573	462488.681	5.07%
2010	9.253306	10429.01	0.80%	13.04693	463043.943	0.1201%
2011	9.263256	10533.285	1.00%	13.04842	463734.321	0.1491%
2012	9.275185	10659.676	1.20%	13.05022	464569.708	0.1801%
2013	9.288101	10798.235	1.30%	13.05216	465471.755	0.1942%
2014	9.302989	10960.185	1.50%	13.05439	466510.807	0.2232%

Dari tabel dapat dilihat bahwa jika nilai tukar dibiarkan mengambang dengan nilai tukar tengah pada lima tahun setelah 2009 berada pada sekitar Rp 10,000/US\$, maka impor akan tumbuh sebesar 0.12% di tahun 2010, 0.149% di tahun 2011, 0.18% di tahun 2012, 0.194% di tahun 2013 dan 0.223% di tahun 2014.



Gambar 4.8 Grafik Pengaruh Nilai Tukar Mengambang terhadap Suku Bunga

Dari grafik terlihat grafik suku bunga mengalami penurunan di tahun 2010 hingga 2014 yang menandakan terdapat pengaruh negatif nilai tukar mengambang terhadap suku bunga. Agar dapat terlihat dengan jelas, disajikan tabel perkembangan suku bunga ketika nilai tukar dibiarkan mengambang dengan tren naik di tiap tahun.

Tabel 4.9 Pengaruh nilai tukar mengambang terhadap suku bunga

ī			ED (D::/\$)				
1			ER (Rp/\$)	D			
1			mengamban	Pertumbuha			pertumbuha
ľ	Гаhun	In ER	g	n (%)	ln r	r (%)	n (%)
L	1997	8.049842	3130.6858		2.810612	16.615	
	1998	9.197721	9865.1867	215.11%	3.099889	22.188	33.54%
	1999	8.963019	7801.6433	-20.92%	2.942814	18.963	-14.53%
	2000	9.05186	8526.3911	9.29%	2.942658	18.960	-0.02%
	2001	9.236564	10255.878	20.28%	2.799116	16.425	-13.37%
1	2002	9.133589	9252.4346	-9.78%	2.862454	17.499	6.54%
	2003	9.056163	8563.1554	-7.45%	2.820527	16.781	-4.11%
V	2004	9.103356	8976.9201	4.83%	2.777296	16.071	-4.23%
	2005	9.185084	9741.3175	8.52%	2.778863	16.096	0.16%
	2006	9.120558	9132.6606	-6.25%	2.674398	14.500	-9.92%
	2007	9.123005	9155.0332	0.24%	2.65953	14.286	-1.48%
	2008	9.18572	9747.5143	6.47%	2.561994	12.958	-9.29%
	2009	9.245337	10346.24	6.14%	2.57982	13.191	1.80%
	2010	9.253306	10429.01	0.80%	2.579767	13.191	-0.01%
1	2011	9.263256	10533.285	1.00%	2.579702	13.190	-0.01%
I	2012	9.275185	10659.676	1.20%	2.579623	13.189	-0.01%
	2013	9.288101	10798.235	1.30%	2.579538	13.188	-0.01%
1	2014	9.302989	10960.185	1.50%	2.57944	13.186	-0.01%

Gambar 4.9 Grafik Pengaruh Nilai Tukar Mengambang terhadap PDB

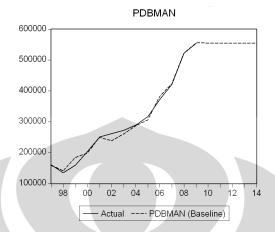
Manufaktur

Dari gambar di atas tidaklah terlihat jelas perkembangan PDB manufaktur akibat dari nilai tukar mengambang dengan nilai eksogen yang lain adalah tetap. Oleh karena itu, penulis sajikan tabel perkembangan PDB Manufaktur untuk prediksi 5 tahun setelah tahun 2009.

Tabel 4.10 Pengaruh nilai tukar mengambang terhadap PDB manufaktur

			ER (Rp/\$) mengamban	Pertumbuha			pertumbuha
1	Γahun	ln ER	g	n (%)	ln Y	Y (miliar)	n (%)
	1997	8.049842	3130.6858		11.97127	157949.204	
	1998	9.197721	9865.1867	215.11%	11.84797	139628.632	-11.60%
	1999	8.963019	7801.6433	-20.92%	12.12223	183684.174	31.55%
	2000	9.05186	8526.3911	9.29%	12.20248	199030.786	8.35%
	2001	9.236564	10255.878	20.28%	12.42475	248565.519	24.89%
Æ	2002	9.133589	9252.4346	-9.78%	12.3815	238045.291	-4.23%
	2003	9.056163	8563.1554	-7.45%	12.47247	260713.348	9.52%
V	2004	9.103356	8976.9201	4.83%	12.5702	287476.578	10.27%
	2005	9.185084	9741.3175	8.52%	12.63295	306091.747	6.48%
	2006	9.120558	9132.6606	-6.25%	12.85315	381481.384	24.63%
	2007	9.123005	9155.0332	0.24%	12.95496	422361.463	10.72%
I	2008	9.18572	9747.5143	6.47%	13.16918	523249.96	23.89%
	2009	9.245337	10346.24	6.14%	13.22908	555546.92	6.17%
	2010	9.253306	10429.01	0.80%	13.22915	555585.81	0.0070%
	2011	9.263256	10533.285	1.00%	13.22924	555635.81	0.0090%
	2012	9.275185	10659.676	1.20%	13.22935	555696.92	0.0110%
	2013	9.288101	10798.235	1.30%	13.22946	555758.05	0.0110%
1	2014	9.302989	10960.185	1.50%	13.22959	555830.29	0.0130%

Dari tabel di atas terlihat bahwa PDB Manufaktur mengalami pertumbuhan positif yang cenderung lamban pada keadaan nilai tukar mengambang. Pertumbuhan positif terjadi pada tahun 2010 sebesar 0.007%, 0.009% pada tahun 2011, dan 0.011% pada tahun 2012, 0.011% pada tahun 2013 dan 0.014% pada tahun 2014.


4.4.2 Sub Skenario 4 – Nilai Tukar Tetap

Pada skenario ini, akan diberikan nilai tukar untuk tahun 2010 hingga 2014 dengan keadaan nilai tukar dijaga tetap pada nilai tertentu.

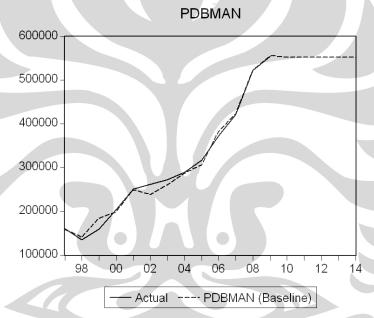
• ER = Rp 8000/US\$

Seperti yang sudah ditunjukkan pada tabel 4.1, nilai tukar adalah tetap pada nilai Rp 8000 untuk dengan nilai eksogen yang lain adalah tetap. Skenario ini

berlangsung untuk 5 tahun setelah tahun 2009. Kebijakan ini terlihat pengaruhnya terhadap PDB Manufaktur dan tersajikan pada grafik di bawah ini:

Gambar 4.10 Grafik Pengaruh Nilai Tukar Tetap (Rp 8000/US\$) terhadap PDB Manufaktur

Untuk lebih jelas melihat prediksi perkembangan PDB Manufaktur terkait nilai tukar tetap, penulis sajikan dalam bentuk tabel di bawah ini:


Tabel 4.11 Pengaruh nilai tukar tetap (Rp 8000/US\$) terhadap PDB manufaktur

		ER (Rp/\$)	Pertumbuha			pertumbuha
Tahun	In ER	tetap	n (%)	ln Y	Y (miliar)	n (%)
1997	8.049842	3130.6858		11.97121	157939.728	
1998	9.197721	9865.1867	215.11%	11.84798	139630.029	-11.59%
1999	8.963019	7801.6433	-20.92%	12.1222	183678.664	31.55%
2000	9.05186	8526.3911	9.29%	12.2024	199014.866	8.35%
2001	9.236564	10255.878	20.28%	12.42478	248572.976	24.90%
2002	9.133589	9252.4346	-9.78%	12.38155	238057.192	-4.23%
2003	9.056163	8563.1554	-7.45%	12.47252	260726.383	9.52%
2004	9.103356	8976.9201	4.83%	12.57025	287490.951	10.27%
2005	9.185084	9741.3175	8.52%	12.63306	306125.415	6.48%
2006	9.120558		-6.25%	12.85322	381508.085	24.62%
2007	9.123005	9155.0332	0.24%	12.95495	422357.240	10.71%
2008	9.18572	9747.5143	6.47%	13.16916	523239.50	23.89%
2009	9.245337	10346.24	6.14%	13.22893	555463.60	6.16%
2010	8.987196821	8000.00	-22.68%	13.22664	554193.18	-0.2287%
2011	8.987196821	8000.00	0.00%	13.22664	554193.18	0.0000%
2012	8.987196821	8000.00	0.00%	13.22664	554193.18	0.0000%
2013	8.987196821	8000.00	0.00%	13.22664	554193.18	0.0000%
2014	8.987196821	8000.00	0.00%	13.22664	554193.18	0.0000%

Pada tabel di atas, diprediksikan PDB Manufaktur tumbuh negatif pada tahun 2010 untuk kemudian berjalan konstan tanpa pertumbuhan pada tahun 2011, 2012, 2013, dan 2014. Pertumbuhan negatif di tahun 2010 terjadi karena nilai tukar tengah tahunan pada tahun 2010 (sampai tahun 2014) ditetapkan berada pada Rp 8000/US\$ yang mempengaruhi terhadap penurunan produksi sektor manufaktur.

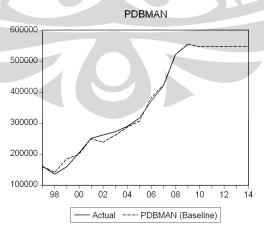
• ER = Rp 6000/US\$

Dalam skenario ini nilai tukar tengah tahunan dijaga tetap pada angka Rp 6000/US\$. Hasil dari simulasi prediksi terhadap PDB Manufaktur adalah:

Gambar 4.11 Grafik Pengaruh Nilai Tukar Tetap (Rp 6000/US\$) terhadap PDB Manufaktur

Dari grafik di atas tidak terlihat jelas peforma grafik PDB Manufaktur sebagai pengaruh akibat nilai tukar tengah tahunan yang berada pada Rp 6000/US\$. Oleh karena itu penulis sajikan dalam bentuk tabel 4.12.

Pada tabel di atas, diprediksikan PDB Manufaktur tumbuh negatif sebesar 0.4838% pada tahun 2010 untuk kemudian berjalan konstan tanpa pertumbuhan pada tahun 2011 hingga tahun 2014. Pertumbuhan negatif ini di tahun 2010 terjadi karena nilai tukar tengah tahunan pada tahun 2010 (sampai tahun 2014)


ditetapkan berada pada Rp 6000/US\$ yang mempengaruhi pada penurunan produksi sektor manufaktur.

Tabel 4.12 Pengaruh nilai tukar tetap (Rp 6000/US\$) terhadap PDB manufaktur

		ER (Rp/\$)	Pertumbuha			pertumbuha
Tahun	ln ER	tetap	n (%)	ln Y	Y (miliar)	n (%)
1997	8.049842	3130.6858		11.97121	157939.728	
1998	9.197721	9865.1867	215.11%	11.84798	139630.029	-11.59%
1999	8.963019	7801.6433	-20.92%	12.1222	183678.664	31.55%
2000	9.05186	8526.3911	9.29%	12.2024	199014.866	8.35%
2001	9.236564	10255.878	20.28%	12.42478	248572.976	24.90%
2002	9.133589	9252.4346	-9.78%	12.38155	238057.192	-4.23%
2003	9.056163	8563.1554	-7.45%	12.47252	260726.383	9.52%
2004	9.103356	8976.9201	4.83%	12.57025	287490.951	10.27%
2005	9.185084	9741.3175	8.52%	12.63306	306125.415	6.48%
2006	9.120558	9132.6606	-6.25%	12.85322	381508.085	24.62%
2007	9.123005	9155.0332	0.24%	12.95495	422357.240	10.71%
2008	9.18572	9747.5143	6.47%	13.16916	523239.50	23.89%
2009	9.245337	10346.24	6.14%	13.22893	555463.60	6.16%
2010	8.6995147	6000.00	-42.01%	13.22408	552776.41	-0.4838%
2011	8.6995147	6000.00	0.00%	13.22408	552776.41	0.0000%
2012	8.6995147	6000.00	0.00%	13.22408	552776.41	0.0000%
2013	8.6995147	6000.00	0.00%	13.22408	552776.41	0.0000%
2014	8.6995147	6000.00	0.00%	13.22408	552776.41	0.0000%

• ER = Rp 2000/US\$

Dalam skenario ini nilai tukar tengah tahunan dijaga tetap pada angka Rp 2000/US\$. Hasil dari simulasi prediksi terhadap PDB Manufaktur adalah:

Gambar 4.12 Grafik Pengaruh Nilai Tukar Tetap (Rp 2000/US\$) terhadap PDB Manufaktur

Dari grafik di atas tidak terlihat jelas peforma grafik PDB Manufaktur sebagai pengaruh akibat nilai tukar tengah tahunan yang berada pada Rp 2000/US\$. Oleh karena itu penulis sajikan dalam bentuk tabel di bawah ini:

Tabel 4.13 Pengaruh nilai tukar tetap (Rp 2000/US\$) terhadap PDB manufaktur

			ER (Rp/\$)	Pertumbuhan			pertumbuhan
T	ahun	In ER	tetap	(%)	ln Y	Y (miliar)	(%)
	1997	8.049842	3130.6858		11.97121	157939.728	
	1998	9.197721	9865.1867	215.11%	11.84798	139630.029	-11.59%
	1999	8.963019	7801.6433	-20.92%	12.1222	183678.664	31.55%
	2000	9.05186	8526.3911	9.29%	12.2024	199014.866	8.35%
1	2001	9.236564	10255.878	20.28%	12.42478	248572.976	24.90%
	2002	9.133589	9252.4346	-9.78%	12.38155	238057.192	-4.23%
	2003	9.056163	8563.1554	-7.45%	12.47252	260726.383	9.52%
	2004	9.103356	8976.9201	4.83%	12.57025	287490.951	10.27%
	2005	9.185084	9741.3175	8.52%	12.63306	306125.415	6.48%
	2006	9.120558	9132.6606	-6.25%	12.85322	381508.085	24.62%
	2007	9.123005	9155.0332	0.24%	12.95495	422357.240	10.71%
	2008	9.18572	9747.5143	6.47%	13.16916	523239.50	23.89%
	2009	9.245337	10346.24	6.14%	13.22893	555463.60	6.16%
	2010	7.6009025	2000.00	-80.67%	13.21431	547402.63	-1.4512%
	2011	7.6009025	2000.00	0.00%	13.21431	547402.63	0.0000%
	2012	7.6009025	2000.00	0.00%	13.21431	547402.63	0.0000%
	2013	7.6009025	2000.00	0.00%	13.21431	547402.63	0.0000%
	2014	7.6009025	2000.00	0.00%	13.21431	547402.63	0.0000%

Pada tabel di atas, diprediksikan PDB Manufaktur tumbuh negatif sebesar 0.145% pada tahun 2010 untuk kemudian berjalan konstan tanpa pertumbuhan pada tahun 2011 dan 2012. Pertumbuhan negatif ini terjadi karena nilai tukar tengah tahunan pada tahun 2010 sampai tahun 2012 ditetapkan berada pada Rp 2000/US\$ yang mempengaruhi pada penurunan produksi sektor manufaktur.

Setelah dianalisis lebih lanjut tentang pengaruh kebijakan pemerintah, baik nilai tukar maupun kebijakan lainnya, terhadap produksi manufaktur, maka penulis ingin mengkaji lebih dalam tentang kebijakan mana yang lebih meningkatkan cadangan devisa negara. Cadangan devisa di sini diperoleh dengan mengurangi ekspor dengan impor, oleh karenanya hal ini berkaitan dengan

aktivitas perdagangan internasional. Tabel di bawah ini merupakan tabel cadangan devisa dari tahun 1997:

Tabel 4.14 Cadangan devisa dari tahun 1997-2009

			cadangan	
			devisa	pertumbuha
Tahun	Ex (miliar)	Im (miliar)	(miliar)	n %
1997	174880.508	164670.938	10209.570	
1998	271512.265	178605.729	92906.536	810.0%
1999	220698.783	208292.804	12405.980	-86.6%
2000	271745.842	222945.590	48800.252	293.4%
2001	338696.487	265992.854	72703.633	49.0%
2002	313764.378	254842.035	58922.343	-19.0%
2003	306373.451	268260.511	38112.941	-35.3%
2004	337186.048	288669.074	48516.974	27.3%
2005	390996.847	304979.713	86017.134	77.3%
2006	406488.431	351240.304	55248.127	-35.8%
2007	434001.798	376908.820	57092.978	3.3%
2008	528962.827	440084.711	88878.116	55.7%
2009	498276.107	462733.840	35542.267	-60.0%

Tabel di atas menunjukkan bahwa cadangan devisa Indonesia bergerak fluktuatif. Tabel di bawah memperlihatkan perbandingan masing-masing skenario pada tabel 4.1 terkait pengaruhnya terhadap cadangan devisa negara.

Tabel 4.15 Prediksi Cadangan Devisa tiap Skenario

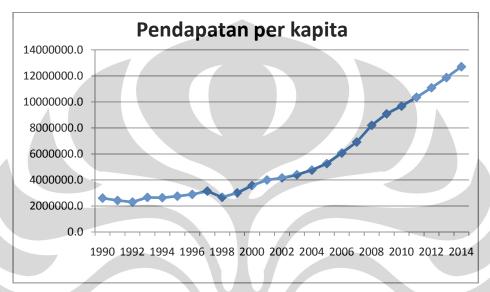
1				Skenario 3	7 1 1.	Skenario 4b
	Tahun	pertumbuhan	pertumbuhan	pertumbuha	pertumbuhan	pertumbuhan
		(%)	(%)	n (%)	(%)	(%)
1	2009	-60.0%	-60.0%	-60.0%	-60.0%	-60.0%
	2010	0.0000%	-0.343%	-0.326%	1.931%	-59.4%
ı	2011	-0.0010%	-0.564%	-0.555%	2.400%	0.0%
	2012	0.0109%	-0.832%	-0.815%	2.806%	0.0%
	2013	-0.0031%	-1.207%	-1.164%	2.983%	0.0%
ı	2014	-0.0042%	-1.663%	-1.606%	3.356%	0.0%

Berdasarkan tabel di atas terlihat bahwa skenario 4a (kebijakan nilai tukar mengambang) lebih cocok diterapkan untuk meningkatkan cadangan devisa dengan prediksi pertumbuhan positif cadangan devisa berkisar antara 1.9% sampai 3.4%.

Dengan diketahuinya perilaku PDB Manufaktur pada masing-masing kebijakan yang diberlakukan, dapat diketahui pula perilaku PDB Total sebagai total sektor produksi. Dari data historis yang telah diperoleh, didapat komposisi

manufaktur adalah 27.5% dari jumlah PDB total. Oleh karena itu, dapat disimulasikan prediksi PDB total berdasarkan PDB Manufaktur. Jika PDB total direncanakan naik 8% pada tahun 2010, maka kombinasi kebijakan yang dapat diterapkan oleh pemerintah Indonesia adalah seperti yang tertera pada tabel di bawah ini:

Tabel 4.16 Prediksi Pertumbuhan PDB Total dan Kebijakan yang Diterapkan


	Pertumb		Pertumb		ER (Rp/\$)	Pertumb	Pertumbu			Pertumb
	uhan G		uhan M		mengamba	uhan	han (%)			uhan Y
Tahun	(%)	G	(%)	M	ng	ER (%)	Y man	Y man	Y total	total
2009		388167.5		1975828.7	10346.2			555889.3	2101059.3	
2010	29.5%	502676.9	16.5%	2301840.4	10429.01	0.800%	12.21%	623779.6	2268289.455	8.0%
2011	20%	603212.2	16.7%	2686247.7	10533.29	1.000%	8.517%	676908.2	2461484.364	8.517%
2012	20%	723854.7	17.0%	3142909.9	10659.68	1.200%	8.519%	734574.8	2671181.091	8.519%
2013	20%	868625.6	17.2%	3683490.4	10798.23	1.300%	8.520%	797161	2898767.273	8.520%
2014	20%	1042350.7	17.5%	4328101.2	10960.18	1.500%	8.522%	865094.9	3145799.636	8.522%

Dari tabel di atas dapat diketahui bahwa untuk menaikkan PDB total sebesar 8%di tahun 2010, PDB manufaktur harus meningkat sebsesar 12.21% dengan cara memberikan stimulus belanja negara yang tumbuh positif sebesar 29.5% di tahun 2010, penawaran uang yang meningkat sebesar 16.5% di tahun 2010 dan nilai tukar yang mengambang dikisaran Rp 10,000 per dollar Amerika. Dengan menjalankan skenario belanja negara, penawaran uang dan nilai tukar seperti yang tercantum di tabel 4.16, PDB total akan tumbuh dikisaran 8%-8.5% dari tahun 2010 hingga 2014.

Selain mempengaruhi PDB total, PDB manufaktur juga mempengaruhi pendapatan per kapita secara tidak langsung. Perubahan pada PDB total yang diakibatkan oleh peningkatan atau penurunan PDB manufaktur mempengaruhi secara langsung pendapatan per kapita. Jika skenario pada tabel 4.16 diimplementasikan untuk tahun 2010, 2011, 2012, 2013 dan 2014, maka akan dihasilkan perubahan pada pendapatan per kapita yang disajikan pada tabel 4.17. Pergerakan pendapatan per kapita terekam pada gambar 4.13.

Pada tabel 4.17, data PDB manufaktur, PDB total dan jumlah penduduk disajikan dari tahun 1990 hingga tahun 2009. Data jumlah penduduk pada tahun selain 1990, 1995, 2000, dan 2005 merupakan data jumlah penduduk yang dilakukan dengan pendekatan pertumbuhan penduduk. Sejak tahun 1990 sampai

tahun 2009, penduduk tumbuh dikisaran 1.25%-1.7%. Prediksi pertumbuhan penduduk pada tahun 2010 sampai 2012 berkisar antara 1.35%-1.39%. Analisa dibagi ke dalam tiga bagian yaitu periode 1990-1996, 1997-2009, dan periode 2010-2014 sebagai periode prediksi. Analisa dilakukan berdasarkan rata-rata pertumbuhan. Untuk lebih jelasnya dapat dilihat pada tabel 4.18.

Gambar 4.13 Grafik Pergerakan Pendapatan per Kapita

Pada tabel 4.17 dan 4.18 baris yang berwarna abu-abu muda menunjukkan periode 1990-1996 yang merupakan periode sebelum krisis moneter. Sedangkan baris yang berwarna putih adalah periode tahun 1997-2009 yang merupakan periode setelah krisis moneter sampai tahun terakhir. Periode terakhir, 2010-2014, merupakan periode prediksi yang memprediksikan nilai pendapatan per kapita berdasarkan prediksi pertumbuhan penduduk dan prediksi pertumbuhan PDB total yang didapat dari prediksi PDB manufaktur berdasarkan skenario peningkatan PDB total sebesar 8% seperti yang tercantum dalam tabel 4.16. Berdasarkan tabel 4.18, rata-rata pertumbuhan pendapatan per kapita pada periode sebelum krisis moneter adalah sebesar 2.02%. Sedangkan rata-rata pertumbuhan pendapatan per kapita pada periode setelah krisis moneter adalah sebesar 9.55%.

Pada periode 5 tahun setelah tahun 2009, rata-rata pertumbuhan per kapita diprediksikan sebesar 6.94%. Dari hasil tersebut diketahui bahwa dengan peningkatan PDB total sebesar 8%-8.5% sepanjang 5 tahun ke depan (2010-

2014), tidak cukup mampu meningkatkan rata-rata pertumbuhan pendapatan per kapita Indonesia. Perlu dilakukan peningkatan produksi manufaktur lebih dari 12.21% sehingga PDB total dapat meningkat lebih dari 8% dan akhirnya dapat pula meningkatka pendapatan per kapita penduduk Indonesia.

Tabel 4.17 Data Historis dan Data Prediksi Pendapatan per Kapita

	PDB							
	manufaktur	Pertumbuhan	PDB total	Pertumbuhan	Jumlah	Pertumbuhan	Pendapatan	Pertumbuhan
Tahun	(miliar)	(%)	(miliar)	(%)	Penduduk	(%)	per Kapita	(%)
1990	92886.6		466930.5323		179378946		2603039.8	
1991	92698.4	-0.20%	442338.0008	-5.27%	182454118	1.71%	2424379.4	-6.86%
1992	92782.4	0.09%	426459.6324	-3.59%	185529291	1.69%	2298610.8	-5.19%
1993	111651.9	20.34%	500570.4311	17.38%	188604463	1.66%	2654075.2	15.46%
1994	117965.2	5.65%	505247.4554	0.93%	191679636	1.63%	2635895.3	-0.68%
1995	129212.7	9.53%	535415.3611	5.97%	194754808	1.60%	2749176.6	4.30%
1996	144959.8	12.19%	569475.8901	6.36%	197056765	1.18%	2889907.8	5.12%
1997	159747.7	10.20%	625505.9	9.84%	199358723	1.17%	3137589.8	8.57%
1998	134491.4	-15.81%	538058.605	-13.98%	201660680	1.15%	2668138.4	-14.96%
1999	159137.1	18.33%	612186.3727	13.78%	203962638	1.14%	3001463.3	12.49%
2000	204030.8	28.21%	735366.6861	20.12%	206264595	1.13%	3565162.0	18.78%
2001	251225.4	23.13%	835705.319	13.64%	208982076	1.32%	3998933.0	12.17%
2002	261732.1	4.18%	880689.4645	5.38%	211699557	1.30%	4160091.2	4.03%
2003	272377.5	4.07%	944399.8984	7.23%	214417038	1.28%	4404500.3	5.88%
2004	288904.0	6.07%	1032610.591	9.34%	217134519	1.27%	4755626.1	7.97%
2005	316632.5	9.60%	1155276.547	11.88%	219852000	1.25%	5254792.1	10.50%
2006	372675.4	17.70%	1353334.198	17.14%	222747000	1.32%	6075656.2	15.62%
2007	421842.6	13.19%	1559583.626	15.24%	225642000	1.30%	6911761.2	13.76%
2008	522225.9	23.80%	1872747.343	20.08%	228523300	1.28%	8194995.2	18.57%
2009	554293.3	6.14%	2101059.251	12.19%	231369500	1.25%	9080969.0	10.81%
2010	623779.6	12.54%	2268289.455	8.0%	234492988	1.35%	9673165.4	6.52%
2011	676908.2	8.52%	2461484.364	8.52%	237682093	1.36%	10356204.5	7.06%
2012	734574.8	8.52%	2671181.091	8.52%	240938338	1.37%	11086575.6	7.05%
2013	797161.0	8.52%	2898767.273	8.52%	244263287	1.38%	11867388.3	7.04%
2014	865094.9	8.52%	3145799.636	8.52%	247658546	1.39%	12702164.7	7.03%

Tabel 4.18 Rata-rata Pertumbuhan Pendapatan per Kapita dalam 3 Periode

Rata		
pertumbuha		
n	Rata	Pertumbuha
pendapatan	pertumbuha	n jumlah
per kapita	n pdb total	penduduk
2.02%	3.63%	1.58%
9.55%	10.91%	1.24%
6.94%	8.4%	1.37%

BAB 5

KESIMPULAN DAN SARAN

Setelah dilakukan pemodelan dan analisa pengaruh kebijakan nilai tukar terhadap produksi sektor manufaktur, maka disimpulkan bahwa:

- Kebijakan nilai tukar mengambang berpengaruh positif terhadap pertumbuhan produksi sektor manufaktur.
- Kebijakan nilai tukar tetap tidak mempengaruhi pertumbuhan produksi sektor manufaktur.
- Kebijakan moneter memberikan pengaruh negatif terhadap pertumbuhan produksi sektor manufaktur.
- Kebijakan belanja negara memberikan pengaruh positif terhadap pertumbuhan produksi sektor manufaktur secara lebih signifikan dibandingkan dengan kebijakan moneter.
- Kombinasi kebijakan moneter dan belanja negara memberikan pengaruh positif terhadap pertumbuhan produksi sektor manufaktur yang lebih kecil dibandingkan dengan kebijakan belanja negara.

Adapun saran yang dapat diberikan untuk penelitian serupa yaitu:

- Sebaiknya lebih diperkaya lagi variabel-variabel yang terkait dalam model agar lebih mendekati kenyataan.
- Sebaiknya digali lagi lebih dalam mengenai variabel independen yang mempengaruhi persamaan regresi suku bunga agar lebih dekat merepresentasikan kenyataan.
- Sebaiknya digali lagi lebih dalam mengenai variabel independen yang mempengaruhi persamaan rergresi impor karena berdasarkan kurva hasil dari *basic run*, beda grafik impor hasil regresi dengan nilai aktual cukup besar.
- Sebaiknya digali lagi lebih dalam mengenai variabel independen yang mempengaruhi persamaan rergresi investasi karena berdasarkan kurva hasil dari basic run, beda grafik impor hasil regresi dengan nilai aktual cukup besar.

DAFTAR REFERENSI

- Case, Karl E., & Fair, Ray C.2007. Case Fair, Prinsip-prinsip Ekonomi. Jakarta: Erlangga
- Krugman R, Paul.International Economics.Pearson Addison Wesley
- Intriligator, Michael D.1978. Econometric Models, Tehniques, & Application. New Jersey: Prentice-Hall
- Iriawan, Nur & Astuti, Septin Puji. Mengolah Data Statistik dengan Mudah menggunakan Minitab 14. Yoyakarta: Andi
- http://pusatbahasa.diknas.go.id
- Harrell, Charles., Gosh, Biman.K., Bowden,Royce.O.2004.Simulation Using Promodel.New York:McGraw Hill
- Firdausy, Carunia Mulya.1999. Kebijakan Nilai Tukar dan Implikasinya terhadap Perekonomian Nasional.
- Root, Franklin R.1978. International Trade and Investment. Ohio: South-Western Publishing Co.
- Pamungkas, Sri Bintang. Modul Ekonomi Makro.
- Sembiring, R K.1995. *Analisis Regresi*. Bandung: Institut Teknik Bandung
- Barrow, M.1997.Statistic for Economics Accounting and Vusiness
 Studies.New York:Longman
- Gujarati, Damodar.Basic Econometrics.
- Wooldridge, Jeffrey M.Introductory Econometrics, A Modern Approach.
- Chapra, Steven C.Applied Numerical Methods.McGraw Hill.
- Modul Persamaan Simultan. Laboratorium Komputasi Departemen Ilmu Ekonomi FEUI
- Modul Basic Econometrics. Laboratorium Komputasi Departemen Ilmu Ekonomi FEUI
- http://polhukam.kompasiana.com
- Turnovsky, Stephen J.1977.Macroeconomic Analysis and Stabilization Policy.London:Cambridge University Press