

IDENTIFIKASI DAN PERBAIKAN MASALAH LUBANG NG PADA CYLINDER HEAD SEPEDA MOTOR SEBAGAI USAHA PENINGKATAN KUALITAS

SKRIPSI

HENDRA 0606043553

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI DEPOK

DESEMBER 2009

UNIVERSITAS INDONESIA

IDENTIFIKASI DAN PERBAIKAN MASALAH LUBANG NG PADA CYLINDER HEAD SEPEDA MOTOR SEBAGAI USAHA PENINGKATAN KUALITAS

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

HENDRA 0606043553

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI

DEPOK DESEMBER 2009 HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Hendra

NPM : 0606043553

Tanda Tangan :

Tanggal : 22 Desember 2009

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh:

: Hendra

: 0606043553

Nama

NPM

Program Stud Judul Skripsi	: Identifikasi dan Perbaika	an Permasalahan Lubang NG pada Motor sebagai Usaha Peningkatan
bagian persy		wan Penguji dan diterima sebagai nemperoleh gelar Sarjana Teknik Teknik, Universitas Indonesia
	DEWAN PENG	SUJI
Pembimbing	: Dr.Ir. T.Yuri M.Z., MEngSc	()
Penguji	: Ir. Yadrifil, MSc	()
Penguji	: Ir. Akhmad Hidayatno, MBT	()
Ditetapkan di	: Depok	
Tanggal	: 4 Januari 2010	

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT, karena atas rahmat dan karunia-Nyalah penyusun dapat menyelesaikan skripsi ini. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Jurusan Teknik Industri pada Fakultas Teknik Universitas Indonesia. Penulis telah berusaha untuk menyelesaikan skripsi ini dengan semaksimal mungkin dan atas bantuan berbagai pihak, sehingga bisa terselesaikan sesuai dengan rencana. Akhirnya atas terselesaikannya skripsi ini, penulis mengucapkan terima kasih yang sebesarbesarnya kepada:

- 1. Dr. Ir. T.Yuri M. Zagloel, MengSc. dosen pembimbing yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan penulis dalam penyusunan skripsi ini;
- 2. Rekan-rekan kerja di Divisi Procurement Engineering, Divisi Produksi, Divisi Quality PT. Astra Honda Motor yang telah banyak membantu penulis dalam memberikan akses data seluas-luasnya yang penulis perlukan;
- 3. Seluruh anggota keluarga, orang tua, anak, dan istri dan kerabat penulis yang telah memberikan dukungan moral dan doa;
- 4. Rekan-rekan mahasiswa teknik industri program ekstensi kelas Depok angkatan 2006 yang telah lebih dulu menyelesaikan sarjananya;
- 5. Dan semua pihak yang penulis tidak bisa sebutkan satu persatu yang telah membantu penulis sehingga skripsi ini dapat terselesaikan dengan baik.

Semoga semua amal kebaikan yang telah diberikan kepada penulis dibalas oleh Allah SWT. Penulis menyadari bahwa skripsi ini masih jauh dari sempurna dan memiliki keterbatasan. Namun penulis berharap semoga skripsi ini dapat bermanfaat bagi semua pihak yang membacanya.

Depok, Desember 2009

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini :

Nama : Hendra
NPM : 0606043553
Program Studi : Teknik Industri
Departemen : Teknik Industri

Fakultas : Teknik Jenis karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

Identifikasi dan Perbaikan Permasalahan Lubang NG pada Cylinder Head Sepeda Motor sebagai Usaha Peningkatan Kualitas

beserta perangkat yang ada (jika diperlukan).Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/ formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal : 4 Januari 2010

Yang menyatakan

(Hendra)

RIWAYAT HIDUP PENULIS

Nama : Hendra

Tempat, Tgl Lahir : Ciamis, 26 Juli 1981

Alamat : Jl. Cibarengkok No. 462/182 A,

Bandung 40162

Status : Menikah Istri : Tien Supriatin

Anak : Hasna Alya Fitratunnisa

Pendidikan

1	Sekolah Dasar	SD Negeri 1 Bandung (1988-1994)						
2	Sekolah Menengah Pertama	SMP Negeri 1 Bandung (1994-1997)						
3	Sekolah Menengah Atas	SMA Negeri 5 Bandung (1997-2000)						
4	Diploma 3	Program Study Pola Pengecoran Logam						
A		Jurusan Teknik Pengecoran Logam						
100		Politeknik Manufaktur Negeri Bandung,						
		(2000-2003)						
5	Strata 1	Departemen Teknik Industri						
D.		Fakultas Teknik Universitas Indonesia						
		(2006-2009)						

Pekerjaan

1	Production Supervisor,	Des 2003- April 2005
1	PT. Bakrie Tosanjaya, Bekasi	
2	Dies & Mold Maintenance Analyst	May 2005-Juli 2008
7	PT. Astra Honda Motor, Jakarta	
3	Procurement Engineering,	Juli 2008 - Sekarang
	PT. Astra Honda Motor, Jakarta	

ABSTRAK

Nama : Hendra

Program Studi : Teknik Industri

Judul : Identifikasi dan Perbaikan Permasalahan Lubang NG pada

Cylinder Head Sepeda Motor sebagai Usaha Peningkatan

Kualitas

Skripsi ini bertujuan untuk mendapatkan solusi dan alternatif perbaikan masalah produksi part cylinder head terhadap claim next process yaitu permasalahan lubang NG yang berdampak pada tidak efisiennya proses produksi itu sendiri.

Metode yang digunakan digunakan adalah Six Sigma yang terdiri dari tahapan Define, Measure, Analyze, Improve, Control (DMAIC).

Aktivitas yang dilakukan pada tahap define adalah identifikasi masalah, menetukan Critical To Quality (CTQ), Logic Tree Diagram, SIPOC diagram. Tahap measure melakukan pemetaan proses, pengukuran terhadap proses-proses yang telah diidentifikasi menjadi factor penyebab dari permasalahan dan juga mengukur kemampuan proses (Cp) dari proses machining cylinder head. Tahap analyze melakukan analisa terhadap kemungkinan-kemungkinan yang menyebabkan masalah dengan diagram tulang ikan (sebab-akibat), Failure Tree Analysis (FTA) dan Failure Mode Effect and Analysis (FMEA). Tahap improve melakukan perbaikan dari hasil-hasil analisa penyebab masalah. Tahap control melakukan monitoring terhadap perbaikan-perbaikan yang telah dilakukan. Dari tahapan perbaikan diatas didapatkan faktor yang mempengaruhi terjadinya permasalahan lubang NG adalah proses dari pemotongan gate (cutting gate) dan proses pembersihan casting dari scrap dan burrs (trimming) yang kurang sempurna.

Berdasarkan tahap perbaikan yang dilakukan, metode six sigma sangat efektif dalam menyajikan tahapan analisis yang sistematis dan logis sehingga dapat mencari akar permasalahan dan rencana perbaikan dalam menyelesaikan permasalahan ini. Walaupun penelitian ini tidak sampai pada tahap evaluasi dari hasil perbaikan yang dilakukan, langkah-langkah DMAIC yang ada cukup memperlihatkan penyelesaian masalah dengan sistematis sehingga hasilnyapun akan dapat dipertanggunjawabkan

Kata kunci:

Lubang NG, Cylinder Head, Six Sigma, Define, Measure, Analyze, Improve, Control (DMAIC).

ABSTRACT

Name : Hendra

Study Program : Industrial Engineering

Title : Identification and Corrective Action for lubang NG Problem

of Motorcycle Cylinder Head as an Effort for Quality

Improvement

The purpose of this final project is to get the solution and the alternative corrective actions on next process claim's of lubang NG which occurs to the cylinder head of motorcycle. It has negative effects production efficiency.

The method used in analyzing and solving the problem is Six Sigma, which includes the phases of Define, Measure, Analyze, Improve, Control (DMAIC).

The activities on Define phase are problem identification, Critical to Quality decision making, Logic Tree Diagram and SIPOC Diagram formulation. The next step is Measure phase, which involves the activities of process mapping and Capability Process Index (Cp) measurement. The third step is Analyze phase. The activities done on this step are potential problem analysis using Fishbone diagram (cause and effect diagram), Failure Tree Analysis (FTA) and Failure Mode Effect and Analysis (FMEA). The phase is followed by Improve phase, including the activities of corrective action execution on the basis of potential problem analysis done on prior step. The final step is Activity Control phase; that is performing the monitoring action to the improvement outcome.

The conclusion obtained from doing those former activities is that the factors causing the lubang NG problem are as follows (1) defectiveness of gate cutting dan trimming in production process itself.

Due to the completion of problem identification and corrective action, it can be concluded that six sigma method is very effective on systematic and logic problem solving, so the routcauses of the problem could be founded. Although the evaluation of this analysis could not be done, the methode can show us how to analyze and solve the problem in a systematic way.

Key Words:

Lubang NG, Cylinder Head, Six Sigma, Define, Measure, Analyze, Improve, Control (DMAIC).

DAFTAR ISI

HALAN	MAN J	TUDUL	i
HALAN	MAN I	PERNYATAAN ORISINALITAS	ii
HALAN	MAN I	PENGESAHAN	iii
KATA	PENG	ANTAR	iv
HALAN	MAN I	PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR	
UNTU	K KEP	ENTINGAN AKADEMIS	V
RIWAY	AT H	IIDUP PENULIS	vi
			vii
			viii
			ix
DAFTA	AR TA	BEL	xi
		MBAR	xii
DAFTA	R LA	MPIRAN	xiv
BAB 1	PENI	DAHULUAN	1
: A 700	1.1		3
	1.2	DIAGRAM KETERKAITAN MASALAH	3
		RUMUSAN MASALAH	3
	1.4	BATASAN MASALAH	3
	1.5		4
	1.6	METODOLOGI PENELITIAN	4
	1.7	SISTEMATIKA PENULISAN	6
BAB 2		DASAN TEORI	7
	2.1	PENGERTIAN SIX SIGMA	7
	2.2	KONSEP DAN SEJARAH SIX SIGMA	9
-	2.3	MANFAAT DAN KEUNGGULAN SIX SIGMA	11
	2.4	TAHAPAN DMAIC	14
		2.4.1 Define	14
		2.4.1.1 Critical To Quality (CTQ)	14
		2.4.1.2 Cost of Poor Quality (COPQ)	15
		2.4.1.3 Logic Tree (Diagram Pohon)	16
		2.4.1.4 Pemetaan Proses (SIPOC)	16
		2.4.2 . Measure	18
		2.4.2.1 Analisa Kemampuan Proses (Cp)	18
		2.4.2.2 Process Capability Index (Cpk)	20
		2.4.2.3 Hubungan antara <i>Cp</i> , <i>Cpk</i> dan Level	
		<i>Sigma</i>	23
		2.4.3 . <i>Analyze</i>	24
		2.4.3.1 Metode Pemilihan Faktor –Faktor	24
		2.4.3.2 Diagram Sebab Akibat	
		(Cause & Effect Diagram)	25
		2.4.3.3 Failure Mode and Effect	

		Analysis (FMEA)	26
		2.4.4 <i>Improve</i>	30
		2.4.5 <i>Control</i>	30
BAB 3	PEN(GUMPULAN DAN PENGOLAHAN DATA	33
	3.1	TAHAP DEFINE (DEFINISI MASALAH)	33
		3.1.1 Data Rejection	34
		3.1.2 Cost of Poor Quality	36
		3.1.3 SIPOC Diagram	38
		3.1.4 Indikasi Penyebab Masalah Lubang NG Cylin	
			39
	2.2	3.1.5 Logic Tree Penyebab Reject Lubang NG	
	3.2	TAHAP MEASURE (PENGUKURAN)	
		3.2.1 Pengukuran Sand Core	
		3.2.2 Pengukuran Coating Dies Area Datum	
		3.2.3 Pengukuran Ketinggian Gate setelah Proses Cuttin	
		3.2.4 Pengukuran Proses Trimming	
4 100		3.2.5 Pengukuran Kemampuan Proses (CP) Machi	
		01	49
		3.2.6 Pengukuran Kemampuan Proses (CP) Machini	
			53
			2 A
BAB 4	ANA	LISA DAN PERBAIKAN KOPLING TERBAKAR	
	4.1	TAHAP ANALISA (ANALYZE)	57
		4.1.1 Analisa Ketinggian Gate setelah Proses Cutting	58
	1	4.1.1.1 Diagram Sebab Akibat (Fishbone)	58
		4.1.1.2 Failure Tree Analysis (FTA)	59
	1	4.1.1.3 Failure Mode and Effect Analysis (FMEA	A) 59
-		4.1.2 Analisis Part setelah Proses Trimming	60
	7.,	4.1.2.1 Diagram Sebab Akibat (Fishbone)	61
		4.1.2.2 Failure Tree Analysis (FTA)	62
	74	4.1.2.3 Failure Mode and Effect Analysis (FMEA	A) 62
	4.2	TAHAP PERBAIKAN (IMPROVE)	63
		4.2.1 Perbaikan Proses Cutting Gate	64
		4.2.1.1 Pembuatan Mal	65
		4.2.1.2 Revisi Operation Standard Cutting Gate.	66
		4.2.2 Perbaikan Proses Trimming	67
		4.2.1.1 Pemberian Marking pada part	68
		4.2.1.2 Revisi Operation Standard Trimming	69
	4.3	TAHAP KONTROL (CONTROL)	. 70
BAB 5	KESI	IMPULAN	71
DAFTA	AR RE	EFERENSI	73

DAFTAR TABEL

Tabel 2.1	Nilai Chart Factor	20
Tabel 2.2	Hubungan Cp,Cpk dan Sigma Level	23
Tabel 2.3	Form failure Mode Effect Analysis (FMEA)	27
Tabel 2.4	Panduan Merangking Severity	28
Tabel 2.5	Panduan Merangking Detection	29
Tabel 2.6	Panduan Merangking Occurrence	29
Tabel 3.1	Data Reject Cylinder Head Tahun 2008	34
Tabel 3.2	Breakdown Biaya Produksi Cylinder Head	37
Table 3.3	Matrix Corelation	39
Table 3.4	Point Pengukuran	41
Table 3.5	Hasil Trial untuk mengetahui pengaruh ketebalan coating dies	45
	area datum terhadap lubang NG	
Table 3.6	Hasil Trial untuk mengetahui pengaruh ketebalan	47
AV	Gate ex Cutting terhadap lubang NG	
Table 3.7	Hasil <i>Trial</i> untuk mengetahui pengaruh burrs terhadap lubang	49
	NG	
Table 3.8	Hasil Pengukuran CP Jig L di OP-01	51
Table 3.9	Hasil Pengukuran CP Jig R di OP-01	52
Table 3.10	Hasil Pengukuran CP Jig A di OP-04	54
Table 3.11	Hasil Pengukuran CP Jig B di OP-04	55
Tabel 4.1.	Failure Mode Effect and Analysis (FMEA) Proses Cutting Gate	59
Tabel 4.3	Tabel Analisa Masalah Lubang NG (Metode 5-Why)	62

DAFTAR GAMBAR

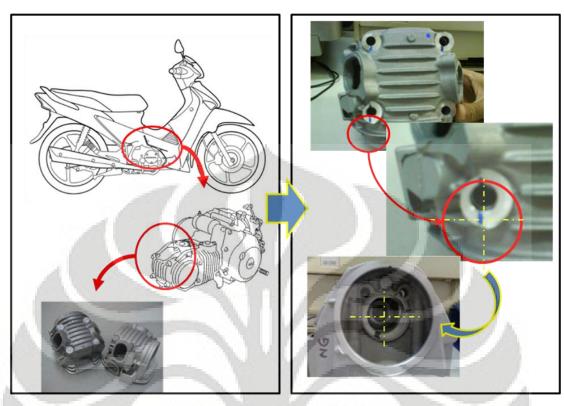
Gambar 1.1	Ilustrasi Reject Lubang NG pada Cylinder Head	2
Gambar 1.2	Diagram Keterkaitan Masalah	3
Gambar 1.3	Diagram Alir Pengatasan Reject Lubang NG Cylinder Head	5
Gambar 2.1	Proses terbentuknya six sigma dalam manajemen kualitas	9
Gambar 2.2.	Intisari six sigma	9
Gambar 2.3.	Perusahaan pengguna six sigma	10
Gambar 2.4	Fase-fase Proses DMAIC	11
Gambar 2.5	Tipe proses DMAIC	13
Gambar 2.6	Visible and hidden costs of poor quality	15
Gambar 2.7	SIPOC Model	17
Gambar 2.8	Lebar Sebaran Proses dan Lebar Spesifikasi	18
Gambar 2.9	Pengaruh nilai deviasi σ terhadap nilai Cp	19
Gambar 2.10	Nilai Cpk	21
Gambar 2.11	Penghitungan Cp dan Cpk	22
Gambar 2.12	Digram Sebab-Akibat (Cause and Effect Diagram)	25
Gambar 2.13	Bagan kendali (control chart)	32
Gambar 3.1	Ilustrasi Reject Lubang NG pada Cylinder Head	33
	yang ditemukan di OP-01 dan OP-04	
Gambar 3.2	Ilustrasi Cylinder Head pada sepeda motor	34
Gambar 3.3	Diagram Pareto Reject Next Process LPDC Tahun 2008	35
Gambar 3.4	Grafik Reject Lubang NG Cylinder Head/bulan thn 2008	36
Gambar 3.5	Diagram SIPOC cylinder Head	38
Gambar 3.6	Logic Tree penyebab reject lubang NG	40
Gambar 3.7	Ilustrasi Pengecekan Jig OP-01	41
Gambar 3.8	Ilustrasi Pemakaian Sandcore di LPDC	42
Gambar 3.9	Operation Standard Proses Coating Dies	43
Gambar 310	Ilustrasi Proses Coating dan Pegecekan Tebal Coating	43
Gambar 3.11	Pengukuran Tebal Coating di area datum	44
Gambar 3.12	Ilustrasi Point Datum OP-01	44
Gambar 3.13	Ilustrasi Proses Cutting Gate	46
Gambar 3.14	Ilustrasi Proses Machining OP-01	46
Gambar 3.15	Ilustrasi Proses Trimming	48
Gambar 3.16	Proses Machining OP-01	50
Gambar 3.17	Grafik Data CP Jig L OP-01	51
Gambar 3.18	Grafik Data CP Jig R OP-01	52
Gambar 3.19	Gambar 3.19 Proses Machining OP-04	53
Gambar 3.20	Grafik Data CP Jig A OP-04	54
Gambar 3.21	Grafik Data CP Jig B OP-04	55
Gambar 4.1.	Analisa Teknis Penyebab Masalah Lubang NG pada	56
	Cylinder Head	

Gambar 4.2	Critical Process Cutting	57
Gambar 4.3	Diagram Fishbone Gate ex Cutting lebih dari 1mm	57
Gambar 4.4	Failure Tree Analysis Ketinggian Gate lebih dari 1mm	58
Gambar 4.5	Critical Process Trimming	60
Gambar 4.6	Diagram Fishbone Burrs area celah 12 & 15	60
Gambar 4.7	Failure Tree Analysis Proses Trimming	61
Gambar 4.8	Proses Cutting Gate Sebelum dan Sesudah Perbaikan	63
Gambar 4.9	Mal Ketinggian <i>Gate</i>	64
Gambar 4.10	Ilustrasi Cara Kerja Pengukuran Ketinggian Gate	64
Gambar 4.11	Operation Standard Cutting Sebelum Revisi	65
Gambar 4.12	Operation Standard Cutting Setelah Revisi	65
Gambar 4.13	Proses Trimming Sebelum dan Sesudah Perbaikan	67
Gambar 4.14	Ilustrasi Marking setelah proses trimming	67
Gambar 4.15	Operation Standard Trimming Sebelum Revisi	68
Gambar 4 16	Operation Standard Trimming Setelah Revisi	68

DAFTAR LAMPIRAN

Lampiran 1	Table Konversi Sigma Level
Lampiran 2	Operation Standard Cutting Gate Sebelum Improvement
Lampiran 3	Operation Standard Cutting Gate Setelah Improvement
Lampiran 4	Operation Standard Trimming sebelum Improvement
Lampiran 5	Operation Standard Trimming Setelah Improvement

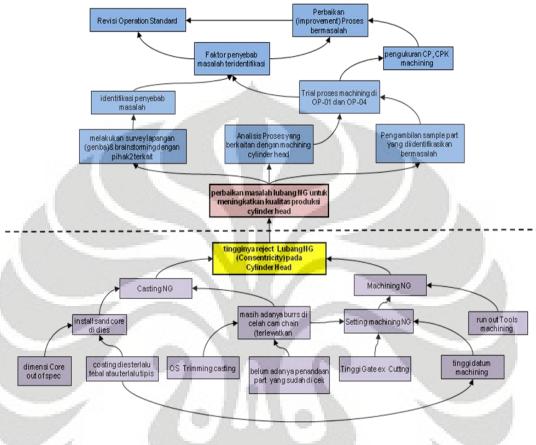
BAB 1


PENDAHULUAN

1.1 LATAR BELAKANG PERMASALAHAN

Alat transportasi popular yang sangat diminati sekarang ini dikarenakan praktis dan irit adalah *sepeda motor*. Harga BBM yang terus melambung, menyebabkan masyarakat mencari sarana transportasi yang irit agar dapat menekan pengeluaran operasional sehari-hari. PT. Astra Honda Motor sebagai produsen sepeda motor terbesar di Indonesia tentunya melihat kondisi ini sebagai peluang bisnis untuk lebih meningkatkan produksinya. Sehingga peningkatan kapasitas dan produktifitas dengan jalan efisiensi harus ditempuh, tentunya dengan tetap mengedepankan kualitas.

Efisiensi yang dapat ditempuh adalah dengan cara menekan production cost. Salah satu production cost yang ada di PT. AHM adalah produksi Cylinder Head. Cyinderl Head adalah salah satu komponen dari Engine sepeda motor yang diproduksi di inplant AHM. Komponen ini di produksi melalui proses Low Presure Die Casting, yaitu proses pembentukan part dengan memasukkan cairan alluminium kedalam cetakan (Dies) dengan tekanan rendah kemudian diproses machining hingga menjadi komponen yang siap untuk di assy dengan komponen lain.


Didalam produksi komponen ini tentu ada yang namanya *rejection* atau part NG yang bila tidak dikendalikan akan menyebabkan *production cost up* atau kenaikan ongkos produksi yang tentunya harus dihindari. Salah satu *defect* atau *rejection* pada komponen *Cylinder Head* adalah lubang NG

Gambar 1.1 Ilustrasi Reject Lubang NG pada Cylinder Head

Low Pressure Die Casting (LPDC) sebagai department yang bertanggung jawab atas produksi Cylinder Head tentunya memikul tanggung jawab yang besar untuk mensupport tuntutan produksi yang semakin tinggi. Dengan Sumber daya yang ada LPDC senantiasa melaksanakan tugas dan tanggung jawabnya untuk mencapai efisiensi dan efektifitas produksi, salah satunya adalah dengan menurunkan rejection atau part NG sehingga production cost dapat lebih ditekan lagi.

1.2 DIAGRAM KETERKAITAN MASALAH

Gambar 1.2 Diagram Keterkaitan Masalah

1.3 RUMUSAN MASALAH

Berdasarkan latar belakang dan diagram keterkaitan masalah, maka yang menjadi rumusan masalah adalah perbaikan proses yang diidentifikasi menjadi penyebab terjadinya masalah *reject* lubang NG pada *Cylinder Head*

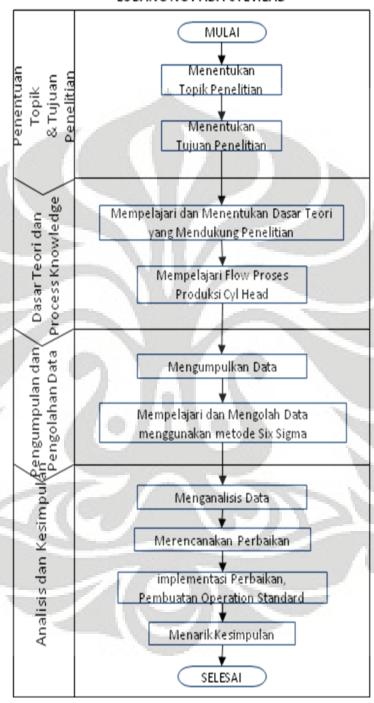
1.4 BATASAN MASALAH

Yang menjadi batasan permasalahan dalam penelitian ini adalah sbb:

- 1. Penelitian hanya dilakukan di Sub Departement *Low Pressure Die Casting* dan Seksi Machining Cylinder Head PT. Astra Honda Motor
- 2. Penelitian ini terfokus pada part Cylinder Head

- 3. Kondisi lingkungan dianggap tidak mempengaruhi dalam pengukuran atau pengetesan part untuk pengambilan data
- 4. Faktor biaya dalam pengetesan part dan pengambilan data diabaikan.

1.5 TUJUAN PENELITIAN


Melakukan Identifikasi dan perbaikan (improvement) terhadap faktorfaktor yang menyebabkan dan mempengaruhi terjadinya masalah reject lubang NG pada cylinder head sepeda motor sehingga dapat meningkatkan kualitas dan dapat menurunkan claim next process produksi Cylinder Head.

1.6 METODOLOGI PENELITIAN

Metodologi penelitian dalam skripsi ini menggunakan metodologi Six SigmaDMAIC (Define-Measure-Analyze-Improve-Control) dan dilaksanakan sebagai berikut:

- melakukan pengamatan langsung pada proses produksi Cylinder Head die proses Low Pressure Die Casting dan Machining Cylinder Head
- 2. mengumpulkan data yang ada mengenai proses produksi Cylinder Head die proses Low Pressure Die Casting dan Machining Cylinder Head
- melakukan studi literatur dari referensi-referensi yang ada tentang Production & Control dan analisa penyelesaian masalah khususnya Six Sigma

DIAGRAM ALIR PENGATASAN REJECT LUBANG NG PADA CYL HEAD

Gambar 1.3 Diagram Alir Pengatasan Reject Lubang NG Cylinder Head

1.7 SISTEMATIKA PENULISAN

Penulisan tugas akhir ini tersusun dalam 5 (lima) bab dengan sistematika penulisan sebagai berikut :

BAB I PENDAHULUAN

Berisikan latar belakang, perumusan masalah, tujuan penelitian, batasan masalah, metodologi penelitian, sistematika penulisan dari penelitian dan kesimpulan.

BAB II LANDASAN TEORI

Berisikan penjabaran-penjabaran mengenai sejarah *Six Sigma*, Konsep-konsep dasar dan Ruang Lingkup *Six Sigma*, *Basic Quality Control Six Sigma* yang disertai teori-teori dengan rumus dasar dari ilmu statistik, serta berisikan mengenai penjabaran teori langkah-langkah DMAIC beserta dengan cara atau tool-tool yang digunakan, mulai dari langkah *Define*, *Measure*, *Analyze*, *Improve*, dan *Control*.

BAB III PENGUMPULAN DAN PENGOLAHAN DATA

Berisikan mengenai data-data reject lubang NG pada Cylinder Head dan membuat suatu analisa penyebab masalah yang meliputi mengidentifikasi CTQ, pemetaan proses, pengukuran dan simulasi proses casting dan machining cylinder head. Pada pengumpulan data ini metode six sgma yang digunakan adalah tahap *define* dan tahap *measure*.

BAB IV ANALISA DAN PERBAIKAN MASALAH

Berisikan mengenai langkah-langkah analisa perbaikan masalah *reject* lubang NG pada cylinder head dengan menggunakan metode *Six Sigma* dengan tahap *Analize, Improve*, dan *Control* dengan menggunakan tool-tool yang sesuai.

BAB V KESIMPULAN

Berisikan mengenai simpulan dari hasil penelitian yang telah dilakukan yaitu berupa analisis faktor penyebab masalah dan perbaikan masalahnya.

BAB 2

LANDASAN TEORI

2.1 PENGERTIAN SIX SIGMA

Sigma (σ) adalah simbol dari alphabet greek yang dijadikan sebagai ukuran variasi proses. Skala sigma menjelaskan hubungan karakteristik, seperti defect per unit, devective part per satu juta, kemungkinan terjadinya kegagalan.

Enam adalah jumlah sigma yang terukur dalam proses, ketika variasi terjadi disekitar target dan ada 3,4 per satu juta kemungkinan *defect*. Tomkins (1997) mengartikan *six sigma* merupakan program yang ditujukan untuk eliminasi pendekatan terhadap *defect* dari setiap produk, proses, dan transaksi. Harry (1998) mendefinisikan *Six Sigma* sebagai sebuah strategi yang inisiatif untuk mendorong menghasilkan keuntungan, kenaikan pangsa pasar, dan perbaikan kepuasan pelanggan melalui perlengkapan statistik yang bisa mengarahkan dalam pemecahan masalah kualitas. Sehingga dapat disimpulkan bahwa *Six Sigma* merupakan:

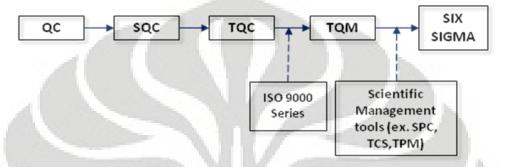
- sebuah visi (VISION) dan falsafah (PHILOSHOPICAL) komitmen terhadap pelanggan untuk memberikan kualitas terbaik dengan biaya paling murah.
- sebuah ukuran (METRIC) yang memeragakan tingkat kualitas 99.99966 % atas kinerja produk dan atau proses.
- sebuah tolok ukur (BENCHMARK) kemampuan produk maupun proses dibandingkan terhadap produk atau proses terbaik dikelasnya
- sebuah penerapan praktis alat-alat (TOOLS) statistik dan metode (METHODE) untuk mengukur, menganalisa, memperbaiki, dan mengontrol proses.

2.2 KONSEP DAN SEJARAH SIX SIGMA

Konsep dasar *six sigma*, menurut Peter Pande, dalam bukunya *The Six Sigma Way*: *Team Fieldbook*, ada enam komponen utama konsep *six sigma* sebagai strategi bisnis:

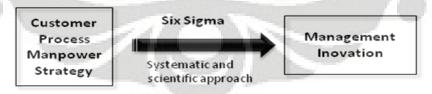
- 1. Benar-benar mengutamakan pelanggan : seperti kita sadari bersama, pelanggan bukan hanya berarti pembeli, tapi bisa juga berarti rekan kerja kita, team yang menerima hasil kerja kita, pemerintah, masyarakat umum pengguna jasa, dan lain-lain.
- 2. Manajemen yang berdasarkan data dan fakta: bukan berdasarkan opini, atau pendapat tanpa dasar.

- **3. Fokus pada proses, manajemen dan perbaikan**: *Six Sigma* sangat tergantung kemampuan kita mengerti proses yang dipadu dengan manajemen yang bagus untuk melakukan perbaikan.
- **4. Manajemen yang proaktif**: peran pemimpin dan manajer sangat penting dalam mengarahkan keberhasilan dalam melakukan perubahan.
- **5. Kolaborasi tanpa batas** : kerja sama antar tim yang harus mulus.
- 6. Selalu mengejar kesempurnaan.


Sejarah singkat metode Six Sigma adalah sebagai berikut :

- Pada tahun 1980-an: Motorola mengekspor produk-produknya ke Jepang, dan klaim mencapai 20~30%. Presiden Motorola Bob Galvin, memerintahkan mencari penyebab masalah.
- Pada tahun 1987: Mike J. Harry, PhD membuat rancangan audit kualitas dengan menggunakan metode Six Sigma (DMAIC) yang dikenal dengan DMAIC Breakthrough. Metode tersebut menggunakan data dan statistik.
- Pada tahun 1988 : Motorola mendapatkan MBNQA (*Malcolm Baldrige National Quality Award*), sejak itu s*ix sigm*a mengalami revolusi penyebaran.
- Pada tahun 1993: Mike J.Harry pindah ke ABB dan mulai memelopori penggunaan six sigma secara intensif. Dia juga memberikan konsultasi ke berbagai perusahaan di Amerika termasuk GE.
- Pada tahun 1995 : CEO GE, Jack Welch mencanangkan bahwa s*ix sigma* menjadi kendaraan perusahaan untuk mencapai kualitas terbaik.

2.3 MANFAAT DAN KEUNGGULAN SIX SIGMA

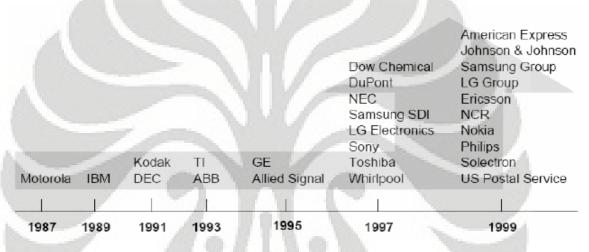

Six sigma menjadi popular di mata dunia saat ini. Ada beberapa alasan umum mengapa six sigma menjadi terkenal.

Pertama hal ini dianggap sebagai *Quality Management system* yang masih baru sebagai pengganti TQC, TQM, dan yang lainnya. Dalam pengertiannya perkembangan proses terbentuknya *Six Sigma* terlihat pada gambar 2.1

Gambar 2.1. Proses terbentuknya six sigma dalam manajemen kualitas Sumber: Sung H. Park.2003. Six Sigma for Quality and Productivity Promotion

Six sigma untuk peningkatan kualitas dan produktivitas produksi perusahaan, yang mana implementasinya lebih berhasil dibandingkan dengan strategi manajemen yang sebelumnya, seperti TQC (Total Quality Control), TQM (Total Quality Manajemen), mempunyai keinginan yang kuat untuk memperkenalkan six sigma. Six sigma merupakan sebuah sytematic, scientific, and statistical pendekatan untuk inovasi manajemen yang sesuai untuk digunakan di masyarakat. Intisari six sigma adalah integrasi dari 4 elemen, yaitu: pelanggan, proses, tenaga kerja (man power), dan strategi untuk memberi inovasi sistem manajemen, seperti ditunjukkan pada gambar 2.2. Intisari six sigma

Gambar 2.2. Intisari six sigma


Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity Promotion

Six sigma memberikan sebuah statistik dan ilmu pengetahuan yang dijadikan dasar assesmen kualitas untuk semua proses, melalui pengukuran tingkat kualitas. Metode six sigma memberikan gambaran perbandingan diantara semua proses, dan menyatakan proses

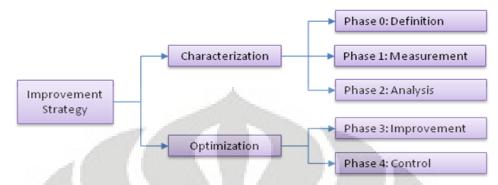
yang baik. Melalui informasi ini, manajemen atas belajar bagaimana untuk mencapai inovasi proses dan kepuasan pelanggan.

Kedua six sigma memberikan effisiensi terhadap pengolahan dan penggunaan. level six sigma terdiri dari champion, green belt, black belt, dan master black belt. Biasanya master black belt merupakan pimpinan dari team project dan secara umum green belt bekerja bersama team project.

Ketiga ada cerita sukses aplikasi dari six sigma untuk mencapai perusahaan kelas dunia, seperti terlihat pada gambar 2.3 Perusahaan pengguna six sigma.

Gambar 2.3. Perusahaan pengguna six sigma

Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity Promotion


Pada akhir-akhir ini six sigma memberikan fleksibilitas di milenium baru dengan 3 Cs, yaitu :

- 1 *Change*, merubah pola pikir masyarakat.
- 2 Customer, daya untuk merubah pelanggan dan mempertinggi permintaan pelanggan.
- 3 Competition, kompetisi dalam pencapaian kualitas dan produktivitas.

2.4 TAHAPAN DMAIC

Metodologi yang paling penting dalam manajemen *six sigma* adalah metodologi perbaikan yang disusun dalam sebuah karakteristik yaitu tahap DMAIC (Define-Measure-Analyze-Improve-Control). Tahapan DMAIC merupakan sebuah strategi pemecahan masalah dengan memberikan cara yang tepat. Perusahaan yang mengaplikasikan *Six Sigma* dimanapun unrtuk menghasilkan perbaikan dan hasil yang nyata adalah sama metodologinya.

Metodologi ini menganalisa variasi, *cycle time*, ketidaksesuaian hasil, rancangan, dan lainlain. Metodologi ini dibagi kedalam lima fase, seperti terlihat pada gambar 2.4.

Gambar 2.4 Fase-fase Proses DMAIC

Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity Promotion

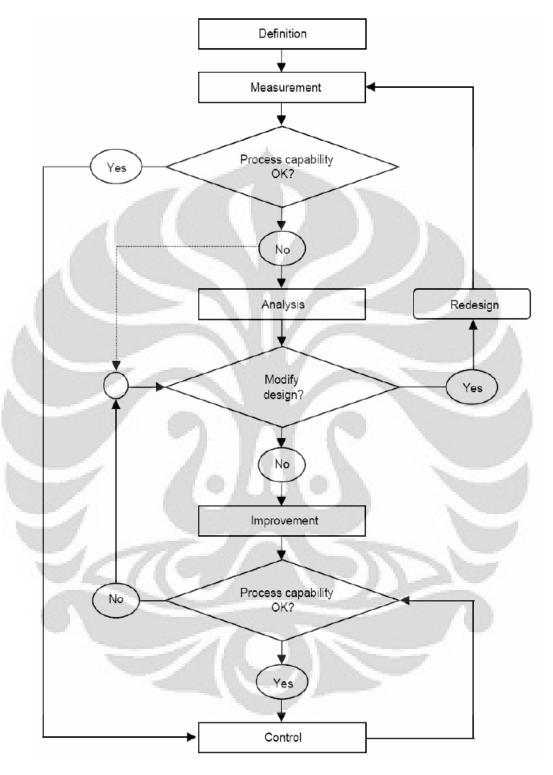
1. Fase 0 : Definition

Fase ini menitikberatkan pada identifikasi proses atau produk yang akan dilakukan perbaikan. Fase ini juga menitikberatkan pada penelusuran atau pencarian kunci karakteristik dari proses atau produk tersebut pada perusahaan kelas dunia yang lain. Pada tahap ini team pelaksana mengidentifikasikan permasalahan, mendefiniskan spesifikasi pelanggan, dan menentukan tujuan (pengurangan cacat/biaya dan target waktu).

2. Fase 1: Measurement

Fase ini membutuhkan dan mengidentifikasikan karakteristik produk atau proses, yaitu : menentukan variabel-variabel yang ada, pemetaan terhadap proses, memerlukan kebutuhan pengukuran, merekam atau mendata hasil dan mengukur kemampuan proses jangka panjang (long-terms) dan jangka pendek (short-terms).

3. Fase 2: Analysis


Fase ini menitikberatkan pada analisa dan penelusuran atau pencarian kunci dari produk atau proses pengukuran. Dengan metode ini sebuah analisa sering menggunakan identifikasi terhadap faktor-faktor umum yang berpengaruh terhadap *performace process* atau produk tersebut. Dalam analisa produk atau *performace process* dapat menggunakan berbagai jenis statistik dan *basic quality*. Fase ini menentukan faktor-faktor yang paling mempengaruhi proses; artinya mencari satu atau dua faktor yang kalau itu diperbaiki akan memperbaiki proses kita secara dramatis.

4. Fase 3: *Improvement*

Fase ini dihubungkan terhadap seleksi karakteristik *performance* produk atau proses yang akan diperbaiki untuk mencapai target. Seleksi ini dilakukan untuk memudahkan mengungkapkan karakteristik dari produk atau proses untuk mengungkapkan sumber utama dari variasi yang ada. Kondisi yang variasi yang diperbaiki pada produk atau proses kunci harus di verifikasi. di tahap ini kita mendiskusikan ide-ide untuk memperbaiki sistem kita berdasarkan hasil analisa terdahulu, melakukan percobaan untuk melihat hasilnya, jika bagus lalu dibuatkan prosedur bakunya (Standard Operating Procedure-SOP).

5. Fase 4: Control

Pada akhir fase ini meyakinkan bahwa dibuat sebuah kondisi proses yang baru dari hasil perbaikan dan standarisasi. Hasil perbaikan tersebut didokumentasi dan dimonitoring dengan menggunakan metode *Statistical Process Control* (SPC). Setelah kondisi stabil dalam periode tertentu, maka kemampuan proses bisa ditentukan. di tahap ini kita harus membuat rencana dan desain pengukuran agar hasil yang sudah bagus dari perbaikan team kita bisa berkesinambungan.

Gambar 2.5 Tipe proses DMAIC

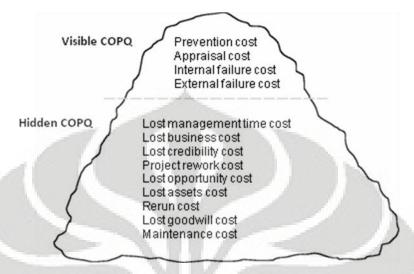
Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity Promotion

2.4.1 Define

Define merupakan langkah operasional pertama dalam program peningkatan kualitas six sigma. Pada tahap ini perlu diketahui beberapa hal sebagai tools yang bisa digunakan six sigma pada tahap Define, antara lain:

- 1. Critical To Quality (CTQ)
- 2. Cost of Poor Quality (COPQ)
- 3. Logic Tree (Diagram Pohon)
- 4. Pemetaan Proses (SIPOC)

2.4.1.1 Critical To Quality (CTQ)


CTQ adalah sebuah karakeristik dari sebuah produk atau jasa yang memenuhi kebutuhan *customer* (internal atau eksternal). CTQ merupakan elemen-elemen dasar yang merupakan pedoman pengukuran proses, *improvement* dan kontrol. Dalam memastikan CTQ yang dipilih merupakan hal yang sangat penting sebab hal ini akan merepresentasikan secara akurat semua yang penting bagi *customer*.

Customer biasanya tidak secara jelas menyatakan apa yang mereka inginkan atau mereka butuhkan. Kita perlu memanfaatkan metoda-metoda yang membantu kita dalam memahami kebutuhan customer dan menterjemahkannya ke dalam kebutuhan internal. Setelah kita menerjemahkan kebutuhan customer ke dalam kebutuhan internal, kita harus bisa mengukur dan menggambarkan kemampuan produk dan proses.

2.4.1.2 Menghitung "Cost of Poor Quality"

Perhitungan DPMO dan level *sigma* tidak serta merta memberikan gambaran kepada tim tentang biaya-biaya yang berasosiasi dengan kualitas. Dua proses yang berbeda mungkin memiliki level *sigma* yang sama, tetapi nilai uang yang hilang karena cacat dalam proses (*Cost of Poor Quality*) bisa menjadi berbeda. Sebagai contoh, tuntutan akibat malpraktik dokter jauh lebih mahal daripada pengerjaan ulang pelat untuk pintu mobil.

COPQ adalah biaya yang hilang akibat dari kualitas yang jelek. Biaya kualitas bisa mencapai 20 to 40% (Juran, 1988), kebanyakan dari biaya ini tidak terlihat secara langsung. Biaya kualitas yang tersembunyi ini bisa dilihat seperti gambar dibawah ini.

Gambar 2.6 Visible and hidden costs of poor quality

Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity Promotion

Oleh karena itu perhitungan COPQ menjadi teramat penting dilakukan sesegera mungkin setelah data dikoleksi. Pengukuran COPQ dapat membantu tim dalam mendapat dukungan untuk solusi yang diajukan tim, dan dalam mendapat perhatian manajer yang kurang paham dengan istilah-istilah dalam six sigma.

2.4.1.3 Logic Tree (Diagram Pohon)

Logic Tree merupakan suatu metode untuk menemukan akar penyebab masalah, yang secara umum dapat digunakan sebagai alat bantu untuk pembuatan FMEA. Logic Tree atau Failure Tree Analysis (FTA) adalah suatu grafik atau diagram analisa teknik. FTA akan menganalisa semua penyebab kejadian masalah yang sering terjadi dan juga dapat menganalisa masalah yang kemungkinan akan menjadi penyebab masalah, dalam bentuk daftar penyebab masalah dan penyebab yang mungkin terjadi. Setiap daftar penyebab akan dianalisa berulang-ulang sampai ditemukan akar penyebab masalah. Langkah analisa ini dapat dilakukan dengan metode "5 why". Jadi FTA adalah metode untuk menentukan part yang mana yang menyebabkan masalah.

FTA digunakan untuk mengidentifikasikan part yang menyebabkan produk gagal. FTA berbeda dengan FMEA, jika FMEA memprediksikan produk gagal dari kegagalan part,

dan FMEA analisa teknik secara kualitas, sedangkan FTA merupakan kemampuan untuk menganalisa masalah secara kualitatif.

Tujuan dari FTA adalah menentukan dan mengevaluasi garis generasi atau asal kejadian dan mekanisme kejadian kegagalan untuk melakukan pencegahan dan menentukan perbaikan yang dibutuhkan. Prosedure pembuatan FTA sebagai berikut:

- 1. Pilih produk atau sistem yang gagal.
- 2. Mengacu dari diagram pembentukan produk, buat urutan kegagalan menjadi sebuah subsistem dan part.
- 3. Gambar diagram pohon (Failure Tree) hubungan sebab akibat kegagalan dan mendapatkan penyebab diatasnya.
- 4. Buat analisa kualitatif dan kualitatif.
- 5. Rangkum dan evaluasi hasil dan periksa atau uji tindakan yang akan dilakukan.

2.4.1.4 Pemetaan Proses (SIPOC)

Sebuah proses adalah kumpulan dari aktifitas-aktifitas yang menggunakan satu jenis atau lebih input dan membuat *output* yang berguna bagi *customer*. Lingkup dari material akan berkaitan dengan proses-proses yang berhubungan dengan:

- 1. Sistem / Fungsi Produk
- 2. Sistem / Operasi Produk
- 3. Manufaktur / Produksi

Pemetaan Proses adalah metode visual untuk menggambarkan urutan atau hubunganhubungan aktifitas kerja. Pemetaan proses merupakan sebuah cara sederhana atau teknik penggambaran aliran yang digunakan untuk menunjukkan hubungan antara masing-masing proses kerja. Akar permasalahan biasanya terletak di dalam salah satu proses kerja yang ada. Hal-hal yang perlu diperhatikan dalam pemetaan proses, antara lain:

Gambar 2.7 SIPOC Model

Sumber: The Six Sigma Way Team Field Book

Peta SIPOC diagram (Supplier-Input-Process-Customer).

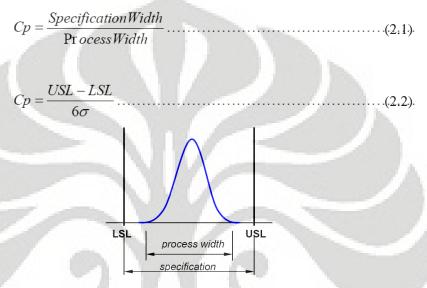
- *Supplier*, adalah orang atau organisasi yang menyediakan informasi, material maupun sumberdaya lain yang akan digunakan dalam proses.
- *Input*, adalah informasi atau material yang ditransformasikan dalam proses.
- Process, langkah-langkah yang mentransformasikan dan menambah nilai input.
- Output, adalah produk yang digunakan oleh konsumen.
- *Customer*, adalah orang, perusahaan, organisasi, atau proses lain yang menerima output proses.

Sebuah pemetaan proses membuat penyajian visual untuk semua tahapan yang ada di dalam proses. Ini memudahkan dalam :

- 1. Memudahkan bagaimana sistem bekerja atau beroperasi
- 2. Mengidentifikasi letak "bottlenecks", hambatan dan permasalahan
- 3. Mengembangkan cara baru agar persoalan bisa diatasi

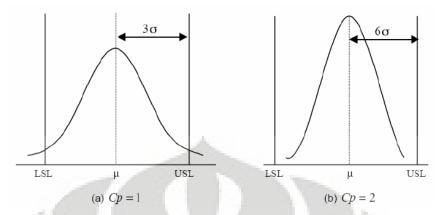
Pemetaan proses ini sangat berguna apabila:

- 1. Sebuah tim ingin memperbaiki cara kerja sekarang
- 2. Dua atau lebih organisasi ingin meningkatkan hubungan kerja
- 3. Sistem kerja baru sedang dirancang


2.4.2 Measure

Measure merupakan langkah operasional kedua dalam program peningkatan kualitas six sigma. Tahap ini untuk memvalidasi permasalahan, mengukur atau menganalisis permasalahan dari data yang ada. Terdapat tiga pokok yang dilakukan dalam tahap measure, yaitu:

- 1. Memilih atau menentukan karakteristik kualitas (CTQ) kunci yang berhubungan langsung dengan kebutuhan spesifik dari pelanggan
- 2. Mengembangkan suatu rencana pengumpulan data melalui pengukuran yang dapat dilakukan pada tingkat proses, *output* atau *outcome*.
- 3. Mengukur kinerja sekarang (current performance) pada tingkat proses, *output* atau *outcome* untuk ditetapkan sebagai dasar kinerja (performance baseline) pada proyek *six sigma*.


2.4.2.1 Analisa Kemampuan Proses (Cp)

Cp didefinisikan sebagai rasio lebar spesifikasi terhadap sebaran proses, kemampuan proses membandingkan output *in-control process* dengan limit/batas spesifikasi menggunakan *capability indeks*. Nilainya ditentukan dengan menghitung rasio penyebaran data spesifikasi (specification width) terhadap penyebaran nilai data aktual proses (process width).

Gambar 2.8 Lebar sebaran proses dan lebar spesifikasi

Dimana σ adalah symbol standar deviasi, yang menggambarkan variasi total proses pada posisi 6 σ (six sigma) yang ditranslasikan ± 3 standar deviasi terhadap rata-rata data. Sebaran spesifikasi atau total toleransi adalah batas atas USL (Upper Spesification Limit) dikurangi batas bawah LSL (Lower Spesification Limit). Ketika sebaran melebar (banyak variasi), maka nilai Cp kecil, hal tersebut mengindikasikan kemampuan proses rendah. Ketika sebaran proses menyempit (sedikit variasi) maka nilai Cp tinggi, hal ini mengindikasikan kamampuan proses lebih bagus.

Gambar 2.9 Pengaruh nilai deviasi σ terhadap nilai Cp

$$Variance = \frac{\sum_{i=1}^{n} (xi - \bar{x})^{2}}{n-1}.$$
 (2.3)

Standard Deviasi (
$$\sigma$$
) = $\sqrt{Variance}$ (2.4)

Jika menggunakan Xbar-R $\it Control\ \it Chart$ dengan subgrup n, maka standar deviasi (σ) dapat dihitung dengan rumus :

$$\sigma = \frac{\bar{R}}{d_2} \tag{2.5}$$

$$\bar{R} = \frac{Ri}{n} \tag{2.6}$$

Dimana:

 d_2 = nilai konstan yang tergantung dari jumlah subgrup n, nilai didapatkan dari Tabel 2.1

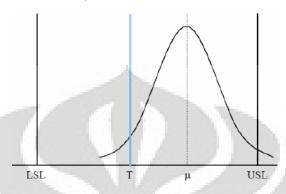
Tabel 2.1. Nilai Chart Factor

Chart fo	r Average	3			Chart fo	r Standa	rd Devi	ations				Charl	for Ran	ges		<u> </u>
Observations	F	ictors fo		Factor		Facto	rs for C	ontrol L	imits	Factor Centra		, F	ectors fe	or Contro		
.in Sample', n	· A	A2	A,	Ç4	1/04	B ₃	B ₄	В3	Β.	d ₂	1/d2	ds	D_1	D ₂	`D,_	D4
2 3 4	2.121 1.732 1.500	1.880 1.023 0.729	1.954 1.628	0.8862 0.9213	1.1284	0	3.267 2.568 2.266 2.089	0	2.606 2.276 2.088 1.964		0.8865 0.5907 0.4857 0:4299	0.880	0 0 0	3.686 4,358 4.698 4,918	0	3.267 2.574 2.282 2.114
5 6 7 8 9	1,342 1,225 1,134 1,061 1,000 0,949	0.577 0.483 0.419 0.373 0.337 0.308	1.427 1.287 1.182 1.099 1.032 0.975	0.9515 0.9594 0.9650 0.9693	1.0510 1.0423 1.0363 1.0317	0.030 0.118 0.185 0.239	1.970 1.882 1.815 1.761	0.029 0.113 0.179 0.232 0.276	1.874 1.806 1.751 1.707	2.534 ·2.704 2.847 2.970 3.078	0.3946 0.3698 0.3512 0.3367 0.3249	0.848 0.833 0.820 0.808	0: 0.204 0.388 0.547 0.687	5.078 5.204 5.306 5.393 5.469	0 0.076 0.136 0.184 0.223	2.004 1.924 1.864 1.816 1.777
11 12 13 14	0.905 0.866 0.832 0.802	0.285 0.266 0.249 0.235 0.223	0.927 0.886 0.850 0.817 0.789	0.9754 0.9776 0.9794 0.9810	1.0252 1.0229 1.0210 1.0194	0.321 0.354 0.382 0.406	1,646 1,618 1,594	0.313 0.346 0.374 0.399 0.421	1.585	3.173 3.258 3.336 3.407 3.472	0.2998		0.811 0.922 1.025 1.118 1.203	5.535 5.594 5.647 5.696 5.741	0.256 0.283 0.307 0.328 0.347	1.744 1.717 1.693 1.672 1.653
16 17 18 19 20	0.750 0.728 0.707 0.688 0.671	0.212 0.203 0.194 0.187	0.739 0.718 0.698	0.9845 0.9854 0.9862	1.0157 1.0148 1.0140	0.466 0.482 0.497	1.534 1.518 1.503	0.458 0.475 0.490	1,511 1,496 1,483	3.588 3.640 3.689	0.2747	0.744	1.356 -1.424 1.487	5.820 5.856 5.891	0.363 0.378 0.391 0.403 0.415	1,622 1,608 1,597
21 22 23 24 25	0.655	0.173 ;0.167 0.162 0.157	0.647 0.633 0.619	0.9882 0.9887 0.9892	1.0119 1.0114 1.0109	0.545	1.466 1.455 1.445	0.528 0.539 0.549	1.448 1.438 1.429	3.819 3.858 3.895	0.2611 0.2591 0.256		1.659 1.710 1.759	5.979 6.006 6.031	0.443	1.566 1.557 1.548

Sumber: ASTRA-Q Series oleh Astra Management Development Institute

Cp tidak menghitung pergeseran proses. Hal ini dilakukan dengan asumsi kondisi dianggap ideal ketika proses pada target yang diinginkan, pusat diantara dua batasan spesifikasi.

2.4.2.2 Process Capability Index (Cpk)


Cpk adalah indek untuk mengukur kenyataan kemampuan proses ketika terjadi pergeseran terhadap target yang diinginkan. Pergeseran atau derajat bias (k) didefinisikan sebagai

$$k = \frac{\left|t \arg et(T) - processmean(\mu)\right|}{\frac{1}{2}(USL - LSL)}$$
(2.7)

Dan Cpk didefinisikan:

$$Cpk = Cp(1-k) (2.8)$$

Ketika proses sempurna pada target, maka k=0 dan Cpk=Cp. Cpk akan memuaskan apabila pergeseran data proses tidak jauh dari target (nilai k kecil) dan sebaran proses sekecil mungkin (variasi proses terlalu kecil).

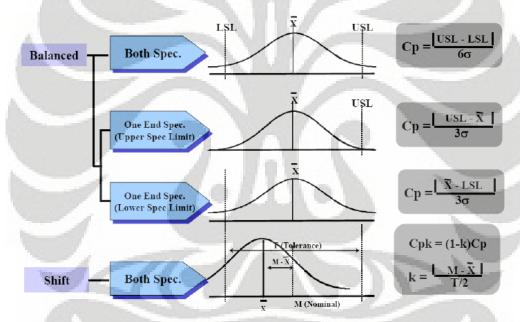
Gambar 2.10 Nilai Cpk

$$Cpk = (1-k)\frac{USL - LSL}{6\sigma}$$
 (2.9)

$$k = (1 - k)\frac{\left|T - \mu\right|}{\underbrace{USL - LSL}_{2}} \tag{2.10}$$

Proses dianggap *capable* jika seluruh data pengukuran ada di dalam area batas spesifikasi (*specification limits*). Jika spesifikasi hanya mempunyai satu batas yaitu batas atas saja (*upper*) atau batas bawah saja (*lower*) dan ketika target tidak ditentukan, maka Cp tidak bisa digunakan dan hanya menggunakan Cpk. Penghitungan Cpk sering menggunakan *Capability Process Upper* (CPU) atau *Capability Process Lower* (CPL). CPU adalah toleransi atas dibagi dengan aktual sebaran proses atas. CPL didefinisikan sebagai toleransi bawah sebaran dibagi dengan aktual sebaran proses bawah.

$$Cpk = \frac{\left| \text{Pr} \, ocessMean(\mu) - CloserSpec.Limit} \mu \right|}{3\sigma} ... \tag{2.11}$$


$$CPU = \frac{USL - \mu}{3\sigma} \tag{2.12}$$

$$CPL = \frac{\mu - LSL}{3\sigma} \tag{2.13}$$

Cpk didefinisikan nilai minimum dari CPU atau CPL

$$Cpk = \min(CPU, CPL)$$
 (2.14)

Dibawah ini gambar yang menunjukkan rumus-rumus Cp yang digunakan sesuai dengan spesifikasi atau toleransi yang ada.

Gambar 2.11 Penghitungan Cp dan Cpk

2.4.2.3 Hubungan antara Cp, Cpk dan Level Sigma

Jika rata-rata proses dipusat sebaran, dimana $\mu=T$, dan USL-LSL = 6 σ , kemudian dari rumus Cp , jika nilai Cp = 1, dan jarak dari μ batas spesifikasi 3 σ . Sehingga level Sigma adalah 3 σ

Untuk long-term, jika bias rata proses 1.5 σ dan Cpk = 1 kemudian level sigma menjadi :

Sigma level =
$$3 \times Cpk + 1.5$$

= $3 \times (Cpk + 0.5)$(2.16)

Jadi hubungan Cp dan Cpk dalam long-term adalah:

$$Cpk = Cp - 0.5.$$
 (2.17)

Tabel 2.2 Hubungan Cp,Cpk dan Sigma Level

Ср	Cpk (5.1 σ shift is allowed)	Quality level
0.50	0.00	1.5 σ
0.67	0.17	2.0 σ
0.83	0.33	2.5 σ
1.00	0.50	3.0 σ
1.17	0.67	3.5 σ
1.33	0.83	4.0 σ
1.50	1.00	4.5 σ
1.67	1.17	5.0 σ
1.83	1.33	5.5 σ
2.00	1.50	6.0 σ

Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity Promotion

2.4.3 *Analyze* (Analisis)

Tahap *analyze* (analisis) merupakan metode untuk mencari pemilihan faktorfaktor dominan, menentukan kemampuan proses, dan mengidentifikasikan sumber variasi. *Tools-tools* yang biasa digunakan dalam tahap ini antara lain adalah:

- 1. Metode pemilihan faktor-faktor
- 2. Diagram Tulang Ikan (Fishhone Diagrams)
- 3. Failure Mode and Effect Analysis (FMEA)

2.4.3.1 Metode Pemilihan Faktor -Faktor

Metode pemilihan faktor-faktor merupakan salah satu metode untuk menyelesaikan masalah untuk mengarahkan terhadap faktor-faktor penyebab masalah. Metode pemilihan faktor-faktor penyebab tersebut antara lain adalah:

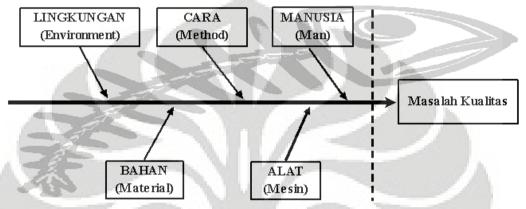
- 1. Brainstorming
- 2. Logic Tree

1. Brainstorming

Untuk mengungkap ide-ide dengan cepat. Jenis-jenis Brainstorming Free Wheeling, Round Robin, Card Method, seperti dijelaskan dibawah ini.

- Free Wheeling: Semua anggota tim proyek memberikan ide-ide mereka dalam sebuah obrolan.
- Round Robin : Semua anggota tim proyek memberikan ide-ide mereka secara berputar bergiliran.
- Card Method : Mencatat ide-ide dari setiap anggota tim proyek dalam secarik kertas tanpa diskusi.

2. Logic Tree (Structure Tree, Why Because)


Logic Tree untuk menemukan faktor-faktor (X) yang mempengaruhi CTQ (Y) pada fase analisis dalam six sigma. Dapat membuat Logic Tree dengan mengatur kategori-kategori utama di sebelah kiri. Perhatikan prinsip-prinsip MECE (Mutually Exclusive and Collective Exhaustive).

2.4.3.2 Diagram Sebab Akibat (Cause & Effect Diagram)

Diagram ini disebut diagram tulang ikan (*fish-bone diagram*) dan berguna untuk menemukan faktor-faktor yang berpengaruh pada karakteristik kualitas. Prinsip yang

diakai untuk membuat diagram sebab akibat ini adalah sumbang saran (*brainstorming*) yang merupakan metode untuk memperoleh pendapat yang kreatif secara diskusi bebas.

Untuk menentukan faktor-faktor yang berpengaruh ada 5 faktor utama yang perlu diperhatikan seperti terlihat pada Gambar 2.22. kelima faktor tersebut adalah Manusia (*Man*), *Material*, *Methode*, *Machine* and *Environment* atau biasa disingkat 4M1E

Gambar 2.12 Digram Sebab-Akibat (Cause and Effect Diagram)

Langkah Pembuatan Diagram Sebab Akibat, sebagai berikut:

- Tentukan masalah / sesuatu yang akan diperbaiki / diamati , usahankan adanya ukuran untuk masalah tersebut sehingga perbandingan sebelum dan sesudah perbaikan dapat dilakukan. Gambarkan panah dengan kotak di ujung kanannya dan tuliskan masalah / sesuatu yang akan di perbaiki / diamati itu dalam kotak.
- Cari faktor-faktor utama yang berpengaruh atau mempunyai akibat pada masalah atau sesuatu tersebut. Tuliskan dalam kotak yang telah dibuat diatas dan dibawah panah yang ada kemudian tarik panah diantara kotak dengan yang ada.
- 3. Cari lebih lanjut, faktor-faktor yang lebih terinci yang berpengaruh atau mempunyai akibat pada faktor utama tersebut. Tulis faktor-faktor tersebut dikiri-kanan panah penghubung tadi dan buatlah panah dibawah faktor tersebut menuju garis penghubung.
- Cari penyebab utama. Dari diagram yang sudah lengkap cari penyebab utama dengan menganalisa data yang ada dan buatlah urutannya dengan diagram pareto.

2.4.3.3 Failure Mode and Effect Analysis (FMEA)

Failure Mode and Effect Analysis (FMEA) adalah pendekatan analitis yang ditujukan untuk pencegahan masalah melalui penentuan prioritas potensial masalah dan penanganannya. Dapat dikatakan juga bahwa FMEA adalah suatu sistem garis petunjuk, sebuah proses dan bentuk identifikasi dan prioritas terhadap potensial kegagalan dan masalah yang mungkin terjadi pada sebuah proses tersebut, yang perlu diperbaiki. Metode FMEA sudah banyak diaplikasikan dalam lingkungan six sigma pada kondisi untuk mencari masalah yang tidak hanya yang terjadi pada proses kerja dan perbaikan saja, tetapi juga dalam hal aktivitas pengumpulan data, suara pelanggan (Voice of Customer) dan prosedur.

Keuntungan dari penggunaan FMEA, antara lain:

- Mencegah kegagalan yang mungkin terjadi dan jaminan pengurangan biaya
- Memperbaiki fungsi produk dan kelemahannya
- Mengurangi masalah-masalah yang terjadi di proses manufaktur dari hari ke hari.
- Mengurangi masalah-masalah proses bisnis
- Design Failure Mode and Effect Analysis (DFMEA)

Tabel 2.3 Form Failure Mode Effect Analysis (FMEA)

Process/Product :	Prepared	:	Page of :
Responsib :	FMEA Date (Orig)	:	Rev :

No	Process Function (Step)	Potensial Failure Modes (Process defect)	Process Failure Effects	SEV	Class	Potensial causes of Failure	осс	Current Process Control	DET	RPN
) _A		

Sumber: ASTRA-Q Series oleh Astra Management Development Institute

Failure Mode Effect Analysis (FMEA), potensi kegagalan atau cacat dirangking berdasarkan angka prioritas resiko atau Risk Priority Number (RPN) dari 1 sampai 1000 dan RPN dapat dirumuskan sebagai berikut:

RPN = SEVERITY x OCCURRENCE x DETECTION(2.18)

Dimana:

1. Severity : adalah kegagalan yang berpengaruh terhadap pelanggan.

2. Occurrence : adalah estimasi kemungkinan penyebab spesifik akan muncul.

3. Detection : adalah kemungkinan proses saat ini atau pengendalian desain akan mendeteksi penyebab kegagalan.

Nilai Prioritas Resiko yang terdiri dari S*everity, Occurrence*, dan *Detection* dapat dilihat nilai rangkingnya di Tabel 2.2, Tabel 2.3, Tabel 2.4

Tabel 2.4. Panduan Merangking Severity

Effect	Criteria : Severity of Effect Defined	Rank
Hazardous :	May endanger operator. Failure mode effects safe vehicle operation and/or	10
Without	involves non-complience with government regulation. Failure will occure	
warning	WITHOUT warning	
Hazardous :	May endanger operator. Failure mode affects safe vehicle operation and/or	9
with warning	involves non-complience with government regulation. Failure will occure	
	WITH warning	
Very High	Major disruption to production line, 100% product may have to be scarpped.	8
	Vehicles/item inoperable, loss primary function. Customer very diiatisfied	
High	Minor disruption to production line. Product may have be sorted and a portion	7
	(less than 100%) scrapped. Vehicle operable, but at a reduced level of	
A WHITE	performance. Customer dissatisfied	
Moderate	Minor disruption to production line. A portion (less than 100%) may have to be	6
	scrapped (no sorting). Vehicle/item operable, but some comfort/convenience	
	item(s) inoperable. Customer experience discomfort	
Low	Minor disruption to production line. 100% of product may have to be reworked.	5
	Vehicle/item operable, but some comfort/convenience item(s) operable at	
1	reduced level of performance. Customer experiences some dissatisfaction	
Very Low	Minor disruption to production line. The product may have to be sorted and a	4
	portion (less than 100%) reworked. Fit/finish/squeak/rattle item does not	
47.00	conform. Defected noticed by most customer	
Minor	Minor disruption to line. A portion (less than 100%) of the product may have to	3
	be reworked on-line but out of station. Fit/finish/squeak/rattle item does not	
	conform. Detect noticed by average customer	
Very Minor	Minor disruption to line. A portion (less than 100%) of the product may have to	2
	be reworked on line but in of station. Fit/finish/squeak/rattle item does not	
	conform. Defect noticed by discriminating customer	
None	No effect	1

Sumber: Potential Failure Mode And Effect Analysis (FMEA) oleh Chrysler, Ford and General Motors

Tabel 2.5 Panduan Merangking Detection

Detection	Criteria: Likelihood the existence of a defect will be detected by test content before product advances to next or subsequent process, or before part or component leaves the manufacturing line	Rank
Almost Imposible	No known control (s), available to detect failure mode	10
Very Remote	Very remote likelihood that current control(s) will detect failure mode	9
Remote	Remote likelihood that current control(s) will detect failure mode	8
Very Low	Very low likelihood that current control(s) will detect failure mode	7
Low	Low likelihood that current control(s) will detect failure mode	6
Moderate	Moderate likelihood that current control(s) will detect failure mode	5
Moderate	Moderate high likelihood that current control(s) will detect	4
High	failure mode	
High	High likelihood that current control(s) will detect failure mode	3
Very High	Very High likelihood that current control(s) will detect failure mode	2
Almost Certain	Current control (s) is very almost certain to detect the failure mode. Reliable detection controls are known	1

Sumber: Potential Failure Mode And Effect Analysis (FMEA) oleh Chrysler, Ford and General Motors

Tabel 2.6 Panduan Merangking Occurrence

Probability of Failure	Possible Failure Rate	Cpk	Rank
Very High: Failure is almost inevitable	$\geq 1 \text{ in } 2$	< 0.33	10
	1 in 3	≥ 0.33	9
High: Generally associated with processes similar to	1 in 8	≥ 0.51	8
previous processes that have often failed	1 in 20	≥ 0.67	7
Moderate: Generally associated with processes similar to	1 in 80	≥ 0.83	6
previous processes wich have experienced occasional	1 in 400	≥ 1.00	5

failures, but not in major proportions	1 in 2,000	≥ 1.17	4
Low : Isolated failures associated with similar processes	1 in 15,000	≥ 1.33	3
Very Low : Only isolated failures associated with almost identical processes	1 in 150,000	≥ 1.50	2
Remote: Failure is unlikely. No Failures ever associated with almost indentical processes	≤ 1 in 1,500,000	≥ 1.67	1

Sumber: Potential Failure Mode And Effect Analysis (FMEA) oleh Chrysler, Ford and General

Motors

2.4.4 *Improve* (Perbaikan)

Aktivitas utama dalam tahap *improve* atau perbaikan adalah membuat ide-ide perbaikan terhadap faktor-faktor yang telah ditemukan dalam tahap Analisis *improve the critical factors*.

Untuk memilih tools (alat-alat) improve yang sesuai pada kebanyakan masalah didapatkan dari tools yang dasar yang meliputi :

- Optimalisasi aliran proses.
- Work out, benchmarking, best practices dan brainstorming.
- Eksperimen atau simulasi.
- Standarisasi proses.

2.4.5 Control

Aktivitas utama dalam tahap *Control* adalah menjaga dan mempertahankan kondisi dari hasil ide-ide perbaikan *maintain the ideas*.

Control merupakan tahap operasional terakhir dalam proyek peningkatan kualitas six sigma. Pada tahap ini hasil-hasil peningkatan kualitas didokumentasi dan distandarisasikan hasil perbaikan, serta dilakukan pengendalian, dimana pengendalian proses dengan menggunakan Statistical Process Control (SPC).

Tools SPC yang dipakai untuk pengontrolan proses yang sering dipakai adalah bagan kendali (Control Chart). Bagan pengendali merupakan grafik garis dengan mencantumkan batas maksimum yang merupakan batas daerah pengendalian. Bagan ini menunjukan perubahan data dari waktu ke waktu tetapi menunjukan penyebab penyimpangan, meskipun adanya penyimpangan itu akan terlihat pada bagan

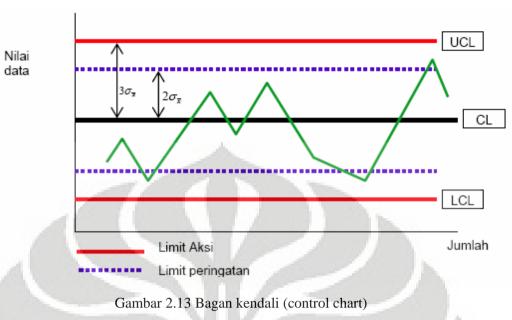
pengendalian tersebut. Bagan kendali berfungsi sebagai alat yang bisa membantu kita dalam melihat apakah proses kita under control atau tidak dengan melihat adanya common cause of variation atau special causes of variation. Alat bantu kita untuk ini adalah control chart.

- Common cause of variation: variasi yang terjadi karena proses/sistem itu sendiri.
- Special cause of variation: variasi yang terjadi karena factor eksternal/dari luar sistem.

Control Chart tersusun dari:

CL (Center Line)
 : CL Nilai rata-rata dari data

UCL (Upper Control Limit) : Batas Kontrol Atas

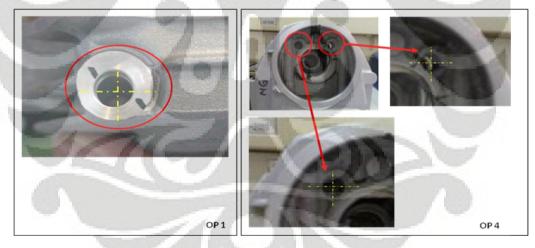

LCL (Lower Control Limit) : Batas Kontrol Bawah

Kita biasanya membuat UCL dan LCL sejauh 3 sigma dari CL.

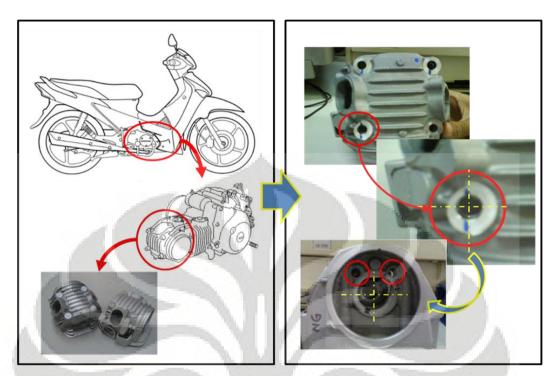
- Jika data terletak antara UCL dan LCL maka proses terkontrol
- Jika data tidak terletak antara UCL dan LCL maka proses diluar kontrol.
- Dalam hal ini bila kita dapat menemukan penyebab khusus, selanjutnya dihilangkan maka proses menjadi terkontrol.

Limits aksi dan limits peringatan

- Biasanya batas 3 sigma Limit disebut limit aksi. Jika data tidak terletak diantara limit 3 sigma, kita harus menemukan. Penyebab khusus dan menghilangkannya. Dan dalam hal ini kita harus cepat melakukan aksi.
- Biasanya Batas 2 *sigma* adalah Limit Peringatan. Jika nilai dari suatu data tidak berada diantara limit 2 *sigma*, mungkin kita beranggapan bahwa hal tersebut disebabkan karena beberapa penyebab. Jadi bila tidak terletak diantara 2 *sigma* ini merupakan peringatan kepada kita.


BAB 3

PENGUMPULAN DAN PENGOLAHAN DATA


3.1 DEFINE (DEFINISI MASALAH)

Aktivitas utama dalam tahap *DEFINE* adalah menemukan *CTQ* (Critical to Quality), yaitu fokus permasalahan yang menjadi hal yang paling penting untuk memenuhi keinginan konsumen (customer needs). Customer disini bisa bersifat internal atau eksternal. Dalam hal ini yang menjadi customer adalah dibatasi hanya pada customer internal yaitu proses selanjutnya atau *next process*. Latar belakang penentuan masalah adalah dari *claim next process* mengenai adanya ketidaksesuaian hasil proses atau *reject* part cylinder head terhadap standard point check quality yaitu *reject* Lubang NG.

Definisi dari *reject* lubang NG adalah ketidak sempurnaan hasil proses part Cylinder Head dimana proses diameter dalam tidak satu sumbu (konsentris) dengan diameter luar, yang ditemukan di proses machining cylinder head OP-01 & OP-04. Hal ini bisa teridentifikasi dengan cara visual check setelah proses di OP-01 dan OP-04.

Gambar 3.1 Ilustrasi Reject Lubang NG pada *Cylinder Head* yang ditemukan di OP-01 dan OP-04

Gambar 3.2 Ilustrasi Cylinder Head pada sepeda motor

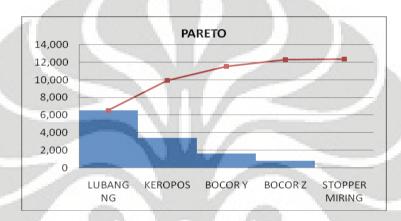
3.1.1 Data Rejection (Claim Next Process)

Dari hasil pengumpulan data lapangan, didapatkan data reject atau claim next process seksi LPDC untuk part cylinder head selama tahun 2008 adalah sbb:

Tabel 3.1 Data Reject Cylinder Head Tahun 2008

JENIS REJECT		REJECT HEXT PROCESS LPDC 2008								TOTAL	AVG			
JENIO NESECT	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	TOTAL	7170
KEROPOS	114	102	220	276	289	305	345	445	264	361	387	280	3,388	282
BOCOR Y	76	108	98	136	143	122	167	173	121	181	145	141	1,611	134
STOPPER MIRING	6	2	0	0	6	11	1	0	0	0	0	4	30	3
BOCOR Z	40	76	57	76	66	57	59	84	69	50	64	76	774	65
LUBANG NG	337	345	432	453	444	467	651	746	637	711	727	591	6,541	545
TOTAL REJECT	573	633	807	941	948	962	1,223	1,448	1,091	1,303	1,323	1,092	12,344	1,029
SUPPLY MACHINING	11,853	9,142	10,559	13,006	15,308	15,458	17,655	21,218	21,072	22,178	20,435	13,354	191,238	15,937
% REJECT	4.83%	6.92%	7.64%	7.24%	6.19%	6.22%	6.93%	6.82%	5.18%	5.88%	6.47%	8.18%	6.45%	0.54%

PPM 2008		64547.84
Sigma Level (convertion table)	3.02


Sumber: Laporan Seksi Produksi LPDC

Dari data reject diatas, kalau dibuatkan pareto, maka reject Lubang NG adalah reject terbesar sehingga menjadi prioritas untuk segera ditangani.

5 BESAR CLAIM NEXT PROCESS LPDC THN 2008

JENIS REJECT	JUMLAH	Accumulatif	% Reject	Acc
LUBANG NG	6,541	6541	52.99%	52.99%
KEROPOS	3,388	9929	27.45%	80.44%
BOCOR Y	1,611	11540	13.05%	93.49%
BOCOR Z	774	12314	6.27%	99.76%
STOPPER MIRING	30	12344	0.24%	100.00%
TOTAL REJECT	12,344			
SUPPLY MACHINING	191,238			

6.45%

Gambar 3.3 Diagram Pareto Reject Next Process LPDC Tahun 2008

Breakdown reject lubang NG per bulan selama tahun 2008 adalah sbb:

										-	_			
JENTO DE JECT		A.				REJECT	NEXT PRO	OCESS LP	DC 2008		Mary .			
JENIS REJECT	jan	feb	mar	apr	may	jun	jul	aug	sep	oct ,	nov	dec	TOTAL	AVG
LUBANG NG	337	345	432	453	444	467	651	746	637	711	727	591	6,541	545
SUPPLY MACHINING	11,853	9,142	10,559	13,006	15,308	15,458	17,655	21,218	21,072	22,178	20,435	13,354	191,238	15,937
% REJECT LUBANG NG	2.84%	3,77%	4.09%	3,48%	2.90%	3.02%	3.69%	3,52%	3.02%	3.21%	3.56%	4.43%	3.42%	3,46%

F	PPM LUBANO	34203.45		
9	Sigma Level (convertion table)		3.32

% REJECT

Gambar 3.4 Grafik Reject Lubang NG Cylinder Head/bulan thn 2008

Dari data tersebut diperoleh total jumlah reject lubang NG tahun 2008 adalah sebanyak 6.541 pcs. Jika jumlah tersebut dibagi dengan jumlah produksi cylinder head yaitu 191.238 pcs dan dikalikan sejuta, maka dapat dilihat bahwa reject lubang NG tahun 2008 adalah 334.203 PPM. Jumlah tersebut jika dikonversikan ke dalam sigma level menggunakan tabel konversi, maka akan terlihat bahwa sigma levelnya adalah 3.32.

Dengan sigma level seperti itu, kondisi manufaktur sudah cukup baik, tetapi masih ada peluang untuk dapat meningkatkan sigma level lebih baik lagi sehingga tercapai efisiensi dan efektifitas produksi.

3.1.2 Cost of Poor Quality (COPQ)

Dari data rejection diatas, jikalau diterjemahkan kedalam Cost of Poor Quality (COPQ) yaitu biaya yang hilang yang diakibatkan oleh adanya part reject yang seharusnya bisa diminimalisasi.

Berikut adalah biaya produksi cylinder head per unit yang didapatkan penulis dari bagian Engineering LPDC.

Tabel 3.2 Breakdown Biaya Produksi Cylinder Head

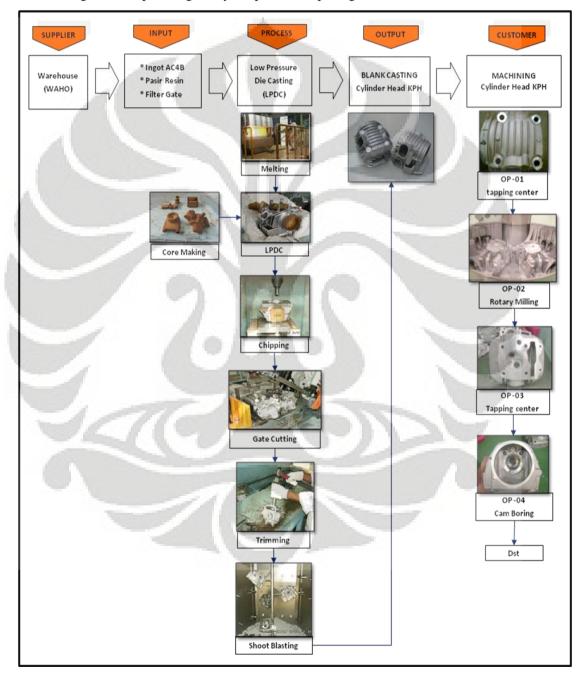
PERHITUNGAN COST of PRODUCTION CYLINDER HEAD ENGINEERING DIV.

SEKSI: LPDC ST

MATERIAL COST		Total (Rp)		
Original		Rp	37,417.50 /unit	
Terbuang			0 /unit	
	TOTAL MATERIAL COST	Rp	37,417.50 /unit	
OPERATIONAL COST		and the second		
Man Power	Direct	Rp	12,794.12 /unit	
	Indirect	Rp	1,535.29 /unit	
Tool&Consumable		Rp	17,902.53 /unit	
Utility (melting)	Melting	Rp	219.26 /unit	
	Inject MC	Rp	3,088.54 /unit	
and the second second	Total OPERATIONAL COST	Rp	35,539.75 /unit	
DEPRECIATIONCOST				
Machine Depresiasi	Melting	Rp	36.66 /unit	
	MC	Rp	16,912.50 /unit	
4. 10000	Dies	Rp	4,741.06 /unit	
400, 1000	Total DEPRETIATION COST	Rp	21,690.21	
PART REJECT COST	The second second		11 11	
Operasional cost	10%	Rp	3,553.97	
Material Out	10%	Rp	3,741.75	
D. 70	TOTAL "PART REJECT" COST	Rp	7,295.72 /unit	
Silver Telephone	TOTAL PART COST	Rp	101,943.18 /unit	

12201-KPH -7400-H1
CYLINDER HEAD
KPH
135
650
SUNTER
AC-4B
1.663
0.094
1.757
Rp 22,500

Sumber: Process Engineering Dept.


Dari tabel diatas, terlihat bahwa biaya produksi cylinder head termasuk biaya reject 10% adalah Rp.101.943,- per unit. Untuk menghitung *Cost of Poor Quality* (COPQ) adalah dengan mengalikan total reject lubang NG selama tahun 2008 terhadap biaya produksi yang sudah dikurangi biaya material. Biaya material tidak dimasukkan kedalam biaya produksi reject karena material kembali dilebur sehingga dianggap tidak ada material yang hilang.

$$COPQ = Jumlah \ reject \ lub \ ang NG \ x \ (biaya \ prod \ perunit - biaya \ material)$$

Jumlah tersebut adalah jumlah yang sangat besar yang harus ditekan seminimal mungkin. Itulah sebabnya mengapa reject lubang NG ini menjadi penting untuk segera di analisis dan dicarikan penyebabnya sehingga dapat dilakukan improvement untuk mengurangi reject lubang NG.

3.1.3 Supplier, Input, Process, Output, Customers (SIPOC) Diagram

Untuk dapat mengidentifikasikan permasalahan reject lubang NG, maka kita harus mengetahui flow process pembuatan cylinder head itu sendiri. Flow process ini akan dapat terlihat pada peta *Suppliers, Input, Processes, Output, dan Customers* atau SIPOC diagram. Adapun diagramnya dapat dilihat pada gambar dibawah.

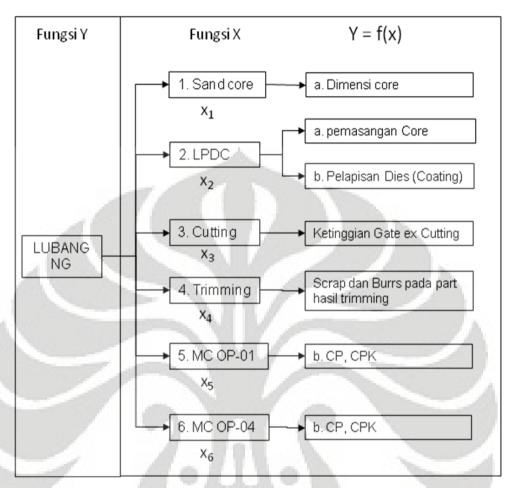
Gambar 3.5 Diagram SIPOC cylinder Head

3.1.4 Indikasi Penyebab Masalah Lubang NG Cylinder Head

Dari flow process (SIPOC) cylinder head diatas, penulis mencoba untuk mengetahui indikasi penyebab dari masalah lubang NG tersebut dengan menganalisis pengaruh proses dari manufaktur cylinder head itu sendiri yaitu menentukan prosesproses manakah yang paling berperangaruh sampai ke proses yang paling tidak berpengaruh untuk membuat analisa permasalahan menjadi lebih focus. Yang pertama kali dilakukan adalah *brainstorming* dengan pihak yang terkait dalam pembuatan cylinder head yaitu seksi LPDC, Engineering, Quality dan Machining.

Table 3.3 Matrix Corelation

	Process	Kategori
	sand core	N L /
	melting	VL
O	casting (LPDC)	M
LPDC	chipping	VL
	cutting	Н
7	trimming	VH
	blasting	VL
DC	OP-01	VH
<u>=</u>	OP-02	VL
Machining	OP-03	VL
Ž	op-04	VH


Kategori							
VH Very High							
Н	High						
М	Medium						
L	Low						
VL	Very Low						

Sumber: Brainstorming LPDC, Machining, Quality

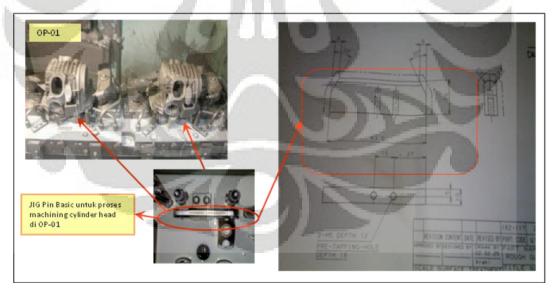
Dari hasil *brainstorming* tersebut, dibuatlah *matrix corelation* seperti table diatas, yaitu hubungan antara proses terhadap terjadinya reject lubang NG pada cylinder head.

3.1.5 Logic Tree Diagram Penyebab Reject Lubang NG

Matrix corelation yang sebelumnya dibuat akan mempermudah dalam membuat logic tree diagram. Proses yang masuk kedalam kategori Very Low (VL) di matrix corelation tidak kita masukkan kedalam parameter pada logic tree diagram berikut.

Gambar 3.6 Logic Tree penyebab reject lubang NG

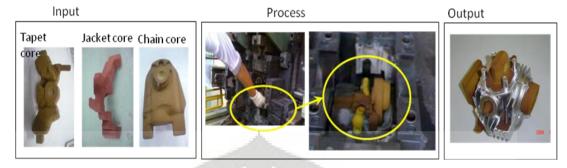
Berdasarkan gambar *logic tree diagram* diatas faktor-faktor yang memungkinkan terjadinya masalah lubang NG adalah karena faktor-faktor proses die casting seperti sand core, cutting, trimming dan machining seperti di OP-01 dan OP-04 yang terindikasi mengalami kelainan. Faktor-faktor tersebut merupakan analisis awal yang menyebabkan terjadinya masalah lubang NG pada cylinder head sehingga ditemukan oleh bagian quality sebagai reject.


3.2 TAHAP MEASURE (PENGUKURAN)

Pada tahap *Measure* ini aktvitas utama yang dilakukan adalah mengukur prosesproses yang diidentifikasi berperngaruh terhadapa masalah lubang NG seperti tergambar pada logic tree sebelumnya. Adapun Point-point yang akan diukur antara lain

Table 3.4 Point Pengukuran

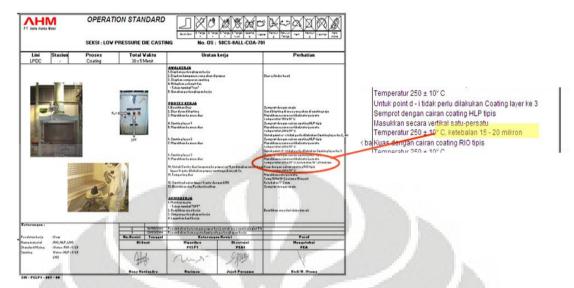
No.	Item	Measure Point	Indikasi Masalah
1	Sand Core	Visual Core	Visual NG
		Dimensi Core	Dimensi NG
2	Casting (LPDC)	Pemasangan Core di Dies	Pemasangan tidak pas
		Ketebalan lapisan coating	Coating terlalu tebal atau tipis
		area datum	(out standard)
3	Cutting	Ketinggian gate ex cutting	Gate ex cutting terlalu tinggi (Out
	- 100		of Standard)
4	Trimming	Area celah 12 dan 15	Masih ada burrs di area celah 12
	4 60		dan 15 (Out of Standard)
5	Machining OP-01	Capability Process Lubang	CP, CPK rendah
	ALL VILLEY	bolt stud	
6	Machining OP-04	Capability Process Lubang	CP, CPK rendah


Pengukuran point nomor 3,4 dan 5 terkait dengan Jig pada proses machining OP-01 sehingga untuk mendapatkan ketepatan hasil pengukuran maka harus dengan kondisi Jig yang sudah terkalibrasi dalam kondisi OK. Untuk itu dilakukanlah kalibrasi dan pengukuran Jig sesuai dengan check point pada drawing jig tersebut, dan hasilnya OK, Jig OP-01 sesuai ukuran drawing.

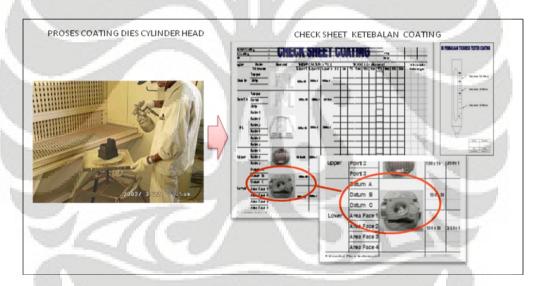
Gambar 3.7 Ilustrasi Pengecekan Jig OP-01

3.2.1 Pengukuran Sand Core

Sand core adalah salah satu bagian dari Low Pressure Die Casting yang terbuat dari pasir untuk membentuk rongga atau lubang pada part alluminium cylinder head.

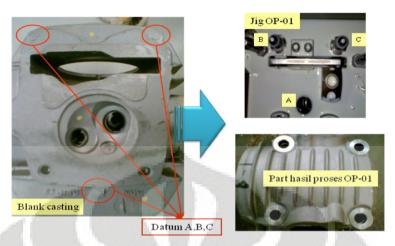


Gambar 3.8 Ilustrasi Pemakaian Sandcore di LPDC

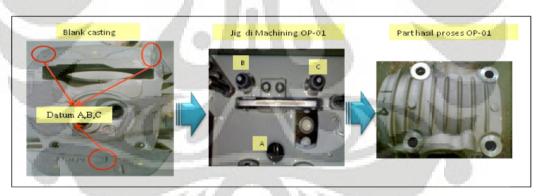

Pada fase *measure sand core* aktualnya hanya dilakukan pengecekan secara visual dan tidak dilakukan pengecekan dimensi karena sand core mudah rontok jika terkena alat ukur sehingga sulit mendapatkan hasil pengukuran dimensi yang akurat. Dimensi sand core mengacu pada hasil ukur dies sand core yang OK dan dari hasil simulasi pemasangan sand core pada dies cylinder head. Sand core akan patah pada saat dies closing jika dimensinya menyimpang. Dari simulasi ini disimpulkan bahwa dimensi sand core OK karena sand core yang dipasang di dies tidak patah saat dies closing.

3.2.2 Pengukuran Coating Dies Area Datum

Pelapisan dies cylinder head harus dilakukan pada dies sebelum dies dipakai produksi. Lapisan ini berfungsi sebagai isolator antara permukaan cavity dies dengan cairan aluminium sehingga dies tidak cepat rusak atau retak akibat panas cairan aluminium. Dampak dari pelapisan ini akan menyebabkan sedikit perubahan dimensi pada part yang dihasilkan setelah proses casting. Agar dimensi part tidak terlalu berubah sehingga dapat berdampak pada proses berikutnya maka ketebalan coating ini dibatasi dengan range 15~20 mikron dan hal ini terdapat pada *operation standard* (OS) proses coating.



Gambar 3.9 Operation Standard Proses Coating Dies


Gambar 310 Ilustrasi Proses Coating dan Pegecekan Tebal Coating Dies

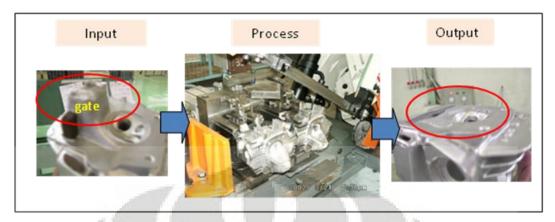
Dari keseluruhan tebal coating pada dies, dalam penelitian ini yang di fokuskan adalah ketebalan coating di area datum karena area inilah yang akan bersentuhan dengan Jig pada proses machining OP-01 dan diidentifikasi berpengaruh terhadap masalah lubang NG.

Gambar 3.11 Pengukuran Tebal Coating di area datum

Hasil pengecekan tebal coating dies area datum dengan menggunakan *thickness meter* menunjukkan ketebalan coating area datum bervariasi antara 8 ~ 27 mikron yang berarti *out of standard*. Untuk mengetahui pengaruh ketebalan coating area datum terhadap terjadinya lubang NG maka dilakukan trial machining di OP-01 terhadap 10 pcs part cylinder head dengan ketebalan coating area datum bervariasi antara 8~27 mikron.

Gambar 3.12 Ilustrasi Point Datum OP-01

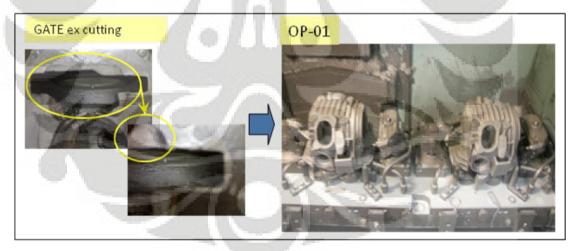
Table 3.5 Hasil Trial untuk mengetahui pengaruh ketebalan coating dies area datum terhadap lubang NG


Std OS: 15-20 mikron

sample	datum	ketebalan coating area datum diluar std (mikron)	Hasil Trial machining terhadap Lubang NG		sample	datum	ketebalan coating area datum diluar std (mikron)	Hasil Trial machining terhadap Lubang NG
	Α	10	OK			Α	10	OK
1	В	12	OK		6	В	12	OK
	С	15	OK		A	С	14	OK
	Α	9	OK	1		Α	13	OK
2	В	8	ОК	H	7	В	16	OK
- 4	С	10	OK	r	400	С	18	OK
	Α	12	OK		1	Α	22	OK
3	В	10	OK	u	8	В	25	OK
A.VII	С	8	OK	r	1	С	21	OK
1000	Α	12	ОК	L	/	Α	25	OK
4	В	15	OK		9	В	27	OK
1.7	С	20	ОК		1	С	22	ОК
	Α	20	ОК		7 40	Α	20	OK
5	В	18	OK		10	В	24	OK
.	С	15	OK			С	26	OK

Semua part hasil trial OK, tidak ada part yang reject lubang NG. Hal ini menunjukkan bahwa ketebalan coating dies tidak berpengaruh terhadap masalah lubang NG. Oleh karena itu, ketebalan coating ini tidak akan dianalisis lebih lanjut.

3.2.3 Pengukuran Ketinggian Gate setelah Proses Cutting


Ketinggian gate setelah proses cutting perlu diperhatikan karena area tersebut adalah salah satu area yang bersentuhan dengan Jig proses machining di OP-01 dan diidentifikasi berpengaruh terhadap masalah lubang NG. Menurut *Operation Standard*, Ketinggian gate setelah proses cutting adalah 1~2 mm. Actualnya, pengukuran ketinggian gate setelah proses cutting tidak dilakukan secara rutin. Namun untuk penelitian ini dilakukan pengukuran ketinggian gate terhadap sample part sebanyak 30 pcs yang nantinya akan di analisis lebih lanjut pengaruhnya terhadap terjadinya masalah lubang NG.

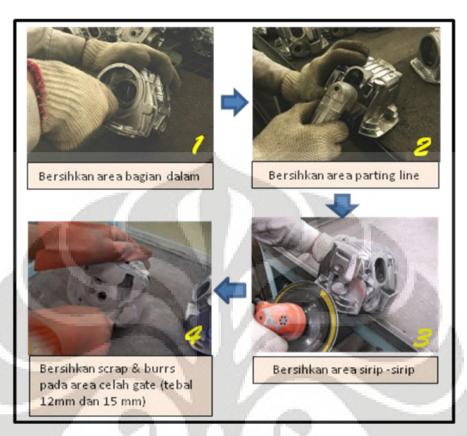
Gambar 3.13 Ilustrasi Proses Cutting Gate

Ketebalan gate setelah proses cutting hasil pengukuran adalah bervariasi antara 0.5 ~ 2.5 mm. Hasil ini dikategorikan menyimpang karena ketebalan gate ex cutting diluar menurut *Operation Standard* yang ada seharusnya 1 ~ 2 mm.

Untuk mengetahui apakah ketebalan gate berpengaruh terhadap terjadinya masalah lubang NG maka dilakukan trial machining di OP-01 Sebanyak 30 pcs part cylinder head dengan ketebalan gate ex cutting gate bervariasi antara 1 – 5 mm.

Gambar 3.14 Ilustrasi Proses Machining OP-01

Table 3.6 Hasil Trial untuk mengetahui pengaruh ketebalan Gate ex Cutting terhadap lubang NG


Std OS: 1 - 2 mm

Std OS: 1	l - 2 mm					
sample	tinggi gate (mm)	Hasil cek visual Lubang NG		sample	tinggi gate (mm)	Hasil cek visual Lubang NG
1	0.50	OK		16	1.00	NG
2	0.50	OK	lb	17	1.00	NG
3	0.50	OK	T	18	1.00	NG
4	0.50	OK		19	1.00	NG
5	0.65	OK	V	20	1.20	NG
6	0.65	OK	B	21	1.20	NG
7	0.65	OK	r	22	1.20	NG
8	0.65	OK	L	23	1.50	NG
9	0.75	OK	V	24	1.50	NG
10	0.75	OK	L	25	2.00	NG
11	0.75	OK		26	2.00	NG
12	0.75	OK	ĸ	27	2.00	NG
13	0.90	OK		28	2.50	NG
14	0.90	OK		29	2.50	NG
15	0.90	OK		30	2.20	NG

Dari hasil trial tersebut terlihat bahwa gate ex cutting dengan ketebalan diatas 1 mm menghasilkan reject lubang NG sedangkan part dengan ketebalan gate dibawah 1 mm menghasilkan part yang OK. Jadi dapat disimpulkan bahwa ketebalan gate setelah proses cutting tidak boleh lebih dari 1 mm karena dapat menyebabkan terjadinya lubang NG. Hal ini akan kita analisis lebih lanjut di bab berikutnya.

3.2.4 Pengukuran Proses Trimming

Trimming adalah adalah proses menghilangkan scrap atau sisa – sisa alluminium yang masih menempel di part dan tidak terpakai.

Gambar 3.15 Ilustrasi Proses Trimming

Dari proses *trimming* seperti terlihat di ilustrasi diatas, proses yang diidentifikasi akan berpengaruh terhadap terjadinya masalah lubang NG setelah proses machining OP-01 adalah proses yang nomor 4 yaitu proses pembersihan scrap dan burrs area celah 12 dan 15. Hal ini disebabkan karena area celah tersebut adalah salah satu area yang bersentuhan dengan Jig machining OP-01 seperti terlihat di ilustrasi gambar 3.7 sebelumnya.

Menurut *Operation Standard*, hasil proses *trimming* adalah part terbebas dari scrap dan burrs yang masih menempel. Setelah dilakukan pengecekan pada part ternyata masih ada part yang belum bersih dari scrap dan burrs di area celah 12 dan celah 15. Hal ini tentu saja diluar standard yang telah ditetapkan OS.

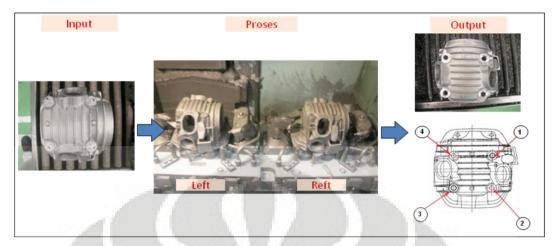
Untuk mengetahui sejauh mana pengaruh kebersihan area celah tersebut dari scrap dan burrs maka dilakukanlah trial machining OP-01 dengan kondisi celah 12,15 bersih dari burrs dan part yang masih ada burrs sbb:

Table 3.7 Hasil Trial untuk mengetahui pengaruh burrs terhadap lubang NG

Std OS: TIDAK ADA BURRS DI AREA CELAH 12 DAN 15

sample	tebal burrs area gate (mm)	Hasil trial di OP-01		sample	tebal burrs area gate (mm)	Hasil trial di OP-01
1	No burrs & scap	OK		16	0.31	NG
2	No burrs & scap	OK		17	0.31	NG
3	No burrs & scap	OK		18	0.31	NG
4	No burrs & scap	OK		19	0.35	NG
5	No burrs & scap	OK		20	0.35	NG
6	0.10	NG		21	0.35	NG
7	0.10	NG		22	0.35	NG
8	0.10	NG	J	23	0.42	NG
9	0.12	NG		24	0.42	NG
10	0.12	NG		25	0.42	NG
11	0.12	NG		26	0.42	NG
12	0.14	NG	d	27	0.50	NG
13	0.15	NG		28	0.50	NG
14	0.15	NG	4	29	0.50	NG
15	0.15	NG		30	0.50	NG

Data hasil trial diatas memperlihatkan bahwa area celah 12 dan celah 15 yang masih ada burrs menghasilkan part hasil machining OP-01 dengan kondisi lubang NG, sedangkan part yang bersih dari burrs hasil machining OK. Hal ini akan kita analisis lebih lanjut di bab berikutnya.


3.2.5 Pengukuran Kemampuan Proses (CP) Machining OP-01

Machining OP-01 adalah proses pertama pada proses machining cylinder head dimana proses yang dilakukan adalah Proses :

- o Drill Ø8.5 (4) untuk lubang Bolt Stud.
- o Reamer Ø9H8 (2) untuk lubang Pin Dowel.
- Spot Face Ø19 (4)

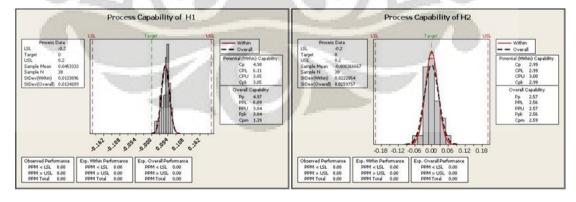
Basic proses:

- o Datum (3)
- o Pin Basic (2)

Gambar 3.16 Proses Machining OP-01

Pengukuran kemampuan proses yang diukur adalah point-point yang mempengaruhi terhadap terjadinya masalah lubang NG yaitu koordinat X,Y dari 4 lubang boltstud pada Jig Left (L) dan Jig Right (R). Pengukuran CP ini dibantu dengan menggunakan *software* Minitab 14.13.

Keterangan hasil berdasarkan nilai Cp dan Cpk adalah sebagai berikut :


Proses Tidak Baik : Cpk atau Cp < 0,67

Proses Cukup : 0.67 < Cpk atau Cp < 1

Proses Baik : 1 < Cpk atau Cp < 1.33

Proses Sangat Baik : Cpk atau Cp > 1.33

Berikut adalah hasil pengukuran CP dari OP-01 Jig L


Gambar 3.17 Grafik Data CP Jig L OP-01

Dari grafik *capability process* diaatas terlihat bahwa dimensi hasil ukur masih didalam area batas atas (UCL) dan batas bawah (LCL) dengan nilai CP yang baik. Hal ini menunjukkan proses machining masih bagus walaupun penyebaran datanya masih belum begitu bagus.

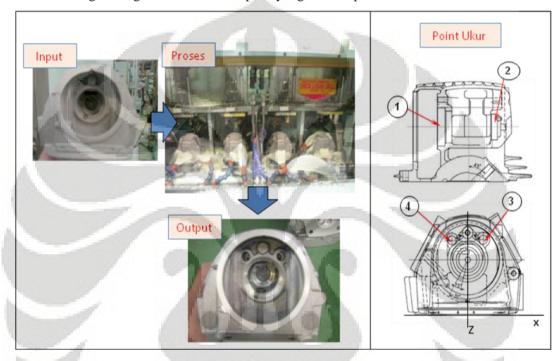
Table 3.8 Hasil Pengukuran CP Jig L di OP-01

MC				n ja						
No. CP		1		2		3		4		
Point	Posisi sb.X 34	Posisi sb.Y 32	Posisi sb.X 31.5	Posisi sb.Y 31.5	Posisi sb.X 31,5	Posisi sb.Y 31	Posisi sb.X 35	Posisi sb.Y 30.5		
Nom	34	32	31.5	31.5	31.5	31	35	30.5		
Stup	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200		
Stlow	-0.200	-0.200	-0.200	-0.200	-0.200	-0.200	-0.200	-0.200		
CP	4.	98	2.	2.99 6.06		3.13				
CPK	3.	85	2.99		2.99 5.51		2.39			
JUDGEMENT	_	ses at Baik	Proses Sangat Baik						ses at Baik	

Berikut adalah hasil pengukuran CP dari OP-01 Jig R

Gambar 3.18 Grafik Data CP Jig R OP-01

Dari grafik *capability process* diaatas terlihat bahwa dimensi hasil ukur masih didalam area batas atas (UCL) dan batas bawah (LCL) dengan nilai CP yang baik. Hal ini menunjukkan proses machining masih bagus walaupun penyebaran datanya masih belum begitu bagus, belum terfokus kepada target tapi masih OK untuk produksi.


Table 3.9 Hasil Pengukuran CP Jig R di OP-01

MC		OP-01 JIG R									
No. CP		1		1 2		3		4			
Point	Posisi sb.X 34	Posisi sb.Y 32	Posisi sb.X 31.5	Posisi sb.Y 31.5	Posisi sb.X 31,5	Posisi sb.Y 31	Posisi sb.X 35	Posisi sb.Y 30.5			
Nom	34	32	31.5	31.5	31.5	31	35	30.5			
Stup	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200			
Stlow	-0.200	-0.200	-0.200	-0.200	-0.200	-0.200	-0.200	-0.200			
СР	5.	18	3.13		4.98		3.45				
СРК	3.	01	2.39 3.85		85	1.49					
JUDGEMENT Proses Sangat Baik		Proses Sangat Baik		Proses Sangat Baik		Proses Sangat Baik					

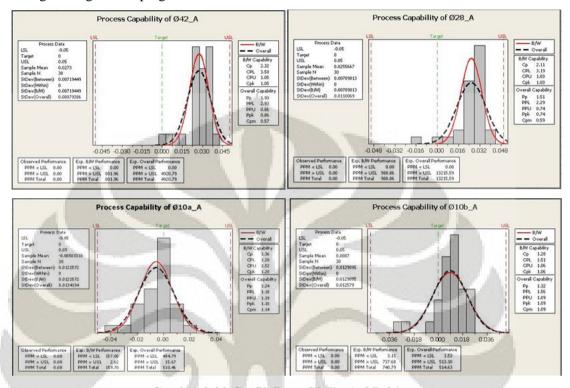
Berdasarkan data ukur hasil machinint OP-01 diatas, maka secara dimensi part cylinder head tidak diketemukan masalah sehingga kesimpulannya part tersebut dinyatakan **OK** dan tidak perlu dilakukan analisis lebih lanjut.

3.2.6 Pengukuran Kemampuan Proses (CP) Machining OP-04

OP-04 merupakan proses machining cylinder di station 4 dimana yang diproses adalah lubang-lubang inner diameter seperti yang terlihat pada ilustrasi berikut.

Gambar 3.19 Proses Machining OP-04

Basic process : Pin Dowel 10 H8.

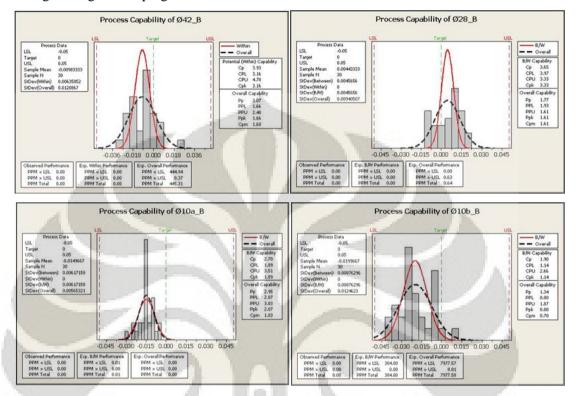

Proses:

- 1. Insert (Boring)
 - Spot face Ø91mm.
 - Rough Boring Ø75mm
 - Rough Boring Ø41mm
 - Rough Boring Ø35mm
 - Rough Boring Ø27.5mm

- 2. Fine Boring
 - Fine Boring Ø76mm
 - Fine Boring Ø42mm
 - Fine Boring Ø28mm
- 3. Drill Ø9.4mm (2) untuk lubang Shaft Arm.
- 4. Reamer Ø10mm (2) untuk lubang Shaft

Arm

Berikut adalah hasil pengukuran kemampuan proses (CP,CPK) machining OP-04 Jig A dengan mempergunakan software Minitab 14.13.


Gambar 3.20 Grafik Data CP Jig A OP-04

Dari grafik *capability process* diaatas terlihat bahwa dimensi hasil ukur masih didalam area batas atas (UCL) dan batas bawah (LCL) dengan nilai CP yang baik. Hal ini menunjukkan proses machining masih bagus walaupun penyebaran datanya masih belum begitu bagus.

Table 3.10 Hasil Pengukuran CP Jig A di OP-04

MC	45	OP-04 JIG A							
No. CP	1 (2	942)	2 (2	(Ø10 3 (Ø10		Ø10)	4 (2	ў10)	
Point	Posisi Ø Bearing 42 pada Sb.X	Posisi Ø Bearing 42 pada Sb.Z	Posisi Ø Bearing 28 pada Sb.X	Posisi Ø Bearing 28 pada Sb.Z	Posisi Ø 10 shaft arm IN Sb.X	Posisi Ø 10 shaft arm IN Sb.Z	Posisi Ø 10 shaft arm EX Sb.X	Posisi Ø 10 shaft arm EX Sb.Z	
Nom	2.375	60	2.375	60	16.528	82.264	21.516	81.345	
Stup	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	
Stlow	-0.050	-0.050	-0.050	-0.050	-0.050	-0.050	-0.050	-0.050	
СР	2.	32	2.	11	1.36		1.28		
CPK	1.0	05	1.03		1.	20	1.06		
JUDGEMENT	_	ses it Baik	Proses Sangat Baik				-	ses at Baik	

Berikut adalah hasil pengukuran kemampuan proses (CP,CPK) machining OP-04 Jig B dengan mempergunakan software Minitab 14.13

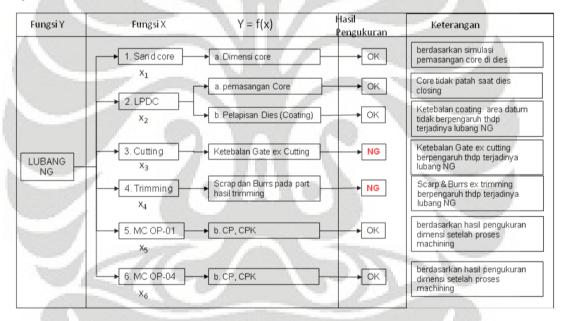
Gambar 3.21 Grafik Data CP Jig B OP-04

Dari grafik *capability process* diaatas terlihat bahwa dimensi hasil ukur masih didalam area batas atas (UCL) dan batas bawah (LCL) dengan nilai CP yang baik. Hal ini menunjukkan proses machining masih bagus walaupun penyebaran datanya masih belum begitu bagus.

Table 3.11 Hasil Pengukuran CP Jig B di OP-04

MC		OP-04 JIG B										
No. CP	1 (0	942)	2 (2	2 (Ø28)		(Ø28) 3 (Ø10		2 (Ø28) 3 (Ø10)		ў10)	4 (Ø10)	
Point	Posisi Ø Bearing 42 pada Sb.X	Posisi Ø Bearing 42 pada Sb.Z	Posisi Ø Bearing 28 pada Sb.X	Posisi Ø Bearing 28 pada Sb.Z	Posisi Ø 10 shaft arm IN Sb.X	Posisi Ø 10 shaft arm IN Sb.Z	Posisi Ø 10 shaft arm EX Sb.X	Posisi Ø 10 shaft arm EX Sb.Z				
Nom	2.375	60	2.375	60	16.528	82.264	21.516	81.345				
Stup	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050				
Stlow	-0.050	-0.050	-0.050	-0.050	-0.050	-0.050	-0.050	-0.050				
CP	3.	93	3.65		3.65 2.70		1.9	90				
CPK	3.	16	3.33		1.8	39	1.	14				
JUDGEMENT	_	roses Proses gat Baik Sangat Baik				ses t Baik		ses nt Baik				

Berdasarkan data ukur hasil machining OP-04 diatas tidak ditemukan masalah secara dimensional pada part setelah machining dan menunjukkan nilai CP, CPK yang baik sehingga kesimpulannya part tersebut dinyatakan **OK** dan tidak perlu dilakukan analisis lebih lanjut.

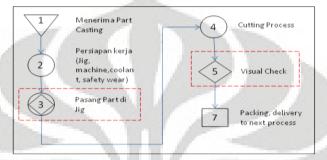


BAB 4 ANALISIS DAN PERBAIKAN

MASALAH LUBANG NG

4.1 TAHAP ANALISA (ANALYZE)

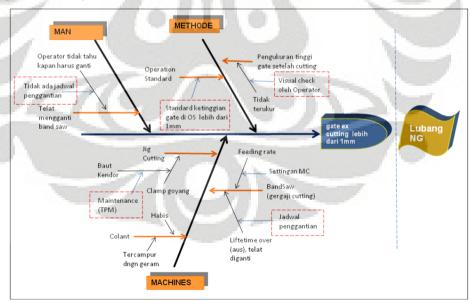
Aktivitas utama pada tahap *analyze* (analisa) ini adalah menetukan faktor-faktor yang mempengaruhi terjadinya masalah lubang NG berdasarkan hasil pengukuran dari tahapan sebelumnya yaitu tahap *measurement*. Berikut analisa teknis berdasarkan hasil pengukuran pada proses-proses yang mempengaruhi terjadinya masalah lubang NG pada cylinder head.


Gambar 4.1. Analisa Teknis Penyebab Masalah Lubang NG pada Cylinder Head

Untuk penyelesaian indikasi masalah terjadinya reject lubang NG pada cylinder head berdasarkan pada table analisa teknis diatas, maka untuk tool utama tahap *analyze* yang akan digunakan adalah sebagai berikut:

- Diagram Sebab-Akibat (Fishbone Diagram)
- Failure Tree Analysis (FTA)
- Failure Mode Effect and Analysis (FMEA)

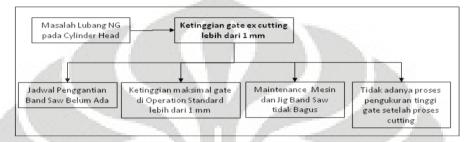
4.1.1 Analisis Ketinggian Gate setelah Proses Cutting


Dari hasil *measurement* ketinggian gate setelah proses cutting diperoleh bahwa ketinggian gate bervariasi dan ketinggian gate tersebut sangat berpengaruh terhadap terjadinya masalah lubang NG pada cylinder head yang terlihat setelah proses machining di OP-01. Dari hasil trial disimpulkan bahwa ketinggian gate ex proses cutting tidak boleh lebih dari 1 mm.

Gambar 4.2 Critical Process Cutting

4.1.1.1 Diagram Sebab-Akibat (Fishbone Diagram)

Berikut adalah diagram sebab akibat (*fishbone*) untuk menganilisis penyebab terjadinya lubang NG pada cylinder head akibat dari ketinggian gate lebih dari 1mm setelah proses cutting.



Gambar 4.3 Diagram Fishbone Gate ex Cutting lebih dari 1mm

Berdasarkan diagram fishbone diatas faktor-faktor yang mempengaruhi terjadinya gate ex cutting lebih dari 1 mm yang paling dominan adalah:

- ketinggian gate maksimal pada *Operation Standard* lebih dari 1 mm
- pengecekan tinggi gate setelah proses cutting hanya secara visual sehingga hasilnya tidak akurat
- tidak adanya schedule penggantian band saw

4.1.1.2 Failure Tree Analysis (FTA)

Gambar 4.4 Failure Tree Analysis Ketinggian Gate lebih dari 1mm

4.1.1.3 Failure Mode and Effect Analysis (FMEA)

FMEA digunakan untuk melihat proses bagian mana yang paling dominan menghasilkan kegagalan-kegagalan proses cutting gate. Berdasarkan *fishbone* diagram dan FTA *ketinggian gate ex cutting*, perhitungan tabel FMEA adalah sebagai berikut:

$$RPN = SEV \times OCC \times DET$$

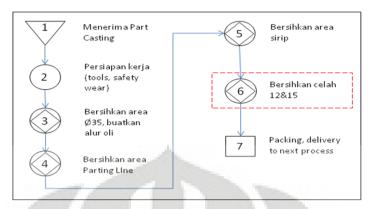
a. RPN (Risk Priority Number)

Kalkulasi angka resiko untuk suatu *Failure mode*, nomor ini digunakan untuk menempatkan prioritas pada hal yang memerlukan rencana kualitas tambahan.

- b. SEV (Severity) / Derajat Kepelikan
 Berapa penting pengaruh dari akibat (Effect) terhadap pelanggan (internal atau eksternal).
- c. OCC (Occurence) / Kemungkinan KejadianBagaimana kemungkinan Sebab (Cause) dari Failure Mode akan terjadi.
- d. DET (*Detection*) / Kemampuan Deteksi
 Bagaimana sistem yang ada mendeteksi Sebab (Cause) atau *Failure Mode* apabila kejadian berlangsung.

Tabel 4.1. Failure Mode Effect and Analysis (FMEA) Proses Cutting Gate

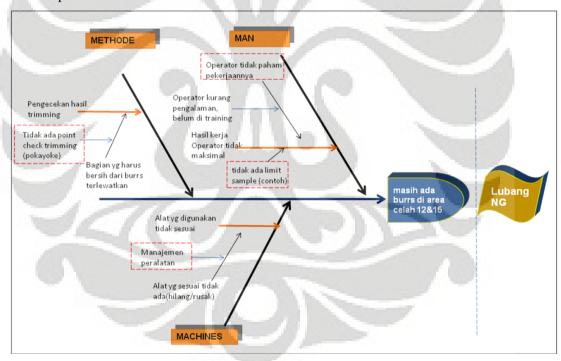
No	Process Step/Partnum	Potential Failure Mode	Potential Failure Effect	SEV	Potential Cause	осс	Current Control	DET	RPN
1	standard Ketinggian maksimal gate di Operation standard	Posisi part di Jig machining OP-01 tidak pas	terjadinya reject lubang NG pada part hasil machining OP- 01	8	ketinggian gate hasil cutting process lebih dari 1 mm	8	Visual Control	5	320
2	Kondisi Jig Band Saw	posis Cekaman kurang pas	ketinggian gate variasi	4	ada yang mengganjal, settingan Jig band saw tidak pas	8	Cek rutin awal pekerjaan, tidak ada checksheet	3	96
3	Kondisi Band Saw (gergaji)	Band saw tumpul	Penampang potongan tidak rata	4	lifetime band saw habis	4	Visual hasil cutting, tidak ada checksheet	4	64
4	Pengecekan part setelah proses cutting	ketinggian gate tidak terukur	Posisi part di Jig machining OP-01 tidak pas dapat terjadi lubang NG pada hasil machining	8	Pengecekan tinggi gate tidak menggunakan alat ukur atau mal	8	Visual Control	8	512


Sumber: Brainstorming LPDC

Dari analisis menggunakan FMEA diatas terlihat bahwa faktor yang paling dominan terhadap terjadinya masalah cutting gate adalah:

- Pengecekan part setelah proses cutting tidak terukur, hanya visual control saja
- Standare ketinggian maksimal gate di OS lebih dari 1 mm

4.1.2 Analisis Part setelah Proses Trimming


Dari hasil *measurement* proses trimming sebelumnya memperlihatkan bahwa area celah 12 dan celah 15 yang masih ada burrs menghasilkan part hasil machining OP-01 dengan kondisi lubang NG, sedangkan part yang bersih dari burrs hasil machiningnya OK. Dari hasil trial disimpulkan bahwa part harus bersih dari scrap dan burrs terutama di area celah 12 dan celah 15.

Gambar 4.5 Critical Process Trimming

4.1.2.1 Diagram Sebab-Akibat (Fishbone Diagram)

Berikut adalah diagram sebab akibat (*fishbone*) untuk menganilisis penyebab terjadinya lubang NG akibat dari hasil proses trimming yang tidak sempurna atau masih ada scrap dan burrs di area celah 12 dan celah 15.

Gambar 4.6 Diagram Fishbone Burrs area celah 12 & 15

Berdasarkan diagram fishbone diatas beberapa faktor yang menjadi penyebab masih adanya burrs di area celah 12 dan celah 15 cylinder head adalah:

- Tidak adanya point check (pokayoke)
- Tidak adanya contoh part OK atau limit sample
- Alat yang digunakan tidak sesuai

4.1.2.2 Failure Tree Analysis (FTA)

Gambar 4.7 Failure Tree Analysis Proses Trimming

4.1.2.3 Failure Mode and Effect Analysis (FMEA)

Berikut adalah FMEA dari proses trimming LPDC:

Tabel 4.2 Failure Mode Effect and Analysis (FMEA) Proses Trimming

No	Process Step/Partnum	Potential Failure Mode	Potential Failure Effect	SEV	Potential Cause	осс	Current Control	DET	RPN
1	Pengecekan part setelah trimming	masih ada scrap dan burrs di area celah 12 & 15	Posisi part di Jig machining OP- 01 tidak pas, dapat terjadi lubang NG pada hasil machining	8	pengecekan burrs area celah 12&15 hanya mengandalkan visual operator	8	Visual control	5	320
2	Limit sample hasil trimming belum ada	Operator kurang mengerti hasil trimming yang diharapkan	hasil trimming kurang maksimal, masih ada burrs	6	Operator kurang berpengalaman atau belum dapat training	3	Visual control	5	90
3	Alat yang digunakan tidak sesuai	hasil trimming kurang maksimal, masih ada burrs	Posisi part di Jig machining OP- 01 tidak pas, dapat terjadi lubang NG pada hasil machining	2	Manajemen peralatan kurang baik	3	control masing- masing operator	4	24
4	Operator tidak paham pekerjaanya	hasil trimming kurang maksimal, masih ada burrs	Posisi part di Jig machining OP- 01 tidak pas, dapat terjadi lubang NG pada hasil machining	4	Operator kurang berpengalaman atau belum dapat training	3	hasil pekerjaan diawasi foreman	4	48

Dari analisis menggunakan FMEA diatas terlihat bahwa faktor yang paling dominan terhadap terjadinya masalah trimming adalah pengecekan part setelah proses trimming dimana hanya dilakukan pengecekan secara visual oleh operator sehingga hasilnya kurang maksimal.

4.2 TAHAP PERBAIKAN (IMPROVE)

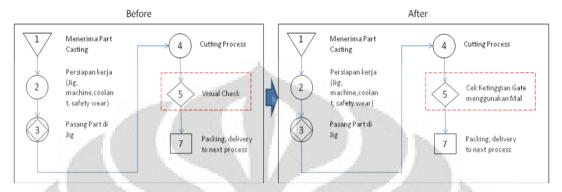
Aktivitas utama dalam tahap *improve* (perbaikan) adalah membuat ide-ide perbaikan terhadap faktor-faktor utama dalam tahap analisis sebelumnya. Berdasarkan tabel FMEA yang telah dibuat, berikut adalah tabel analisa teknis (metode 5-why) dan prioritas perbaikan berdasarkan nilai *Risk Priority Number* (RPN) terhadap faktor-faktor yang menyebabkan terjadinya masalah lubang NG adalah:

Tabel 4.3 Tabel Analisa Masalah Lubang NG (Metode 5-Why)

Gejala	Mengapa?	Mengapa ?	Mengapa?	Mengapa ?	Mengapa ?	RPN
- 4	hasil trial machining part dengan tinggi gate >1 mm di OP-01 NG	Posisi part di Jig machining OP-01 tidak pas	Gate ex Cutting terlalu tinggi (lebih dari 1mm)	standard Ketinggian maksimal gate di Operation standard	standard ketinggian gate di Operation Standard 1-2 mm	320
Masalah Lubang NG pada	Ketinggian gate tidak terukur	Pengecekan part setelah proses cutting gate	Tidak ada pengecekan ketinggian gate setelah cutting, hanya check visual Operator saja	Pengecekan 100% menggunakan alat ukur Calliper terlalu lama, tidak efisien	Belum ada alat yang mempercepat pengukuran ketinggian gate setelah cutting	512
Cylinder Head	masih ada burrs di area celah 12 dan celah 15	Pengecekan part setelah trimming	Point quality di area tersebut terlewatkan oleh operator	Penglihatan Operator tidak standard, ada yg jeli ada yg tidak	check control hanya mengandalkan visual control operator saja tidak ada tanda bahwa area tersebut telah dilakuakn pengecekan	320

Berdasarkan tabel analisis metode 5-Why diatas maka aktifitas perbaikan yang akan dilakukan adalah:

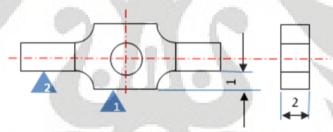
1. Perbaikan Proses Cutting Gate

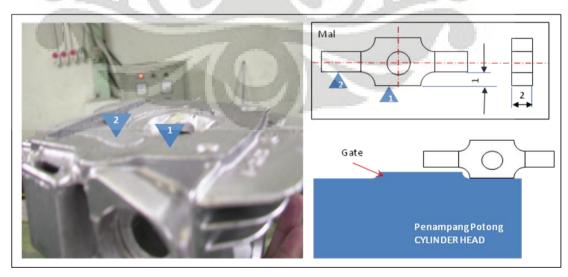

- a. Pembuatan Mal, Membuat alat berupa mal untuk mengecek ketinggian gate setelah proses cutting gate sehingga pengecekan tinggi gate tidak mengandalkan mata/visual operator tetapi lebih terukur.
- Revisi Operation Standard
 Dibagian ini yang di revisi adalah point proses kerja dan standard ketinggian gate setelah proses cutting

2. Perbaikan Proses Trimming

- a. Memberi marking di area celah 12 dan celah 15 pada part agar area tersebut tidak terlewatkan proses trimmingnya.
- b. Revisi operation standard pada point proses kerja

4.2.1 Perbaikan Proses Cutting Gate

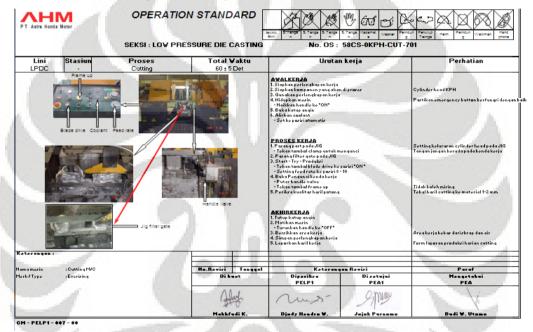

Perbaikan (*Improvement*) proses cutting gate terletak pada urutan proses no. 5 seperti terlihat digambar berikut:


Gambar 4.8 Proses Cutting Gate Sebelum dan Sesudah Perbaikan

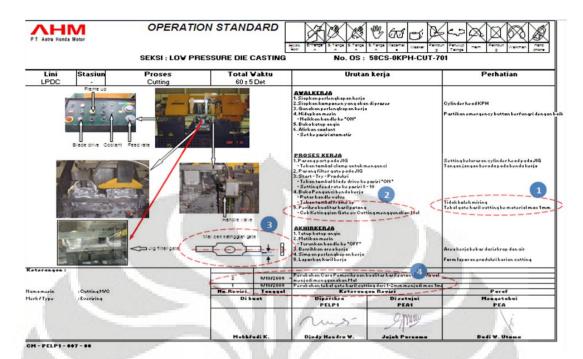
4.2.1.1 Pembuatan Mal

Mal untuk mengecek ketinggian gate setelah proses cutting dibuat dari plat dengan ketebalan 2 mm dan dibentuk seperti pada gambar berikut ini.

Gambar 4.9 Mal Ketinggian Gate

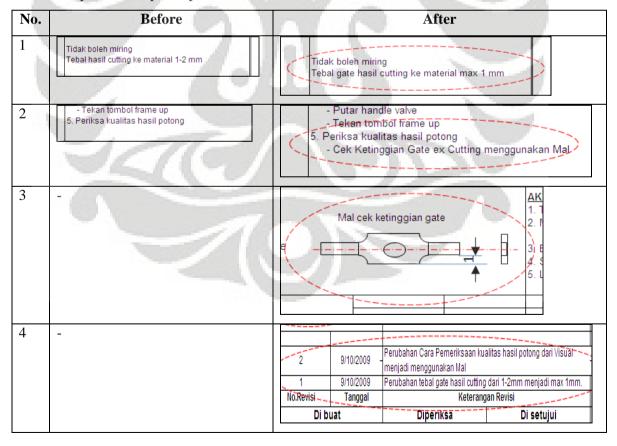


Gambar 4.10 Ilustrasi Cara Kerja Pengukuran Ketinggian Gate


Cara penggunaan mal ini adalah dengan cara menempelkan permukaan yang diberi tanda segitiga 1 pada permukaan part cylinder head di area gate. Kondisi bagus adalah jika ketinggian gate dibawah garis mal yang diberi tanda segitiga 2. Jika permukaan mal segitiga 1 menggantung, berarti ketinggian potongan gate lebih dari 1 mm dan harus diperbaiki.

4.2.1.2 Revisi Operation Standard Cutting Gate

Berikut akan diperlihatkan operation standard sebelum dan sesudah revisi



Gambar 4.11 Operation Standard Cutting Sebelum Revisi

Gambar 4.12 Operation Standard Cutting Setelah Revisi

Point-point revisi pada operation standard sbb:

4.2.2 Perbaikan Proses Trimming

Seperti yang telah diulas diatas bahwa perbaikan proses trimming untuk mencegah terjadinya masalah lubang NG pada cylinder head adalah dengan memberi marking pada part cylinder head yang telah melalui proses trimming. Hal ini bertujuan agar tidak ada part yang terlewatkan proses trimming di area celah 12 dan celah 15 sehingga part benar-benar telah bersih dari burrs dan scrap yang masih menempel.

BEFORE Menerima Part Bersihkan area Menerima Part Bersihkan area Casting Casting sirip Persiapan kerja Persiapan kerja Bersihkan celah (tools, safety (tools, safety 12&15 Bersihkan celah wear) 12&15 Pemberian Bersihkan area Bersihkan area Marking Ø35, buatkan Ø35, buatkan alur oli alur oli Packing, delivery to next process Packing, delivery Bersihkan area Bersihkan area to next process Parting Line Parting Line

4.2.2.1 Pemberian Marking pada Part yang Sudah di Trimming

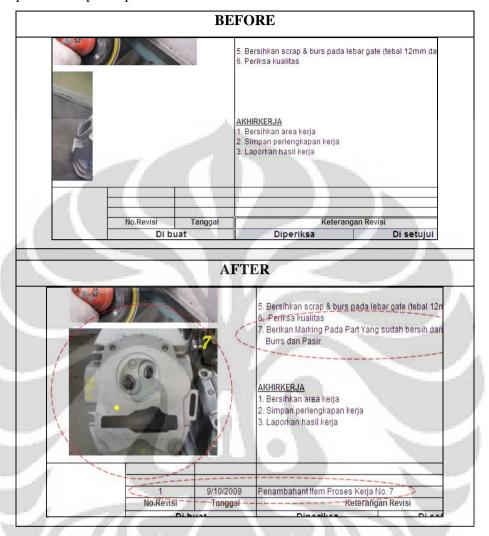
Gambar 4.13 Proses Trimming Sebelum dan Sesudah Perbaikan

Marking bisa dilakukan dengan banyak cara, salah satunya adalah dengan menandai area dekant celah 12 dan celah 15 dengan marker warna kuning seperti contoh dibawah ini.

Gambar 4.14 Ilustrasi Marking setelah proses trimming

4.2.2.2 Revisi Operation Standard Trimming

Berikut adalah revisi operation standard proses trimming dimana ada penambahan proses point no. 7 yaitu pemberian marking seperti terlihat dibawah ini.



Gambar 4.15 Operation Standard Trimming Sebelum Revisi

Gambar 4.16 Operation Standard Trimming Setelah Revisi

Point-point revisi pada operation standard sbb:

4.3 TAHAP KONTROL (CONTROL)

Aktivitas utama dalam tahap *control* (kontrol) adalah menjaga dan mempertahankan kondisi dari hasil perbaikan. Kontrol yang dilakukan hanya control kualitatif, tidak ada kontrol yang bersifat kuantitatif sehingga harus menggunakan X-R *Control Chart.* Kontrol yang dimaksud disini adalah hanya kontrol pimpinan kerja terhadap konsistensi operatornya dalam melakukan pengecekan ketinggian gate menggunakan mal dan dalam memberikan marking pada part yang sudah di trimming karena dua improvement tersebut sudah merupakan kontrol secara otomatis.

BAB 5

KESIMPULAN

Berdasarkan hasil identifikasi dan analisis mengenai permasalahan (*claim next process*) masalah lubang NG yang terjadi pada part *cylinder head* sepeda motor terdapat factor-faktor teknis yang mempengaruhi terjadinya masalah tersebut yaitu beberapa proses pembuatan *cylinder head* yang kurang sempurna sebelum memasuki proses selanjutnya yaitu proses *machining*.

Faktor teknis utama yang menyebabkan terjadinya masalah lubang NG tersebut antara lain :

- 1. Proses pemotongan *gate* (*cutting gate*) dimana ketinggian *gate* setelah pemotongan terlalu tinggi yaitu lebih dari 1 mm sehingga menyebabkan posisi part di Jig *machining* OP-01 tidak pas karena terganjal *gate* dan akhirnya menyebabkan terjadinya lubang NG.
- 2. Proses pembersihan scrap dan burrs (*trimming*) di area celah 12 dan 15 yang kurang bersih yaitu masih terdapat burrs sehingga menyebabkan posisi part di Jig *machining* OP-01 tidak pas karena terganjal burrs dan akhirnya menyebabkan terjadinya lubang NG.

Aktivitas identifikasi dan analisis permasalahan dengan mempergunakan metode six sigma ini sudah dapat memperlihatkan tahapan yang sistematis mulai dari fase Define, Measure, Analyze, Improve dan Control.

Perbaikan (*Improvement*)yang dilakukan terhadap kedua permasalahan yang dilakukan diatas adalah:

 Pembuatan Mal untuk pengecekan ketinggian gate setelah proses cutting gate disertai dengan revisi Operation Standard yang sudah ada. Cara ini dapat dilakukan dengan lebih cepat dibanding harus mengecek ketinggian gate menggunakan calliper, sehingga cycle time proses cutting gate tidak terganggu. 2. Pemberian tanda (*Marking*) pada *part* yang telah di proses *trimming* di area celah 12 dan celah 15 sebagai cara agar proses *trimming* tidak terlewatkan sehingga dapat dipastikan part bersih dari scrap dan burrs. *Improvement* ini juga disertai dengan revisi *operation standard* yang sudah ada.

Kedua *improvement* diatas sudah diimplementasikan di line produksi. Walaupun hasil perbaikan sudah dilakukan, namun penulis belum dapat menunjukkan hasil dari implementasi perbaikan tersebut karena kendala waktu yang tidak memungkinkan.

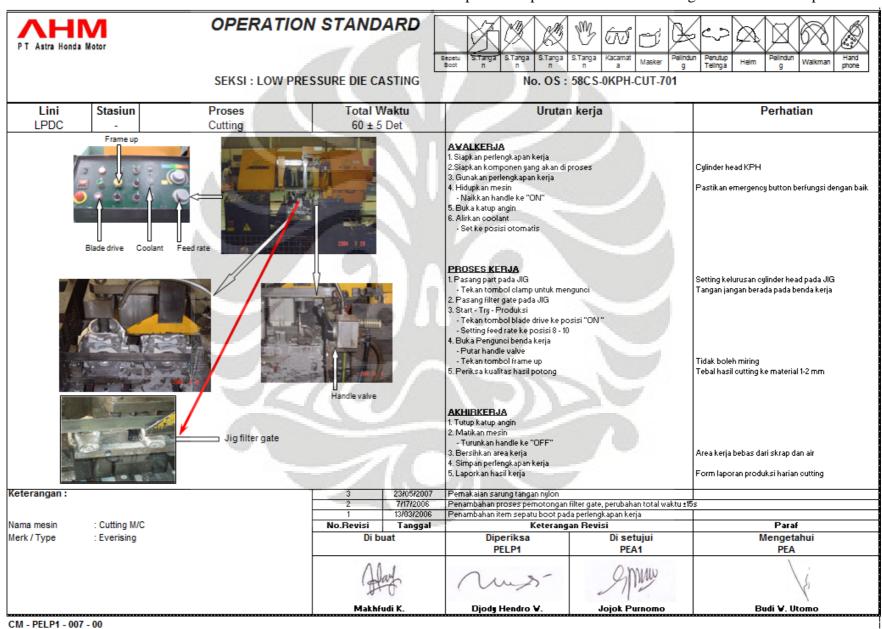
DAFTAR REFERENSI

Sung H, Park. 2003, Six Sigma for Quality and Productivity Promotion,. Tokyo. Japan.

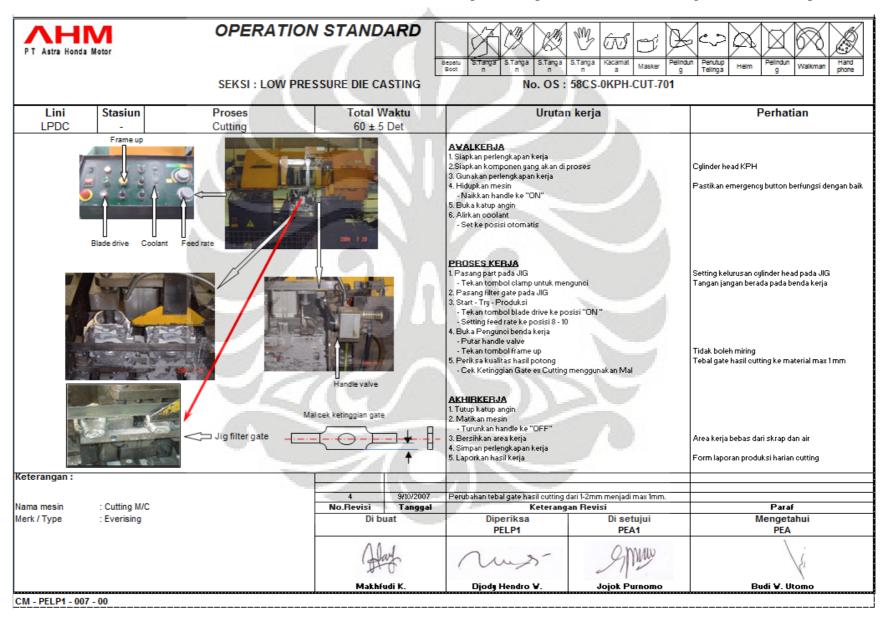
Pande, Peter, 2002, The Six Sigma Way, Team Fieldbook, An Implementation Guide for Process Improvement Team, McGraw-Hill, New York.

Hendradi, Tri, 2006, Statistik Six Sigma dengan Minitab, ANDI, Yogyakarta.

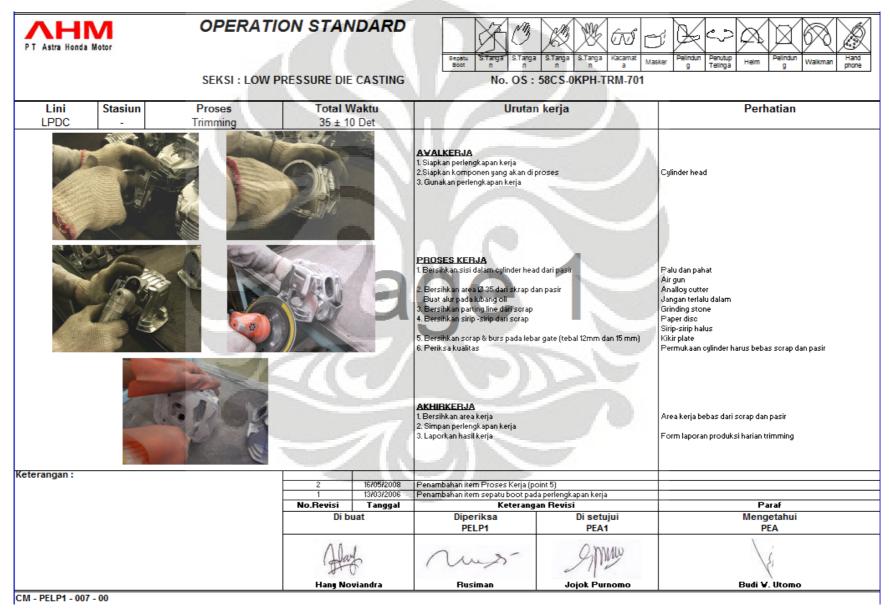
The History of Six Sigma, http://www.isixsigma.com/library/content/c020815a.asp

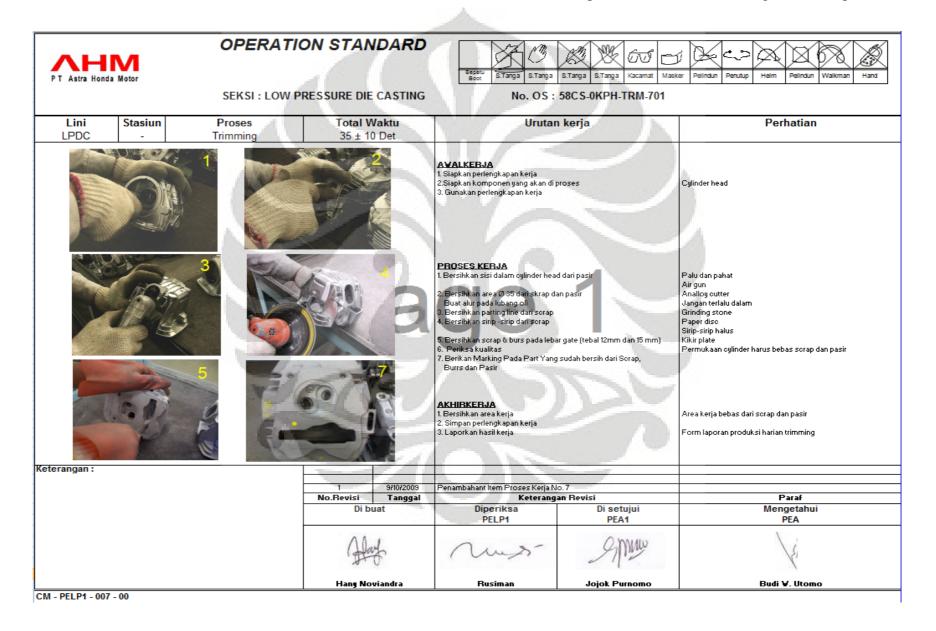

Table 1.2. Detailed conversion between ppm (or DPMO) and sigma quality level when the process mean is $\pm 1.5\sigma$ shifted

	0.00	0.01	0.02	0.03	0.04	0.06	0.06	0.07	0.08	0.09
2.0	308770.2	305249.8	301747.0	298203.7	294798.0	291352.3	287925.1	284517.3	281129.1	277700.7
2.1	274412.2	271084.0	267776.2	284489.0	261222.6	257077.2	264753.0	251550.2	248368.8	245200.2
2.2	242071.5	238955.7	235852.1	232790.8	229742.0	225715.8	223712.2	220731.6	217773.9	214839.2
2.3	211927.7	209039.6	206174.8	203333.5	200515.7	197721.6	194951.2	192204.6	189481.9	188783.0
2.4	184108.2	181457.4	178830.7	176228.0	173849.6	171006.2	168565.1	188050.2	163677.6	161120.1
2.5	158080.9	150278.0	153893.3	151532.9	149190.7	140884.7	144590.8	142333.2	140093.0	137878.1
2.6	135898.7	133510.3	131375.B	120256.3	127180.5	125088.6	123040.3	121016.7	110014.7	117037.0
2.7	115083.0	113152.2	111244.7	109300.2	107498.9	105000.5	103844.9	102052.1	100281.9	98534.3
2.8	96809.D	95106.1	93425.3	91786.6	90129.8	89514.8	86921.5	85349.7	83799.3	82270.1
2.9	80782.1	79275.0	77808.B	76363.2	74938.2	73533.6	72149.1	70784.8	69440.4	58115.7
3.0	66810.6	65525.0	64258.8	63011.3	61783.0	60573.4	59382.5	58210.0	57055.8	55919.8
3.1	64801.4	53700.0	62618.1	51552.6	60504.3	49473.1	48458.8	47461.2	46480.1	45516.3
3.2	44500.8	43034.2	42717.4	41810.3	40930.0	40000.2	39204.9	38304.5	37538.9	30727.8
3.3	35031.1	35148.6	34380.2	33625.7	32884.8	32157.4	31443.3	30742.5	30054.6	20370.5
3.4	28717.0	28007.1	27429.4	20803.8	20190.2	25588.4	24988.2	24419.5	23852.1	23295.8
3.5	22705.4	22215.9	21692.0	21178.5	20875.4	20182.4	19699.5	19226.4	18763.0	18309.1
3.6	17854.5	17429.3	17003.2	16586.0	16177.5	15777.7	15385.5	15003.5	14628.8	14282.2
3.7	13903.5	13552.7	13209.5	12873.8	12545.5	12224.5	11910.7	11003.9	11303.9	11010.7
3.8	10724.2	10444.1	10170.5	0003.1	9841.9	0396.7	0137.5	8804.1	8658.4	9424.2
3.9	8197.5	7976.3	7760,3	7549.4	7343.7	7142.8	6945.9	5755.7	6559.1	5387.2
4.0	8209.7	8036.6	5987,8	5703.1	5542.6	5396.2	5233.6	5084.9	4940.0	4798.8
4.1	4551.2	4527.1	4395.5	4269.3	4145.3	4024.6	3907.0	3792.6	3681.1	3572.6
4.2	3487.D	3364.2	3284.1	3166.7	3072.0	2979.8	2890.1	2602.8	2717.9	2835.4
4.3	2556.1	2477.1	2401.2	2327.4	2255.7	2196.0	2118.2	2062.4	1988.4	1026.2
4.4	1805.8	1807.1	1750.2	1094.8	1041.1	1588.9	1538.2	1489.0	1441.2	1394.9
4.5	1349.9	1306.2	1283.9	1222.8	1182.9	1144.2	1106.7	1070.3	1035.0	1000.8
4.6	907.5	935.4	904.3	874.0	844.7	816.4	788.8	762.2	735.4	711.4
4.7	887.1	663.7	841.D	619.0	597.6	577.0	557.1	537.7	519.0	500.9
4.8	483.4	466.5	450.1	434.2	418.9	404.1	389.7	375.8	352.4	349.5
4.9	336.9	324.8	313.1	301.6	290.9	280.3	270.1	260.2	250.7	241.5
5.0	232.8	224.1	215.8	207.8	200.1	192.6	185.4	179.5	171.8	185.3
5.1	159.1	153.1	147.3	141.7	130.3	131.1	120.1	121.3	110.0	112.1
5.2	107.8	103.6	99.8	95.7	92.0	88.4	35.0	91.6	79.4	75.3
5.3	72.3	69.5	55.7	64.1	51.5	59.1	55.7	54.4	52.2	50.1
5.4	48.1	46.1	44.3	42.5	40.7	39.1	37.5	35.9	24.5	33.0
6.6	31.7	30.4	20.1	27.0	28.7	25.8	24.6	23.5	22.6	21.6
5.6	20.7	19.8	18.9	18.1	17.4	10.0	15.9	15.2	14.0	13.9
5.7	13.3	12.8	12.2	11.7	11.2	10.7	10.2	9.8	9.3	8.9
5.8	8.5	8.2	7.8	7.5	7.1	6.8	5.5	6.2	5.9	5.7
5.9	5.4	5.2	4.9	4.7	4.5	4.3	4.1	3.9	3.7	3.6
6.0	3.4	3.2	3.1	2.9	2.8	2.7	2.6	2.4	2.3	2.2
6.1	2.1	2.0	1.9	1.8	1.7	1.7	1.6	1.5	1.4	1.4
6.2	1.3	1.2	1.2	1.1	1.1	1.0	1.0	0.0	0.9	8.0
6.3	0.8	0.8	0.7	0.7	0.0	0.0	0.0	0.0	0.5	0.5
6.4	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3
6.5	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2
6.6	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
6.7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
6.8	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0


Sumber: Sung H. Park. 2003. Six Sigma for Quality and Productivity

Promotion. Tokyo 102-0093, Japan


Lampiran 2: Operation Standard Cutting Gate Sebelum Improvement


Lampiran 3: Operation Standard Cutting Gate Setelah Improvement

Lampiran 4: Operation Standard Trimming sebelum Improvement

Lamiran 5: Operation Standard Trimming Setelah Improvement

