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Abstract 

 

Bayesian fluid classification and Bayesian porosity-saturation estimation has been 

done using simultaneous seismic inversion result as the input in Kujung carbonate 

from East Java Basin, Indonesia. Many literatures described the limitation of 

carbonate characterization based on AVO anomaly. This study carried out to 

present the classification and estimation result with level of confidence based on 

Bayesian theorem.  

 

We have done two phases of characterization, qualitative and quantitative. In 

qualitative characterization, two classes of fluid were defined, these are gas and 

wet. Before any new information, it is assumed that the prior probability density 

function (PDF) of these two classes is the same, 50:50. Initial distribution of each 

wet and gas filled carbonate were then estimated from well log data, these are the 

likelihood function. Acoustic impedance, Vp/Vs ratio, and density were then 

derived from 3D multi stacks seismic data using simultaneous AVO inversion. 

These attributes are the new information required to update our prior distribution 

to have final posterior PDF using Bayesian theorem that represent fluid 

classification for each traces. In the other process for quantitative characterization, 

the porosity and saturation distribution were defined using basic velocity to 

porosity & saturation relationship (rock physics analysis). The prior PDF is 

defined based on analyzed well data, and stochastic simulation was done to 

generate likelihood function to form joint PDF between porosity and saturation, 

before finally applied to estimate porosity and saturation cube using Bayesian 

Scheme.  

 

The final product of the proposed workflow is 3D fluid cube of reservoir with 

associated probabilities and uncertainties which consist of probability of wet 

carbonate and gas carbonate, also quantitative estimation of porosity and 

saturation. The result shows that potential pay zone for this particular carbonate 

was lying on the flank of the buildup carbonate.  
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Abstrak 

 

Klasifikasi fluida serta estimasi porositas berdasarkan teorema Bayes telah 

dilakukan dengan menggunakan hasil inversi seismik simultan sebagai inputnya 

pada karbonat formasi Kujung di cekungan Jawa Timur, Indonesia. Banyak 

literatur yang menjelaskan ambiguitas dari karakterisasi batuan karbonat 

berdasarkan anomali AVO. Studi ini dilakukan untuk menghasilkan klasifikasi 

dan estimasi yang memiliki tingkat kepastian berdasarkan teorema Bayes. 

 

Kami melakukan dua fasa karakterisasi, kualitatif dan kuantitatif. Dalam 

karakterisasi secara kualitatif, 2 kelas/tipe fluida didefinisikan, yaitu gas dan wet. 

Sebelum ada informasi baru, diasumsikan probabilitas prior dua kelas ini adalah 

sama, 50:50. Distribusi probabilitas awal dari dua kelas ini kemudian ditentukan 

melalui data sumur, distribusi ini akan menjadi likelihood function. Impedansi 

akustik, rasio Vp/Vs, dan densitas kemudian diturunkan dari inversi seismik 

simultan. Atribut ini adalah informasi baru yang akan digunakan untuk 

mengupdate probabilitas prior tadi menjadi probabilitas posterior dengan 

menggunakan teorema Bayes, probabilitas posterior ini merepresentasikan 

klasifikasi fluida pada setiap tras seismik. Dalam proses lainnya untuk 

karakterisasi secara kuantitatif, distribusi porositas dan saturasi didefinisikan 

menggunakan hubungan dasar kecepatan terhadap porositas dan saturation. 

Probabilitas prior didefinisikan berdasarkan data sumur, kemudian simulasi 

stokasik dilakukan untuk menghasilkan likelihood function yang membentuk 

probabilitas bersama antara porositas dan saturasi, sebelum akhirnya 

diaplikasikan untuk estimasi porositas dan saturasi berdasarkan skema Bayes. 

 

Hasil akhir dari langkah kerja ini adalah data 3D dari tipe fluida yang berasoasi 

dengan probabilitas dan ketidakpastian untuk tiap posisi. Data 3 dimensi ini 

terdiri atas probabilitas wet, probabilitas gas, dan juga estimasi kuantitatif dari 

porositas dan saturasinya. Hasil langkah kerja pada area studi kami 

menunjukkan potensi pay zone berada pada flank dari buildup carbonate tersebut 
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CHAPTER 1  

INTRODUCTION 

 

A review on literature suggests that relationships among reservoir parameter such 

as Vp, Vs, and density in carbonates reservoir are scattered. Adriansyah (2001) 

noted that the main exploration issue for carbonate reservoirs in northwest Java 

basin, Indonesia was determining the porosity distribution within the reefs. By 

analyzing Parigi formation, Adriansyah (2001) reported that porosity calculation 

using various techniques such as time average were widely scattered. In 

conclusion, porosity still could not be determined solely from Vp, Vs, and density 

even if the lithology was fairly well constrained. Chacko (1989) reported success 

story for application of AVO to map porosity in Baturaja limestone in South 

Sumatra. He also reported Vp/Vs which normally worked for detecting effect of 

gas-filled sand did not work for gas-filled limestones. He concluded the Vp/Vs 

ratio for South Sumatra limestone was controlled by the mineralogy rather than by 

porosity or pore fluid. Thus, we cannot rely on standard impedance to porosity 

transformation. Detailed mineralogy and fluid effect modeling need to be 

conducted. In other cases, Carter et al. (2005) published their analysis on Kujung-

I carbonate in East Java Basin. One of their analyses was about non linear 

relationship between acoustic impedance and porosity for Kujung-I reservoir. 

They concluded, that the low acoustic impedance and low amplitude in Kujung-I 

were generally positive indicators of porosity and sometimes gas.  

 

Having described the issues of carbonate reservoirs exploration limited to 

Indonesian area, it may conclude that new understanding of dealing with elastic 

properties and their relation to reservoir parameters is needed. An understanding 

about how to accurately map the potential carbonate pay zone using seismic data 

is highly required.  Due to some complexities in carbonate body, it is also required 

to qualitatively determine the reservoir potential based on comprehensive 

knowledge that we gathered in the area. 
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This thesis described the workflow for fluid prediction based on 3D seismic data 

on a carbonate reservoir in Indonesia. To obtain reliable reservoir characterization 

using 3D seismic data, three main steps were taken: conducting accurate seismic 

inversion to obtain relevant reservoir parameters, rock physics transformation to 

relate reservoir parameters to the seismic parameters, and mapping the parameters 

in 3D space (Bachrach et al., 2004).  The final product of the proposed workflow 

is 3D map of reservoir properties with associated probabilities and uncertainties.  

1.1. Thesis Objective 

The goal of this thesis is to qualitatively and quantitatively identify carbonate 

reservoir hydrocarbon potential, by classifying their fluid content based on 

measured well log data and estimation of porosity and saturation using rock 

physics relationship. This classification and estimation will be mapped into 3D 

space guided by elastic attribute derived from simultaneous seismic inversion 

using Bayesian theorem.  

1.2. Area of Study 

In this thesis, the analysis was conducted in carbonate reservoir in AGR Block, in 

East Java Basin. This block is operated by Pearl Energy, Ltd. Approximately 

located 80 Km from Tuban city, and 160 Km from Surabaya. 

 

Figure 1.1.  Location of Area of Study (Peal Energy Internal Report) 

The exploration objective was to evaluate gas potential within Kujung carbonate 

build-up and Tuban Sandstones up-dip from the Kepodang Gas Field, and also oil 

potential in basal clastic which pinched out against basement. Specific for this 

AGR BLOCK 
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study I will focus in gas analysis of Kujung Carbonate build-up. Figure below 

showing regional stratigraphy of the East Java Basin. 

 

Figure 1.2. East Java Basin Stratigraphy (Peal Energy Internal Report) 

 

Kujung carbonate in this study was divided into two zones, Kujung-I and Kujung-

II. The reservoir might have been sourced from both the east and the west. From 

the analyses of previous wells, it was recovered that Kujung unit I and II 

contained gas with high CO2. This CO2 was analyzed to be generated from 

Muriah and Lasem volcanoes which intruded the Kujung shelf at approximately 

1.0 MYBP. In addition, the reservoir in this might be sourced from the Bawean 

Trough to the East. Based upon maturity mapping, the Ngimbang Formation 

source rocks are currently within the oil window. During tectonic quiescence prior 

to the regional inversion event the preferred direction for migration was along the 

sediment-basement interface, updip to the west onto the paleo high. This potential 

Bayesian reservoir..., Fahdi Maula, FMIPA UI, 2009



4 

 

Universitas Indonesia 

Kujung reservoir was regionally sealed with the Tuban and Wonocolo (Pearl 

Energy Internal Report, 2009). 

 

In the newly acquired 3D seismic data, the time interpretation of Kujung-I event 

shows that Kujung-I is recognized as carbonate build up. Figure below showing 

time structure map of area of study, there is a high structure zone (marked in 

purple circle) in North East of survey area which might be the perfect trap in the 

petroleum system.  

 

 

Figure 1.3.  Kujung-I time structure 

 

The seismic inversion was intended to see the property within Kujung carbonate. 

Valuable information which can be seen from seismic data was the presence of 

flat spot anomaly. This anomaly was suspected to be gas-water-contact in Kujung-

AGR-1 

N 

Bayesian reservoir..., Fahdi Maula, FMIPA UI, 2009



5 

 

Universitas Indonesia 

I reservoir. It is expected that seismic inversion can turn this anomaly into more 

meaningful reservoir properties.  

 

Figure 1.4. Flat Spot Anomaly 

 

1.3. Data Used  

To support this study, following data was used in the area of study, 

 3D Angle Stack Seismic: 

o Near Angle Stack  : 0-13 degree 

o Mid Angle Stack : 13-26 degree 

o Far Angle Stack : 26-39 degree 

 1 well data was available, AGR-1, log data are gamma ray, caliper, deep 

resistivity, density, neutron porosity, compressional sonic log, shear sonic 

log, checkshot data, and also petrophysical log analysis (VClay, Water 

Saturation, and Porosity) 

1.4. Problem Limitation 

One major issue with fluid content analysis within carbonate reservoir is the 

applicability of Biot-Gassmann theory. In this thesis, Biot-Gassmann theory was 

assumed to be applicable for this case.  

Flat spot anomaly 
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1.5. Thesis Structure 

This thesis consisted of six chapters. The first chapter (Introduction) states the 

general overview of the thesis and the objectives of this study.  In chapter 2, 

theory and methodology for Bayesian reservoir characterization are discussed. 

These theories include about Biot-Gassmann Theory, Velocity-Porosity and 

Saturation relationship, Simultaneous Seismic Inversion, and Bayesian Theorem. 

 

Chapter 3 contains well log analysis and synthetic. Objectives of chapter three are 

the lithology and fluid class definition. The synthetic modeling which was used in 

chapter three is Biot-Gassmann fluid substitution and AVO Synthetic Modeling. 

Within this chapter basic rock physics analyses was conducted to determine the 

relation between porosity, saturation and elastic moduli. 

 

Explanation and analysis about simultaneous seismic inversion method that were 

used in the study are included in chapter 4. It consists of preprocessing, log 

calibration and wavelet extraction, low frequency modeling, and inversion. At the 

beginning of chapter 5, analyses of the lithology and fluid class mapping from 

well log into 3D space are explained.  

 

In chapter 6, general discussion is drawn from all previous 5 chapters. Conclusion 

and suggestion for further research about this topic are also mentioned. 

1.6. Hardware and Software 

The thesis work was done with the help of Pearl Energy Ltd. and Schlumberger 

DCS Jakarta, Indonesia. Data for analysis was given by the courtesy of Pearl 

Energy Ltd. Software for working in this thesis was supported by the help of 

Schlumberger Data and Consulting Services, Jakarta, Indonesia.  

 

Seismic inversion and lithology cube definition was done using Schlumberger 

ISIS and Schlumberger MMRD software in Schlumberger DCS Jakarta office.The 

Hampson-Russell software used for log analysis was provided by University of 

Indonesia. Report assembly was done using Microsoft Word. 
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CHAPTER 2  

THEORY AND METHODOLOGY 

 

Before analyzing and discussing further about application of Bayesian Theorem in 

reservoir characterization, ground theory (rock physics theory) of relating seismic 

attributes (such as Vp, Vs, and density) to reservoir properties (such as porosity 

and saturation) needs to be discussed. General Bayesian theorem which was used 

to classify fluid and to estimate porosity/saturation was also discussed in this 

chapter. 

2.1 Methodology 

The methodology to characterize the reservoir will be divided into two main parts. 

First is the qualitative characterization, which has the objective to classify gas 

zone and wet zone with associated level of confidence. The second main part is 

the quantitative characterization, with the objective to estimate porosity and 

saturation from seismic inversion result.  

 

Diagram below (figure 2.1) summarizes the qualitative characterization from 

seismic inversion result. The flow starts by doing petrophysical analysis/formation 

evaluation. Petrophysical analysis will define the pay zone characteristic. By 

doing cross plotting of elastic attribute, two main fluid classes will be defined 

based on Vcl, PHIT, and elastic appearance. These classes are gas class and wet 

class. For each class, probability density function will be built. This probability 

density function will be the likelihood probability density function as the input for 

Bayesian classification. 

  

Aligned with the petrophysical analysis, well to seismic tie was performed to tie 

log event with seismic event. This log calibration was done to all angle stacks.  

The result of log calibration is wavelet which will be used in the inversion 

process. Each angle stack will have specific wavelet to be used in the inversion.  

Inversion process will need low frequency model as a start point of the model; this 

model was also built from interpolation of calibrated log to seismic data based on 
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interpreted horizon. All these preparations required to run simultaneous seismic 

inversion in order to extract 3D elastic cube for fluid classification mapping. 

Required product of the simultaneous inversion to be used in classification 

mapping will be based on how the prior model was built. In this study, the prior 

model was built based on probability density function of acoustic impedance and 

Vp/Vs ratio. Therefore, inversion is required to output acoustic impedance cube 

and Vp/Vs ratio cube.  

 

Figure 2.1. Diagram for Qualitative Characterization 
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Diagram in figure 2.2 below summarized the workflow for quantitative reservoir. 

The flows start by building rock physics analysis using elastic attribute and 

petrophysical log. The objective is to have rock physics model and build prior 

probability density function based on measured well data. Stochastic simulation 

will be done to explore all ranges of porosities and saturation and to simulate the 

sediment elastic responses associated with the rock physics forward model 

described previously. Joint PDF of porosity and saturation after stochastic 

simulation will be built representing the likelihood function. 

 

Figure 2.2. Diagram of Quantitative Reservoir Characterization 

 

Furthermore, the results of simultaneous inversion consist of acoustic impedance, 

shear impedance, and density will be used as the input for porosity and saturation 

inversion. The inversion was done only on specific section where it has high 

probability as derived from probability classification cube (qualitative 

characterization). Output of this process will be estimated model of porosity and 

saturation. 
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2.2 Biot-Gassmann Theory 

In an isotropic rock formation, a sedimentary rock can be characterized by their 

bulk modulus, shear modulus, and density. When seismic wave passes through 

formation, their propagation not only depends on their elastic properties, but also 

depends on porosity and fluid saturation in the formations. A rock which loaded 

under an increment of compression will have change in pore pressure; this will 

resist the compression and therefore stiffens the rock (Mavko et al., 1998).  One 

of general formulation of wave propagation in porous is explained by Gassmann 

(1951) – Biot (1956). The equation is only dealing with bulk moduli, shear 

moduli, and density which can be described in two equations as follow,  

)( 000 fluid

fluid

dry

dry

sat

sat

KK

K

KK

K

KK

K
     ( 2.1) 

  
drysat        

( 2.2) 

Where, 

 Kdry   = effective bulk modulus of dry rock 

 Ksat   = effective bulk modulus of the rock with pore fluid 

 K0   = bulk modulus of mineral making up rock 

 Kfluid   = bulk modulus of pore fluid 

 Φ = porosity 

 μdry = effective shear modulus of dry rock 

 μsat = effective shear modulus of rock with pore fluid 

 

From equation 2.1 and 2.2 above, it can be seen that fluid in porous rock will 

affect bulk moduli. However the presence of fluid or no presence of fluid does not 

affect the shear modulus. Indirectly, this means that fluid does not alter rock solid 

matrix properties. Thus, it can be seen that the practical aspect of Biot-Gassmann 

theory is to predict one condition of fluid from another in a sedimentary rock. For 

example, if we have dry well containing water in pore space, and we measured the 

compressional velocity, shear velocity, and density. We can predict the behavior 

of this well if the pore space was occupied by gas, by transforming the first 

condition (wet) to dry state, and then immediately transform the moduli to the 
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new saturated state. By doing this wet zones or hydrocarbon zones are able to be 

clustered in well condition 

 

Biot-Gassmann by theory is valid on sufficiently low frequencies. This low 

frequency type is in situ seismic data (< 100 Hz), because Biot-Gassmann theory 

assumes a homogenous mineral modulus and statistical isotropy of pore space, 

with no assumption about pore geometry (Mavko et al., 1998).   

 

Since this theory does not dealing with pore geometry specific, there are some 

potential pitfalls in applying Biot-Gassmann theory in carbonate sedimentary 

rocks. Due to heterogeneity in carbonate, Biot-Gassmann failed to predict shear 

moduli. Baechle (2005) reported their laboratory measurement on dry and wet 

conditions which show the shear modulus does not remain constant during 

saturation, which failed equation 2.2. They suspected that the variability occurred 

due to interaction between rock and fluid, and due the pore type variation at any 

given porosity. This kind of heterogeneity existed due to significant geochemical 

mobility of carbonate minerals which created complex cementation/dissolution 

patterns in carbonate rocks, and sometimes the elements had their own porous 

structure (Rasolofosaon et al., 2008).  Another recent laboratory measurement 

done on carbonate samples by Adam (2006) showed that at high differential 

pressures and seismic frequencies, the bulk modulus of rocks with high-aspect-

ratio pores and dolomite mineralogy is predicted by Gassmann’s relation, and also 

rock shear modulus in the carbonate sample change from dry to brine saturation 

conditions. Even though, question still remain unanswered with fluid modeling in 

carbonate sedimentary rocks, I would assume locally in my area of study, 

Gassmann equation will apply in certain condition.  

 

2.1.1. Velocity-Porosity & Saturation Analysis 

One of the objectives in this thesis is to qualitatively characterize the porosity of 

the carbonate and the water saturation distribution. In previous section, forward 

modeling of elastic moduli such as bulk modulus, shear modulus, and density as a 

function of porosity and fluid saturation using Biot-Gassmann relationship was 
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discussed. It indirectly concludes that if we want to estimate porosity and 

saturation from velocity (seismic), we need to determine two variables (porosity 

and saturation) and perform a joint estimation problem (Bhachrach, 2006). The 

uncertainty in porosity estimation leads to uncertainty in saturation estimation.  

 

There are many deterministic solutions in estimating porosity and saturation from 

seismic velocity or vice versa. Nevertheless, sometimes the direct transformation 

is too optimistic. Mavko et al. (1998) explains that, if we wish to predict effective 

elastic moduli of a mixture of grains and pores theoretically, we generally needs 

to specify (1) volume fractions of various phases, (2) elastic moduli of various 

phases, (3) geometric details on how the phrases are arranged relative to the 

others. If we only know about volume fractions and constituent moduli solely, 

what we can do, is predicting the upper bound and lower bounds. We can predict 

at any given volume fraction of constituents the effective modulus will fall 

between upper bound and lower bound, known as Hashin-Shtrikman Bounds as 

illustrated below, 

 

 

Figure 2.3. Hashin-Shtrikman Bounds 

 

In this thesis, joint porosity-saturation inversion via stochastic modeling and 

Bayesian theory was conducted. The Biot-Gassmann theory constrained the rock 

physics modeling by relating seismic velocities to porosity and saturation. All 
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ranges of porosities and saturation were explored, and then simulate the sediment 

clastic response associated with the rock physics forward models using stochastic 

modeling. In the end, we will realize a range of posterior probability value from 

this calculation using Bayesian theorem, and then find the associated value 

representing minimum error between forward modeled data and measured data as 

the solution. Detailed explanation of Bayesian theorem will be explained in the 

next sub-chapter.  

2.3 Simultaneous Seismic Inversion 

In recent decades, there has been significant improvement in seismic based 

reservoir characterization research. This was triggered by the applicability and the 

promising result in applying the method for commercial situation. One of the 

popular methods nowadays is the employment of partial angle stack into the same 

inversion kernel to produce elastic attribute such as acoustic impedance, Vp/Vs 

ratio and density.  

 

Successful introduction of post-stack seismic inversion to produce acoustic 

impedance makes seismic data more geologically sounds because acoustic 

impedance correlated with lithology. People try to explore the possibility of 

extracting fluid information from seismic data. Using shear wave (S-waves), we 

can detect fluid content within reservoir, because compressional waves (P-waves) 

is sensitive to changes in pore fluid and S-waves is related with the interaction 

with the rock matrix. This particular pre-stack seismic inversion data can be 

significantly useful for lithology and fluid discrimination. In pre-stack seismic 

data, we can extract shear wave information which was contained within the 

variation of reflection coefficient with source-receiver offset (AVO). 

2.2.1. Aki-Richards Equations 

The ability to deduct sub-surface physical information from seismic waves comes 

from the fact that each lithology contrast has different behavior when disturbed by 

seismic waves (Munadi, 2000). In seismology, the reflection and transmission 

behavior of seismic waves in boundary has been formulated by many scientists, 

one of the notable formulas is the Knott-Zoepprits equation. That is a highly non-
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linear and complex equation. Recently many scientists proposed simplification to 

Zoepprits equation, one of them is Aki-Richards equation (1980), which was 

explained in Munadi (2000), 
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In this case,  

Vp is average velocity for P wave from layer below and above the interface 

Vs is average velocity for S wave from layer below and above the interface 

ΔVp, ΔVs, Δρ respectively is P wave velocity contrast, S wave velocity contrast, 

and density velocity contrast  

 

Using Aki-Richards equation above, relationship between reflectivity series as a 

function of angle (in other name AVO, amplitude variations with offset) with Vp, 

Vs, and density can be established. We acquired and obtained the reflectivity 

series of sub-surface using seismic reflection method, therefore problematic of 

extracting Vp, Vs, and density from seismic data is an inversion modeling issue. 

This can be solved by partially inverting each angle stack or simultaneously using 

all angle stacks in one inversion scheme. In the diagram below (figure 2.4) shows 

the comparison in separated AVO inversion schme and simultaneous AVO 

inversion scheme. 

 

Figure 2.4. Comparison between separate inversion and Simultaneous inversion (Maver, 2004) 
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One of the first achievements in extracting shear wave information from AVO 

data was done by Connolly (1999), as illustrated in figure above; each angle stack 

was inverted in separate inversion kernel. Each inversion process then produces 

elastic impedance from each angle stack, post inversion processing then carried to 

extract acoustic impedance, Poisson’s ratio, and density. This method was latter 

known as separate inversion method.  It is noticed that combining multiple 

frequency content of partial stacks into separate inversion process lead to potential 

disadvantages. Since far offset data will contain lower frequencies due to 

attenuation and NMO stretch, there will be potential noise when combining 

different frequency content on the estimation of angle independent quantities.  

 

Utilizing single inversion kernel for inverting partial seismic stack has an 

advantage over separate inversion process. This method is widely known as 

simultaneous AVO inversion method. Using this method, all of the angle stacks 

was inverted using the same inversion kernel. The elastic attributes such as 

acoustic impedance, Vp/Vs ratio, and density were inverted directly without any 

post inversion processing. Thus, there is no need to integrate multiple angle stack 

data. Further advantages of simultaneous inversion over separate inversion have 

been reported widely, some of them are Ma (2002) and Maver (2004).  

 

In this thesis, simultaneous seismic inversion algorithm based on simulated 

annealing (Ma, 2002) was used; this method is commercially available in 

Schlumberger Oedegaard-ISIS software (Maver, 2004). In the algorithm, Ma 

(2002) combined the AVO extraction and impedance inversion into a single step, 

and formulates it as a global optimization problem. The optimization procedure 

adapts the simultaneous annealing algorithm, allowing flexible constraints to be 

built in. The global optimization technique will enhance the inversion process in 

order not to trap in local minima. Trace by trace continuity also introduced into 

the algorithm, this will help to suppress the noise.   

 

The algorithm works by inverting partial angle stacks using specific wavelet for 

each angle stack. Independent wavelet for each stack will handle any variation in 
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amplitude, frequency, and phase between the different seismic volumes. Inversion 

itself will be performed directly for physical properties of interest; this can be 

acoustic impedance, shear impedance, Vp/Vs ratio, and density.  

 

To compensate lack of low frequency information from seismic data, the 

algorithm required prior low frequency model. This model can be built by 

interpolating well logs value with the horizons, introducing low frequency 

guidance from seismic velocities, and giving information about depth trend of 

geology. Furthermore, inverse problem is a non-unique problem, without 

constrain there may be a lot of solution with different low-frequency trends that 

satisfy the inversion result. This low frequency model will act as inversion 

constrain. 

 

Elastic information for each trace positions were extracted using simultaneous 

seismic inversion method. This is the input to map fluid information from well log 

into 3D space. Since Bayesian is just another statistical process, the accuracy of 

seismic inversion that calibrated by measured well information is needed.  

 

2.4 Bayesian Theorem  

Bayesian theorem in short understanding can be viewed as conditional 

probabilistic. Munadi (2005) pointed out that Bayesian theorem provides 

mathematical formulation to handle how a probability can be revised if there is 

new information available. In a previous research done by Murdianto (2007), he 

showed how to do reservoir characterization using Bayesian theorem, by 

integrating Bayesian theorem to constrain facies simulation. 

 

The theorem itself stated if we have two events x and y, we can design the 

probability of occurrence of each event by P(x) and P(y). If we consider of the 

probability of this two events, we can designed this as joint probability of P(x,y) 

that is given by, 
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)()|()()|(),( xPxyPyPyxPyxP      ( 2.4) 

In this case, P(x|y) is the probability of x to occur given that y already occurred, 

the same situation applied to P(y|x). Therefore P(x|y) and P(y|x) can be defined as 

conditional probabilistic. From equation 3, if we want to know how the 

probability of y is, given x already happened, we can re-arrange the equation into, 

)(

)()|(
)|(

xP

yPyxP
xyP         ( 2.5) 

 

The term P(y|x) is the probability of event that we want to know given x 

condition, this term defined as posterior probability density function (posterior 

PDF). It is the condition where we can say how the probability of a model is 

correct given a set of information. The second term that holds the fundamental of 

Bayesian theorem is the likelihood function, P(x|y). Murdianto (2005) stated this 

is the PDF which associated with possible realization of a particular parameter. 

The third term that builds the fundamental of Bayesian theorem is the P(y), this is 

called prior PDF of y to be happened that does not take into account any 

information about x. This is initial a priori information or initial knowledge that 

we have about a certain parameter.  And then P(x) is the prior probability or 

marginal probability of x to be happened. To complete equation 5, according to 

the total law of probability, since, 

)()|()()|()( CC yPyxPyPyxPxP      ( 2.6) 

 

In equation 2.6 above, P(y
C
) is defined is probability of not having y to be 

happened. Therefore the complete Bayesian equitation to defined conditional 

probability of y to be happened given x that already happened is, 
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( 2.7) 

 

For example, suppose there is a distribution of acoustic impedance (AI) having 

50% chance of shale and sand as lithology. Sand has 30% chances to be high AI, 

and 70% chances to be low AI. And shale has 80% chances to be high AI. A new 
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data was given, it is a high AI. What is the probability that this new data is sand? 

This can be answered using Bayesian theorem.  

 P(y)  = the probability of sand, regardless of any information = 0,5 

 P(y
C
)  = P(x) = the probability of shale, regardless of any information  

= 0,5 

 P(x|y) = the probability of lithology is high AI given the lithology is sand  

= 0,3 

 P(x|y
C
)= the probability of lithology is high AI given the lithology is shale,  

= 0,8  

Therefore using equation 7, where the probability of sand given the new data is 

high AI, P(y|x) is 0,38. If no a priori information has been known, probability for 

all hypotheses will be distributed evenly to all hypotheses. This was used in the 

example above, where if we do not know how the sand and shale distribution in 

the data, we set 50% prior probability for sand and shale. The Bayes theorem will 

update the knowledge after new data has been observed.  

 

The product of Bayesian calculation is posterior PDF from each alternatives, 

sometimes this is not a practical way to representing the result of Bayesian 

calculation. A representative value commonly used to define this result is 

Maximum a Posteriori (MAP) is the optimal representative value with the 

posterior PDF. In Bayes estimation, MAP minimizes the Bayes risk, and is 

optimal in the sense that it reduces the uncertainty associated with prediction of 

value. Maximum a posterior simply defined as mode of posterior PDF. Given sets 

of data x, the maximum a posterior to form hypothesis h can be defined, 

)|(maxarg xhPhMAP        ( 2.8) 

 

One of the simplest forms of Bayesian classification is the naive Bayes 

classification. In this classification, it was assumed that given an output number, 

total probability from all observations are product of each individual observation 

and its independent of each other (Santosa, 2007).  
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For most of the cases, decision making or classification will be based on sets of 

observation. The lithology or fluid classification in this study for example, will 

use two sets of observation. They are observation on variability in the acoustic 

impedance and the variability in Vp/Vs ratio. There will be no interdependency 

between acoustic impedance and Vp/Vs ratio in naive classification, even though 

acoustic impedance may get affected by Vp/Vs ratio. 

 

Inverse problem can also be solved using Bayesian theorem. If we recall the 

Bayesian in equation 5, this can be re-written to be,  
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dP

mPmdP
dmP

       

( 2.9) 

In equation 2.10, d and m denote data and model. Posterior probability which 

represented by conditional probability for the model given data, P(m|d), is the 

solution of inverse problem (Grandis, 2002). Stochastic simulation will be 

performed using large number of data to generate joint probability of porosity and 

saturation. Therefore using Bayesian theorem, the posterior probability which in 

fact is the solution of inverse problem will have its own measurement of 

confidence and measurement for each model. Maximum a posterior analysis will 

be used to define most fit model to data.  
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CHAPTER 3  

PETROPHYSICS AND BASIC ROCK PHYSIC ANALYSIS 

 

Well log data measures directly in-situ reservoir properties. They have good 

degree of depth resolution (or vertical resolution), but low degree of coverage 

(spatial coverage). However, detailed understanding of elastic attribute in 

measured well log data is the fundamental part in seismic inversion and attribute 

mapping based on seismic inversion. In this chapter we will begin the modeling 

analysis based on formation evaluation/petrophysical analysis from AGR-1 and 

then followed by cross plotting of elastic attributes to define fluid classes. The 

fluid effect on velocity was analyzed by doing fluid substitution on AGR-1 using 

Biot-Gassmann theory. Synthetic seismic gather was also generated as 

comparison with surface seismic data. 

3.1. Petrophysical Analysis  

In the study area, we only have 1 well. This is a discovery well, where substantial 

amount of gas has been found within Kujung-I carbonate interval. Besides 

standard open hole logs (gamma ray, resistivity, porosity, and density), dipole 

sonic imager also was run in this well to get compressional sonic and shear sonic 

data.  

 

There are 4 major formation tops in AGR-1, these are Kujung-I, GWC, Kujung-II, 

and Basement.  Formation evaluation was done from various wells information. 

The analyses start by doing log correction, Vshale computation using thorium GR. 

The zones were defined while doing the Vshale computation; this was done by 

analyzing typical gamma ray responses. Formation evaluation analysis concluded 

that the hydrocarbon was placed above gas water contact (GWC), this was based 

on deterministic analysis and Pickett plot at GWC zone. The well was tested, the 

result show that possible gas water contact at depth 2652 ft TVDSS. Water zone 

was confirmed with LFA (live fluid analyzer) and pressure gradient. As a 

conclusion, we defined the cut off to get the pay zone, these are Vshale in net 
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reservoir is less than 40%, the effective porosity is above 10 %, and water 

saturation below 65%.  The result of the petrophysical analysis is shown below, 

and the zone of interest is marked with yellow circle, 

 

Figure 3.1.  Petrophysical analysis of AGR-1 (Pearl Energy Internal Report, 2009), zone of 

interest marked with yellow circle. 

 

From this petrophysical analysis, two fluid classes were defined. They are 

Kujung-I gas filled carbonate, Kujung-I wet or water filled carbonate. The zone of 

interest was slightly above GWC. Even though, zone slightly below Kujung-I 

show less water saturation, this zone was tested to be a tight zone. 

3.2. Fluid Replacement Modeling 

Main objective of fluid replacement modeling is to see the effect of fluid on 

measured log (velocity) data. In this well, the gas occupied Kujung-I porous zone 

with water saturation around 40%-60%, the observation shows this zone can be 

identified by drop in Vp/Vs ratio. Figure below shows cross plot of acoustic 

impedance versus Vp/Vs ratio with water saturation as color scale only at Kujung-

I to Basement interval.  
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Figure 3.2. Crossplot AI vs Vp/Vs vs Sw over Kujung Interval 

 

Data distribution is scattered, interpreted as common thing for carbonate. 

Observation on cyan polygon above, it can be noticed that a low water saturation 

zone correlated with our Kujung-I reservoir. It was also observed the wet trend 

zone pointed by red arrow. Initial conclusion by looking at this cross plot is 

Vp/Vs ratio can be used as indicator of gas and wet zone.  

 

Analyses of velocity behavior when the porous zone occupied by 100% water and 

100% gas were done, that is the fluid substitution exercise. The objective of this 

exercise is to see the extreme separation in AI vs Vp/Vs ratio distribution, and 

observe the distinct behavior in elastic attributes. The analyses were done using 

Biot-Gassmann theory to do fluid substitution exercise within Kujung formation 

only. The rock matrix was defined from two mineralss, one is clay where the 

volume fraction derived from petrophysical analysis and the other is calcite, 

where the volume is adjusted to 100%. The hydrocarbon is defined as gas where 

the bulk modulus is 0.021 GPa and density is 0.1 g/cc. Brine’s bulk modulus 

defined as 2.38 GPa and density of 1.09 g/cc. First the porous zone was 

substituted to 100% water, which previously was occupied by gas.  

 

In Figure 3.2 above, there is a blue dashed line. This is rock physics template 

derived from Biot-Gassmann theory for each 10% increase in porosity. The wet 

trend line fall on 100% water saturation, and our reservoir fall in 25-40% porosity 
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with approximately 40% water saturation, as analyzed by petrophysical formation 

evaluation.  

 

 

Figure 3.3. Elastic Log after Substituted to 100% water (red is in situ measured log, blue after 

substituted to 100% water) 

In panel 1 from figure 3.3 above, the blue curve is compressional sonic log after 

fluid substitution, and red is measured compressional sonic log. Zone above GWC 

was obviously defined as gas zone, where it were noticed in petrophysical 

analysis and well test, and also by dropping in compressional sonic log, the zone 

below GWC is water as previously defined in formation evaluation. When the 

porous zone substituted to be 100% water, it is expected the compressional sonic 

log to fall in alignment with sonic from water zone. Density will be affected by 

this process, but not shear sonic as mentioned by Biot-Gassmann theory 

assumption. It is interpreted that Biot-Gassmann theory is working as expected in 

carbonate sedimentary rock in this area. This conclusion was deducted by the fact, 

sonic log after substituted to 100% water falls into alignment with measured sonic 

in water zone. For sure, this is local conclusion and not fully supported with a lot 

of facts. In this particular exercise, the objective to define zone where 100% gas 

and 100% water is achieved just by using Biot-Gassmann theory.  

 

1 2 3 4 5 
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3.3. Synthetic AVO Modeling 

It is a good exercise to compare synthetic seismic gather with measured seismic 

gather, one of the advantage of doing this is to maintain our expectation on 

seismic inversion result. Within this sub-section, synthetic seismic gather were 

computed for in-situ reservoir condition (gas), and reservoir condition where we 

have 100% water in the porous zone. The reflectivity was calculated using Aki-

Richards equation, and synthetic seismic trace produced by convoluting the 

reflectivity using 20 Hz zero phase ricker wavelet for simplicity.  

 

Figure 3.4. Synthetic Gather Modeling 

The amplitude variation with offset was observed in GWC, spotting the interface 

for base gas zone in Kujung-I with the water zone below it, marked with red 

circle. If the well is occupied by water then there will be no amplitude variation 

with offset. Comparing these two gathers help to determine what kind of AVO 

characteristic to distinguish between gas and water. The measured gather that is 

still very raw gather after migration, without any further processing cosmetic 

except stretch mute. It is observed there is no good correlation between synthetic 

and measured, this suspected due to mismatch in wavelet and the measured gather 

needs further processing.  

 

In figure 3.4, the measured seismic shows event above 1200 ft offset is not 

perfectly flattened. This may lead to imperfect density extraction within inversion 

algorithm. An explanation that can be drawn with this phenomenon is because of 

the effect of anisotropy that didn’t take care of in the velocity analysis. 

Elastic Log Gas Gather Wet Gather Measured Gather 
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3.4. Velocity-Porosity Relationship Analysis 

Besides qualitative classification, the purpose of this study is to do quantification 

of carbonate reservoir in terms of their porosity and saturation. This will be done 

by applying stochastic modeling to jointly estimate porosity and saturation.  

 

Figure 3.5. Porosity-Elastic Moduli Relationship 

 

Figure 3.5 above is the cross plot between bulk modulus and porosity from 

measured well log data. Upper bound and lower bound of Hashin-Shtrikman were 

defined using two mineral models (clay and calcite). The same brine and 

hydrocarbon properties with fluid replacement modeling were used. Unfortunately 

the mineral model from petrophysicist needs to be checked further, since there is 

still anomalous point outside upper bound and lower bound.  The model needs to 

revise further for fluid (brine and hydrocarbon) modulus and density estimation. 

Valuable information that observed is, the data distribution tend to fall on lower 

bound. Based on rock physics theory (Mavko, 1998), this can be roughly 

interpreted as Kujung-I have softer pore shapes. Correlation of this feature with 

Adam (2006) publication and the fact that the prediction of wet condition in fluid 

replacement modeling is quite good, Kujung-I carbonate may have high-aspect-

ratio and softer pore shapes. The answer to the question of how porosity and 

saturation can be estimated will be based on this model, since stochastic modeling 

will extrapolate/simulate based on this model.  
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CHAPTER 4  

SIMULTANEOUS SEISMIC INVERSION 

 

To map rock information from measured well logs in 3D space, it is needed to 

invert surface seismic amplitude to elastic attributes and before mapping it with 

Bayesian theorem. Within this chapter, the analysis on simultaneous seismic 

inversion that was performed to get elastic attribute from study area was 

explained. The analysis will cover data conditioning prior to inversion, log 

calibration and wavelet extraction, low frequency model building, and inversion.  

4.1. Angle Stack Alignment 

Simultaneous seismic inversion is dealing with multiple seismic volumes that 

measured same geological feature. Ideally, all the seismic signals will capture 

subsurface geology and image the same physical interval without any difference 

among all angle stacks. However, some event misalignment could still happened 

in place. This may be due to processing artifacts, different frequency content, or 

some other things. The inversion result will be affected by these misalignments.  

 

In this exercise, the angle stack alignment was done by time-shifting one volume 

using specific time-shift to match the reference volume. This time-shift was 

estimated from 1-D cross correlation within specific time window between 

volumes and its reference volume. This study used three angle stacks (near, mid, 

and far) as inversion input, mid angle was selected as the reference. Based on 

understanding that the alignment will perform time shifting on initial volume and 

it is not expected to shift radically the volume that could possibly change the 

information inside the angle stack. Alignment of far angle stack to near angle 

stack will change the far angle stack radically, rather than alignment of far angle 

stack to mid angle stack. Because far angle stack is expected not to have big 

variation in frequency content compare to mid angle stack. It will be unwise to 

force far stack to match near angle stack. Therefore, the workflows were 

alignments of near angle stack to mid angle stack, and far angle stack to mid angle 

stack. 
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Figure 4.1. Alignment in one In-line on near to mid alignment, without filtering (top-left) with 

horizontal filtering (top-right). Lateral time-shift map (bottom) 

 

One dimensional cross correlation will have disadvantage when there is bad trace. 

Besides that, this time-shift calculation based on 1-D cross correlation was not 

conformed and took into account any geological information. Horizontal filtering 

was performed on estimated 1-D time-shift based on interpreted horizons. By 

doing this, the bias due to bad traces was minimized and consistently conformed 

time shift based on geological horizons among all angle stacks. Difference in 

frequency content between angle stacks can also affect time-shift estimation. 

Inside the process, frequency balancing between two volumes was performed 

prior to time-shift estimation, thus, the cross correlation was performed in the 

same condition. However, the frequency balanced volume was not shifted as 

result of this exercise, the time-shift alignment applied on initial volume. Figure 

4.1 above shows comparison before horizontal filtering (top-left) and after 

horizontal filtering (top-right). Those QC plots are intended to check whether 

there are anomalous time-shift values. The bottom figure shows time-shift in 

lateral manner showing no anomalous time-shift.  
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4.2. Log Calibration and Wavelet Extraction 

Wavelet is the key to inversion process. The wavelet shape affects the inversion 

result significantly, so this is a critical step to produce reliable inversion result. 

Wavelet extraction performed the extraction in time domain using least square 

method. In this method, both wavelet amplitude and phase spectrum are derived 

from the correlation in time domain between seismic data and well log data.  The 

least square method minimizes the sum of squared misfit between seismic trace 

and synthetic trace obtained by convolution of well log reflectivity series and 

wavelet. A series of wavelet length and initial delay will be extracted; the 

optimum wavelet will be picked by finding the minimum misfit. In this exercise, 

simultaneous inversion will use Aki & Richards AVO reflectivity model.  

 

It has been informed that the processing did not shape the data to specific phase. 

Initial extraction showed the data is not perfectly zero phases. Well seismic tie 

was performed using acquired checkshot data in this well. However, checkshot 

itself was not sufficient enough to produce good wavelet since there was still a 

mismatch and poor correlation between synthetic log with seismic trace, visual tie 

needed to match seismic with synthetic. A constant bulk shift average of 10 ms 

for event close to Kujung-I was applied to get good correlation.  

 

The wavelet was extracted within the target zone (Kujung-I to Basement or ~0.7-

1.0 seconds), within this window the spectrum of the wavelet was defined using 

previously explained method. An Average of 80% correlation observed between 

synthetic seismogram and surface seismic. The phase was controlled using 

defined constant phase. Figure 4.2 below, shows the correlation between synthetic 

seismogram with surface seismic. The synthetic seismogram was computed for 

each angle stack using specific extracted wavelet. At the zone of interest (circled 

in yellow), shows good correlation in terms of event correlation and amplitude 

correlation. 
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Figure 4.2. Synthetic seismogram inserted into each angle stack (near-left, mid-middle, far-

right) shows good correlation on zone of interest. 

 

To get a good wavelet, initial knowledge about data processing is highly required. 

Any kind of wavelet can be extracted and have good correlation with surface 

seismic without any geological information, if it forced to be like that. Good 

wavelet will be defined whenever the event in well log tied right at the proper 

seismic event. Normally the quality control of extracted wavelet was using 

statistical correlation between synthetic seismogram and surface seismic, another 

good quality control is to check whether wavelet can model the surface seismic 

amplitude. Figure 4.3 below is quality control plot of how the wavelet can model 

the surface seismic frequency spectrum in the target zone. In all near, mid, angle 

wavelet stacks, it is concluded that the wavelet can modeled the surface seismic 

spectrum.   

 

Figure 4.3. Comparison of measured seismic amplitude with modeled amplitude using extracted 

wavelet for near (left) , mid (middle), and far (right) 
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Figure 4.4 below shows the summary of extracted wavelet. All the wavelets show 

expected shape, where the far angle wavelet (red line) is broader due to lower 

frequency, and near angle (blue dotted line) is narrower due to higher frequency. 

Wavelets phase are almost consistent throughout all the angle stacks, increasing 

confidence in seismic inversion process. 

 

 

Figure 4.4. Summary of extracted wavelet 

4.3. Low Frequency Modeling 

Seismic data is band limited; they are missing low frequency band. This missing 

information is related to geological feature. In the other hand, well log data has 

wider frequency band. Integrating the two of them will provide inversion result 

with geological information from well log low frequency content, and high 

frequency information which contain detailed subsurface feature from surface 

seismic. One way to integrate these two information is by interpolating well log 

value with interpreted horizons. This will be the starting model, or the prior model 

for inversion. Another way to give geological feature to inversion result as in 

structural information is introducing layer sequence field and dip sequence field to 

prior model. Layer’s dip can be estimated using numerical formulation by finding 

gradient between horizontal distance (offset) and vertical distance (vertical time). 

On top of that, careful and detailed quality control and validation of the log 

calibration (well to seismic tie) are needed, since the interpolation will be based 

on this exercise. 
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Figure 4.5. Frequency content of near (left), mid (center), far (right) stack 

In this low frequency modeling exercise, there are 4 interpreted horizons 

available; Ngrayong, Kujung-I, Kujung-II, and Basement. All of them were used 

in the interpolation of well logs value. Layer sequence field was used to help 

guiding the structural information. Analyses on the frequency spectrum from all 

angle stacks (see figure 4.5 above), show the missing frequency are below 10 Hz. 

In the process, full spectrum was interpolated from well log to 3D cube, and then 

low filtered with high cut of 10 Hz. Comparison of low pass filtered well log with 

measured well log is shown in figure 4.6. This figure show comparison between 

low pass filtered acoustic impedance, Vp/Vs ratio, and density low frequency with 

their respective measured log responses. 

 

 

Figure 4.6. Low Frequency Model for AI (left), Vp/Vs Ratio (middle), and density (right) 
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Other workflow that can be done to build reasonable quality of low frequency 

model is using the surface seismic migration velocity. If good migration velocity 

available, this velocity can be transformed into impedance and provide low 

frequency information throughout our cube. Based on internal discussion, 

sometimes this surface seismic velocity can provide low frequency information 

down to 3 Hz. Due to different burial sedimentation rate, sometimes some area 

has different compaction trend or depth trend compared to other area. This 

interpreted as, within the same layer, the acoustic impedance does not have the 

same value because the difference in burial sedimentation rate. Estimation of 

depth trend can be extracted from well log low frequency trend, and can be useful 

if there is more than one well log available. We suggest for in the next research to 

build more sophisticated low frequency model by employing surface seismic 

velocity and depth trend.  

4.4. Inversion 

The inversion was done using low frequency model as a starting model. Inversion 

algorithm was performed to extract three elastic attributes: acoustic impedance, 

Vp/Vs ratio, and density. In the starting model, prior model of acoustic 

impedance, Vp/Vs ratio, and density low frequency model were defined 

respectively.  A global optimization technique (simulated annealing) is used in 

order to make the inversion not to get trapped in local minimum models close to 

starting model. The forward modeling within inversion algorithm was done by 

convolutional model using Aki-Richards reflectivity model, the same model that 

was used in wavelet extraction method. 

 

There are three important parameters that control the inversion, 

 Standard Deviation from Low Frequency Model 

This parameter control how far the inversion can deviate from starting 

model.  

 Horizontal Continuity 
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This is used to control horizontal variation in the estimated inversion 

result. The global optimization technique is employed multi trace 

calculation; it is needed to set reasonable degree of horizontal variation.  

 Reflector significant level  

This is a degree of presence of significant reflectors. The reflector will be 

placed in estimated inversion result if the reflection coefficient exceeds 

this threshold. 

 

Previously in the log calibration and wavelet extraction process, the correlation 

was optimized within target zone, which is between Kujung-I and Basement. The 

inversion result showed promising results; even though in the rest of the zone is 

not as good as in target zone. Figure 4.7 showed the acoustic impedance (AI) 

result. In simultaneous seismic inversion, AI is one of the easiest parameter to 

extract. The blue curve in the figure shows the inversion result; meanwhile red 

curve is the measured log response. It is observed especially in zone of interest 

(0.8 s to 1.0 s), the inverted trace (blue curve) is matching the measured log 

response quite well. The zone above 0.8 seconds was poorly inverted because of 

poor correlation, also the zone below 1.0 seconds was poorly inverted because of 

lack low frequency model constrain that was based on well log interpolation using 

seismic horizon.  
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Figure 4.7. AI Inversion result and it’s comparison with measured AI  

 

Second attribute that was extracted is the Vp/Vs ratio, the QC plot is shown in 

figure 4.8. Shear wave information was derived based on variation in amplitude 

against the offset. The quality of mid and angle stacks will contribute to shear 

information extraction. Challenges on optimizing non-linear parameter also come 

in place. All of these challenges make Vp/Vs inversion result a bit deviated in 

expected quality compare to AI inversion result. However, the inversion was 

catching up the well log variation in a reasonable result. The gas in the target zone 

was inverted as expected. The poor inversion result above Kujung-I (0.5-0.8 s) 

was because poor synthesis of the shear log. The Schlumberger Dipole Sonic Log 

was only logged within target zone. Imperfect synthetic shear log degrade the 

quality of well-log correlation. And as a result; the surface seismic amplitude 

cannot be modeled reasonably well.  
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Figure 4.8. Vp/Vs ratio inversion result and its comparison with measured Vp/Vs 

 

Last elastic attribute that was extracted in the exercise is the density. Density 

comes as the third term in Aki-Richards reflectivity modeling, which is the most 

non-linear parameter. Successful density inversion was required larger angle of   

angle stack, probably more than 45 degrees. However, as the target zone was quite 

shallow, 1.0 s, the surface seismic acquisition was not designed to be at larger 

angle. In the result, the expectation on good density result was not high. But 

we’ve seen in figure 4.9, within the target zone, we can see the density inversion 

result shows the same trend with measured density log responses. 
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Figure 4.9. Density inversion result compared to measured density 

 

It may conclude that inversion result was working as expected, considering the 

data quality and amount of well log information that are available. Analysis on the 

lateral map was carried out; this was done by extracting time slice around 0.8 s 

approximately the top of reservoir. The Kujung carbonate was interpretable in the 

amplitude time slice, but without any reservoir properties information. The same 

extraction process applied to AI and Vp/Vs cube, the Kujung-I hydrocarbon 

potential was localized in the flank of Kujung carbonate. Acoustic impedance 

slice shows high impedance value, which makes sense for a carbonate. The drop 

in Vp/Vs ratio in the same zone was interpreted probably due to presence of gas. 

Furthermore, in next chapter about Bayesian lithology classification it will be 

sown the relation between AI and Vp/Vs ratio to cluster this gas pay zone, and 

mapped into 3D space along with the confidence level. 
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Figure 4.10. Comparison of time slice fullstack amplitude, AI cube, and Vp/Vs cube  

AGR-1 

AGR-1 

AGR-1 
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CHAPTER 5  

BAYESIAN RESERVOIR CHARACTERIZATION 

 

Chapter V is the final analysis on Bayesian reservoir characterization. Analysis on 

well log scale has been carried out to get the understanding of how the 

characteristic of pay and non-pay zone. In chapter IV, workflow of how to derive 

elastic attribute in 3D space from seismic data via simultaneous seismic inversion 

has been explained. In this chapter analyses on Bayesian theorem to classify of 

fluid (wet or gas) from seismic inversion result is explained, and also analyses to 

extract porosity and saturation through Bayesian theorem and stochastic 

modeling. 

5.1. Fluid Classification 

Let us recall our discussion on Bayesian theorem. There are two things that were 

needed to run classification based on Bayesian theorem. One is the prior 

probability density function; the second is the likelihood function. In this study an 

equiprobable prior can be used for each fluid class (in this case noninformative 

means that each of the two fluid units has an equiprobable 50% chance of 

occurring at any point in the subsurface). The likelihood function will be derived 

based on rock physics template analysis from chapter 3.1 and the likelihood 

function was defined from elastic attributes as a result of seismic inversion. 

 

Fluid classification is limited into two classes, they are gas and wet only. We now 

need to recall the rock physics template, where we can see the separation of gas 

and wet zone. We can set zone of these two classes, they are,  

 Class I (Gas) 

o AI range    : 3.9x10
6
 – 60. x10

6
 Kg/m

2
s 

o Vp/Vs range   : 0 – 1.9 

 Class II (Wet) 

o AI range    : 4.0x10
6
 – 10.0 x10

6
 Kg/m

2
s 

o Vp/Vs range   : 2.0 – ~ 

Bayesian reservoir..., Fahdi Maula, FMIPA UI, 2009



39 

 

Universitas Indonesia 

Other petrophysical parameters were used to define the zone such as Vcl and Sw. 

In this case using Sw less than 65% and total porosity above 10% as the cutoff of 

pay zone will do good separation. Probability density function (PDF) is derived 

from both class, as the representation of the variability in the formation properties. 

To match seismic frequency, the well logs are upscaled. Figure 5.1 showing 

contour of PDF for each class, green is wet class, and red is gas class. Two panel 

figures below it, showing PDF of each class for individual attribute, that is 

acoustic impedance and Vp/Vs ratio. In contour plot, data with the highest 

frequency occurrence will be marked with denser contour. When we project to 

specific axis (AI or Vp/Vs ratio) we can see the distribution of this value in terms 

of their frequency.  

 

 

 

Figure 5.1. Prior Distribution 
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As prior PDF was built based on AI and Vp/Vs crossplot, it is only needed to 

integrate AI cube and Vp/Vs cube. The following figure (figure 5.2) shows the 

comparison of conventional seismic amplitude (right) with classification result 

(left) for inline that crossing AGR-1 well. 

 

Figure 5.2. Comparison of fluid classification (left) with fullstack amplitude (right). Black curve 

in the middle is Sw. 

Blue in the figure 5.2 above is classified as gas, yellow is water, and white is un-

determined class. The comparison between classification and Sw in the well, 

showing reasonable match, where we expected that our reservoir is slightly above 

GWC.  We talked a little bit about flat spot anomaly in the data, after we did the 

classification, we are now can have confidence in saying that this is the GWC 

contact. Since only one well built the likelihood PDF, sometimes the classification 

will be biased towards the only one well. Even though, degree of confidence in 

classification is actually quite high, considering the separation of gas and wet is 

obvious in AI vs Vp/Vs ratio crossplot. This needs to be addressed further in the 

analysis.  

 

The analysis from Kujung-I horizon slice on seismic amplitude data showed that 

seismic amplitude cannot clearly distinguish the reservoir zone. It is the inversion 
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that helps to increase the information content by transforming the boundary 

properties to layer properties. Other advantage of having seismic inversion as 

guide to map this attribute in 3D space is because spatial distribution is controlled 

by measured seismic amplitude. We reduce the bias effect due to limited well 

information.  

 

Furthermore, quality control on inversion result observed how the inversion will 

shape the classification. Coming back again to figure 4.10, it is noticed that how 

Vp/Vs ratio drop is localized in within Kujung-I closure. By comparing this figure 

with following classification map (figure 5.4 and 5.5),  classification is just 

another thing to convince and separate where the pay zone is. In figure 5.3.a. we 

see the flat spot that was observed clearly in the seismic amplitude marking the 

GWC, comparasion with figure 5.3.b we defined the the zone above GWC as gas 

class. If we compare this classification with inversion result, AI inversion is 

shown in figure 5.3.c, and Vp/Vs Inversion is shown in figure 5.3.d, we observed 

how inversion will shape the classification result.The good thing about Bayesian 

classification is: it’s not just classifying the pay zone, but also classify it with 

certain degree of confidence. The classification will be based on prior probability 

density function from well logs. In the 3D map figure 5.4 and 5.5, it is show the 

potential reservoir pay zone is distributed along carbonate build up flank.  

 

Nevertheless, if the pay zone can be separated clearly in likelihood model 

definiton, Bayesian classification is a good tools to map the potential pay by 

integrating it with elastic attribute. But even though, when the pay zone can not be 

separated clearly, Bayesian theorem will give you how big is the probability of 

potential pay zone is. 
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(a) Seismic Conventional Amplitude 

 

(b) Classification Result 

AGR-1 Sw 

AGR-1 Sw 
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(c) Vp/Vs  Inversion Result 

 

(d) AI  inversion result  

Figure 5.3. Comparison of seismic amplitude (a) with classification result (b), and the input for 

classification Vp/Vs (c) and AI (d) Noted that flat spot defined as boundary between gas and 

water, taken from offset XLine from AGR-1 well (log curve is Sw). Red arrow shows flatspot.

AGR-1 Sw 

AGR-1 Sw 

Bayesian reservoir..., Fahdi Maula, FMIPA UI, 2009



44 

 

Universitas Indonesia 

  

Figure 5.4. Time Structure with classification map as color scale from 25 ms below Kujung-I, 

blue is gas, yellow is wet, and white is undetermined  

 

Figure 5.5.  Time Structure map with gas probability as color scale from 25 ms below Kujung-I

Wet 

AGR-1 Well 

Undetermine

d 

AGR-1 Well 

Gas 
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5.2. Joint-Porosity Saturation Modeling 

Having defined rock physics relationship between rock modulus and porosity, let 

us now see how to extrapolate this information into 3D space by doing stochastic 

modeling and Bayesian inversion. The modeling tries to generate large numbers 

porosity-saturation pairs with bulk modulus. By doing this, the simulation 

generated joint PDF between porosity and saturation to be used in Bayesian 

estimation. To remove high discrepancy between log scale and seismic scale, the 

log data was upscale to match the seismic frequency. Figure 5.6 (a) below shows 

the relationship between bulk modulus with porosity and shear modulus with 

porosity, the green line shows the Hashin-Shtrikman Upper Bound and Lower 

bound, meanwhile the orange line shows the non linear relationship between 

porosity with bulk modulus. The stochastic simulation will simulate bulk modulus 

response at specific porosity value given by this orange line. The blue line is the 

maximum allowed deviation from the orange line. Figure 5.6 (b) shows the 

crossplot between porosity and saturation. 

 

(a) 

  

(b) 

Figure 5.6.  (a) Porosity-bulk modulus crossplot and 2
nd

 order polynom fitting, (b) Water 

saturation vs Porosity crossplot 
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The modeling will be bounded by Hashin-Shtrikman bound so that the modeling 

has more physical meaning. One million simulations were performed to generate 

large number of bulk and shear moduli also density from the random porosity-

saturation realizations. The simulation limited to 8-40% porosity with 0-65% 

water saturation. Figure 5.7 below on left panel shows the simulation result. It is 

expected that simulation cover all data distribution.  Right panel shows one of the 

joint PDF for AI: 7.5e6 (kg/m2.s), SI: 4.2e6 (kg/m2.s), RHO: 2100 kg/m3 elastic 

attribute parameters. This is basically said, the maximum probable value for 

saturation and porosity for given AI, SI, and RHO value as above, is 25% porosity 

with 65 % water saturation. 

 

Figure 5.7. Simulation result (left) Joint porosity-saturation PDF (right) 

 

To extrapolate this into 3D space, acoustic impedance, shear impedance, and 

density from simultaneous inversion will be used as the input for the inversion. 

These attributes will act as likelihood function for this Bayesian porosity-

saturation estimation. This estimation is an extensive process, the estimation 

limited to only 80% pay zone confidence that was derived from previously fluid 

classification in order to reduce the workload.  

 

Extracted porosity and saturation over zone of interest tend to be more uniform, 

this may due to mode of saturation and porosity is centralized on 60% water 

saturation came from one well only. Distribution of porosity over Kujung-I 

carbonate range from 15-25% porosity. Meanwhile the saturation ranged from 

40%-60%. Final porosity value is the maximum a posterior from Bayesian 
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posterior PDF. With all the associated error in the porosity-bulk modulus 

modeling, what has been extracted from stochastic modeling is quite reasonable. 

Further research on careful mineralogy analysis may lead to more sophisticated 

modeling result. Analysis on 3D map (figure 5.9 and 5.10), characterize the 

potential pay zone with their approximate porosity and saturation.  
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Figure 5.8. Comparison of seismic amplitude (top left), gas probability (top right), porosity 

(mid), and water saturation (bottom). AGR-1 well marked with inserted curve in the plot. 

GR Sw 

PHIT 

Sw 
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Figure 5.9. Time Structure map with porosity as color scale from 25 ms below Kujung-I 

 

Figure 5.10. Time structure map with water saturation as color scale from 25 ms below Kujung-

I 

AGR-1 Well 

AGR-1 Well 
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CHAPTER 6  

DISCUSSION AND RECOMMENDATION 

 

This study has presented a Bayesian reservoir characterization on a carbonate 

reservoir. The characterization include qualification of pay zone, this was done by 

doing fluid classification. I also presented quantification of each pay zone in terms 

of its porosity and saturation. The result is confirming the geological 

interpretation for this particular area.  

 

The potential gas zone was lying slightly above GWC. Since GWC can be 

identified by flat spot, mapping this particular event will help to localize the gas. 

By analyzing the gas probability map, a conclusion can be drawn that the probable 

gas was localized in the structural high in the flank of the carbonate. 

 

There are two things that I would like to discuss in the final chapter of this thesis, 

Rock Physics Model for Carbonate 

Fluid modeling in this study is oversimplified using Biot-Gassmann modeling. So 

far, the flaw that was seen in Biot-Gassmann theory for this case is when we use it 

for porosity and fluid saturation estimation. In fluid zoning estimation, Biot-

Gassmann approach is still valid in area of study within reasonable error. For 

further research, I would suggest to use valid rock physics model in carbonate for 

all the analysis. Recent publication shows much improvement when doing 

carbonate rock physics analysis using effective medium theory. Once this model 

has been validated in the well, the inversion capability can be used to extrapolate 

this value to 3D space. 

Porosity-Saturation Estimation 

I have shown that Bayes theorem will be helpful in interpretation and judgment by 

associating the probabilities with certain degree of accuracy. Thus, using Bayesian 

inversion to extract non linear rock physics attribute such as porosity and 
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saturation will help the interpretation. Valid rock physics model also should be 

taken into account when dealing with this theorem.  

 

In this thesis, I didn’t discuss much about convergence and further justification in 

Bayesian theorem and estimation. I would suggest further and deeper research on 

Bayesian inversion to estimate rock physics parameter from seismic data. 
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