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Abstract

Bayesian fluid classification and Bayesian porosity-saturation estimation has been
done using simultaneous seismic inversion result as the input in Kujung carbonate
from East Java Basin, Indonesia. Many literatures described the limitation of
carbonate characterization based on AVO anomaly. This study carried out to
present the classification and estimation result with level of confidence based on

Bayesian theorem.

We have done e and quantitative. In

qualitative ¢h d, these are gas and
wet. Be A S - probability density
funciio P 1 bution of each
ated from W 0 data se are the

li stic, impedan: /s ratio pere then
3D multj_stacks"sei ald’ using_simultaneois.A version.
ibutes e neWiinfotnatio ed to up our prior distribution

to poste DF esi porem ent fluid
for each tragesy'In t ﬂ o.cI: or quantitati rization,

]
the W and saturat fined usmvielocny to

prior PDF is

porosnyv“atur (,, /\v |s)
defined ba ﬂ::‘l m Jlation was done to

cl

generate like psIty and saturation,
before finally am d ﬁ U cube using Bayesian
Scheme. V

The final product of the proposed workflow is 3D fluid cube of reservoir with
associated probabilities and uncertainties which consist of probability of wet
carbonate and gas carbonate, also quantitative estimation of porosity and
saturation. The result shows that potential pay zone for this particular carbonate

was lying on the flank of the buildup carbonate.
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Vi

Abstrak

Klasifikasi fluida serta estimasi porositas berdasarkan teorema Bayes telah
dilakukan dengan menggunakan hasil inversi seismik simultan sebagai inputnya
pada karbonat formasi Kujung di cekungan Jawa Timur, Indonesia. Banyak
literatur yang menjelaskan ambiguitas dari karakterisasi batuan karbonat

berdasarkan anomali AVO. Studi ini dilakukan untuk menghasilkan klasifikasi

dan estimasi yang memiliki ti erdasarkan teorema Bayes.

Kami mel 4 ; : uantitatif. Dalam

karakteriSasi clas/ting d U gas dan wet.

d i 0hg lag ini adalah
usi probabilitaSiawalidari dua kel dian ditentukan
L ini meaj

pedansi

Vp/Vs, dan defSitas@kemg@lian diturunkan - seismik
. Atrib I ada¥ab QFhasi bart yang an : untuk

probabi ia ag babilita dengan

n teorema Jes, ;{ tas

[ ] [ ]

klasmWIUIda pada Ic i
karakteri sec A‘ n sabl didefinisikan
menggun ] » R, dasal m dan saturation.
Probabilitas

stokasik dilakukUi
al

probabilitas bersama

psterior ini ntasikan

Dalam pro gAnya  untuk

kemudian simulasi

I tion yang membentuk
saturasi, sebelum akhirnya

diaplikasikan untuk estimasi porositas dan saturasi berdasarkan skema Bayes.

Hasil akhir dari langkah kerja ini adalah data 3D dari tipe fluida yang berasoasi
dengan probabilitas dan ketidakpastian untuk tiap posisi. Data 3 dimensi ini
terdiri atas probabilitas wet, probabilitas gas, dan juga estimasi kuantitatif dari
porositas dan saturasinya. Hasil langkah kerja pada area studi kami

menunjukkan potensi pay zone berada pada flank dari buildup carbonate tersebut
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CHAPTER 1
INTRODUCTION

A review on literature suggests that relationships among reservoir parameter such
as Vp, Vs, and density in carbonates reservoir are scattered. Adriansyah (2001)
noted that the main exploration issue for carbonate reservoirs in northwest Java
basin, Indonesia was determining the porosity distribution within the reefs. By

analyzing Parigi formation, Adriansyah (2001) reported that porosity calculation

using various techniques age were widely scattered. In

conclusion, porg . 3 e Vp, Vs, and density

( 3 aq B9 reported success
i li

iy, ¥

even if thegdi

[
story folfsapp \
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than by
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in East Jav; i dittanalyses was on linear

orosity for IHI reservoir.
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BOSITIVE g LTESHE

MXploration limited to

erstanding of dealing with elastic

They co

were gene

Having describ”‘ (
d

Indonesian area, it may con

'.,'.
v’

properties and their relation to reservoir parameters is needed. An understanding
about how to accurately map the potential carbonate pay zone using seismic data
is highly required. Due to some complexities in carbonate body, it is also required
to qualitatively determine the reservoir potential based on comprehensive

knowledge that we gathered in the area.
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This thesis described the workflow for fluid prediction based on 3D seismic data
on a carbonate reservoir in Indonesia. To obtain reliable reservoir characterization
using 3D seismic data, three main steps were taken: conducting accurate seismic
inversion to obtain relevant reservoir parameters, rock physics transformation to
relate reservoir parameters to the seismic parameters, and mapping the parameters
in 3D space (Bachrach et al., 2004). The final product of the proposed workflow

is 3D map of reservoir properties with associated probabilities and uncertainties.

1.1.  Thesis Objective

The goal of this thesis itatively identify carbonate

reservoir hydg d content based on
measuredifiive ) uration using rock
physics pped into 3D
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Figure 1.1. Location of Area of Study (Peal Energy Internal Report)

The exploration objective was to evaluate gas potential within Kujung carbonate
build-up and Tuban Sandstones up-dip from the Kepodang Gas Field, and also oil

potential in basal clastic which pinched out against basement. Specific for this
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study | will focus in gas analysis of Kujung Carbonate build-up. Figure below
showing regional stratigraphy of the East Java Basin.

Stratigraphy of the
East Java Basin

Nadura SUNUDITuhere East JavaMesura Offahore East Java Sea

EELe] oveLEs

MIDDLE

CENE

EARL

EOC
MIDDLE

and the west. From
the analyses of pre Kujung unit I and 1l
contained gas with high s analyzed to be generated from
Muriah and Lasem volcanoes which intruded the Kujung shelf at approximately
1.0 MYBP. In addition, the reservoir in this might be sourced from the Bawean
Trough to the East. Based upon maturity mapping, the Ngimbang Formation
source rocks are currently within the oil window. During tectonic quiescence prior
to the regional inversion event the preferred direction for migration was along the

sediment-basement interface, updip to the west onto the paleo high. This potential
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Kujung reservoir was regionally sealed with the Tuban and Wonocolo (Pearl
Energy Internal Report, 2009).

In the newly acquired 3D seismic data, the time interpretation of Kujung-I event
shows that Kujung-I is recognized as carbonate build up. Figure below showing
time structure map of area of study, there is a high structure zone (marked in
purple circle) in North East of survey area which might be the perfect trap in the

petroleum system.

T 3
0.798 0.848

E
v %

0.750

Figure 1.3. Kujung-I time structure

The seismic inversion was intended to see the property within Kujung carbonate.
Valuable information which can be seen from seismic data was the presence of

flat spot anomaly. This anomaly was suspected to be gas-water-contact in Kujung-
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I reservoir. It is expected that seismic inversion can turn this anomaly into more

meaningful reservoir properties.

grayong

ujung-11

SMNT

A ld Sed

this y. following data was tseds

Jie Sta .
\ f Near AngleiStac
X ? Mid Angl@Ste
4 Far A N S
o 1 welld (u?

log, cheC

Saturation, and P

1.4. Problem Limitation

One major issue with fluid content analysis within carbonate reservoir is the
applicability of Biot-Gassmann theory. In this thesis, Biot-Gassmann theory was

assumed to be applicable for this case.
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1.5. Thesis Structure

This thesis consisted of six chapters. The first chapter (Introduction) states the
general overview of the thesis and the objectives of this study. In chapter 2,
theory and methodology for Bayesian reservoir characterization are discussed.
These theories include about Biot-Gassmann Theory, Velocity-Porosity and

Saturation relationship, Simultaneous Seismic Inversion, and Bayesian Theorem.

Chapter 3 contains well log analysis.aad synthetic. Objectives of chapter three are

the lithology and fluid clas etic modeling which was used in

chapter three is4& . a O Synthetic Modeling.
Within thiggc

relation

ed to determine the

and“anhalysis about*simaltaagots seismic inversion met that were
peare Incladed infER&pter CONSTSE essing, log
n. At the

iemparid waveletextractigh, QW fra@lency madeling, a

ioning of

8D spacé |3
L.X.

In ch'wI general disct
and su n fou Mt
: £y

er 5, analysesto ftheMithdlogy and k.class mapping from

o d

hrevious 5 ¢ Conclusion

td. and Schlumberger
iven by the courtesy of Pearl

Energy Ltd. Software for working In this thesis was supported by the help of

The thesis work
DCS Jakarta, Indonesia.

Schlumberger Data and Consulting Services, Jakarta, Indonesia.

Seismic inversion and lithology cube definition was done using Schlumberger
ISIS and Schlumberger MMRD software in Schlumberger DCS Jakarta office. The
Hampson-Russell software used for log analysis was provided by University of

Indonesia. Report assembly was done using Microsoft Word.
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CHAPTER 2
THEORY AND METHODOLOGY

Before analyzing and discussing further about application of Bayesian Theorem in
reservoir characterization, ground theory (rock physics theory) of relating seismic
attributes (such as Vp, Vs, and density) to reservoir properties (such as porosity
and saturation) needs to be discussed. General Bayesian theorem which was used
to classify fluid and to estimate pggQsity/saturation was also discussed in this
chapter.

Methg
The met i WO main parts.
Firstdis ) lassify gas
with asSoe ‘-rﬁ goT| : 3in part is

the g ity and

jon,

fram seismic inversi@n, res

D v (fig | gl the fative € on from

se inyarsion result. TRAEH artsiye domgipetrophysical

eval aPetrophysica

doing cwlott ! claswvlll be defined
aRd elastiC” ag hese

based on Vcl, e gas class and wet

class. For'eag
density function I
Bayesian classification.

Aligned with the petrophysical analysis, well to seismic tie was performed to tie

e pay zone eristic. By

log event with seismic event. This log calibration was done to all angle stacks.
The result of log calibration is wavelet which will be used in the inversion
process. Each angle stack will have specific wavelet to be used in the inversion.
Inversion process will need low frequency model as a start point of the model; this

model was also built from interpolation of calibrated log to seismic data based on
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interpreted horizon. All these preparations required to run simultaneous seismic
inversion in order to extract 3D elastic cube for fluid classification mapping.
Required product of the simultaneous inversion to be used in classification
mapping will be based on how the prior model was built. In this study, the prior
model was built based on probability density function of acoustic impedance and
Vp/Vs ratio. Therefore, inversion is required to output acoustic impedance cube

and Vp/Vs ratio cube.

Mear g ketrophysical Log
Angle Stack s, Vel, Sw)
ultanecus'M

‘\ Ih
ﬁ N
Tnversion

f—/ el
e L
Probakbili

v ™
‘ Ewdenc;ril E' Function Dé

s N o e
Y IR >

Fw

Fluid Class Likehihaad

prfidence)

ade with lovelycharts.com

Figure 2.1. Diagram for Qualitative Characterization
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Diagram in figure 2.2 below summarized the workflow for quantitative reservoir.
The flows start by building rock physics analysis using elastic attribute and
petrophysical log. The objective is to have rock physics model and build prior
probability density function based on measured well data. Stochastic simulation
will be done to explore all ranges of porosities and saturation and to simulate the
sediment elastic responses associated with the rock physics forward model
described previously. Joint PDF of porosity and saturation after stochastic

simulation will be built representing the likelihood function.

Extract Highé

| 3 Probability [~ Lithal@ay and Fluid Cube
Hydrocarbon _

a

Ware wih lovelycharts.com

Furthermore, the results of simultan€0Us inversion consist of acoustic impedance,
shear impedance, and density will be used as the input for porosity and saturation
inversion. The inversion was done only on specific section where it has high
probability as derived from probability classification cube (qualitative
characterization). Output of this process will be estimated model of porosity and

saturation.
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10

2.2  Biot-Gassmann Theory

In an isotropic rock formation, a sedimentary rock can be characterized by their
bulk modulus, shear modulus, and density. When seismic wave passes through
formation, their propagation not only depends on their elastic properties, but also
depends on porosity and fluid saturation in the formations. A rock which loaded
under an increment of compression will have change in pore pressure; this will
resist the compression and therefore stiffens the rock (Mavko et al., 1998). One
of general formulation of wave progagation in porous is explained by Gassmann
(1951) — Biot (1956). Thg dealing with bulk moduli, shear

moduli, and dens i f ‘-o . as as follow,
Ksat ‘ (2 1)
Ko — \ \ 2 .
= effective bul odulus ‘

= ve bk ( [ pre flu

e
bulk g makis ock
d

(2.2)

= bulk mog
= porosit
N
Hsat ﬁ@i\mm [
From equation Zﬂ Bwid in porous rock will
affect bulk moduli. How e f

or no presence of fluid does not
affect the shear modulus. Indirectly,

s means that fluid does not alter rock solid
matrix properties. Thus, it can be seen that the practical aspect of Biot-Gassmann
theory is to predict one condition of fluid from another in a sedimentary rock. For
example, if we have dry well containing water in pore space, and we measured the
compressional velocity, shear velocity, and density. We can predict the behavior
of this well if the pore space was occupied by gas, by transforming the first

condition (wet) to dry state, and then immediately transform the moduli to the
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new saturated state. By doing this wet zones or hydrocarbon zones are able to be

clustered in well condition

Biot-Gassmann by theory is valid on sufficiently low frequencies. This low
frequency type is in situ seismic data (< 100 Hz), because Biot-Gassmann theory
assumes a homogenous mineral modulus and statistical isotropy of pore space,
with no assumption about pore geometry (Mavko et al., 1998).

Since this theory does not_de B.geometry specific, there are some
potential pitfallsg 3of f ) arbonate sedimentary
rocks. Due to jled to predict shear
moduli. dry and wet
conditi < T IS dg [ nstant during

occurred

. This kind of heteérogeneityseXisted due to signifi
ate mi reated complexice dissolution
ponate S nents e porous

str solofosaon ethal. ¢ ot recent labor surement

done bonate sam i owed that differential

pressure@ sei f /\ rocMh high-aspect-
ratio pores,and %:k m ann’s.relation, and also
rock shear me y t0 brine saturation

conditions. Evenwi ﬂﬂ' a]vwith fluid modeling in

carbonate sedimentary r youldias locally in my area of study,

Gassmann equation will apply in certain condition.

2.1.1. Velocity-Porosity & Saturation Analysis

One of the objectives in this thesis is to qualitatively characterize the porosity of
the carbonate and the water saturation distribution. In previous section, forward
modeling of elastic moduli such as bulk modulus, shear modulus, and density as a

function of porosity and fluid saturation using Biot-Gassmann relationship was
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discussed. It indirectly concludes that if we want to estimate porosity and
saturation from velocity (seismic), we need to determine two variables (porosity
and saturation) and perform a joint estimation problem (Bhachrach, 2006). The

uncertainty in porosity estimation leads to uncertainty in saturation estimation.

There are many deterministic solutions in estimating porosity and saturation from
seismic velocity or vice versa. Nevertheless, sometimes the direct transformation
is too optimistic. Mavko et al. (1998) explains that, if we wish to predict effective
elastic moduli of a mixture_g
to specify (1) vg
phases, (3),9

es theoretically, we generally needs
astic moduli of various
ged relative to the
others. e )| ; ug oduli solely,

o[c 00 : ' dican predict
at ‘ ffme fractiO - - oo will fall

| G

Y7 W] 5 Y

ZOr~

Valume Fraction of Material

Bounds as

wsm(m(

Effectivg B

K2

Figure 2.3. Hashin-Shtrikman Bounds

In this thesis, joint porosity-saturation inversion via stochastic modeling and
Bayesian theory was conducted. The Biot-Gassmann theory constrained the rock

physics modeling by relating seismic velocities to porosity and saturation. All
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ranges of porosities and saturation were explored, and then simulate the sediment
clastic response associated with the rock physics forward models using stochastic
modeling. In the end, we will realize a range of posterior probability value from
this calculation using Bayesian theorem, and then find the associated value
representing minimum error between forward modeled data and measured data as
the solution. Detailed explanation of Bayesian theorem will be explained in the
next sub-chapter.

2.3 Simultaneous Seismic g

In recent decade {1 ] pKevement in seismic based

reservoir charg ti ‘b applicability and the

promising®re To)e : ¢ uation. One of the
d :

- into the same

popular
INVErSio prodtiee » : edance, Vp/Vs

r

S introg ON 0fs.poSt-st: Sismai /6 n to P edlacoustic

i es seismie, date geologicalty so acoustic
in‘ e_correlated witfillith “ ple to explore the“posdrbility of
extr id informat Fo i seisimic g4tz 5ing shear wav aves), we
can Mid contentawitiinies ‘A hecause Coll ressio:ws (P-waves)

% >

is sensitive to fr‘?- g with the interaction

with the feck icular pre-stac arsion data can be

significantly us ion. In pre-stack seismic

data, we can extract sh ich was contained within the

variation of reflection coefficient with*Source-receiver offset (AVO).

2.2.1. Aki-Richards Equations

The ability to deduct sub-surface physical information from seismic waves comes
from the fact that each lithology contrast has different behavior when disturbed by
seismic waves (Munadi, 2000). In seismology, the reflection and transmission
behavior of seismic waves in boundary has been formulated by many scientists,

one of the notable formulas is the Knott-Zoepprits equation. That is a highly non-
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linear and complex equation. Recently many scientists proposed simplification to
Zoepprits equation, one of them is Aki-Richards equation (1980), which was
explained in Munadi (2000),

VA AV, V2 ., AV
R(6?)=l 1-4-=sin*0 Ap 12 P —4—-sin?§—=> (2.3)
2 v, p 2c08°0 V, v, .

In this case,
Vp  is average velocity for P wave from layer below and above the interface
Vs is average velocity for S v

) layer below and above the interface
AVp, AV Ap respective } | ptrast, S wave velocity contrast,
and density ve

Using AKI-Ri ity series as a

fungtion G A 5}‘“ ariatio ffset) with Vp,

gstablis acqUuike U Gbtairn eflectivity

pESUrtace using sefgmi lec method, therefere“problematic of
p’ V

asity T@miseismic da iVersio g issue.

d by paitial v apgie.stack aF Simitiliai ly using
acks in one TVEESIo : theidiagram below 1) shows
the ™€ ison in sepafated® A O sio hme and si ous AVO

invers me H

e T
o) gl P

Post
Processing
Acoustic Poisson’s o
EHEDCD)

Figure 2.4. Comparison between separate inversion and Simultaneous inversion (Maver, 2004)

Simultaneous
AVO
Inversion
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One of the first achievements in extracting shear wave information from AVO
data was done by Connolly (1999), as illustrated in figure above; each angle stack
was inverted in separate inversion kernel. Each inversion process then produces
elastic impedance from each angle stack, post inversion processing then carried to
extract acoustic impedance, Poisson’s ratio, and density. This method was latter
known as separate inversion method. It is noticed that combining multiple
frequency content of partial stacks into separate inversion process lead to potential

disadvantages. Since far offset data will contain lower frequencies due to

attenuation and NMO strete

different frequeng eMnBiependent quantities.

Utilizin stack has an

advaital known as
inversio h Is meth a'angle stacks

v,

g_potential noise when combining

dance, Vp/Vs ra y were_inverted e out any

sion g sing. , therelisipo péed to integrate mu afg le stack

da advantag Si g ver sep on have

be d widely, so t 20 and Maver
g o Bgr oo o

In this Ms, 5| A \\ bwon simulated
annealing (M «: m ially available in
Schlumberger the algorithm, Ma

(2002) combined E iiUsion into a single step,

and formulates it as a glo Y W em. The optimization procedure
adapts the simultaneous annealing algorithm, allowing flexible constraints to be
built in. The global optimization technique will enhance the inversion process in
order not to trap in local minima. Trace by trace continuity also introduced into

the algorithm, this will help to suppress the noise.

The algorithm works by inverting partial angle stacks using specific wavelet for

each angle stack. Independent wavelet for each stack will handle any variation in
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amplitude, frequency, and phase between the different seismic volumes. Inversion
itself will be performed directly for physical properties of interest; this can be
acoustic impedance, shear impedance, Vp/Vs ratio, and density.

To compensate lack of low frequency information from seismic data, the
algorithm required prior low frequency model. This model can be built by
interpolating well logs value with the horizons, introducing low frequency
guidance from seismic velocities, and giving information about depth trend of

geology. Furthermore, inyg 3.2 NON-unique problem, without

constrain there paa§fllbe olution Shtilow - frequency trends that
satisfy the i Il act as inversion

constral‘
for each : i ere ext ultaneous
NENAPUt tomiap TIte awell log
. Since Bayesian§ig justfanqtiter statistical procegsyihefaéeuracy of
Versig at calipbrated asuredawell info ion is needed

‘@aan Theoreiiy ® A . d
Bayeworem 10 SHOF S 3G he wewgcondltlonal

probablllstlc WE e theorem provides

e ised if there is
Murdianto (2007), he

using Baye5|an theorem, by

mathematies

new mformatlo .
showed how to do re

integrating Bayesian theorem to conStrain facies simulation.

The theorem itself stated if we have two events x and y, we can design the
probability of occurrence of each event by P(x) and P(y). If we consider of the
probability of this two events, we can designed this as joint probability of P(x,y)

that is given by,
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P(x,y) = P(x] y)P(y) = P(y | X)P(x) (24)
In this case, P(x]y) is the probability of x to occur given that y already occurred,
the same situation applied to P(y|x). Therefore P(x|y) and P(y|x) can be defined as
conditional probabilistic. From equation 3, if we want to know how the
probability of y is, given x already happened, we can re-arrange the equation into,

P(x|y)P(y)

P(ylx) = P(X)

(2.5)

The term P(y|x) is the p at we want to know given x

condition, this ity function (posterior

PDF). It jgft pility of a model is
correct given ; fs 5 ndamental of
Bay@ia e m/ diag J05)kstated this
is REWHICH assoeiated wWitQNROSSIDIE realization o1 4 fartie Darameter.

il at builds thesfiundamental gifBayesian thee P(y), this is
PDF_g
i mation. ak . This is al. ¢ r
We 90Ut a certd a t
marg Obability of xHer e | M To plete equati@
the tofalgtail of probability -

P(x) ='4)| A;ﬂ; X| "i\ o (26)

i i f not having y to be
;aultation to defined conditional

at already happened is,

0 be MappBhedithat deesmiot take Qunt any

IS Wit ormation ofimitial knowiedge that

is the P pability or

ording to

In equation 2.6
happened. Therefore t
probability of y to be happened giv

P(x|y)P(y)

PO = B YPeY + P YPGE)

(2.7)

For example, suppose there is a distribution of acoustic impedance (Al) having
50% chance of shale and sand as lithology. Sand has 30% chances to be high Al,
and 70% chances to be low Al. And shale has 80% chances to be high Al. A new
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data was given, it is a high Al. What is the probability that this new data is sand?
This can be answered using Bayesian theorem.

e P(y) =the probability of sand, regardless of any information = 0,5

e P(Y%) =P(x) = the probability of shale, regardless of any information

=05

e P(x]ly) = the probability of lithology is high Al given the lithology is sand
=03

e P(x|y®)= the probability of lithglogy is high Al given the lithology is shale,
=08

Therefore using given the new data is
high Al, Pyl

all hypothgse S 8 hi8Was used in the

O

, probability for

exampla 0 : ] distribution in

the et*50% prior proba orem will

updc gge afte

T

product_of Bayesian Ca ation i erior PD 9 each ailternatives,

SQ IS nag rg ing the Bayesian
caleulati A represent O x mo used to de result is
MaX| Posteriori representatl e with the
posterlof'dF f .‘r’; S he hs risk, and is

optimal ingtie,SEMnse geliaii socCialedsdith prediction of
ior PDF. Given sets
n be defined,

value. Maxi

hype =argmax P(h| x) (2.8)

One of the simplest forms of Bayesian classification is the naive Bayes
classification. In this classification, it was assumed that given an output number,
total probability from all observations are product of each individual observation

and its independent of each other (Santosa, 2007).
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For most of the cases, decision making or classification will be based on sets of
observation. The lithology or fluid classification in this study for example, will
use two sets of observation. They are observation on variability in the acoustic
impedance and the variability in Vp/Vs ratio. There will be no interdependency
between acoustic impedance and Vp/Vs ratio in naive classification, even though

acoustic impedance may get affected by Vp/Vs ratio.

Inverse problem can also be solved using Bayesian theorem. If we recall the

Bayesian in equation 5, this Q be,

(29

P(m|d) =S5 (
In equa . ' ability which
reprgse Wha g . P@|d), is the
sol - e proble : 002). Stoc J will be

o A6 ge numBego T dafaitd genefiate |0 sity and

saturatiefsaincrefore using Bay@siathegke€m, the posterior ' hich in

fack 1S the sollition of iMVékse Tp e have BN asuiement of

um a pe ysis will

oo

6 meas G ]!

Vfine most fit fcel ;{
[ ] [ ]

%

Universitas Indonesia

Bayesian reservoir..., Fahdi Maula, FMIPA Ul, 2009



20

CHAPTER 3
PETROPHYSICS AND BASIC ROCK PHYSIC ANALYSIS

Well log data measures directly in-situ reservoir properties. They have good
degree of depth resolution (or vertical resolution), but low degree of coverage
(spatial coverage). However, detailed understanding of elastic attribute in

measured well log data is the part in seismic inversion and attribute

mapping based on.seist it etpwie Will begin the modeling
analysis baseq ) 3 is from AGR-1 and
then follgiiec e fluid classes. The
fluid QS @ R-1 using

Y. 1€ ' athel erated  as

e on histis a discovery ore'substantial

amot gas has Dee g-1" carbonaté al.s Besides

stane Ppen hole logs

sonic TAi@ger also was ru .. n.,‘,__.“.]o ressional sw shear sonic

data. 4
Ing-1, GWC, Kujung-II,

arious wells information.

porosity, an ), dipole

There are 4 ma]
and Basement. Formma

The analyses start by doing log'co shale computation using thorium GR.
The zones were defined while doing the Vshale computation; this was done by
analyzing typical gamma ray responses. Formation evaluation analysis concluded
that the hydrocarbon was placed above gas water contact (GWC), this was based
on deterministic analysis and Pickett plot at GWC zone. The well was tested, the
result show that possible gas water contact at depth 2652 ft TVDSS. Water zone
was confirmed with LFA (live fluid analyzer) and pressure gradient. As a

conclusion, we defined the cut off to get the pay zone, these are Vshale in net
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reservoir is less than 40%, the effective porosity is above 10 %, and water
saturation below 65%. The result of the petrophysical analysis is shown below,
and the zone of interest is marked with yellow circle,

| 2 | 3 GammaRay Porosity Input Resistivity Salnty Mhatriz Saturation Porastty Lithalogy 4
7 THS GrC (api) NPHIC (LimestonePoros) RT (ohms-M2h) Reedpp (OHMM) RHOMA, (gm/cc) S (Dec) PHIT (Dec) VINCL (Dec) = ‘
H 0. 180.(0.6 0.2 2000 1.]2: | 0: {0 1.0 50
& RHOC (amice3) MEFLC (ahim-M) FintAup (OHM) DTMA (uSecot) SHO (Dec) PHE (Dec) PHE (Dec)
= 1.7 27|02 20|00 1[40 0.{1 0.fo: o 0.
w
H b RHOHY (gmice) s S (Dec) b EMWSKO (Dec) ol WEILT (Dec) ;
SxoU@er) | BvW@e) | veoaLies) v
1000

@
=

1

:
=

= '_?_.fﬁ' ==
L&D
Mﬁ__’*llgl e

., éﬁa—; F 1T
u._;.;.. s ‘IF" -t

¢

2000
2500
g

L

v

. Pe cal ana '. ergy al Report2009),zone of

t ithiyellgwagircle.
Frh etrophysicaisapai/s Hg WdBelasses were HI’ hey are

Kujurwjiqﬁlled carhopate* K, el OfWater filled cariMThe zone of
interest was slig L{V;’E ;h ghtly below Kujung-I

show lesswate -1 HIc 7002 \Was tectend to-he

Main objective of fluid replate pdefing is to see the effect of fluid on

3.2.  Fluid Rep

measured log (velocity) data. in this well, the gas occupied Kujung-i porous zone
with water saturation around 40%-60%, the observation shows this zone can be
identified by drop in Vp/Vs ratio. Figure below shows cross plot of acoustic
impedance versus Vp/Vs ratio with water saturation as color scale only at Kujung-

| to Basement interval.
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jung Interval

for carbonate.
ter saturation
as al wet trend

nitia lusigiiii 035 plot is

tI0 can be used as indigator @ffgasi@nd wet zone.

A ocity b Whie pccupie rater and

100% gas were done, that he M Stit exercise. The objective of this
I

i Al Vs Vp/Vs ratig @

ibution, and

EXercise 0 see the ex

observe lhe |st|nc senavi Iﬂ nalysWre done using
Biot-Gassmane -: m m within Kujung formation

only. The : : clay where the

volume fraction d the other is calcite,

where the volume is adj carbon is defined as gas where
the bulk modulus is 0.021 GPa and density is 0.1 g/cc. Brine’s bulk modulus
defined as 2.38 GPa and density of 1.09 g/cc. First the porous zone was

substituted to 100% water, which previously was occupied by gas.

In Figure 3.2 above, there is a blue dashed line. This is rock physics template
derived from Biot-Gassmann theory for each 10% increase in porosity. The wet

trend line fall on 100% water saturation, and our reservoir fall in 25-40% porosity
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with approximately 40% water saturation, as analyzed by petrophysical formation

evaluation.
*P-wave_1_FRM *S-wave_1_FRM *Density_1_FRM PHIT.msl
250 usift 100 15 3 o % 50
T(,,”:) P-wave_1 S-wave_1 Densty_1 Wiater Ssturation.mel PHE.msl T,,Y.:(m
250 usit 40 500 usift 100 15 E 3 20 0=3n 100 0O % gll_ surface
I L1 I I 11 I
S S L o
» s = | | L - 2500
v ==
] B —
M' s @ o - 2700
o - : 4 N
T iZ i - 2300
- 3000
" = : 1
00
ack 1 1 Track 2 T 5
er ituted 0% red Is lue after
tit to 1@0% water)
I Vi Ige c Sio og after
fl , and I onic e GWC

w lously defined as ; relilk were notice

anal well test, a pressional g, the zone

on. When the

below IS wa j ion e
porous zone suiiSk to be =S ex compressional sonic
| be affected by

iot-Gassmann theory

log to fal

this process, bvf
t

assumption. It is interpre eory is working as expected in

carbonate sedimentary rock in this afea. This conclusion was deducted by the fact,
sonic log after substituted to 100% water falls into alignment with measured sonic
in water zone. For sure, this is local conclusion and not fully supported with a lot
of facts. In this particular exercise, the objective to define zone where 100% gas

and 100% water is achieved just by using Biot-Gassmann theory.
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3.3.  Synthetic AVO Modeling

It is a good exercise to compare synthetic seismic gather with measured seismic
gather, one of the advantage of doing this is to maintain our expectation on
seismic inversion result. Within this sub-section, synthetic seismic gather were
computed for in-situ reservoir condition (gas), and reservoir condition where we
have 100% water in the porous zone. The reflectivity was calculated using Aki-
Richards equation, and synthetic seismic trace produced by convoluting the

reflectivity using 20 Hz zero phase rigker wavelet for simplicity.

— o Inline 1111 TYOCT)
(ms) ! - ! 4 4603 from
250 us/ 40 500 usf 104 e &7 340 542 795 998 1251 1555 surface

(&} i !{iliﬂ!l% g;gg

=
® \_.w \\<<‘
({< 77 @\(( d ; : F 2600

F 2700

“zxy«ws. R "

g

J——owic]

— | 2800

— | 3000

3100

.'-'. 1
e variation it o M pseryédl in GWC, sp
- - - -

zone in K one below i

5 -
i
Tops Traok 1

fo}wfj

interface
d with red

circle. 1 WeII Ae by ;ql s ..‘- no hitude variation
with offset,CO™ME fﬁ Q m‘ e what kind of AVO

Sg i
characteristic 85

asured gather that is
still very raw g er processing cosmetic
except stretch mute. It is od correlation between synthetic
and measured, this suspected due to mismatch in wavelet and the measured gather

needs further processing.

In figure 3.4, the measured seismic shows event above 1200 ft offset is not
perfectly flattened. This may lead to imperfect density extraction within inversion
algorithm. An explanation that can be drawn with this phenomenon is because of

the effect of anisotropy that didn’t take care of in the velocity analysis.
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3.4.  Velocity-Porosity Relationship Analysis

Besides qualitative classification, the purpose of this study is to do quantification
of carbonate reservoir in terms of their porosity and saturation. This will be done
by applying stochastic modeling to jointly estimate porosity and saturation.

Insituk Saturated K Shear modulus

= Porosityvs. HS upper bound
= Porosityvs. HS lower bound
B Porosity vs. Shear modulus

= Porosity vs. HS upper bound|
= Porosityvs. HS lower bound
Porosity vs. In situ K
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= Porosityvs. HS lower bound
B Paorosity vs. Saturated K
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T
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Figuire \ ( dulus poresity from
meé s 10g dataelpper DotiRAR&AdMOWer bownd of Hashig an were
define QEEW0 mineral™modelSiclay d calcite): ine and

hya@ propertiesmi eplacement modelifg were tunately

t pineral m from petrQ ‘ oISt needs to be checke jncel there is

needs to
dimation.
Valuu rmation tha : Istribution t HII on lower
#f ek : 1,008 lh’
bound. d o‘;}' y‘g‘ this®™an be roughly

interpreteg Wisie : nore pes. Correlatic his feature with
Adam (2006) ptbhe

replacement modeltR@

sti gUs point @ bound.

re er for fluid (brine gn; odulus and

e f . cdiction of wet condition in fluid
goc e may have high-aspect-

gt
jun
ratio and softer pore shapes.™THe r

the question of how porosity and
saturation can be estimated will be based on this model, since stochastic modeling

will extrapolate/simulate based on this model.
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CHAPTER 4
SIMULTANEOUS SEISMIC INVERSION

To map rock information from measured well logs in 3D space, it is needed to
invert surface seismic amplitude to elastic attributes and before mapping it with
Bayesian theorem. Within this chapter, the analysis on simultaneous seismic
inversion that was performed to get elastic attribute from study area was

explained. The analysis will covegadata conditioning prior to inversion, log

calibration and wavelet ext y model building, and inversion.

41. Angle g

Simulta S ’ : ' i volumes that

measiirg | | o3 ' - I vill capture
g and 1NTagesthe L difference
ever, evep alic happened

This may be due to pracesSifig affitacts, different frequen ntent, or

thing 2 Inversion res bedaffected hese altoniments.

asillone by time-shiftl volume

volume. THRIS -shift was

thdow between
e ’h gle stacks (near, mid,
and far) as’l I rence. Based on

understanding thwr
i

it is not expected to shi

on initial volume and
hat could possibly change the
information inside the angle stack. Alignment of far angle stack to near angle
stack will change the far angle stack radically, rather than alignment of far angle
stack to mid angle stack. Because far angle stack is expected not to have big
variation in frequency content compare to mid angle stack. It will be unwise to
force far stack to match near angle stack. Therefore, the workflows were
alignments of near angle stack to mid angle stack, and far angle stack to mid angle

stack.
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left) with

orizontal filteringitop-right). Latéral time-shift map*k

0 iMonst ross cerrelatie @ l1sadva tag [ i ad trace.

Basid at, this time=sh e -D cross C6 o was not

confe and took intojageon ( formation. al filtering

was Wd on estimatee (Ifespased on inter IHI(')rizons. By
doing this, the oﬁ g SV ﬁ‘w ns’E ently conformed
time shiftiba amcieological™hoTiZoNsS among. atl.ali acks. Difference in

frequency contedC Detweegangls ﬂ RAmalso affeCt time-shift estimation.
Inside the process, Trequeney Hala e two volumes was performed
prior to time-shift estimation, 'th cross correlation was performed in the
same condition. However, the frequency balanced volume was not shifted as
result of this exercise, the time-shift alignment applied on initial volume. Figure
4.1 above shows comparison before horizontal filtering (top-left) and after
horizontal filtering (top-right). Those QC plots are intended to check whether
there are anomalous time-shift values. The bottom figure shows time-shift in

lateral manner showing no anomalous time-shift.
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4.2.  Log Calibration and Wavelet Extraction

Wavelet is the key to inversion process. The wavelet shape affects the inversion
result significantly, so this is a critical step to produce reliable inversion result.
Wavelet extraction performed the extraction in time domain using least square
method. In this method, both wavelet amplitude and phase spectrum are derived
from the correlation in time domain between seismic data and well log data. The
least square method minimizes the sum of squared misfit between seismic trace

and synthetic trace obtained by cogwolution of well log reflectivity series and

wavelet. A series of waug itial delay will be extracted; the

optimum wavelg o 1 misfit. In this exercise,

simultaneous - : D ity model.
d ne pgeific phase.

It " b (€ Ka ] SE
Init . g owed the d3 Yott perfectly zero phases: pismic tie

w 50 acq chegKsiiot o IS W

its sufficieat.enougiiito pEOduEe good wavelet si as still a

atch and. orrelatiofigbe synthetic log witiiSeismic tracggwisual tie

nee h seis 3 CQ bulk sf 0f 10 ms
f(;bse to Kujung %3 M 3\ d correlation.

-’
The Wa\MNas

1.0 seconds)gm=\Lt}

\
’;‘; dwithinithe,target 7o ;i'i tohbment or ~0.7-
vindow nTs Waveletswas defined USing

previously exp Bh observed between
synthetic seismo

BtNOT. AN A &0e O 00
t , ‘ . |)“ was controlled using
defined constant phase. Fig 2 eloy the correlation between synthetic

seismogram with surface seismic. The synthetic seismogram was computed for
each angle stack using specific extracted wavelet. At the zone of interest (circled
in yellow), shows good correlation in terms of event correlation and amplitude

correlation.
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Figure 4.3. Comparison of measured seismic amplitude with modeled amplitude using extracted
wavelet for near (left) , mid (middle), and far (right)
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Figure 4.4 below shows the summary of extracted wavelet. All the wavelets show
expected shape, where the far angle wavelet (red line) is broader due to lower
frequency, and near angle (blue dotted line) is narrower due to higher frequency.
Wavelets phase are almost consistent throughout all the angle stacks, increasing

confidence in seismic inversion process.

Wavelet shape comparisons
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Figure 4L Summary ofextracted wavelet

cy Modeli

Se band t g equency § missing

inft iof’ is related to 4e other hand! g data has

Wlde ncy band. | will prOV| rsion result

with gedcal ' A ! 1. s cyh[ent and high
4 35

frequencyginfarma C S ace_feature from surface
seismic. One % erpolating well log
value with inter odel or the prior model
for inversion. Another w. a feature to inversion result as in
structural information is introducing layer sequence field and dip sequence field to
prior model. Layer’s dip can be estimated using numerical formulation by finding
gradient between horizontal distance (offset) and vertical distance (vertical time).
On top of that, careful and detailed quality control and validation of the log
calibration (well to seismic tie) are needed, since the interpolation will be based

on this exercise.
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Figure 4.5. Frequency content of near (left), mid (center), far (right) stack

In this low frequency modeling exercise, there are 4 interpreted horizons

available; Ngrayong, Kujung-I, Kujung-Il, and Basement. All of them were used

in the interpolation of we sequence field was used to help
guiding the strug It 3 - ency spectrum from all
angle stack : are below 10 Hz.
ube, and then

low filt Qf i ell log with

between

IS shown ! Is figure

oo dance 0, and o gncy with

pve measured log régpon
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Figure 4.6. Low Frequency Model for Al (left), Vp/Vs Ratio (middle), and density (right)
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Other workflow that can be done to build reasonable quality of low frequency
model is using the surface seismic migration velocity. If good migration velocity
available, this velocity can be transformed into impedance and provide low
frequency information throughout our cube. Based on internal discussion,
sometimes this surface seismic velocity can provide low frequency information
down to 3 Hz. Due to different burial sedimentation rate, sometimes some area

has different compaction trend or depth trend compared to other area. This

interpreted as, within the sag pustic impedance does not have the
same value becg ' ion rate. Estimation of
depth trend
if there |

build

1d, and can be useful
t ext research to

rface seismic

arting -dhversion

perforig : 1] ibute pedance,

Vi atlQ,
impedanee, . VVp/Vs rati

acoustic

and densitya®In pdel, prior

quency mo re defined

respective A global-0ptil t siulated a g) Is used in
order to make lﬂg?

starting m@te d modeling within 1 ) was done by

h minkmum models close to

convolutional m I, the same model that

was used in wavelet extr

There are three important parameters that control the inversion,
e Standard Deviation from Low Frequency Model
This parameter control how far the inversion can deviate from starting
model.

e Horizontal Continuity
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This is used to control horizontal variation in the estimated inversion
result. The global optimization technique is employed multi trace
calculation; it is needed to set reasonable degree of horizontal variation.

o Reflector significant level
This is a degree of presence of significant reflectors. The reflector will be
placed in estimated inversion result if the reflection coefficient exceeds
this threshold.

Previously in the log calibgai extraction process, the correlation
was optimized vuigfiifita A | ag-1 and Basement. The
e rest of the zone is
pedance (Al)
res ' i Darameter to
hile red

RQONSE S 00 interest

inversion r

not as

s), the inverted tace MBlualdcurve) is matchin red log

quite The zOAe.ab0VeN0. 3 eccads was P pecause of

on, also he . 0

Muency mode €Bhst M s b
] ]

SeIS

s poorly cause of

d on well log Uon using
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X-line 2281
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FethingL |
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Kujung-11
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Bshaahit
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—— logourve
g 51O e s
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igure 4.7. AI I ion omparison with measured A
]
Second “ute ] A : he Ms shown in
figure 4.8._Sheavfiayvesinformatio m‘: ; i

Variation in amplitude

against the o contribute to shear

information extr ar parameter also come
in place. All of these ch ersion result a bit deviated in
expected quality compare to Al inversion result. However, the inversion was
catching up the well log variation in a reasonable result. The gas in the target zone
was inverted as expected. The poor inversion result above Kujung-1 (0.5-0.8 s)
was because poor synthesis of the shear log. The Schlumberger Dipole Sonic Log
was only logged within target zone. Imperfect synthetic shear log degrade the
quality of well-log correlation. And as a result; the surface seismic amplitude

cannot be modeled reasonably well.
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topaz1.Vp/Vs.runl2.siminv.r2vpys
In-line 2220 2220 2220
Xline 2281 2312 2343
0.5

TWT [s]

Kujung-1|
Kujung-11

=.i_.,-: ant

w

| ]
74204 1.926374 B6as 25100 i Rt tesul
afigl

w4.8. Vp/Vs rati parison with vap/Vs

Last elasti i at We 2 : C s density. Density
g, which is the most

comes as the

non-linear paramete required larger angle of

angle stack, probably more t wever, as the target zone was quite
shallow, 1.0 s, the surface seismic acquisition was not designed to be at larger
angle. In the result, the expectation on good density result was not high. But
we’ve seen in figure 4.9, within the target zone, we can see the density inversion

result shows the same trend with measured density log responses.
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topazl.density.runl12.siminv.r2rho
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Ritngst|
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Bumperaht
]

>

-
It may M

u

e
_5|_g!1 result Iy
ed to measured u

-
4(-‘;!' ersiQaiies ASIWOTKI cMonsidering the

meunt ofwelllog information'that arc.availableys Analysis on the
lateral map was Carfied oLt i} g ; actmg time slice around 0.8 s

igure 4.9. De,
de

data qualifye

approximately the e Kllj Uig, carpemate was interpretable in the
amplitude time slice, but withdut™a . Ir properties information. The same
extraction process applied to Al and Vp/Vs cube, the Kujung-1 hydrocarbon
potential was localized in the flank of Kujung carbonate. Acoustic impedance
slice shows high impedance value, which makes sense for a carbonate. The drop
in VVp/Vs ratio in the same zone was interpreted probably due to presence of gas.
Furthermore, in next chapter about Bayesian lithology classification it will be
sown the relation between Al and Vp/Vs ratio to cluster this gas pay zone, and

mapped into 3D space along with the confidence level.

Universitas Indonesia

Bayesian reservoir..., Fahdi Maula, FMIPA Ul, 2009



37

topaz fullstack fullstack timeslice.0.8s-0.81s4mean

77 S AN

-
-
~

ium i VElin CENeeT St 0,815 mean H
A
e

|

% |
.

ratio
1774 1926 2088 22851 2413

Figure 4.10. Comparison of time slice fullstack amplitude, Al cube, and Vp/Vs cube
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CHAPTER 5
BAYESIAN RESERVOIR CHARACTERIZATION

Chapter V is the final analysis on Bayesian reservoir characterization. Analysis on
well log scale has been carried out to get the understanding of how the
characteristic of pay and non-pay zone. In chapter IV, workflow of how to derive

elastic attribute in 3D space fro data via simultaneous seismic inversion

has been explained. lg. thi Bayesian theorem to classify of

and also analyses to

fluid (wet or g
extract and stochastic
modeli

fication

gISCussiomMafBays he : 28 gsithat were
n classification BasedMon MBayesiaamthleorem. ™ @ e prior
prebability deg unction; e, Sect thefikelihood"liRetion. In th
eqe 3¥prior ca ed iq in this €& rmative
mbeach of the J#illofl M haspah equiprobabdance of
occui‘wI any point in S elihood funct be derived

based odk DaEies: DlatedanalVsiss It ; "*u 1h'the likelihood
oo 3 )

function wassdefined™ - A SElspmiGainversion.

Fluid classificatiw j s and wet only. We now
need to recall the rock phy we can see the separation of gas

and wet zone. We can set zone of these two classes, they are,
e Class I (Gas)

study an

o Al range : 3.9x10° — 60. x10° Kg/m?s
o Vp/Vsrange :0-1.9

e Class Il (Wet)
o Al range : 4.0x10° — 10.0 x10° Kg/m?s
o Vp/Vsrange :2.0—~
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Other petrophysical parameters were used to define the zone such as Vcl and Sw.
In this case using Sw less than 65% and total porosity above 10% as the cutoff of
pay zone will do good separation. Probability density function (PDF) is derived
from both class, as the representation of the variability in the formation properties.
To match seismic frequency, the well logs are upscaled. Figure 5.1 showing
contour of PDF for each class, green is wet class, and red is gas class. Two panel
figures below it, showing PDF of each class for individual attribute, that is
acoustic impedance and Vp/Vs ratjo. In contour plot, data with the highest

frequency occurrence will ke enser contour. When we project to

ign of this value in terms

g, Q)

A

e

specific axis (ALRND/;
of their freque

B T T

st

(¥

8
8
i

«( (

§

)

’2!

Normalized Frequency

Figure 5.1. Prior Distribution
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As prior PDF was built based on Al and Vp/Vs crossplot, it is only needed to
integrate Al cube and Vp/Vs cube. The following figure (figure 5.2) shows the
comparison of conventional seismic amplitude (right) with classification result

(left) for inline that crossing AGR-1 well.

> Z —
- = . S - .
- 'A — "'.‘\-—
e R e P
700~ ﬁb == = = e — e o
=0 =P Trer el - S -— ——
o —— N T
o3& = — - —
- Undetermined _, B e~
800 - ‘-’? — =3
J — = —
L=e D e S ‘v
- A =
J o . -
——a
S — :
—

[}
i

Figuress omparison of fluidiela i ack amplitude . Black curve

Blue inyifggsfigure 5.2 abd ellow is watcfgagePvhite is un-

determiHlas Hereompa assificatien a in the well,
| 4o S

showing rgasenal wieYs gted.ifl eseivelnis slightly above

GWC. We tdtke it abou 500t anoma idlata, after we did the

classification, WW . !”g that this is the GWC
ell"'bail Eit h PDF, sometimes the classification

will be biased towards the only one well. Even though, degree of confidence in

contact. Since only one w

classification is actually quite high, considering the separation of gas and wet is
obvious in Al vs Vp/Vs ratio crossplot. This needs to be addressed further in the

analysis.
The analysis from Kujung-1 horizon slice on seismic amplitude data showed that

seismic amplitude cannot clearly distinguish the reservoir zone. It is the inversion
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that helps to increase the information content by transforming the boundary
properties to layer properties. Other advantage of having seismic inversion as
guide to map this attribute in 3D space is because spatial distribution is controlled
by measured seismic amplitude. We reduce the bias effect due to limited well

information.

Furthermore, quality control on inversion result observed how the inversion will
shape the classification. Coming back again to figure 4.10, it is noticed that how

Vp/Vs ratio drop is localizedg closure. By comparing this figure

with following @ classification is just

another thi 8. In figure 5.3.a. we

see the 3 ' S e marking the

GWC as gas

re this C1a ' i ersion is
M\ will shape the classifiatiogresult. The good thj i

not JOSkCIassi Y githedPdy zonewbiat, also ify it with

of conf

i
ion from we %5 M

rv0|r pay za bonate buil

Neverthel 4’ 0 (.A:u e i‘" ikelihood model

definiton, Ba f wo-.. FC e potential pay by

integrating it wit .Uhe pay zone can not be
separated clearly, Bayesia

u how big is the probability of
potential pay zone is.

be basel obability
jgure 5.4 and i1
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Figure 5.3. Comparison of seismic amplitude (a) with classification result (b), and the input for
classification Vp/Vs (c) and Al (d) Noted that flat spot defined as boundary between gas and
water, taken from offset XLine from AGR-1 well (log curve is Sw). Red arrow shows flatspot.
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Figure 5.5. Time Structure map with gas probability as color scale from 25 ms below Kujung-1
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5.2. Joint-Porosity Saturation Modeling

Having defined rock physics relationship between rock modulus and porosity, let
us now see how to extrapolate this information into 3D space by doing stochastic
modeling and Bayesian inversion. The modeling tries to generate large numbers
porosity-saturation pairs with bulk modulus. By doing this, the simulation
generated joint PDF between porosity and saturation to be used in Bayesian
estimation. To remove high discrepancy between log scale and seismic scale, the
log data was upscale to match the sgisinic frequency. Figure 5.6 (a) below shows

the relationship between &

porosity, the g f
bound, megan -
porositysuith J

S
resp@hsa al @

porosity and shear modulus with

elationship between

a per Bound and Lower
atic bulk modulus

bV th _ pbluesline is the
M. allowed deviation Tre iz Gl hows the

porosity anghsatu

Bulk modulus.
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(b)

Figure 5.6. (a) Porosity-bulk modulus crossplot and 2™ order polynom fitting, (b) Water
saturation vs Porosity crossplot
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The modeling will be bounded by Hashin-Shtrikman bound so that the modeling
has more physical meaning. One million simulations were performed to generate
large number of bulk and shear moduli also density from the random porosity-
saturation realizations. The simulation limited to 8-40% porosity with 0-65%
water saturation. Figure 5.7 below on left panel shows the simulation result. It is
expected that simulation cover all data distribution. Right panel shows one of the
joint PDF for Al: 7.5e6 (kg/m2.s), Sl: 4.2e6 (kg/m2.s), RHO: 2100 kg/m3 elastic

attribute parameters. This is basically said, the maximum probable value for

saturation and porosity for gi HO value as above, is 25% porosity

with 65 % water,s

igure 5.7. Simu i "
To extrapolat ) 0 USEiE: | oF ghear impedance, and

limited to only 80% pay zone conftd@fCe that was derived from previously fluid

classification in order to reduce the workload.

Extracted porosity and saturation over zone of interest tend to be more uniform,
this may due to mode of saturation and porosity is centralized on 60% water
saturation came from one well only. Distribution of porosity over Kujung-I
carbonate range from 15-25% porosity. Meanwhile the saturation ranged from

40%-60%. Final porosity value is the maximum a posterior from Bayesian
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posterior PDF. With all the associated error in the porosity-bulk modulus
modeling, what has been extracted from stochastic modeling is quite reasonable.
Further research on careful mineralogy analysis may lead to more sophisticated
modeling result. Analysis on 3D map (figure 5.9 and 5.10), characterize the
potential pay zone with their approximate porosity and saturation.

CNZ)

- ~w
- —
~ >

LA >>
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Figure 5.8. Comparison of seismic amplitude (top left), gas probability (top right), porosity
(mid), and water saturation (bottom). AGR-1 well marked with inserted curve in the plot.
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Figure 5.10. Time structure map with water saturation as color scale from 25 ms below Kujung-
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CHAPTER 6
DISCUSSION AND RECOMMENDATION

This study has presented a Bayesian reservoir characterization on a carbonate
reservoir. The characterization include qualification of pay zone, this was done by
doing fluid classification. | also presented quantification of each pay zone in terms

of its porosity and saturation. The result is confirming the geological

interpretation for this partic

The potentj G pince GWC can be
identifie t0 lecalize the gas.
3 it the probable

the struCttaliIe J- e*flank of the A

things that 1 woull likeésb dj

ss in the final ¢ thesis,

Pliysi odel famcark

Flaid Todeling in this stud§@ls o ﬂ edUSIng Biot-Gass
far, t aW_that was see At v for this ca n we use it
id zonin‘ mmation, Biot-

for pwand fluid

Gassmann app d’ﬁ; j ; ,h- easonable error. For

further resea

ling. So

" G pdel in carbonate for
all the analysis ovement when doing

carbonate rock physics aﬂs s'luf! e!lum theory. Once this model

has been validated in the well, the ifsion capability can be used to extrapolate

this value to 3D space.

Porosity-Saturation Estimation

I have shown that Bayes theorem will be helpful in interpretation and judgment by
associating the probabilities with certain degree of accuracy. Thus, using Bayesian

inversion to extract non linear rock physics attribute such as porosity and
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saturation will help the interpretation. Valid rock physics model also should be
taken into account when dealing with this theorem.

In this thesis, I didn’t discuss much about convergence and further justification in
Bayesian theorem and estimation. | would suggest further and deeper research on
Bayesian inversion to estimate rock physics parameter from seismic data.
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