

ANALISA FAKTOR – FAKTOR PRODUKTIVITAS ALAT BERAT PEKERJAAN PEMASANGAN *PRECAST* GIRDER PADA PROYEK FLYOVER (STUDI KASUS : FLYOVER KALIBATA)

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

AGUS SAPUTRA 0606071960

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL DEPOK JANUARI 2011

ANALYSIS OF FACTORS PRODUCTIVITY OF HEAVY EQUIPMENT ON PRECAST GIRDER INSTALLATION WORK ON THE FLYOVER PROJECT (CASE STUDY: KALIBATA FLYOVER)

UNDERGRADUATE THESIS

Proposed as a requirement to get bachelor degree

AGUS SAPUTRA 0606071960

ENGINEERING FACULTY
CIVIL ENGINEERING DEPARTMENT
DEPOK
JANUARY 2011

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Agus Saputra

NPM : 0606071960

Tanda Tangan

Tanggal: 07 Januari 2011

ORISINALITY PAGE

This undergraduate thesis report is my own creation, and all sources that are referred and quoted are true

Name : Agus Saputra

NPM: 0606071960

Signature

Date : January 7th, 2011

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh

Nama : Agus Saputra NPM : 0606071960 Program Studi : Teknik Sipil

Judul Skripsi : Analisa Faktor-Faktor Produktivitas Alat Berat

Pekerjaan Pemasangan *Precast* Girder pada Proyek Flyover (Studi Kasus : Flyover Kalibata)

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada program studi Teknik Sipil Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing : Ir. Setyo Supriadi Supadi, Msi

Pembimbing ; Ir. Bambang Setiadi, MSc

Penguji : M. Ali Berawi, M.Eng. Sc. PhD

Penguji : Ir. El Khobar M. Nazech, M.Eng (.....

Ditetapkan di : Depok

Tanggal : 7 Januari 2011

APPROVAL PAGE

This Undergraduate thesis is submitted by :
Name : Agus Saputra
NPM : 0606071960

Study Programme : Civil Engineering

Title : Analysis of Heavy Equipment Productivity
Factors in Precast Girder Installation Work on
Flyover Project (Case Study: Kalibata Flyover)

Has been successfully defended in front of the board of examiners and has been accepted as part of the requirements necessary to obtain a Bachelor of Engineering at Civil Engineering Program Faculty of Engineering, University of Indonesia.

BOARD OF EXAMINERS

Supervisor : Ir. Setyo Supriadi Supadi, Msi

Supervisor : Ir. Bambang Setiadi, MSc

Examiner : Ir. El Khobar M. Nazech, M.Eng (......)

Defined in : Depok

Date : January 7, 2011

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas berbagai kenikmatan, karunia dan rahmat yang tidak akan tergantikan sehingga penulis dapat menyelesaikan seminar skripsi ini. Penulisan seminar skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik pada program studi Teknik Sipil Fakultas Teknik Universitas Indonesia.

Penulis menyadari penulisan ini tidak luput dari kekurangan, untuk itu saran dan kritik yang bersifat membangun dari berbagai pihak sangat penulis harapkan agar penulisan ini menjadi lebih baik dan bermanfaat bagi semua pihak.

Oleh karena itu, penulis mengucapkan terima kasih kepada :

- (1) Ir. Setyo Supriyadi, M.Si, selaku dosen pembimbing pertama yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan penulis dalam penyusunan seminar skripsi ini;
- (2) Ir. Bambang Setiadi, M.Sc, selaku dosen pembimbing kedua yang juga telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan penulis dalam penyusunan seminar skripsi ini;
- (3) para pakar yang meluangkan waktunya untuk validasi tahap pertama dan ketiga;
- (4) Mbak Shinta dan Bapak Sudarmadji di Proyek Pembangunan *Flyover* Kalibata yang telah membantu penulis dalam memberikan data-data dan penyebaran kuisioner;
- (5) Mbak Dian yang telah membantu penulis dalam memperoleh persiapan suratsurat untuk keperluan skripsi;
- (6) kedua orang tua dan keluarga penulis yang telah memberikan bantuan dukungan material dan moral;
- (7) sahabat-sahabat BSB (Bukan Sipil Biasa) serta seluruh teman seangkatan 2006 yang telah memberikan bantuan moral;
- (8) Reza Fajar Prayoga Dan Rio Setiadi atas kerjasama tim skripsinya; dan
- (9) Yeni Anisah yang telah mengajari penulis dalam pengolahan data di waktu sibuknya.

Akhir kata, penulis berharap Tuhan Yang Maha Esa berkenan membalas segala kebaikan semua pihak yag telah membantu. Semoga Skripsi ini membawa

manfaat bagi penulis pribadi, bagi rekan-rekan, bagi pengembangan ilmu serta bagi pihak yang memerlukannya kelak.

Depok, 7 Januari 2011

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademis Universitas Indonesia, saya yang bertanda tangan di bawah ini :

Nama : Agus Saputra NPM : 0606071960 Program Studi : Teknik Sipil

Departemen : Teknik Sipil

Fakultas : Teknik

Jenis Karya : Seminar Skripsi

Demi pengembangan ilmu pemgetahuan, menyetujui untuk memberika kepada Universita Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty free Right*) atas karya ilmiah saya yang berjudul:

ANALISA FAKTOR-FAKTOR PRODUKTIVITAS ALAT BERAT PEKERJAAN PEMASANGAN *PRECAST* GIRDER PADA PROYEK FLYOVER (STUDI KASUS : FLYOVER KALIBATA)

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia / formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya tanpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal: 7 Januari 2011

Yang menyatakan

(Agus Saputra)

ABSTRAK

Nama : Agus Saputra

Program Studi : Teknik Sipil

Judul : Analisa Faktor-Faktor Produktivitas Alat Berat Pekerjaan

Pemasangan Precast Girder Pada Proyek Flyover (Studi Kasus:

Flyover Kalibata)

Pada suatu proyek konstruksi, peralatan merupakan sumber daya proyek yang penting. Oleh karena itu diperlukan suatu rencana atau metode kerja yang tepat terhadap peralatan yang digunakan untuk pemasangan *precast* girder agar perbandingan antara masukan dan keluaran menjadi optimal. Penelitian bertujuan untuk mengetahui faktor-faktor produktivitas alat berat pada pekerjaan pemasangan *precast* girder pelaksanaan proyek *flyover* serta rekomendasi untuk peningkatan kinerja produktivitas alat berat tersebut. Tahapan penelitian adalah mengumpulkan data kuisioner, selanjutnya dianalisis dengan *SPSS*. Hasil penelitian adalah faktor dominan yaitu (X16) Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan dan (X18) kapasitas alat yang digunakan serta model persamaan.

Kata Kunci: Produktivitas, alat berat, girder, flyover,

ABSTRACT

Name : Agus Saputra

Study Program: 0606071960

Title :

On a construction project, the equipment is an important resource projects. Therefore, we need a plan or working methods appropriate to the equipment used for the installation of precast girder so that the ratio between input and output to be optimal. The study aims to determine the factors of productivity of heavy equipment on the job installing precast girder flyover project implementation and recommendations for improving the productivity performance of equipment. Stages of the research is to collect questionnaire data, then analyzed with SPSS. The results showed that the dominant factor (X16) Level of accuracy that takes into account when scheduling the use of tools, work site location, number and volume of work and equipment (X18) the capacity of equipment used.

Keywords: Productivity, heavy equipment, girder, flyover.

ABSTRAK

Nama : Agus Saputra

Program Studi : Teknik Sipil

Judul : Analisa Faktor-Faktor Produktivitas Alat Berat Pekerjaan

Pemasangan Precast Girder Pada Proyek Flyover (Studi Kasus:

Flyover Kalibata)

Pada suatu proyek konstruksi, peralatan merupakan sumber daya proyek yang penting. Oleh karena itu diperlukan suatu rencana atau metode kerja yang tepat terhadap peralatan yang digunakan untuk pemasangan *precast* girder agar perbandingan antara masukan dan keluaran menjadi optimal. Penelitian bertujuan untuk mengetahui faktor-faktor produktivitas alat berat pada pekerjaan pemasangan *precast* girder pelaksanaan proyek *flyover* serta rekomendasi untuk peningkatan kinerja produktivitas alat berat tersebut. Tahapan penelitian adalah mengumpulkan data kuisioner, selanjutnya dianalisis dengan *SPSS*. Hasil penelitian adalah faktor dominan yaitu (X16) Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan dan (X18) kapasitas alat yang digunakan serta model persamaan.

Kata Kunci: Produktivitas, alat berat, girder, flyover,

ABSTRACT

Name : Agus Saputra

Study Program: 0606071960

Title :

On a construction project, the equipment is an important resource projects. Therefore, we need a plan or working methods appropriate to the equipment used for the installation of precast girder so that the ratio between input and output to be optimal. The study aims to determine the factors of productivity of heavy equipment on the job installing precast girder flyover project implementation and recommendations for improving the productivity performance of equipment. Stages of the research is to collect questionnaire data, then analyzed with SPSS. The results showed that the dominant factor (X16) Level of accuracy that takes into account when scheduling the use of tools, work site location, number and volume of work and equipment (X18) the capacity of equipment used.

Keywords: Productivity, heavy equipment, girder, flyover.

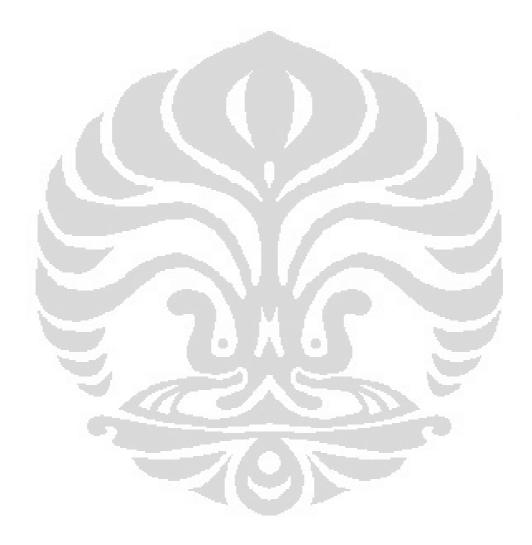
DAFTAR ISI

	MAN JUDUL
	MAN PERNYATAAN ORISINALITAS
ORISIN	IALITY PAGE
HALAN	MAN PENGESAHAN
APPRO	VAL PAGE
KATA 1	PENGANTAR / UCAPAN TERIMA KASIH
HALAN	MAN PERNYATAAN PERSETUJUAN PUBLIKASI
ABSTR	AK
ABSTR	ACT
DAFTA	R ISI
DAFTA	R GAMBAR
DAFTA	R TABEL
DAFTA	IR LAMPIRAN
	PENDAHULUAN
1.1	
1.2	Perumusan Masalah
	1.2.1 Deskripsi Masalah
	1.2.2 Signifikansi Masalah
	1.2.3 Rumusan Masalah
1.3	Tujuan Penelitian
1.4	Manfaat Penelitian
1.5	Batasan Penelitian
1.6	Penelitian Yang Relevan
	TINJAUAN PUSTAKA
2.1	
2.2	
	2.2.1. Alat Berat Pengangkat
	2.2.1.1. Crane Statis
	2.2.1.2. Crane dengan Penggerak
	2.2.2, Produktivitas Alat
	2.2.3. Pembinaan Operator dan Mekanik Alat Berat
2.3.	Precast Girder
	2.3.1. Karakteristik pekerjaan Pemasangan <i>Precast</i> Girder
	2.3.2. Precast Segmental Girder
2.4	Manajemen Peralatan dalam Pemasangan <i>Precast</i> Girder
	2.4.1 Sistem Operasional Peralatan dalam Pekerjaan Pemasangan
	Precast Girder
	2.4.2 Pemeliharaan dan Perbaikan Peralatan
	2.4.3 Pengontrolan Alat dan Suku Cadang Alat Berat
	2.4.4 Efisiensi Alat Berat
	2.4.5 Pengadaan Alat
	2.4.6 Umur Ekonomi Alat Berat
	2.4.7 Pengoperasian Alat Berat
	2.4.8 Keselamatan dan Kesehatan Kerja
	2.4.9 Pengendalian Alat dalam Pelaksanaan Konstruksi

	2.4.10 Penyusunan Jadwal				
	2.4.11 Penggunaan Jasa Kontraktor / konsultan				
2.5	Produktivitas Bagian dari kinerja Proyek Konstruksi				
	2.5.1 Pengukuran kinerja produktivitas Peralatan				
	2.5.2 Dampak Produktivitas Peralatan pada Kinerja Proyek				
	Konstruksi				
2.6	Faktor – Faktor yang Mempengaruhi Produktivitas Alat Berat				
2.0	Untuk Menyatakan Kinerja Waktu Proyek				
2.7	Kerangka Dasar Pemikiran dan Hipotesa				
2.7	2.7.1 Hipotesa				
	2.7.2 Kerangka Dasar Pemikiran.				
	2.7.2 Retailgka Dasai i Chiikitali				
BAB 3	GAMBARAN UMUM PROYEK				
3.1	Pendahuluan				
3.2	Definisi Proyek Flyover				
	3.2.1 Deskripsi Proyek Flyover Kalibata				
	3.2.2 Definisi Kasus				
	3.2.3 Lingkup Permasalahan				
- 7	3.2.4 Data Umum Proyek				
	3.2.5 Data Teknis Proyek				
	3.2.6 Tahapan Proyek <i>Flyover</i> Kalibata				
A	3.2.6.1 <i>Engineering</i>				
	3.2.6.2 <i>Procurement</i>				
	3.2.6.3 Construction				
	3.2.7 Metode Pelaksanaan Pekerjaan				
	METODOLOGI PENELITIAN				
4.1					
4.2	Rumusan Masalah				
	4.2.1 Rumusan Masalah				
	4.2.2 Metode Penelitian				
4.3	Skema Metode Penelitian Terpilih				
	5.4.1 Proses Penelitian Survei				
	5.4.2 Proses Penelitian Studi Kasus				
4.4	Variabel penelitian				
4.5	Instrumen Penelitian				
4.6	Pengumpulan Data				
	3.7.1 Teknik Sampling pada pengumpulan Data Tahap 1				
	3.7.2 Teknik Sampling pada pengumpulan Data Tahap 2				
4.7	Metode Analisis Data				
	4.7.1 Analisis Data Tahap 1				
	4.7.2 Analisis Data Tahap 2				
	4.7.2.1. Uji Kruskall-Wallis				
	4.7.2.2. Uji Mann-Whitney				
	4.7.2.3. Validitas dan Reliabilitas				
	4.7.2.4. Analisis Deskriptif				
	4.7.2.5. Korelasi Statistik Parametrik				
	4.7.2.6. Analisis Regresi				
	4.7.2.7. Identifikasi Variabel Penentu dengan Dummy				
	· · · · · · · · · · · · · · · · · · ·				

	Variabel					
	4.7.2.8. Uji Validitas Model					
5.8	Kesimpulan					
	• 					
	PELAKSANAAN PENELITIAN DAN ANALISIS DATA					
5.1	Pendahuluan					
5.2	Proses Pelaksanaan Penelitian					
5.3	Pengumpulan Data					
5.4	Analisa Data					
	5.4.1 Analisa Non Parametrik / Komparatif					
	5.4.2 Validitas dan Realibilitas					
	5.4.3 Analisis Deskriptif					
	5.4.4 Analisis Korelasi					
	5.4.5 Analisis Regresi					
	5.4.6 Identifikasi Variabel Penentu dengan Dummy Variabel					
	5.4.7 Uji Validitas Model					
5.5	5.4.7 Uji Validitas Model					
BAB 6						
6.1	Pendahuluan					
6.2	Temuan					
	6.2.1 Hasil Korelasi					
	6.2.2 Hasil Regresi					
6.3	Pembahasan					
1	6.3.1 Pembahasan Korelasi					
	6.3.2 Pembahasan Regresi					
6.4	Pengujian Hipotesa					
i wa						
BAB 7	KESIMPULAN DAN SARANN					
7.1	Kesimpulan					
7.2	Saran					

DAFTAR ACUAN LAMPIRAN


DAFTAR GAMBAR

Gambar 2.1 Grafik Hubungan Biaya Dan Kapasitas						
Gambar 2.2 Crane Statis (Tower Crane)						
Gambar 2.3 Crawler Crane						
Gambar 2.4 Wheel Mounted Crane						
Gambar 2.5 Truck Crane Beroda Dengan Outringger						
Gambar 2.6 Bagian Struktur Jembatan						
Gambar 2.7 Manajemen Peralatan Secara Umum						
Gambar 2.8 Skema Penurunan Kondisi Alat						
Gambar 2.9 Hubungan Elemen Kinerja Proyek Terhadap						
Organisasi Proyek3						
Gambar 2.10 Komponen Biaya Proyek Konstruksi						
Gambar 2.11 Hubungan Peralatan Sebagai Bentuk Teknologi						
Terhadap Biaya dan Waktu4						
Gambar 2.12 Konstruksi Sebagai Proses Konversi Terbuka 4						
Gambar 3.1 Lokasi Proyek Jembatan Flyover Kalibata						
Gambar 3.2 Kondisi Jembatan Flyover Kalibata						
Gambar 5.1 Proses Pelaksanaan Penelitian						
Gambar 5.2 Sebaran Tingkat Pengalaman Kerja responden						
Gambar 5.3 Sebaran Tingkat Pendidikan Kerja responden						
Gambar 5.4 Sebaran Tingkat Pengamatan Kerja responden						
Gambar 5.5 Histogram Variabel Y						
Gambar 5.6 Grafik Zpred Scatterplot Untuk 31 Responden						

DAFTAR TABEL

Tabel 2.1	Rentang Aplikasi Jembatan Dari Konstruksi Segmental
Tabel 4.1	Perbedaan Antara Penelitian Kuantitatif Dan Kualitatif
Tabel 4.2	Strategi Penelitian Untuk Masing-Masing Situasi
Tabel 4.3	Penilaian Untuk Varibel Y
Tabel 4.4	Variabel Bebas
Tabel 4.5	Skala Penilaian Kuisioner Terhadap Dampak Pengaruh
Tabel 4.6	Penilaian Untuk Variabel Y
Tabel 4.7	Contoh Format Kuisioner Validasi Kepada Pakar Pada Tahap 1
Tabel 4.8	Contoh Format Kuisioner Kepada Responden Pada Tahap 2
Tabel 4.9	Contoh Format Kuisioner Kepada Responden Pada
	Tahap 2 (Eksisting Proyek Untuk Penilaian Variabel Y)
Tabel 4.10	Pedoman untuk Memilih Teknik Statistik Nonparametrik
Tabel 5.1	Data Umum Pakar
Tabel 5.2	Variabel Bebas Hasil Validasi Pakar Tahap Pertama
Tabel 5.3	Kode Pengelompokkan Responden
Tabel 5.4	Data Umum Responden
Tabel 5.5	Output untuk Uji Mann-Whitney Kategori Pengalaman
Tabel 5.6	Hasil Uji Pengaruh untuk Kategori Jabatan
Tabel 5.7	Perbandingan Perbedaan Persepsi untuk Kategori Pengalaman
	Kerja
Tabel 5.8	Output untuk Uji Kruskall Wallis Kategori Pendidikan
Tabel 5.9	Hasil Uji Pengaruh untuk Kategori Pendidikan
Tabel 5.10	Perbandingan Perbedaan Persepsi untuk Kategori Pendidikan.
	Output untuk Uji Kruskall-wallis Kategori Jabatan Kerja
	Hasil Uji Pengaruh untuk Kategori Jabatan
	Perbandingan Perbedaan Persepsi untuk Kategori Jabatan
	Output Uji Reliabilitas
	Output Uji Reliabilitas
	Hasil Uji Validitas 1
	Hasil Uji Validitas 2
Tabel 5.18	Hasil Uji Validitas 3
	Hasil Analisis Deskriptif Variabel Y
Tabel 5.20	Output Uji Deskriptif Variabel X dan Y
Tabel 5.21	Pedoman untuk Memberikan Interprestasi Terhadap Koefisien
	Korelasi
Tabel 5.22	Hasil Uji Korelasi Pearson
	Model Summary Hasil Uji Metode Stepwise untuk 31 R
	Nilai Collinearity Test Metode Stepwise untuk 31 R
	Summary Perbandingan Nilai R ²
	Rekap Output Hasil Regresi
	Koefisien Model untuk 30 Responden
	Input Data Variabel Dummy
	Model Summary Hasil Uji Metode Stepwise dengan Variabel
	Dummy
Tabel 5.30	Nilai Collinearity Test Metode Stepwise dengan Variabel
	Dummy
	,

Tabel 5.31	Koefisien Model dengan Dummy	109
Tabel 5.32	Model Summary Hasil Uji Metode Stepwise dengan Dummy	110
Tabel 5.33	Tabel Annova	110
Tabel 5.34	Tabel Coefficients	112
Tabel 5.35	Model Summary	113
Tabel 5.36	Hasil Analisis Uji Korelasi	113
Tabel 6.1	Data Umum Pakar untuk Tahap 3	117

DAFTAR LAMPIRAN

Lampiran A Kuisioner Validasi Pakar
Lampiran B Kuisioner Responden
Lampiran C Data Responden
Lampiran D Tabulasi Data
Lampiran E Uji Mann-Whitney untuk Kategori Pengalaman Kerja
Lampiran F Uji Kruskall-Wallis untuk Kategori Pendidikan
Lampiran G Uji Kruskall-Wallis untuk Kategori Jabatan

Lampiran H Uji Reabilitas dan Validitas

Lampiran I Uji Deskriptif

Lampiran J Uji Korelasi *Pearson* Lampiran K *Output* Uji Regresi

Lampiran L Uji Korelasi Pearson untuk Dummy

Lampiran M Risalah Sidang Skripsi

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Setiap proyek konstruksi pada umumnya mempunyai kebutuhan akan alat berat. Definisi alat berat sendiri adalah alat yang sengaja diciptakan / didesain untuk dapat melaksanakan salah satu fungsi / kegiatan proses konstruksi yang sifatnya berat bila dikerjakan oleh tenaga manusia, seperti : mengangkut, mengangkat, memuat, memindah, menggali, mencampur, dan seterusnya dengan cara yang mudah, cepat, hemat, dan aman¹. Tujuan penggunaan alat berat tersebut untuk memudahkan manusia dalam mengerjakan pekerjaannya sehingga hasil yang diharapkan dapat tercapai dengan lebih mudah dan dengan waktu yang relatif lebih singkat².

Alat berat menjadi faktor yang sangat penting pada pekerjaan konstruksi berskala besar tidak terkecuali pada proyek infrastruktur seperti proyek jembatan atau *flyover*. Pengunaan alat berat pada proyek infrastruktur seperti *flyover* akan sangat dibutuhkan. Alat berat ini mempunyai fungsi masing – masing seperti pekerjaan penggalian atau pengeboran untuk pondasi, pemasangan *precast* girder, serta pengaspalan pada perkerasannya. Oleh karena itu, pemilihan alat berat serta pemilihan metode pekerjaan yang tepat akan mempengaruhi tujuan proyek seperti biaya, waktu, serta mutu. Hal ini menjadi penting karena produktivitas peralatan yang tinggi akan menyebabkan biaya alat per satuan pekerjaan menjadi rendah³.

Sebagai sektor riil, pembangunan infrastruktur seperti jembatan, jalan layang, jalan tol, dan sebagainya secara tak langsung akan menggerakkan ekonomi⁴. Pertumbuhan kendaraan yang pesat dan tidak diikuti dengan pertumbuhan jalan yang sesuai akan menyebabkan kemacetan. Begitu juga di DKI Jakarta, masalah kemacetan lalu lintas dari tahun ke tahun semakin dirasakan⁵. Pembangunan proyek infrastruktur seperti jembatan layang merupakan salah satu alternatif untuk mengatasi kemacetan lalu lintas⁶.

Adapun dalam pelaksanaan suatu proyek konstruksi pada pekerjaan yang memerlukan alat berat, satu hal yang harus dihadapi adalah perlunya suatu pemahaman terhadap alat tersebut. Pemilihan peralatan yang benar adalah faktor penting dalam menyelesaikan proyek yang sesuai anggaran dan tepat waktu.

Peralatan yang tidak dapat bekerja secara benar produktivitas alat tersebut akan menurun, progres pekerjaan tertunda, kemungkinan dapat terjadi kecelakaan dan biaya-biaya yang tidak perlu akan muncul⁷.

Keputusan dalam memilih, mengoperasikan dan pemeliharaan peralatan yang tepat adalah sangat penting bagi pihak-pihak yang terlibat dalam suatu pekerjaan yang melibatkan alat berat khususnya *mobile crane* untuk pekerjaan pemasangan *precast* girder. Keputusan dalam manajemen peralatan yang baik ikut memberikan kontribusi terhadap efisiensi proyek dan meningkatkan profit⁸.

Faktor-faktor yang tidak terantisipasi dalam permulaan kerja dan lambat tahun mempengaruhi biaya dalam proyek dan berdampak pula pada produktivitas alat. Dengan tidak dapat diramalkannya faktor – faktor ini, berpotensi menyebabkan meningkatnya biaya proyek dan turunnya produktivitas. Produktivitas peralatan menurun atau *loss productivity* didefinisikan sebagai pengurangan produktivitas yang disebabkan kondisi tidak terantisipasi⁹.

Oleh karena itu, sumber daya alat sebagai masukan harus diatur seefisien mungkin agar perbandingan antara masukan yang digunakan dan keluaran yang dihasilkan yang disebut produktivitas menjadi optimal sehingga dapat dicapai tujuan yang diinginkan¹⁰. Dan apabila terjadi kesalahan dalam pemilihan alat berat dan operator alat maka akan terjadi keterlambatan di dalam pelaksanaan, biaya proyek yang membengkak, dan hasil yang tidak sesuai dengan rencana¹¹. Masalah utama dari proses perencanaan sumber daya alat berat pada pekerjaan pemasangan *precast* girder ini adalah faktor – faktor apa yang mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

1.2 Perumusan Masalah

1.2.1 Deskripsi Masalah

Dalam Pelaksanaan konstruksi pada tahap pemasangan *precast* girder pada proyek *flyover*, sumber daya yang paling penting adalah alat berat (*mobile crane*) karena pekerjaan ini membutuhkan tenaga yang besar untuk mengangkat *precast* girder ketempatnya. Keberadaan alat berat ini perlu diperhatikan produktivitasnya karena komponen biaya yang berkaitan dengan peralatan konstruksi tersebut

mencapai 25% - 30% dari total biaya proyek¹². Oleh karena itu dalam pengelolaannya diperlukan suatu manajemen yang bertanggung jawab atas pemilihan, operasional dan pemeliharaan alat tersebut¹³.

Dalam proyek pembangunan *flyover* dengan konstruksi menggunakan *precast* girder memerlukan pemberdayaan optimal dari masing-masing sumber daya pendukungnya. Setiap usaha mempercepat waktu pelaksanaannya, pada umumnya menyebabkan penambahan sumber daya baik manusia maupun peralatan yang tidak sebanding dengan produksinya atau dengan kata lain tidak dapat mencapai produktivitas sumber daya (dalam hal ini peralatan) yang diharapkan¹⁴.

Oleh karena itu, pengendalian serta pengelolaan produktivitas alat berat yang digunakan pada proyek *flyover* pada pekerjaan pemasangan *precast* girder sangat diperlukan agar hasil pekerjaan tersebut sesuai dengan apa yang diinginkan. Apabila poduktivitas dari alat berat tersebut tinggi, maka dapat dipastikan tidak akan menyebabkan keterlambatan waktu proyek serta kenaikan biaya proyek.

1.2.2 Signifikansi Masalah

Berdasarkan uraian diatas didapatkan banyak hal yang mempengaruhi produktivitas alat berat pada pekerjaan pemasangan girder. Hal ini sangat menarik untuk diteliti dan dianalisa mengenai faktor – faktor dominan yang akan mempengaruhi pada produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan rekomendasi untuk meningkatkan produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Selain itu *progress* proyek *flyover* pada saat ini terjadi keterlambatan karena disebabkan oleh beberapa hal, maka fokus penelitian ini mencari penyebab apakah produktivitas alat berat juga memberi pengaruh yang besar terhadap *progress* waktu proyek *flyover* kalibata pada pekerjaan utama seperti pekerjaan pemasangan *precast* girder.

1.2.3 Rumusan Masalah

Dalam penyusunan karya tulis ini, terdapat dua buah pertanyaan yang timbul terhadap suatu perubahan yang terjadi, yaitu :

- Faktor faktor apa saja yang dapat mempengaruhi produktivitas alat berat.
- Bagaimana cara meningkatkan produktivitas alat berat pada pekerjaan pemasangan precast girder pada proyek flyover.

1.3 Tujuan Penelitian

Tujuan dari penulisan karya ilmiah ini adalah untuk menjawab pertanyaan timbul di dalam rumusan masalah yang ada. Oleh karena itu, terdapat 3 (tiga) tujuan dari penelitian ini yaitu :

- Mengetahui faktor faktor yang akan mempengaruhi produktivitas alat berat pekerjaan pemasangan precast girder pada proyek flyover.
- Mengetahui rekomendasi untuk meningkatkan produktivitas alat berat pekerjaan pemasangan precast girder pada proyek flyover untuk dapat meningkatkan kinerja waktu pelaksanaan proyek.

1.4 Manfaat Penelitian

Berdasarkan tujuan penelitian, penulis berharap penelitian yang disusun ini dapat memberikan manfaat, diantaranya:

- a. Bagi penulis, sebagai salah satu syarat dalam menyelesaikan pendidikan sarjana Fakultas Teknik Sipil Universitas Indonesia. Selain itu penelitian ini dapat memberikan pengetahuan tambahan bagi penulis dalam bidang produktivitas alat berat pada pekerjaan pemasangan *precast* girder pada proyek *flyover* di kalibata serta dapat membentuk cara berfikir penulis dan pembaca agar dapat berfikir secara ilmiah dan terkonsep.
- b. Bagi bidang akademik Universitas Indonesia, untuk melanjutkan beberapa penelitian yang relevan yang dapat dilihat dari sudut pandang yang berbeda sesuai dengan masalah yang penulis angkat. Kemudian diharapkan penelitian ini akan dilanjutkan kembali untuk dianalisa lebih dalam dengan sudut pandang yang berbeda pula.
- c. Bagi kontraktor, untuk memberikan suatu *output* tentang produktivitas alat

 alat berat yang digunakan pada pekerjaan pemasangan *precast* girder
 pada proyek *flyover* sehingga bisa menjadi acuan untuk kedepannya dalam membuat strategi agar penggunaan alat alat berat menjadi efektif serta efisien.

1.5 Batasan Penelitian

Penelitian ini dilakukan untuk melakukan melakukan analisa terhadap produktivitas alat berat pada pemasangan *precast* girder proyek *flyover* kalibata. Di dalam penelitian ini dilakukan beberapa pembatasan masalah seseuai dengan fokus yang ingin penulis angkat diantaranya:

- a. Penelitian dilakukan pada proyek konstruksi khususnya proyek jembatan atau *flyover* yang menggunakan girder (studi kasus Proyek *Flyover* Kalibata)
- b. Sumber daya yang diteliti terbatas pada alat berat yang diteliti adalah alat pengangkat *precast* girder (*mobile crane*).
- c. Sudut pandang yang digunakan adalah dari sudut pandang kontraktor dan konsultan pengawas
- d. Penelitian dilakukan dengan melakukan survey
- e. Mengingat yang akan dibahas dari sumber daya yang ada adalah peralatan maka penulis membatasi pada faktor-faktor dominan yang akan mempengaruhi produktivitas alat berat pekerjaan pemasangan girder pada proyek *flyover*.

1.6 Penelitian Yang Relevan

Beberapa penelitian yang telah dilakukan dan relevan dengan penelitian ini, diantaranya terdapat:

Analisis Faktor Pengelolaan Kinerja Produktivitas Alat Berat Pada
 Pekerjaan Penggalian Basement Untuk Bangunan Gedung Di DKI Jakarta.

Penulis: Andri Hermawan. Skripsi UI 2010

- Skripsi ini bertujuan melakukan identifikasi terhadap produktivitas alat berat *back hoe* serta *dump truck* pada pekerjaan penggalian *basement* pada proyek proyek yang terdapat di DKI Jakarta. Perbedaan dengan penelitian ini adalah jenis pekerjaan yang diteliti dan obyek alat berat yang yang ditinjau.
- Identifikasi Faktor Faktor Risiko penggunaan *Precast* Segmental Girder
 Terhadap Waktu Pada Proyek *Flyover* Di DKI Jakarta.

Penulis: Jefri Putra. Skripsi UI 2009

Skripsi ini bertujuan melakukan identifikasi faktor-faktor resiko apa saja yang mungkin terjadi pada proyek *flyover* yang menggunakan segmental *precast* girder yang akan mempengaruhi kinerja waktu proyek. Perbedaan dengan penelitian ini adalah obyek yang diteliti, apabila pada skripsi ini membahas resiko – resiko yang mungkin terjadi pada proyek yang akan mempengaruhi kinerja waktu proyek sedangkan penulis meneliti tentang produktivitas alat berat pada proyek *flyover* yang menggunakan *precast* girder.

 Faktor Dominan yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek EPC.

Penulis: Yeni Anisah. Skripsi UI 2009

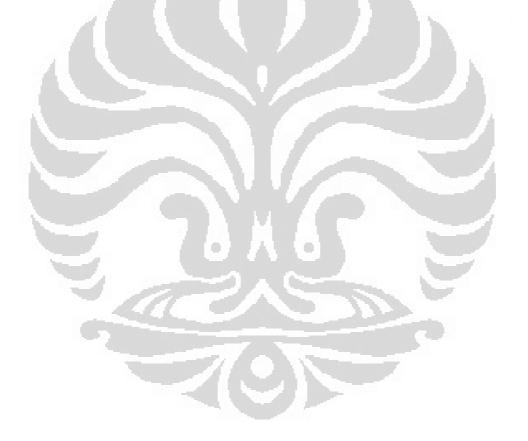
Skripsi ini bertujuan untuk mengetahui faktor-faktor dominan yang berpengaruh terhadap produktivitas alat piling rig dan prediksi pengaruh faktor dominan tersebut terhadap produktivitas alat piling rig. Perbedaan dengan penelitian ini adalah jenis proyek yang diteliti dan obyek alat berat yang ditinjau.

Pengaruh Tindakan Dari Identifikasi Faktor Risiko Terhadap Kinerja
 Produktivitas Alat Pada Tahap Pekerjaan Penggalian Basement.

Penulis: Ovy Dwi Ananto. Tesis UI 2002

Tesis ini bertujuan melakukan identifikasi faktor resiko pada tahap pekerjaan penggalian untuk mendapatkan gambaran sejauh mana tindakan dari identifikasi faktor resiko berpengaruh terhadap kinerja produktivitas alat yang digunakan yaitu *Excavator* dan *Dump truck*. Perbedaan dengan penelitian ini adalah jenis proyek yang diteliti dan obyek alat berat yang ditinjau serta metode analisis yang digunakan.

 Identifikasi Resiko Faktor – Faktor yang Mempengaruhi produktivitas Alat Berat pada Proyek Konstruksi Jalan dengan Perkerasan Kaku Rigid Pavement.


Penulis: M. Rizky Iskandar Mirza. Tesis UI 2006

Tesis ini bertujuan mengidentifikasi sumber – sumber resiko yang berpengaruh terhadap produktivitas alat pada proyek konstruksi jalan dengan perkerasan kaku. Metode analisis yang dilakukan adalah kuesioner

survey dan analisis statistik pada data kuesioner. Perbedaan dengan penelitian ini adalah jenis proyek yang diteliti dan obyek alat berat yang ditinjau serta metode analisis yang digunakan.

Penulis: Ovy Dwi Ananto. Tesis UI 2002

Tesis ini bertujuan melakukan identifikasi faktor resiko pada tahap pekerjaan penggalian untuk mendapatkan gambaran sejauh mana tindakan dari identifikasi faktor resiko berpengaruh terhadap kinerja produktivitas alat yang digunakan yaitu *Excavator* dan *Dump truck*. Perbedaan dengan penelitian ini adalah jenis proyek yang diteliti dan obyek alat berat yang ditinjau serta metode analisis yang digunakan.

BAB 2 TINJAUAN PUSTAKA

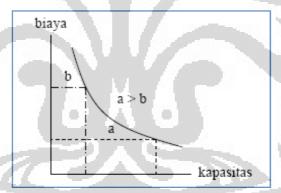
2.1 Pendahuluan

Pelaksanaan manajemen proyek yang sukses diukur dari pencapaian objektif proyek, antara lain proyek selesai sesuai waktu, sesuai anggaran, sesuai dengan spesifikasi teknik, penggunaan sumber daya proyek secara efektif dan efisien, dan diterima oleh *user* serta *owner*. Dalam perencanaan sumber daya alat yang menjadi salah satu faktor kesuksesan adalah faktor produktivitas alat maupun alat berat¹⁵.

Dalam pekerjaan konstruksi khususnya pada pekerjaan pemasangan *precast* girder, produktivitas merupakan masalah utama agar pekerjaan memperoleh hasil yang sesuai dengan parameter yang telah ditetapkan. Produktivitas ini dipengaruhi oleh salah satu sumber daya, yaitu alat berat bermesin seperti *mobile crane*. Oleh karena itu, perlu diidentifikasi faktor – faktor yang dapat mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Dalam bab 2 ini memaparkan penjelasan literatur mengenai sumber daya peralatan yang berkaitan dengan produktivitas peralatan serta karakteristik proyek terutama pada tahap pekerjaan pemasangan *precast* girder.

2.2 Alat Berat pada Proyek Konstruksi


Pada proyek *flyover* kalibata ini, alat yang dimaksud pada penelitian ini adalah alat pengangkat yang digunakan pada tahapan pekerjaan pemasangan *precast* girder. Terkadang satu jenis alat juga dapat berfungsi lebih dari satu kegiatan, seperti misalnya sebuah *excavator* disamping berfungsi sebagai alat gali, juga dapat difungsikan sebagai alat muat, atau bahkan sebagai alat angkut untuk jarak tertentu¹⁶.

Alat – alat berat yang ada di Indonesia umumnya berasal dari luar negeri, dan biasanya alat tersebut dilengkapi dengan tabel – tabel yang disusun berdasarkan kondisi dan budaya pabrik pembuatnya. Karena alat tersebut digunakan di Indonesia, maka tabel waktu siklus yang ada harus dikoreksi untuk mendapatkan angka yang sesuai¹⁷. Adapun beberapa alat berat yang lazim

digunakan adalah : *Bulldozer*, *Mobile crane*, *Wheel Loader*, *Excavator* (*Backhoe*), *Dump Truck*, *Crane*, dan lain-lain.

Beberapa poin yang harus dijadikan bahan pemikiran dalam hal penggunaan alat – alat berat, adalah sebagai berikut¹⁸:

- a. Keputusan dalam hal penggunaan alat alat berat didasari oleh skenario : "peralatan harus memberikan penghasilan yang lebih besar dari biaya yang dikeluarkan (termasuk biaya operasi/ pemilikan) jika tidak demikian, maka tidak perlu dilakukan pembelian".
- b. Pengetahuan mengenai alat alat berat juga harus dikuasai oleh seorang insinyur, baik informasi terbaru mengenai perkembangan peralatan terbaru maupun kemampuannya untuk memilih dengan tepat alat berat yang mana yang cocok untuk suatu metode pelaksanaan secara tepat guna.
- c. Gambar grafik hubungan biaya dibawah ini menginformasikan bahwa dengan adanya alat alat berat dilapangan, seharusnya mampu meningkatkan kapasitas pekerjaan dan meminimalkan biaya yang dikeluarkan.

Gambar 2.1 Grafik Hubungan Biaya dan Kapasitas

Sumber: Nuryanto, R. Bambang. 2000

- d. Masalah masalah yang mungkin timbul dan harus direncanakan :
 - Pengeluaran untuk pembelian atau pemeliharaan peralatan,
 - Biaya pengawasan (periodik),
 - Perlunya operator yang terampil dan pelatihan bagi pekerja yang lainnya,
 - Peningkatan cara cara penggunaan secara efektif.

2.2.1 Alat Berat Pengangkat (Crane)¹⁹

Pada pekerjaan pemasangan *precast* girder, alat berat yang dipergunakan adalah alat angkat yaitu berupa *crane*. *Crane* adalah alat pengangkutan vertikal

atau alat pengangkat yang bisa di gunakan di dalam proyek konstruksi. Cara kerja crane sebagai alat angkat adalah dengan mengangkat secara vertikal material yang akan dipindahkan, memindahkan secara horisontal, kemudian menurukan material di tempat yang di inginkan. Sebenarnya selain untuk pekerjaan pengangkatan material, crane juga dapat dipakai untuk penggalian dan pemasangan tiang. Tentu saja untuk kedua pekerjaan ini alat (attachment) yang dipasangkan akan berbeda. Sebagai contoh untuk penggalian maka attachment - nya adalah dragline dan clamshell.

2.2.1.1 Crane Statis

Tower crane merupakan jenis crane yang statis. Tower Crane adalah suatu alat bantu yang ada hubungannya dengan akses bahan dan material konstruksi dalam suatu proyek. Bila dijabarkan lebih lanjut, fungsinya lebih dekat terhadap alat mobilisasi vertikal-horisontal yang amat sangat membantu didalam pelaksanaan pekerjaan struktur²⁰.

namun ada beberapa jenis *crane* yang mempunyai penggerak. Karakteristik operasional semua *crane* yang bergerak pada prinsipnya sama, dengan perbedaan pada penggeraknya.

Gambar 2.2 Crane Statis (Tower Crane)

2.2.1.2 *Crane* Dengan Penggerak²¹

Crane dengan penggerak artinya crane tersebut dapat melakukan mobilisasi dari satu tempat ke tempat lain. Jarak perpindahan tersebut tergantung pada jenis penggeraknya yaitu roda ban atau roda crawler. Crane yang mempunyai kemampuan bergerak ini terdiri dari atas tiga jenis yaitu crawler mounting, truck mounting, dan wheel mounting.

• *Crane* beroda *crawler* (*crawler mounted crane*)

Tipe ini mempunyai bagian atas yang dapat bergerak 360 derajat. Dengan adannya *turntable*. Dengan roda *crawler* maka *crane* tipe ini dapat bergerak di dalam lokasi proyek saat melakukan pekerjaanya namun penggeraknya sangat terbatas. Pada saat *crane* akan dipindahkan maka *crane* diangkut dengan menggunakan *lowbestrailer*. Pengangkutan ini dilakukan dengan membongkar *boom* menjadi beberapa bagian untuk mempermudah pelaksanaan pengangkutan.

Pengaruh permukaan tanah terhadap alat tidak akan menjadi masalah karena lebar kontak antara permukaan dengan roda cukup besar artinya crane dapat berdiri dengan stabil, kecuali jika permukaan merupakan material yang sangat jelek. Pada saat pengangkatan material, hal – hal yang harus perlu diperhatikan adalah posisi alat pada waktu pengoperasian harus benar – benar water – level, keseimbangan alat dan penurunan permukaan tanah akibat beban dari alat tersebut. Pada permukaan yang jelek atau permukaan dengan kemungkinan terjadinya penurunan maka alat harus berdiri di atas suatu alas atau matras. Keseimbangan alat juga dipengaruhi oleh besarnya jarak roda crawler. Pada beberapa jenis crane, crane mempunyai crawler yang lebih panjang unutk mengatasi keseimbangan alat.

Gambar 2.3 crawler crane

Sumber: http://www.iwasaki-machinery.co.jp

• Wheel Mounted crane

Wheel mounted Crane merupakan crane dengan penggerak roda ban. Lengan crane tipe ini adalah boom hidrolis. Crane ini juga dikenal sebagai hydraulic crane atau telescopic crane. Struktur atas crane jenis ini dilengkapi dengan telescopic boom, silinder hidrolis tunggal untuk pengangkat dan kait. Boom crane jenis ini dapat diperpanjang atau diperpendek sesuai dengan kebutuhan tanpa perlu adanya pembongkaran boom. Crane ini mampu bergerak dan fleksibel sehingga dapat dikemudikan di jalan.

Gambar 2.4 wheel mounted crane

Sumber: http://www.iwasaki-machinery.co.jp

Truck crane

Crane jenis ini dapat berpindah tempat dari satu tempat proyek ke proyek lainnya tanpa bantuan dari alat pengangkutan. Mobilitas alat cukup tinggi dengan kecepatan maksimum mencapai 55km/jam. Akan tetapi beberapa bagian dari crane tetap harus dibongkar untuk mempermudah perpindahan. Sebelum menuju suatu proyek tertentu, rute perjalanan perlu dikenal unutk mengetahui adanya rintangan seperti kabel listrk yang rendah, overpass rendah, jembatan kecil, dan lain-lain. Seperti halnya crawler crane, truck crane ini juga mempunyai bagian atasnya yang dapat di putar 360 derajat.

Untuk menjaga keseimbangan alat, *Truck crane* memiliki kaki (*outringger*) seperti yang terlihat pada gambar 2.4. Dalam pengoperasiannya kaki tersebut harus dipasangkan dan roda diangkat dari tanah sehingga

keselamatan pengoperasian dengan *boom* yag panjang akan terjaga. Semakin keluar *outringger* maka *crane* akan semakin stabil. Hal tersebut perlu menjadi perhatian karena *crane* jenis ini sangat tidak stabil. Selain itu, kondisi dimana *crane* bekerja harus ideal, yaitu tanpa guncangan, permukaan tanah yang datar (*water level*), dan cuaca tanpa angin.

Gambar 2.5 truck crane beroda dengan outringger

Sumber: http://www.iwasaki-machinery.co.jp

Pada dasarnya *mobile crane* masih sejenis dengan *power shovel* dan *crawler* atau *wheel* excavator. *Mobile crane* juga terdapat *boom* yang disangga oleh struktur utamanya (*super structure flat form*) dapat berupa rangka (*lattice*) dari baja dengan alat kendali kabel dan hidrolis. Sebagai penggerak utamanya bisa menggunakan mesin diesel, bensin atau motor listrik, sedangkan untuk pengendalian hidrolis dipergunakan motor yang terpisah dari primer mover – nya²².

Umunya *mobile crane* dilengkapi dengan kabel baja tunggal sebagai alat pengangkatnya, yang terbentang dari titik *boom* hingga bagian bawah dan bisa berupa *hook, tong, bucket* dan sebaginya. *Mobile crane* dilengkapi dengan sekering beban terbesar. Jarak beban / kemiringan lengan berkisar atas 75% - 85% beban yang mengakibatkan tergulingnya *crane*²³.

o *Mobile crane* dengan kendali kabel²⁴

Mobile crane kendali kabel memiliki dua buah silinder untuk pengendalian kabelnya sebagai kabel pengangkat utama (*main - hoist*) dan ada dua silinder tambahan untuk kabel angkat tambahan (*jib - line*) yang berfungi untuk mengendalikan *boom*.

Kemampuan *mobile crane* didasarkan pada ukuran panjang *boom* – nya dan untuk memperbesar jangkauannya ke arah vertikal dan horisontal. Panjang *boom* – nya dapat ditambah atau *jib* – nya dipasang pada puncaknya. Namun dapat mengurangi kapasitas angkatnya. Untuk memberikan stabilitas akibat perpanjangan *boom*, bisa diberi *counter weight* yang dipasang di belakang *superstructure*.

o Mobil *crane* dengan kendali hidrolis²⁵

Mobil *crane* dengan kendali hidrolis (*hydraulic controlled*) perpanjangan *boom* – nya dapat di lakukan dengan segera di tempat, segitiga atau bulat. Gerakan *boom* di kendalikan oleh silinder hidrolis.

Mobile crane ini dapat di pasang pada beberapa base unit misalnya pada truck. Untuk superstructure – nya di pasang pada bagian belakang dari chassis truck dan tenaga penggeraknya operasinya terpisah dari tengah penggerak truk. Superstructure ini dapat berputar (revolving) dan untuk menjaga kestabilan alat pada saat bekerja. Maka dilengkapi dengan outtringger yang dapat di atur.

2.2.2 Produktivitas Alat

Berdasarkan kamus oxford cetakan ke – 9 pengertian produktivitas adalah kapasitas untuk produksi, keadaan menjadi sebuah daya produksi, efektivitas dari usaha produksi, khususnya dalam industri, usaha produksi per unit²⁶.

Secara umum produktivitas merupakan derajat efektivitas penggunaan tenaga kerja, alat, modal, bahan, dan waktu. Produktivitas merupakan pencapaian sasaran dengan cara yang paling efisien. Secara praktis, produktivitas dapat dikatakan sebagai jumlah jam kerja (*worked hours*) yang diperlukan untuk memproduksi sejumlah keluaran tertentu, dengan mengikutsertakan pula bahan mentah dan modal²⁷.

Secara teori, produktivitas adalah *output* dibagi *input*. Untuk produktivitas suatu alat, *output*nya diukur dari hasil pekerjaan yang dapat diselesaikan oleh alat yang bersangkutan per satuan waktu, misalnya m³ per jam. Sedang *input*nya adalah alat itu sendiri. Oleh karena itu dikenal dua jenis produktivitas, yaitu produktivitas individu alat, bila pekerjaan diselesaikan oleh alat itu sendirian, dan yang kedua adalah produktivitas kelompok/ grup alat, bila pekerjaan diselesaikan oleh sekelompok alat. Ada hubungan langsung antara produktivitas individu alat dan produktivitas kelompok alat, tetapi sifatnya tidak linier²8.

Biaya alat persatuan pekerjaan, seperti m³, m², m¹, ton, dan seterusnya, sangat dipengaruhi oleh produktivitas alat yang riil (kenyataan). Semakin tinggi kuantitas pekerjaan yang dihasilkan per satuan waktu (jam), maka biaya alat per satuan pekerjaan semakin rendah. Sebaliknya bila produktivitas alat rendah, maka biaya alat per satuan pekerjaan semakin tinggi. Oleh karena itu produktivitas alat sangat penting perannya dalam pengelolaan alat²9.

Rumusan Produktivitas dapat dijelaskan sebagai berikut:

PRODUKTIVITAS	=	<u>KELUARAN</u> (2.6)
		MASUKAN
	Ė	<u>BARANG DAN JASA</u> (2.7)
	А	ALAT,BURUH,MODAL,BAHAN,ENERGI ³⁰
PRODUKTIVITAS ALAT	날	Produk total(2.8)
7		Jumlah jam kerja (jam) ³¹

Pandangan produktivitas untuk keperluan definisi dan pemakaian tidaklah sama dan konsisten. Ada empat ruang lingkup produktivitas, yaitu³²:

- Ruang lingkup Nasional,
- Ruang lingkup industri,
- Ruang lingkup perusahaan dan organisasi,
- Ruang lingkup perorangan.

Secara umum produktivitas kerja alat, per satuan waktu (jam), dipengaruhi oleh banyak hal, yaitu³³:

 Kapasitas alat dari pabrik. Semakin besar kapasitas alat maka produktivitasnya juga besar,

- Kondisi medan kerja dan cuaca, kapasitas yang disebut oleh pabrik pembuat alat adalah kondisi yang ideal. Sehingga, bila kondisi medan kerja sulit, maka produktivitasnya akan menurun. Begitu juga kondisi cuaca yang jelek, menyebabkan alat tidak dapat bekerja secara sepenuhnya,
- Kemampuan dan motivator operator, bila kemampuan operator rendah, maka alat tidak dapat dioperasikan secara optimal, sehingga produktivitasnya menurun. Begitu juga bila motivasi operatornya rendah, walaupun kemampuannya tinggi, tetap saja akan menurunkan produktivitas alat, karena operator yang bersangkutan tidak melakukan pekerjaannya secara sungguhsungguh. Oleh karena itu dua faktor tersebut harus diperhatikan pada diri operator,
- Manajemen, manajemen yang lemah dapat memberikan dampak turunnya motivasi para operator, atau menyebabkan *idle time* alat yang tinggi, dimana kedua-duanya menyebabkan turunnya produktivitas alat,
- Komposisi alat (untuk pekerjaan yang dilaksanakan oleh lebih dari satu alat), komposisi yang kurang tepat dapat menyebabkan turunnya produktivitas, karena produktivitas kelompok sangat dipengaruhi oleh jumlah dan komposisi dari anggota alat.

Produktivitas berpengaruh terhadap kesuksesan manajemen yang diukur berdasarkan hasil (*output*), ini dapat dihasilkan dengan mendapatkan titik optimal dari produktivitas. Jika penelitian *output* dihasilkan kapasitas yang positif yang artinya adalah mendapatkan lebih banyak pekerja dibanding dengan tujuan yang tercapai pada proyek. Ini adalah menjelaskan produktivitas tinggi, fenomena yang jarang didalam industri konstruksi³⁴.

Manfaat pengukuran produktivitas yang dapat diambil untuk tingkat perusahaan adalah sebagai berikut³⁵:

- Organisasi dapat menilai efisiensi penggunaan sumber daya dalam menghasilkan barang dan jasa,
- Pengukuran dan produktivitas berguna untuk merencanakan sumber daya, baik untuk jangka pendek maupun jangka panjang,
- Usaha pengukuran produktivitas dapat dipakai untuk menyusun kembali tujuan ekonomi dan non ekonomi perusahaan,

- Berdasarkan hasil pengukuran, produktivitas pada saat ini dapat direncanakan target tingkat produktivitas di masa yang akan datang,
- Strategi untuk meningkatkan produktivitas dapat ditentukan berdasarkan perbedaan antara tingkat produktivitas yang direncanakan dengan tingkat produktivitas yang diukur,
- Pengukuran produktivitas dapat dipakai untuk membandingkan unjuk kerja manajemen dalam perusahaan yang sejenis, baik disektor industri maupun nasional,
- Nilai-nilai produktivitas yang dihasilkan dari pengukuran produktivitas dapat digunakan dalam perencanaan tingkat keuntungan perusahaan.

Langkah yang penting dalam meningkatkan produktivitas dalam suatu perusahaan atau organisasi adalah mendesain ukuran dan pelaksanaan ukuran produktivitas yang berarti. Beberapa kriteria yang dapat membantu mendapatkan suatu ukuran produktivitas yang berarti adalah³⁶:

a. Kesahihan (*validitas*)

Ukuran yang dapat secara tepat menggambarkan perubahan dalam produktivitas yang sebenarnya. Misalnya dalam mengukur produktivitas peralatan, ukuran produktivitas yang dinyatakan dalam beberapa buah produk yang dihasilkan perhari kadang-kadang bukan ukuran yang absah, karena lama penyelesaian untuk masing-masing produk berlainan.

b. Kelengkapan (Completeness)

Kelengkapan menunjukkan bahwa ketelitian seluruh keluaran atau hasil yang diperoleh dan masukan atau sumber yang digunakan, dapat diukur dan termasuk dalam nisbah produktivitas yang akan digunakan. Misalnya dalam menentukan jumlah alat kita tidak melihat jam kerja alat utamanya saja, tetapi juga harus melihat jam kerja alat sekundernya atau tidak langsungnya.

c. Dapat dibandingkan (*Comparabiility*)

Pentingnya pengukuran produktivitas terletak pada kemampuan untuk dapat membandingkan antara periode dengan periode, dengan tujuan atau dengan *standart*, sehingga dapat dilihat apabila penggunaan sumber lain lebih efektif atau tidak dalam mencapai hasil. Produktivitas adalah ukuran yang sifatnya relatif.

d. Ketermasukan (inclisiveness)

Biasanya pengukuran produktivitas tepusat pada kegiatan pembuatan produk, dan juga hanya terbatas pada beberapa unsur didalam kegiatan pembuatan tersebut. Jangkauan pengukuran kegiatan dalam proses produksi haruslah diperluas diluar pengukuran terhadap alat dan bahan baku yang biasanya dilakukan sehingga mencakup pula aspek kualitas, peralatan, dan fasilitas.

e. Berketetapan waktu (time lines)

Pengukuran produktivitas dimaksudkan sebagai alat yang efektif bagi manajemen, sehingga dapat dikomunikasikan pada setiap *manager* yang bertanggung jawab kepada bidangnya dalam waktu yang secepat-cepatnya tetapi masih dalam batas yang masih praktis untuk dilakukan.

f. Keefektifan biaya (cost efectiveness)

Pengukuran produktivitas haruslah dilakukan dengan memperhatikan biayabiaya yang berhubungan langsung maupun tidak langsung. Pengukuran harus pula dilakukan sedemikian rupa sehingga tidak menggangu usaha produktif yang sedang berjalan dalam organisasi.

Adapun penyebab kegagalan dalam produktivitas adalah³⁷:

- Jumlah tenaga kerja yang berlebihan untuk setiap jenis pekerjaan,
- Aliran material yang menyempit di lapangan sehingga menghambat saat operasi ini akibat dari metode pengiriman material yang rendah,
- Sisa material yang tinggi di dalam penyimpanan, pengantaran material yang salah tempat, atau kecerobohan pekerja,
- Perencanaan frekuensi detail yang berlebihan, gagal dalam inspeksi, gagal dalam pemeliharaan, dalam operasi terdapat tenaga kerja yang tidak terampil,
- Metode kerja yang tidak cocok dan gagal atau kondisi pekerjaan yang rendah,
- Laporan *progress* yang terlambat,
- Kegagalan dalam kemampuan tenaga kerja yang dimiliki, kecerobohan pekerja dan kualitas material yang rendah,
- Kegagalan yang disebabkan oleh subkontraktor,
- Kesalahan yang berlebihan, hasilnya terjadi pekerjaan ulang,
- Informasi yang tidak cukup selama proses pekerjaan,

- Keefektifan organisasi proyek lapangan yang rendah terhadap pekerjaan tambah,
- Laporan biaya yang besar,
- Kualitas desain rendah yang tidak memperhatikan risiko, metode yang tidak efisien,
- Keluhan pekerja yang berdampak pada operasi, fasilitas, peralatan, kondisi pekerjaan,
- Gangguan yang mengakibatkan proyek terganggu, kecelakaan, dan sisa material,
- Keamanan risiko dalam pekerjaan atau kecelakaan.

Alat berat dapat dikategorikan ke dalam beberapa klasifikasi. Klasifikasi tersebut adalah klasifikasi fungsional alat berat. Yang dimaksud dengan klasifikasi fungsional adalah pembagian alat tersebut berdasarkan fungsi alat utama. Faktor – faktor didalam pemilihan alat berat yaitu³⁸:

a. Fungsi yang harus dilaksanakan.

Alat berat dikelompokkan berdasarkan fungsinya, seperti untuk menggali, mengangkut, meratakan permukaan, dan lain-lain.

b. Kapasitas peralatan.

Pemilihan alat berat didasarkan pada volume total atau berat material yang harus diangkut atau dikerjakan. Kapasitas alat yang dipilih harus sesuai sehingga pekerjaan dapat diselesaikan pada waktu yang telah ditentukan.

c. Cara operasi.

Alat berat dipilih berdasarkan arah (horizontal maupun vertikal) dan jarak gerakan kecepatan, frekuensi gerakan, dan lain-lain.

d. Pembatasan dari metode yang dipakai.

Pembatasan yang mempengaruhi pemilihan alat berat antara lain peraturan lalu lintas, biaya, pembongkaran, dan metode metode konstruksi yang dipakai.

e. Ekonomi.

Selain biaya investasi atau biaya sewa peralatan, biaya operasi dan pemeliharaan merupakan faktor penting di dalam pemilihan alat berat.

f. Jenis proyek.

Ada beberapa jenis proyek yang umumnya menggunakan alat berat antara lain proyek gedung, pelabuhan, jalan, jembatan, irigasi, pembukaan hutan, bendungan, dan sebagainya.

g. Lokasi proyek.

Lokasi proyek juga merupakan hal lain yang perlu diperhatikan dalam pemilihan alat berat. Sebagai contoh lokasi proyek di dataran tinggi memerlukan alat berat yang berbeda dengan lokasi proyek di dataran rendah.

h. Kondisi Lapangan

Kondisi dengan medan yang sulit dan medan yang baik merupakan faktor lain yang mempengaruhi pemilihan alat berat.

Penentuan faktor input dan output dari produktivitas dipengaruhi oleh berbagai faktor eksternal berikut³⁹:

- Perubahan nilai inflasi harga
- Perubahan harga titik keseimbangan sumberdaya yang tersedia

2.2.3 Pembinaan Operator dan Mekanik Alat Berat

Secanggih apapun suatu alat, akhirnya manusia di belakang alat itulah yang menentukan hasil kerjanya, yaitu operator. Oleh karena itu bila kita mengelola peralatan apalagi dalam jenis yang banyak, pembinaan operator sangat penting artinya, dalam upaya untuk dapat mencapai sasaran-sasaran yang diinginkan. Operator alat perannya sangat besar dalam pengoperasian alat untuk dapat mencapai sasaran yang diinginkan. Setiap alat harus dioperasikan secara benar sesuai petunjuk *operating manual* dari alat yang bersangkutan dan operator yang mengoperasikan alat harus mampu/ cakap (sebaiknya bersertifikat), melalui suatu seleksi yang ketat. Sebaiknya setiap alat, operatornya tetap, jangan terlalu sering melakukan pergantian operator tanpa alasan yang cukup. Oleh karena itu disamping kualitas operator, juga perlu direncanakan berapa jumlah tenaga operator dan mekanik yang sebaiknya diperlukan sesuai dengan jumlah alat yang dimiliki⁴⁰.

Operator sangat berperan dalam menempatkan *mobile crane* pada waktu mengangkat *precast* girder, karena produksi dari organisasi alat pengangkat *precast* girder ditentukan pada saat pengangkatan girder.

Jumlah operator harus sesuai dengan jumlah alat yang dikelola, yang dihitung sebagai berikut :

a. Operator

Jumlah kebutuhan operator dihitung dengan rumus sebagai berikut:

$$O = Un \times Sn \tag{2.7}$$

Dimana:

O = Jumlah operator yang dibutuhkan

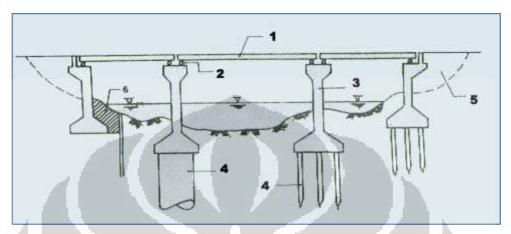
Un = Jumlah unit alat yang bekerja pada n shift

Sn = Banyaknya *shift*

b. Mekanik

Jumlah kebutuhan mekanik secara normal dapat dipakai pedoman sebagai berikut:

- I unit/ perangkat alat untuk pekerjaan penggunaan *Hot Mix*, yang terdiri dari 1 unit AMP dan 1 perangkat alat penebar, diperlukan: mekanik listrik 1 orang, mekanik kelas satu 1 orang, mekanik kelas dua 1 orang, mekanik kelas tiga 3 orang.
- 1 unit alat pekerjaan pemasangan *precast* girder yang dioperasikan secara individual dapat diambil rata-rata, satu orang mekanik untuk tiap lima alat.


2.3 Precast Girder

2.3.1 Karakteristik Pekerjaan Pemasangan Precast Girder

Jembatan adalah konstruksi yang dibangun untuk melewatkan suatu massa atau *traffic* lewat atas suatu penghalang⁴¹. Selanjutnya macam penghalang atau jenis penghalang dapat terdiri dari sungai, jalan raya, laut, waduk, jalan kereta api, dll. Apabila konstruksi tersebut kita bangun lewat bawah suatu penghalang, maka jenis konstruksi tersebut umumnya dapat kita sebut sebagai terowongan, *underpass* atau *tunnel*.

Sub sistem jembatan terdiri dari bangunan atas bangunan bawah, dan dilengkapi bangunan pelengkap jembatan, trotoar, *railing post*, dan *hand railing*. Bangunan bawah terdiri dari pondasi, abutment, dan pilar.

Bagian-bagian dari struktur utama dari konstruksi jembatan adalah⁴²:

Gambar 2.6 Bagian Struktur Jembatan

Sumber: http://arie-yona.blogspot.com/2010/05/struktur-jembatan.html

Keterangan gambar:

1. Bangunan Atas

Merupakan bangunan yang berfungsi sebagai penampung beban-beban yang ditimbulkan oleh lalu lintas kendaraan maupun orang dan kemudian menyalurkannya kepada bangunan bawah.

2. Landasan / abutment

Merupakan ujung bawah dari bangunan atas yang berfungsi menyalurkan gaya-gaya yang berasal dari bangunan atas menuju bangunan bawah. Biasanya 2 jenis yaitu landasan sendi dan landasan roll.

3. Bangunan Bawah

Merupakan bangunan yang berfungsi menerima dan memikul beban yang diberikan oleh bangunan atas dan kemudian menyalurkannya ke pondasi yang langsung berada di tanah.

4. Pondasi

Merupakan bagian pada jembatan yang berfungsi menerima beban-beban dari bangunan bawah dan menyalurkannya ke tanah. Struktur pondasi jembatan pada umunya adalah struktur pondasi dalam, bisa merupakan pondasi tiang pancang ataupun pondasi tiang cor.

5. Oprit

Merupakan timbunan tanah di belakang abutmen. Abutmen merupakan tiang yang berada di ujung jembatan, jika berada di tengah dan diapit oleh 2 abutment maka disebut pilar. Timbunan ini harus dibuat sepadat mungkin untuk menghindari terjadinya penurunan (settlement).

6. Bangunan Pengaman Jembatan

Merupakan bangunan yang berfungsi sebagai pengaman terhadap pengaruh sungai yang bersangkutan baik secara langsung maupun secara tidak langsung.

7. Struktur Kabel (tambahan)

Bila konstruksi jembatan adalah merupakan konstruksi jembatan kabel.

Flyover merupakan salah satu dari jenis jembatan beton yang berfungsi secara fisik menghubungkan dua tempat yang terhalang oleh kondisi bangunan atau jalan yang telah/akan ada. Kendala yang biasanya dihadapi oleh pembangunan proyek flyover adalah fungsi bangunan/jalan yang ada dibawahnya tidak boleh terganggu selama proses pelaksanaan jembatan layang⁴³.

2.3.2 Precast segmental girder⁴⁴

Dalam pelaksanaan konstruksi jembatan layang, girder yang digunakan dapat berupa *precast* atau cast in situ dan monolith atau segmental. Semuanya itu tergantung dari berbagai hal seperti lokasi proyek dan metode yang digunakan. Bentuk dari girder pun berbeda-beda, tergantung dengan kebutuhan.

I girder adalah gelagar dimana bentuk potongan melintangnya berbentuk huruf I⁴⁵. Prestressed concrete I Girder adalah balok beton yang berbentuk huruf I dimana tegangan-tegangan internal dangan besar serta distribusi yang sesuai diberikan sedemikian rupa sehingga tegangan-tegangan yang diakibatkan oleh beban-beban luar dilawan sampai suatu tingkat yang diinginkan. *Segmental concrete* girder adalah balok beton yang pada umumnya pracetak dan *post tensioned*, dalam bentuk yang digabungkan⁴⁶.

Penggunaan *precast* lebih umum dikerjakan pada proyek jembatan layang. Balok *precast* adalah komponen struktur beton yang dicor ditempat bukan merupakan posisi terakhir komponentersebut dalam suatu struktur, melainkan di

cor di lokasi pabrik. Karakteristik dari konstruksi *precast* adalah fabrikasi segmen dapat dilakukan ketika substruktur sedang dikerjakan, sehingga dapat mempercepat kecepatan *erection* dari superstruktur⁴⁷. Material yang biasa digunakan dalam pelaksanaan *precast* segmental girder adalah *precast* segmental girder, *post tensioned strand*, *epoxy*, dan bahan *grouting*.

Dalam pelaksanaan suatu konstruksi jembatan, tipe girder disesuaikan dengan kebutuhan dan panjang bentang. Biasanya *flyover* menggunakan segmental girder tipe I karena bentangnya lebih kecil dari 40 meter. Hal ini seperti yang tertera pada tabel rentang apliaksi jembatan dari konstruksi segmental.

Tabel 2.1 rentang aplikasi jembatan dari konstruksi segmental

Span	Tipe jembatan
0-150 ft	Girder tipe I
100-300 ft	Box girder cast in place post-tensioned
100-300 ft	Precast balanced cantilever segmental, tinggi
	konstan
250-600 ft	Precast balanced cantilever segmental, tinggi
	bervariasi
200-1000 ft	Cast in place cantilever segmental
800-1500 ft	Cable stay with balanced cantilever segmental

Sumber: podolny dan muller, 1982

Dalam penggunaan *precast* segmental girder, umumnya ada batasan-batasannya, yaitu ⁴⁸:

- 1. Lokasi proyek yang berada di tengah kota, sangat berpengaruh pada metode pelaksaan yang digunakan.
- 2. Waktu pelaksanaan proyek dengan dana yang dibatasi
- 3. Kualitas pelaksanaan proyek dan produk yang dihasilkan harus sesuai dengan spesifikasi yang telah ditetapkan
- 4. Pekerjaan yang dilaksanakan oleh subkontraktor perlu schedulling yang pasti dan disesuaikan dengan jadwal pelaksanaan kontraktor utama.

Dalam penggunaan *precast* segmental girder, urutan pekerjaan yang dilakukan adalah⁴⁹:

1. Produksi segmen-segmen di pabrik

Produksi segmen dapat dilakukan apabila gambar kerja telah disetujui. Produksi segmen dapat dilakukan pada supplier yang telah ditunjuk. Produksi segmen dapat dilakukan saat proyek baru berjalan seperti saat *site preparation*, jauh sebelum girder dibutuhkan. Ini merupakan keuntungan *precast* girder

2. Buat stressing bed dilokasi

Stressing bed perlu diperhatikan. Stressing bed biasa menggunakan kayu (wooden sleeper) ukuran 8x15 cm

3. Delivery segmen ke lokasi

Delivery segmen perlu diperhatikan. Alat yang digunakan saat delivery segmen daah trailer atau truck, bantalan kayu, rantai atau kawat baja untuk mengunci, crane. Saat delivery, sebaiknya dilakukan pada malam hari saat arus lalu lintas tidak ramai.

4. Install segmen di lokasi

Setelah segmen – segmen girder sampai dilokasi, segmen diturunkan dan diletakkan di tempat penyimpanan. Saat ingin digunakan, dilakukan instalasi segmen dengan mencocokkan kode-kode pada segmen girder sehingga menjadi girder utuh.

5. Stressing process dan bonding segmen

Stressing process dilakukan sesuai dengan kapasitas rencana. Segmen yang ada dilem sehingga menjadi girder utuh, dimasukkan tendon yang dibutuhkan, dan dilakukan stressing sesuai dengan rencana. Setelah stressing dilakukan grouting pada lubang tendon. Saat grouting, diberi gauge untuk mengetahui ada atau tidaknya kebocoran dan blocked pada saar grouting.

6. Curing time

Setelah *stressing* dilakukan, dilakukan proses *curing*. Hal ini bertujuan untuk girder menjadi monolith dan mencapai kekuatan yang diinginkan.

7. Erection/launching

Setelah *curing* selesai, dilakukan *erection* dengan menggunakan *double crane*. Saat *erection* dengan menggunakan *double crane*, terdapat koordinator yang mengkoordinasikan proses selama *erection* girder berjalan. Saat *erection* perlu diperhatikan kecapatan dari kedua *crane*, pemberian *support* setelah mendudukkan girder ditempatnya, dan hal lainnya. Saat *erection*, perlu juga diperhatikan titik angkat girder, pengangkatan dilakukan pada *center of gravity* dari girder⁵⁰. Biasanya girder diangkat pada ¼ bentang tiap sisi dengan menggunakan *crane*. Saat *erection*, *stressing* yang bekerja pada sling perlu dihitung⁵¹. Setiap gaya yang bekerja harus berada pada titik keseimbangan. Untuk menghitung *stressing* saat *erection*, dapat menggunakan persamaan:

$$Nx\cos\alpha = \frac{T}{2\tan\alpha}$$

Dimana:

W = berat benda

T = tensioned pada kabel

N = stress pada sling

Nx $\cos \alpha = \text{reaksi horizontal}$

A = sudut antara beban dengan setiap sling

Hal-hal yang perlu diperhatikan dalam pelaksaan segmental girder adalah :

- Perencanaan pengiriman dan penanganannya
 - Setiap segmen pada PC girder diberi tanda sesuai dengan posisi yang ada di lapangan
 - 2. Pengaturan tiap segmen per balok yang telah selesai sejak dipabrik witon
 - 3. Pengaturan tipikal tata letak tempat penyimpanan
 - 4. Pengaturan pengiriman berdasarkan data-data yang ada

5. Peralatan yang digunakan : trailer / truck, bantalan kayu, rantai atau kawat baja untuk mengunci, *crane*

6. Urutan pekerjaan :

- a. Penggambaran tata letak penyimpanan balok sesuai dengan persediaan aktual dan pengecekan ulang tanda pada setiap segmen per balok
- Menempatkan trailer / truck sejajar denga persediaan segmen per balok
- c. Memasang bantalan kayu pada setiap segmen yang akan dikirim dengan trailer / truck
- d. Mengangkat segmen balok ke trailer / truck dengan gantry / crane
- e. Menyesuaikan posisi segmen balok dengan bantalan kayu pada trailer / truck
- f. Mengunci dengan kabel baja atau rantai untul keselamatan dan keamanan
- g. Pengecekan terakhir untuk memastikan semuanya sebelum dikirim ke lapangan
- h. Pengiriman ke lapangan dengan menyertakan sertifikat prodik
- i. Menempatkan truck / trailer sejajar dan dekat dengan lokasi penyimpanan
- j. Melepaskan kabel baja atau rantai pada trailer atau truck
- k. Menempatkan *crane* sejajar dan dekat dengan trailer atau truck
- 1. Mengatur kabel baja untuk mengangkat segmen balok
- m. Mengangkat segmen balok dari trailer / truck ke lokasi penyimpanan dengan *crane*
- n. Mengatur posisi per segmen sesuai dengan tata letak
- Persiapan lokasi tempat penyimpanan

Penyimpanan dapat dilakukan dengan:

- 1. Rigid *pavement* existing yaitu dengan menggunakan bantalan kayu sesuai dengan lahan
- 2. Diatas permukaan tanah yaitu dengan cara menggunakan pelat beton dan bantalan kayu setelah tanah diratakan dan dipadatkan

• Stressing bed

Lokasi *stressing bed* pada rigid *pavement* dibersihkan terlebih dahulu dan dicek kerataan permukaannya denga peralatan survei untuk menandai posisi untuk tiap segmen perbalok. Bahan bantalan terbuat dari kayu ukuran 8 x 15 cm

• Sarana pendukung lainnya

Peralatan yang digunakan untuk mendukung proses penyimpanan PCI girder harus disiapkan sesuai dengan jumlah dan kapasitasnya. Selain itu, material yang ada sesuai dengan spesifikasi pada umumnya.

• Pelaksanaan *erection* / launching

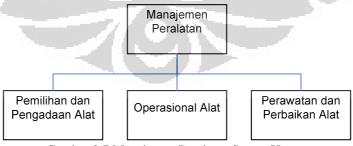
Erection girder diatur beberapa tahapan, mengikuti kemajuan fisik dari pier. Erection / launching PCI girder membutuhkan metode konstruksi yang detail mengenai posisi crane dilokasi pelaksanaan ketika penempatan girder, pengalihan lalu lintas, dan lain-lain.

Untuk pelaksanaan *erection* girder, biasanya menggunakan double *crane* yang mengangkat girder kedua sisi secara bersamaan⁵² seperti gambar Contoh pelaksanaan erkesi menggunakan doble *crane*.

Sedangkan untuk pelaksanaan *launcing* girder, biasanya menggunakan *gantry* yang mendorong girder menggunakan kereta (roll) untuk diterima kerekan yang dipasang di *gantry*⁵³ seperti pada gambar Contoh pelaksanaan launching menggunakan *gantry*

Dalam pelaksanaan *precast* segmental girder, masalah yang terkadang muncul adalah apabila install segmen tak lurus dimungkinkan pecah pada key (joint segment) pada saat *stressing process*, *bonding agent* pada joint seringkali terlihat tak rapi, dan terkadang *stressing process* tak mulus karena lubang tendon tak 100% lurus sehingga kemungkinan terjadi *blocked* saat *grouting* besar sekali⁵⁴

2.4 Manajemen Peralatan dalam Pekerjaan Pemasangan Precast Girder


Dalam lingkup proyek konstruksi, biaya dan produktivitas merupakan dua hal yang berkaitan erat. Biaya yang rendah dan pencapaian produktivitas alat yang tinggi dapat dicapai dengan upaya-upaya sebagai berikut⁵⁵:

- Peningkatan dalam peralatan konstruksi dan metode kerja
- Peningkatan dalam manajemen peralatan

Jadi manajemen peralatan merupakan salah satu faktor yang patut diperhitungkan didalam usaha mencapai kinerja proyek sebaik mungkin khususnya dalam mencapai produktivitas alat yang tinggi. Keberadaannya harus ikut diperhitungkan secara tepat dalam pelaksanaan proyek sering kali dalam peralatan konstruksi melibatkan pembelanjaan anggaran biaya alat dengan mata uang asing. Karena itu suatu perencanaan dan manajemen dalam peralatan konstruksi menjadi sangat penting⁵⁶.

Manajemen peralatan merupakan salah satu bagian dari manajemen konstruksi yang mempunyai tujuan menyelesaikan proyek dengan tepat waktu, sesuai anggaran dan sesuai dengan rencana serta spesifikasi proyek. sehingga dengan manajemen peralatan, komponen biaya alat dalam pemilihan, pengoperasian dan pemeliharaan alat dapat dikendalikan⁵⁷.

Manajemen peralatan yang baik diawali dengan pemilihan alat yang benar artinya sesuai dengan kondisi pekerjaan. Dan hal tersebut dapat memberikan total biaya alat yang terendah. Dimana dalam total biaya terendah tersebut merupakan kombinasi dari produksi maksimal yang dihasilkan alat tersebut dengan biaya operasional terendah. Secara substansial, manajemen peralatan menyangkut keputusan yang berkaitan dengan biaya total proyek. Lingkup manajemen peralatan yang diawali dengan pemilihan peralatan, secara garis besar seperti dalam gambar 2.1 ⁵⁸.

Gambar 2.7 Manajemen Peralatan Secara Umum

Sumber: Ananto, Ovy Dwi. Tesis UI, 2002. Hal. 9

Apabila dilihat dari sisi faktor geografis, maka kondisi internal dan eksternal proyek akan selalu berbeda. Hal ini mempengaruhi perencanaan untuk unit pengangkatan khususnya pengoperasian *mobile crane* untuk melakukan

pengangkatan *precast* girder ke tempatnya, karena berkaitan dengan kondisi lalu lintas disekitar proyek maka waktu siklus penggunaan *mobile crane* untuk melakukan pengangkatan *precast* girder semakin sedikit karena dalam operasionalnya harus disesuaikan dengan lalu lintas yang padat⁵⁹.

Untuk pekerjaan pemasangan *precast* girder, faktor – faktor lain yang perlu diperhatikan sehubungan dengan penggunaan peralatan pangangkat adalah⁶⁰ :

- Kondisi *site*: hal ini berkaitan dengan *space* atau ruang gerak dan manuver peralatan baik untuk *mobile crane*.
- Waktu untuk melakukan pekerjaan : dalam hal ini adalah kapan waktu bagi alat tersebut untuk melakukan pekerjaan dikarenakan oleh padatnya lalu-lintas di sekitar lokasi proyek.
- Nilai kontrak pekerjaan : kontrak pekerjaan meliputi semua keterbatasanketerbatasan dalam proses pekerjaan yang disetujui oleh pihak owner dan kontraktor

Disamping digunakan dalam proses pemilihan peralatan, juga dipakai pada saat pengendalian peralatan pada tahap konstruksi. Pada tahap ini *manager* harus memonitor dengan teratur dan mengevaluasi kemajuan proyek dari produktifitas sumber daya dengan menggunakan proses manajemen yaitu merencanakan, memantau, dan fungsi kontrol. Dihubungkan dengan pengendalian peralatan, laporan informatif tentang peralatan dapat dilakukan dengan memantau penggunaan peralatan yang dapat digunakan dalam upaya menghindari kesalahan-kesalahan yang mungkin terjadi di lapangan⁶¹.

2.4.1 Sistem Operasional Peralatan dalam Pekerjaan Pemasangan *Precast*Girder

Dengan mempertimbangkan faktor biaya alat sehingga produktivitas alat yang tinggi dapat tercapai maka dalam hal pekerjaan pemasangan *precast* girder kebutuhan akan peralatan pengangkat *precast* girder mutlak adanya⁶².

2.4.2 Pemeliharaan dan Perbaikan Peralatan

Rata-rata semua peralatan konstruksi akan menurun kondisinya seiring dengan usia dan penggunaanya. Peralatan dalam pekerjaan pemasangan *precast* girder yang sering dipekerjakan dalam kondisi kerja yang berat. Kesempatan

untuk terjadi kegagalan dalam operasional dapat dikurangi dengan pencegahan dan perawatan yang benar. Sehingga produktivitas peralatan dapat ditingkatkan melalui perbaikan dan penggantian komponen atau *spare part*⁶³.

Untuk mendapatkan keuntungan yang maksimal, peralatan harus dioperasikan secara benar dengan tetap menjaga kesesuaian pada kondisi kerja di proyek. Selain itu pemeliharaan dan perbaikan dilakukan untuk menjaga peralatan bekerja pada efisiensi yang tinggi. Perawatan yang rutin merupakan kunci untuk mendapatkan hasil kerja alat yang bagus⁶⁴.

Selain itu operator dan mekanik yang berpengalaman. Mendukung agar peralatan dapat beroperasi secara benar. Pada dasarnya suatu kerugian dapat diawali dalam cara pemeliharaan alat tersebut seperti dapat dilihat dalam gambar 2.7 ⁶⁵.

Gambar 2.8 Skema Penurunan Kondisi Alat Sumber: Ananto, Ovy Dwi. Tesis UI, 2002. Hal. 15

Pemeliharaan alat berat membantu agar kecelakaan yang terjadi sejarang mungkin. Pekerjaan pemeliharaan secara teratur juga akan menghindarkan kerusakan yang berat dan pengeluaran biaya perbaikan yang tinggi. Suku cadang alat biasanya merupakan komponen import yang harus didatangkan dari luar negeri sehingga cukup mahal dan berbasis dollar. Oleh karena itu pemantauan kondisi alat dan pemeliharaan secara teratur akan sangat bermanfaat⁶⁶.

Biaya perbaikan / pemeliharaan untuk menjaga kondisi alat agar dapat bekerja normal dan baik perlu adanya pemeliharaan, penggantian suku cadang dengan yang baru. Faktor yang mempengaruhi besarnya biaya perbaikan alat adalah kondisi pemakaian alat, kecakapan operator dan adanya perawatan yang memadai. Besarnya faktor untuk menentukan biaya perbaikan dan pemeliharaan

biasanya sudah ada rekomendasi dari pabrik pembuat alat, yang besaranya tergantung dari kondisi pemakaiannya⁶⁷.

Dengan menggunakan alat – alat berat, terutama untuk bangunan yang besar, maka dibutuhkan pemimpin buruh bangunan yang juga mempunyai keahlian dalam pemeliharaan mesin dalam *alat – alat* tersebut agar tingkat kerusakan alat menjadi rendah. Pekerjaan pemeliharaan secara teratur, juga akan menghindarkan kerusakan yang berat dan biaya perbaikan yang tinggi. *Alat – alat* dan suku cadang mesin biasaya dibeli dari luar negeri sehingga akan mahal sekali, maka pemeliharaan penggunaan mesin dan *alat – alat* berat secara teratur akan sangat bermanfaat. Pemeliharaan mesin dan *alat – alat* berat sangat dibutuhkan sehingga kemungkinan kerugian atas mesin dan *alat – alat* berat tersebut dapat dikurangi⁶⁸.

2.4.3 Pengontrolan Alat dan Suku Cadang Alat Berat

Pengontrolan sangat perlu dilakukan dengan teratur dan teliti supaya diketahui masih tidak adanya stok alat dan suku cadang disimpan. *Alat – alat* dan bahan bakar yang masuk dan keluar harus selalu dicatat secara teliti mengenai jumlah, merk, dan sebagainya. Pengeluaran/ permintaan suku cadang disediakan formulir kartu permintaaan suku cadang (*spare part*), *control* penggunaan bahan bakar/ pelumas dilakukan dengan bon pemakaian⁶⁹.

2.4.4 Efisiensi Alat Berat

Dalam pelaksanaan pekerjaan dengan menggunakan alat berat terdapat faktor yang mempengaruhi produktivitas alat yaitu efisiensi alat. Bagaimana efektivitas alat tersebut bekerja tergantung dari beberapa hal, yaitu :

- Kemampuan operator pemakai alat
- Pemilihan dan perbaikan alat
- Perencanaan dan pengaturan letak alat
- Topografi dan volume pekerjaan
- Kondisi cuaca
- Metode pelaksanaan alat

Cara yang umum dipakai untuk menentukan efisiensi alat adalah dengan menghitung berapa menit alat tersebut bekerja secara efektif dalam satu jam.

Contohnya jika dalam satu jam waktu efektif alat bekerja adalah 45 menit maka dapat dikatakan efisiensi alat adalah 45/60 atau 0,75⁷⁰.

2.4.5 Pengadaan Alat

Pengadaan alat, sering terjadi karena kebutuhan yang mendesak atau memaksa karena harus menyelesaikan suatu proyek, dimana alternative lain tidak tersedia. Hal seperti itu harus dihindari, yaitu dengan cara membuat perencanaan pengadaan yang masak tentang kebutuhan alat yang didasarkan dua hal, yaitu :

- Untuk memenuhi pekerjaan-pekerjaan yang sedang atau yang akan dihadapi
- Untuk menghadapi suatu prakiraan kemungkinan digunakannya alat tersebut pada waktu yang akan datang

Hal yang pertama lebih mudah dalam menentukan jenis, *type*, jumlah alat yang diperlukan, tetapi untuk hal yang kedua diperlukan suatu analisis data potensi pasar yang akan datang, untuk dapat menetapkan jenis, *type*, dan jumlah alat yang diperlukan⁷¹.

2.4.6 Umur Ekonomi Alat Berat

Seperti benda-benda yang lain, alat konstruksipun memiliki batas waktu/ umur ditinjau dari manfaat ekonomis. Artinya selalu dibandingkan antara *cost* dan *benefit*nya. Didalam manajemen peralatan, umur dari alat dibatasi pada umur ekonominya. Arti umur ekonomi adalah batas waktu dimana suatu alat sudah tidak ekonomis lagi, walaupun terkadang alat tersebut masih dapat berfungsi, namun biaya yang dikeluarkan lebih besar dari nilai hasil kerja yang dihasilkan (manfaat ekonomi). Untuk memperpanjang umur ekonomi suatu alat dapat ditempuh dengan cara melakukan rekondisi pada saat alat sudah mulai menurun kapasitasnya. Sedang usaha pemeliharaan secara baik dan teratur diharapkan agar suatu alat dapat mencapai batas umur ekonominya⁷².

2.4.7 Pengoperasian Alat Berat

Dalam rangka mencapai produktivitas dan utilitas dari suatu alat, maka penggunaan alat perlu memperhatikan hal-hal sebagai berikut⁷³:

 Cara pelaksanaan harus sesuai dengan metode yang telah ditetapkan, kecuali bila ada pemikiran baru untuk peningkatan efisiensi alat di lapangan, meliputi posisi alat, urutan kerja dan cara kerjanya,

- Setiap alat harus dioperasikan secara benar sesuai petunjuk operating manual dari alat yang bersangkutan,
- Operator yang mengoperasikan alat harus mampu/ cakap (sebaiknya bersertifikat), melalui suatu seleksi yang ketat. Sebaiknya setiap alat, operatornya tetap, jangan terlalu sering melakukan pergantian operator tanpa alasan yang cukup,
- Dipikirkan hambatan cuaca dan hambatan lain untuk dapat menekan idle time sekecil mungkin,
- Hindari penggunaan alat yang mungkin dapat menggangu kepada sekitarnya,
- Perlu dibuat jadwal kerja dari masing-masing alat dengan mempertimbangkan saling keterkaitannya,

Melakukan pemeliharaan rutin sesuai aturan.

2.4.8 Keselamatan dan Kesehatan Kerja (K3)

Pekerjaan konstruksi terutama yang menggunakan alat berat, sangat berisiko terjadinya kecelakaan kerja. Menurut penelitian yang telah banyak dilakukan, membuktikan bahwa industri konstruksi termasuk industri yang rawan kecelakaan kerja. Beberapa penyebab kecelakaan kerja di industri konstruksi antara lain adalah: banyak kegiatan yang rawan terhadap kecelakaan, jenis pekerjaan yang tidak standar, *turn over* pekerja yang tinggi, kemajuan teknologi, penggunaan alat berat, dan lain sebagainya. Oleh karena itu dalam pelaksanaan penggunaan alat berat, ada beberapa pedoman yang dapat dijelaskan sebagai berikut⁷⁴:

- Pergunakanlah topi, sarung tangan, dan sepatu pengaman,
- Apabila bekerja dalam satu tim gunakanlah aba-aba yang telah disepakati,
- Cegahlah orang-orang yang tidak berkepentingan untuk tidak mendekati alat berat ketika pekerjaan inspeksi dan perawatan sedang dilakukan,
- Pergunakanlah spare part asli,
- Pergunakanlah *grease* dan oli sesuai dengan anjuran pabrik pembuatnya,
- Pergunakanlah grease dan oli yang bersih,

Periksa atau gantilah oli dan *grease* pada tempat yang tidak berdebu dan terlindung dari air hujan.

2.4.9 Pengendalian Alat dalam Pelaksanaan Konstruksi

Pengendalian membantu *manager* memonitor efektifitas perencanaan, pengorganisasian, dan kepemimpinan, serta mengambil tindakan korektif sesuai dengan kebutuhan. Pengendalian manajemen adalah proses untuk memastikan bahwa aktivitas sebenarnya sesuai dengan aktifitas yang direncanakan.

Definisi Robert J Mockler mengenai pengendalian menunjukan elemen esensial dari proses pengendalian: "Pengendalian manajemen adalah usaha sistematis untuk menetapkan standar prestasi kerja dengan tujuan perencanaan, untuk mendisain sistem umpan balik informasi, untuk membandingkan prestasi uang sesungguhnya dengan standar yang telah ditetapkan terlebih dahulu, untuk menetapkan apakah ada deviasi dan untuk mengukur signifikannya, serta mengambil tindakan yang diperlukan untuk memastikan bahwa sumber daya perusahaan dengan cara seefektif dan seefesien mungkin untuk mencapai tujuan⁷⁵.

2.4.10 Penyusunan Jadwal

Dalam pelaksanaan suatu pekerjaan yang membutuhkan *alat – alat* berat. Sering kita jumpai penggunaan peralatan yang lebih dari satu jenisnya. Misalnya pada suatu proyek membutuhkan *alat – alat* berat untuk jenis pekerjaan *clearing* dengan *Bulldozer* atau *scraper*, kemudian membutuhkan alat gali berupa *backhoe* atau *dragline*. Dibutuhkan juga alat pemuat berupa *loader* dengan alat pengangkut berupa *dump Truck* serta alat pampat berupa *roller*.

Setelah pemilihan alat berat dilakukan, maka selanjutnya dilakukan perhitungan produksi dan kebutuhan waktu untuk menyelesaikan dari masingmasing pekerjaan. Berdasarkan perhitungan waktu penyelesaian dari masingmasing pekerjaan atau masing-masing alat dapat dibuat jadwal pengoperasiannya. Apabila alat berat yang digunakan harus disewa, maka harus dijadwalkan dengan baik, sehingga selama waktu sewa alat berat tersebut dapat dimanfaatkan secara optimal. Hal-hal yang dibutuhkan untuk penyusunan jadwal pekerjaan berupa hal-hal sebagai berikut:

- Waktu pelaksanaan,
- Jenis dan volume pekerjaan,
- Jumlah dan jenis pekerjaan,

• Pola dasar operasi peralatan.

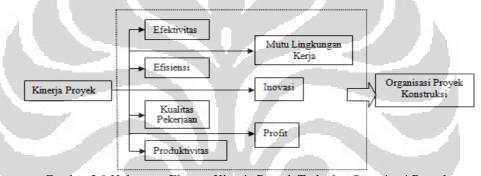
Umumnya proyek-proyek diawali dengan perencanaan penyusunan jadwal pelaksanaan pekerjaan yang biasanya berbentuk *barchart*. Dengan *barchart* tersebut dapat memberikan informasi, kapan suatu pekerjaan harus dimulai dan diakhiri⁷⁶.

2.4.11 Penggunaan Jasa Kontraktor/ Konsultan

Salah satu keputusan penting sebelum memulai melaksanakan kegiatan proyek adalah menentukan siapa yang akan diserahi tanggung jawab menangani penyelenggaraan proyek. Dalam hal ini terbuka pilihan-pilihan sebagai berikut⁷⁷:

- Dikerjakan sendiri oleh pihak pemilik dengan memakai tenaga yang tersedia diperusahaan,
- Menggunakan jasa konsultan,
- Menggunakan jasa kontraktor utama,
- Memanfaatkan kombinasi kemungkinan-kemungkinan diatas.

Penentuan atas pilihan-pilihan tersebut sebagian besar tergantung pada kesiapan organisasi pemilik untuk melaksanakan penyelenggaraan proyek dipandang dari sisi efisiensi dan ekonomi. Dalam hubungan ini perlu pula diingat bahwa barangkali tersedia perusahaan-perusahaan professional yang menyediakan pelayanan bidang konsultasi/ konstruksi kepada pemilik sesuai dengan keperluannya. Hal ini perlu dipertimbangkan dengan alasan sebagai berikut :


- Perusahaan-perusahaan engineering dan konstruksi yang baik mempunyai keahlian, pengalaman, dan spesialisasi dalam bidangnya sehingga dapat diharapkan mampu melaksanakan pekerjaan secara efisien dan ekonomis.
- Konsultan yang mempunyai kualifikasi seperti diatas dalam bidangnya dapat membantu pemilik mengerjakan berbagai paket studi serta memberikan dukungan keahlian dalam rangka memonitor dan mengendalikan implementasi fisik. Suatu studi yang dipersiapkan secara professional akan sangat berguna bagi bahan pengambilan keputusan oleh pemilik.

Kontraktor yang professional, dalam membuat nilai yang diperkirakan, tetapi tetap menggunakan faktor kunci yang pasti, yaitu antara lain meliputi, halhal sebagai berikut⁷⁸:

- Construction schedule,
- Construction technology (construction method),
- Dasar produktivitas tenaga kerja,
- Metode estimasi.

2.5 Produktivitas Bagian dari Kinerja Proyek Konstruksi

Produktivitas merupakan bagian dari kinerja proyek secara keseluruhan. Hal ini dinyatakan oleh Sink (1995) bahwa kinerja proyek pada dasarnya terdiri dari 7 elemen yaitu : efektivitas, efisiensi, kualitas, produktivitas, kualitas lingkungan kerja, inovasi dan profitabilitas. Diantara ke tujuh elemen tersebut memiliki hubungan terhadap organisasi proyek konstruksi seperti pada gambar 2.4 ⁷⁹.

Gambar 2.9 Hubungan Elemen Kinerja Proyek Terhadap Organisasi Proyek Sumber : Maloney, W. F. "Framework Analysis Of Performance." ASCE Journal, 1990

Dari kinerja proyek yang memiliki tujuh elemen tersebut, masing-masing elemen harus menjadi bagian dari organisasi proyek, termasuk salah satunya adalah produktivitas. Produktivitas yang sebenarnya dan utama pada dasarnya adalah suatu konsep yang semestinya dapat terukur dengan *standart engineering*. Pengukuran produktivitas merupakan suatu alat manajemen penting mengingat kegunaan dalam membantu mengevaluasi perencanaan biaya melalui identifikasi faktor – faktor yang mempengaruhi proses konstruksi. Produktivitas dapat didefinisikan dalam suatu cara, yang bergantung pada pekerjaan yang sedang dilakukan, secara sederhana merupakan perbandingan *output* dan *input*⁸⁰.

2.5.1 Pengukuran Kinerja Produktivitas Peralatan

Produktivitas suatu kegiatan, termasuk kegiatan pemasangan *precast* girder sangat berkaitan dengan biaya kegiatan tersebut, karena produktivitas

menunjukkan berapa keluaran yang dihasilkan persatuan waktu, sehingga semakin tinggi produktivitasnya akan menjamin turunnya biaya persatuan *output* yang dihasilkan. Sebaliknya kalau produktivitasnya rendah akan cenderung menyebabkan naiknya biaya⁸¹.

Pengukuran produktivitas mempunyai pengertian yang berbeda-beda sesuai dengan aplikasinya dalam area yang berbeda dalam industri konstruksi. Dan jangkauan definisinya dari sektor industri konstruksi hingga pada parameter ekonomi yang lebih luas⁸². Dan masing-masing pengukuran ini mempunyai tujuan khusus.

Menurut *The Departement Of Commerce, Congres, and other governmental agencies* menggunakan definisi produktivitas sebagai :

$$Faktor\ Produktivitas\ Total = \frac{Output}{Tenaga\ Kerja+Material+Energi+Modal}$$
(2.7)

Tetapi model seperti di atas adalah sangat tidak akurat bila dipergunakan oleh kontraktor karenanya sulitnya memprediksikan faktor – faktor *input* yang bervariasi. Oleh karena itu untuk proyek yang sifatnya khusus perlu dilakukan penyesuaian dari model diatas. Bagi sebuah kontraktor adalah lebih memungkinkan untuk mendefinisikan produktivitas menggunakan model yang sederhana seperti dalam persamaan berikut:

$$Produktivitas = \frac{Output}{Tenaga\ Kerja + Equipment + Material}$$
(2.8)

Sehingga dengan logika di atas dapat diterapkan untuk mengukur produktivitas peralatan dengan persamaan berikut :

$$Produktivitas Alat = \frac{output}{Alat}$$
 (2.9)

Dalam hal ini, alat sebagai *input* diwakili oleh biaya alat. Dari model diatas, unit *output* lebih cenderung merupakan nilai-nilai yang umum dari suatu pekerjaan. Dari model ini produktivitas dipaparkan sebagai unit *output* per satuan nilai uang (Rp).

Produktivitas bukanlah suatu perhitungan kuantitas, tetapi adalah suatu resiko atau perbandingan dan merupakan suatu pengukuran matematis dari suatu tingkat efisiensi⁸³. Secara parsial produktivitas di atas menunjukan rasio antara keluaran dengan satu kelas masukan. Secara garis besar setiap variabel dapat dinyatakan dalam satuan fisik atau satuan nilai rupiah. Karena produktivitas menyatakan rasio antara *output* dan *input* maka dalam pekerjaan pengukuran produktivitas terlebih dahulu harus disusun definisi kerja dan kemudian cara mengukur terhadap *output* dan *input*. Dalam manajemen konstruksi sumber daya yang pokok dan dapat berperan sebagai *input* serta harus dipertimbangkan adalah⁸⁴:

- Uang,
- Peralatan,
- Tenaga kerja,
- Material.

Produktivitas merupakan masalah yang utama agar pekerjaan memperoleh hasil yang diinginkan, dimana produktivitas ini dapat dipengaruhi oleh salah satu sumber daya seperti tersebut diatas ⁸⁵.

Untuk pengukuran produktivitas peralatan banyak yang dirumuskan dengan suatu rumus pendekatan, dimana perhitungan tersebut didasarkan pada siklus waktu alat beroperasi (cycle time) dan sifatnya sangat kondisional sekali artinya faktor – faktor yang diperhitungkan mengacu pada kondisi fisik alat yang begitu komplek dan saling mempengaruhi. Siklus waktu atau cycle time adalah waktu atau tahapan dari pekerjaan suatu alat yang diulang untuk memproduksi suatu unit output.

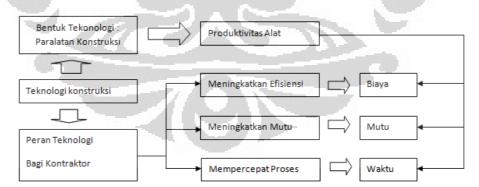
Aplikasi konfigurasi yang sederhana untuk pekerjaan pemasangan *precast* girder yang paling sederhana adalah pemakaian *excavator* dan *dump Truck*. Peneliian dilakukan oleh cristian dan xie (1996) menyatakan bahwa perhitungan produktivitas alat untuk pekerjaan pemasangan *precast* girder yang berdasarkan siklus waktu atau *cycle time* pada dasarnya akan melibatkan faktor – faktor alat yang sangat banyak yang mempengaruhi laju dimana peralatan digunakan dalam operasional. Sehingga dengan berdasarkan *cycle time* harus dicermati bahwa ada kesulitan dalam memperkirakan faktor – faktor individu alat. Dan hasil penelitian

tersebut mengindikasikan bahwa ada perbedaan pendapat yang sangat jelas untuk menentukan faktor – faktor individu alat yang mempengaruhi produktivitas alat tersebut.

Dilihat dari kenyataan perhitungan kinerja produktivitas alat seperti diatas dapat juga dilakukan pendekatan lain menggunakan model sederhana yang mewakili tujuan dari perhitungan produktivitas alat. Seperti telah ditulis diatas bahwa poduktivitas sangat berkaitan dengan biaya kegiatan konstruksi, maka pendekatan ekonomis seperti di atas memberikan keuntungan bahwa biaya alat yang direncanakan dapat dibandingkan dengan biaya alat aktual⁸⁶.

2.5.2 Dampak Produktivitas Peralatan pada Kinerja Proyek Konstruksi

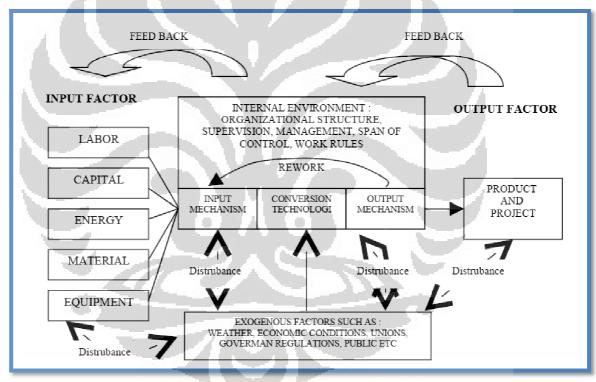
Dalam suatu proses konstruksi banyak hal diluar perencanaan yang dapat terjadi akibat dari sifat kegiatan konstruksi itu sendiri. Hal ini dapat disebabkan karena faktor internal dan eksternal. Dari faktor eksternal berkaitan misalnya dengan kondisi moneter, cuaca dan faktor internal yang menyebabkan kemungkinan terjadinya hal-hal yang tidak diharapkan dalam suatu proses konstruksi misalnya rendahnya produktivitas peralatan. Hal di atas memberikan pengaruh pada pelaksanaan konstruksi. Waktu penyelesaian pekerjaan yang terlambat akan mempengaruhi jadwal dan biaya yang sudah dikeluarkan menjadi tidak sepadan dengan usaha yang telah dilakukan. Kondisi tak terduga tersebut ternyata dapat menjadi biaya yang mungkin ditanggung oleh salah satu pihak atau lebih dalam organisasi proyek konstruksi.


Dalam proses *cost engineering* dikenal adanya dua kelompok besar biaya yaitu biaya langsung dan biaya tak langsung, dimana dalam pembagian tersebut pengadaan peralatan merupakan bagian dari biaya langsung. Pengertian biaya langsung sendiri adalah seluruh biaya yang harus dikeluarkan untuk kegiatan yang berkaitan secara langsung dengan proyek yang besarnya berupa hasil fisik. Biaya alat yang tinggi karena rendahnya produktivitas berpengaruh terhadap biaya langsung dan biaya tak langsung. Hal ini dapat dilihat seperti pada gambar.

Gambar 2.10 Komponen Biaya Proyek Konstruksi

Sumber: Anondho Tesis UI, 1995

Dilihat dari sisi biaya khususnya biaya langsung pada proyek, perencanaan sumber daya yang berkaitan dengan suatu sub pekerjaan seperti pekerjaan galian dengan menggunakan peralatan berat membutuhkan perhitungan untuk pemilihan, pengoperasian dan pemeliharaan alat yang bersangkutan secara benar karena berpengaruh terhadap biaya proyek konstruksi. Peralatan konstruksi merupakan salah satu bentuk teknologi dalam industri konstruksi. Dengan teknologi tersebut diupayakan untuk mencapai salah satu manfaat dalam proyek untuk meningkatkan produktivitas. Secara tidak langsung atau dalam skala mikro bagi bisnis kontraktor, peran peralatan konstruksi/ teknologi berdampak pada faktor efisiensi yang berkaitan dengan satu dari tiga batasan proyek yaitu biaya. Hal ini terlihat pada gambar⁸⁸.


Gambar 2.11 Hubungan Peralatan Sebagai Bentuk Teknologi terhadap Biaya dan Waktu Sumber : Ananto, Ovy Dwi. Tesis UI, 2002. Hal. 26

2.6 Faktor – Faktor yang Mempengaruhi Produktivitas Alat Berat Untuk Menyatakan Kinerja Waktu Pelaksanaan Proyek

Thomas, Maloney et al (1990) menyatakan penurunan produktivitas pada fase konstruksi diakibatkan oleh salah satu input faktor, yaitu alat (*equipment*).

Faktor-faktor yang mempengaruhi produktivitas alat tersebut berupa lingkungan internal dan eksternal. Hal ini dapat dijelaskan pada gambar 2.19. dibawah ini. Dalam pelaksanaan suatu proyek EPC yang menggunakn alat berat, satu hal yang harus dihadapi adalah perlunya suatu pemahaman terhadap alat berat tersebut ⁸⁹.

Pemilihan peralatan yang benar adalah faktor penting dalam menyelesaikan proyek yang sesuai dengan anggaran dan tepat waktu. Peralatan yang tidak dapat bekerja secara benar dapat menyebabkan produktivitas alat menurun, progres pekerjaan tertunda, kemungkinan dapat terjadi kecelakaan dan biaya-biaya yang tidak perlu akan muncul ⁹⁰. Bagi kontraktor sebagai pelaksana pekerjaan, proses keputusan diawali dengan suatu pertimbangan internal dan eksternal ⁹¹.

Gambar 2.12. Konstruksi Sebagai Proses Konversi Terbuka.

Sumber: Thomas, Maloney et al. 1990

Adapun faktor internal Secara umum produktivitas kerja alat, persatuan waktu (jam), dipengaruhi oleh banyak hal, yaitu ⁹²:

- 1. Kapasitas alat dari pabrik
- 2. Kondisi medan kerja dan cuaca
- 3. Kemampuan dan motivasi operator
- 4. Manajemen

- 5. Komposisi alat
- 6. Teknologi ⁹³
- 7. Organisasi

Penentuan faktor input dan output dari produktivitas dipengaruhi oleh berbagai faktor eksternal berikut :

- Perubahan nilai inflasi harga
- Perubahan harga titik keseimbangan sumberdaya yang tersedia
- Perubahan kualitas hasil

Dalam penentuan jumlah sumber daya proyek alat dapat dipengaruhi oleh pertimbangan yang berasal dari eksternal. Pertimbangan faktor eksternal berorientasi pada keadaan diluar kendali menjemen proyek. Sumber utama adalah berkaitan dengan kebijaksanaan ekonomi pemerintah setempat yang berimbas pada sumber daya proyek EPC, yang kedua adalah adanya kondisi cuaca yang menghambat proses tahapan konstruksi atau bahkan dapat menjadi bencana alam ⁹⁴, selanjutnya adalah kondisi alam dari proyek, serta permintaan pemilik proyek

Adapun penyebab kegagalan dalam produktivitas adalah ⁹⁶:

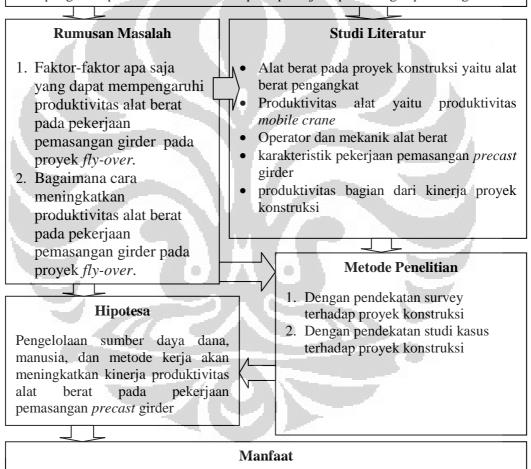
- 1. Jumlah tenaga kerja yang berlebihan untuk setiap jenis pekerjaan
- 2. Aliran material yang menyempit di lapangan sehinnga menghambat saat operasi ini akibat dari metode pengiriman material yang rendah
- 3. Sisa material yang tinggi di dalam penyimpanan, pengantaran material yang salah tempat, atau kecerobohan pekerja
- 4. Perencanaan frekuensi detail yang berlebihan, gagal dalam inspeksi, gagal dalam pemeliharaan, dalam operasi terdapat tenaga kerja yang tidak terampil
- 5. Metode kerja yang tidak cocok dan gagal atau kondisi pekerjaan yang rendah
- 6. Laporan progress yang terlambat
- 7. Kegagalan dalam kemampuan tenaga kerja yang dimiliki, kecerobhan pekerja dan kualitas material yang rendaH
- 8. Kegagalan yang disebabkan oleh subkontraktor
- 9. Kesalahan yang berlebihan, hasilnya terjadi pekerjaan ulang

- 10. Informasi yang tidak cukup selama proses pekerjaan
- 11. Kefektifan organissasi proyek lapangan yang rendah terhadap pekerjaan tambah
- 12. Laporan biaya yang besar
- 13. Kualitas desain rendah yang tidak memperhatikan risiko, metode yang tidak efisien
- 14. Keluhan pekerja yang berdampak pada operasi, fasilitas, peralatan, kondisi pekerjaan
- 15. Gangguan yang mengakibatkan proyek tergagnggu, kecelakaan, dan sisa material
- 16. Keamanan risiko dalam pekerjaan atau kecelakaan

2.7 Kerangka Dasar Pemikiran dan Hipotesa

2.7.1 Hipotesa

Berdasarkan kerangka pemikiran pada gambar 2.20, maka dapat dirumuskan hipotesa dari penelitian ini, yaitu :


"Pengelolaan sumber daya manusia dan alat akan meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder".

2.7.2 Kerangka Dasar Pemikiran

Berdasarkan studi pustaka yang telah dijelaskan sebelumnya, maka disusunlah suatu kerangka pemikiran yang merupakan penyederhanaan dalam mendekati masalah penelitian dan sebagai alur pikir untuk melaksanakan penelitian ini yaitu pada gambar 2.20⁹⁷.

Latar Belakang Masalah

Pembangunan jembatan fly – over di DKI Jakarta sangat penting keberadaannya karena dibangun untuk melewatkan suatu massa atau *traffic* lewat atas suatu penghalang. Selanjutnya macam penghalang atau jenis penghalang dapat terdiri dari sungai, jalan raya, laut, waduk, jalan kereta api, dll. Dalam pelaksanaan konstruksi *fly - over*, alat berat konstruksi merupakan sumber daya proyek yang penting, karena keberadaan peralatan tersebut sangat diperlukan dalam pekerjaan pemasangan *precast* girder. Oleh karena itu, sumber daya alat harus diatur seefisien mungkin agar perbandingan antara masukan yang digunakan dan keluaran yang dihasilkan menjadi optimal sehingga dapat dicapai tujuan yang diinginkan. Masalah utama dari proses perencanaan sumber daya alat berat pada pekerjaan pemasangan *precast* girder ini adalah faktor-faktor dominan apa yang mempengaruhi produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

- 1. Dapat mengetahui faktor-faktor dominan yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder
- 2. Dapat mengetahui rekomendasi untuk peningkatan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder

Gambar 2.13 Kerangka Dasar Pemikiran

Sumber : Hasil Olahan

BAB 3

GAMBARAN UMUM PROYEK

3.1 Pendahuluan

Pada bab 3 ini berisi tentang informasi mengenai deskripsi proyek *flyover* dan masalah – masalah apa saja yang mungkin terjadi pada proyek konstruksi *flyover* ini. Selain itu, karena karya ilmiah ini berisi tentang studi kasus proyek flyover di Kalibata, maka kami membahas masalah - masalah yang mungkin terjadi pada proyek konstruksi *flyover* Kalibata yang berada pada daerah yang sangat terbatas dalam segala hal.

3.2 Definisi Proyek Flyover

Proyek adalah suatu kegiatan sementara yang berlangsung dalam jangka waktu terbatas, dengan alokasi sumber daya tertentu dan dimaksudkan untuk menghasilkan produk atau deliverable yang kriteria mutunya telah digariskan secara jelas⁹⁸. Sedangkan berdasarkan PMBOK proyek adalah adalah kegiatan sementara yang dilakukan untuk menciptakan suatu produk atau jasa yang unik⁹⁹. Dari pengertian diatas maka ciri proyek adalah sebagai berikut¹⁰⁰:


- Bertujuan menghasilkan lingkup (*scope*) tertentu berupa produk akhir atau hasil kerja akhir.
- Dalam proses mewujudkan lingkup diatas, ditentukan jumlah biaya, jadwal dan juga kriteria mutu.
- Bersifat sementara dalam arti umurnya dibatasi oleh selesainya tugas
- Non rutin tidak berulang-ulang. Macam dan intensitas kegiatan berubah sepanjang proyek berlangsung

Sedangkan pengertian dari proyek *flyover* itu sendiri adalah proyek yang dimulai dari tahapan pemancangan tiang pondasi sampai pada pekerjaan perkerasan untuk jalan. Diantara pekerjaan tersebut terdapat pekerjaan pemasangan *precast* girder yang akan menjadi fokus dari penelitian ini.

Kesuksesan kontrak proyek *flyover* dimulai pada awal perencanaan dan negosiasi kontrak. ini penting untuk pemilik yang menggunakan kontrak proyek *flyover* untuk mencapai kerangka prosedur berdasarkan batas minimum. Prosedur sukses dalam kontrak proyek *flyover*:

- proses penghentian, layout, dan kunci disiplin adalah kebutuhan spesifikasi awal
- 2. partisipasi dari konseptual tahapan desain yang dilakukan dalam penyediaan inputdan persiapan resiko biaya dan waktu minimal
- 3. memiliki tujuan proyek yang dibawa kedalam aspek dorongan kontraktor
- 4. memiliki dan berjanji dalam penerimaan dokumen dalam sebuah siklus
- 5. memiliki sebuah prosedur perubahan yang jelas
- 6. menggunakan earn value dan metode pencapaian tujuan
- 7. meminta dan membantu kontraktor dalam menetapkan perencanaan aktif yang terlihat unggul dengan tetap

3.2.1. Deskripsi Proyek Flyover Kalibata

Gambar 3.1 Lokasi Proyek Jembatan Flyover Kalibata, Jalan Raya Kalibata

(Sumber: *Google maps*)

Lokasi proyek jembatan *flyover* Kalibata terletak di Jalan Raya Kalibata. Proyek *flyover* kalibata ini merupakan proyek peninggian jembatan lama yang memotong Sungai Ciliwung. Saat musim hujan, debit air yang melintasi kali di bawah jembatan itu cukup tinggi. Bahkan tak jarang air meluap dan merendam bagian bawah jembatan hampir mencapai 3 meter yang disebabkan karena tepat pada posisi cekungan. Kondisi ini mengakibatkan sampah yang terbawa arus akhirnya tersangkut besi-besi konstruksi di bawah jembatan. (Vivanews.com, 5 Februari 2009)

Gambar 3.2 Kondisi Jembatan *Flyover* Kalibata (8 November 2010)

Sumber: www.kaskus.us

Proyek *flyover* Kalibata ini merupakan proyek infrastruktur yang sangat dibutuhkan disana karena merupakan daerah yang padat lalu – lintas yang berfungsi untuk mengurangi kemacetan yang terjadi. Fungsi *flyover* ini sangat beragam, selain untuk mengurangi kemacetan, *flyover* juga berfungsi sebagai

penghubung daerah yang dipisah oleh sesuatu seperti sungai, laut, maupun untuk melewati traffic mass yang padat.

Proyek ini dikerjakan karena beberapa alasan berikut : (1) karena daerah tersebut merupakan daerah yang rawan banjir jika sedang musim hujan. (2) daerah ini merupakan jalan yang penting dan strategis sehingga banyak digunakan oleh masyarakat karena menghubungkan jalan Dewi Sartika dengan Jalan Kalibata. (3) untuk menggantikan fungsi jembatan sebelumnya yang berada dibawahnya karena jembatan tersebut menyebabkan sampah – sampah yang berada di sungai ciliwung tersangkut disana sehingga sering terjadi banjir. (4) untuk menggantikan fungsi dari jembatan lama yang sering terendam air banjir.

Dengan tujuan utama proyek ini adalah untuk mengurangi kemacetan yang sering terjadi di daerah lokasi proyek, maka DPU DKI Jakarta membuat jembatan baru tersebut agar dapat digunakan oleh masyarakat apabila banjir terjadi di daerah tersebut.

3.2.2. Definisi Kasus

Proyek yang dijadikan studi kasus adalah proyek *flyover* Kalibata dengan tujuan pembuatan *flyover* ini untuk mengurangi masalah kemacetan yang kerap terjadi di daerah sekitar lokasi proyek. Fokus data yang diambil penulis dalam proyek tersebut adalah pada pekerjaan *precast* girder selama proyek berlangsung hingga selesainya pekerjaan tersebut.

3.2.3. Lingkup Permasalahan

Flyover baru ini akan dibangun dengan lebar 9 meter, terbagi dua jalur, masing-masing jalur mempunyai lebar 4,5 meter. Flyover terbentang sepanjang 100 meter dengan kekuatan mampu menahan beban hingga 50 ton. Akibat proyek peninggian flyover ini selain menimbulkan kemacetan juga berdampak pada lokasi permukaan jalan. Banyaknya alat berat yang lalu lalang mengakibatkan jalan berlubang dan memunculkan genangan air di beberapa titik. Ruas jalan yang bisa dilalui kendaraan hanya satu jalur untuk masing-masing arah, sehingga dapat mengganggu pengguna jalan terutama pada jam sibuk.

Seperti yang telah disebutkan diatas, maka permasalahan yang terjadi pada proyek ini adalah sempitnya lokasi proyek yang menyebabkan kemacetan

sehingga dibutuhkan traffic management untuk mengurangi kemacetan yang sudah terjadi di daerah sekitar lokasi proyek sebelum proyek tersebut ada, rusaknya jalan disekitar lokasi yang diakibatkan oleh alat – alat berat yang ada disana, sempitnya ruang untuk manuver truck crane yang menjadi fokus penelitian ini karena keterbatasan ruang dilokasi proyek, kemungkinan terjadinya banjir apabila hujan turun dengan lebat maupun banjir kiriman dari Bogor, serta keterbatasan pada jam kerja untuk pekerjaan penting seperti pekerjaan pemasangan *precast* girder yang hanya bisa dilakukan pada malam hari karena akan mengganggu lalu lintas apabila dilakukan pada siang hari.

3.2.4. Data Umum Proyek

Data umum proyek flyover Kalibata

1. Nama Proyek : FLYOVER KALIBATA

2. Nilai Kontrak : Rp 58.935.065.880,08

3. Ppn : Rp 5.893.506.588,00

4. Lokasi : Kota Administrasi Jakarta Selatan / Timur

5. Pemilik Proyek : Dinas Pekerjaan Umum DKI Jakarta

6. Kontraktor : PT. YASA PATRIA PERKASA

7. Konsultan : PT. EPADASCON PERMATA

8. Waktu Pelaksanaan : 510 - 550 hari (19-06-09 s.d 10-11-10)

9. Masa Pemeliharaan: 180 hari kalender

3.2.5. Data Teknis Proyek

Proyek ini adalah membangun *flyover* untuk menggantikan fungsi jembatan lama yang sering terkena banjir apabila musim hujan sedang berlangsung. *Flyover* baru ini mempunyai panjang \pm 100 m dengan lebar jalur 9 m yang masing – masing lajur 4,5 m.

Pada proyek ini yang akan dibahas pada penelitian hanya pada pekerjaan pemasangan precast girder saja yang menggunakan alat berat berupa *mobile crane* untuk pengangkatan *precast* girder ke tempatnya. Adapun jenis spesifikasi panjang *precas*t girder yang digunakan pada proyek *flyover* ini ada berkisar dari 30 m sampai 40 m dengan berat berkisar dari 130 ton sampai 160 ton.

Metode pelaksanaan *precast* girder pada proyek ini menggunakan 2 buah *mobile crane*. Kapasitas maksimum dari 1 buah alat mobile rane yang digunakan pada proyek ini adalah 150 ton sehingga daya angkat total dari 2 buah *mobile crane* melebihi berat dari *precast* girder. Sebelum melakukan pengangkatan precast girder, dilakukan instruksi kerja dan persiapan – persiapan agar tiddak terjadi hal – hal yang tidak diinginkan dilokasi proyek seperti penutupan jalan sementara serta pengosongan ruang untuk manuver dari *mobile crane*.

3.2.6. Tahapan Proyek Flyover Kalibata

3.2.6.1.Engineering

Pengertian dari Tahapan *engineering* terdiri dari proses perencanaan dan pengawasan dari kemajuan semua dokumen teknik. Fase ini terdapat penggunaan modul *engineering* seperti disiplin *engineer* (sipil, struktur, mekanik, elektrikal) dan menejer *engineer* memiliki struktur yang tetap untuk referensi yang berasal dari permulaan proyek. Juga beberapa komponen fisik dari desain yang dijelaskan seperti: daftar peralatan, material berat, dan macam-macam kebutuhan yang ditabulasikan dan dapat diakses oleh tim yang lain. *Engineering* dilakukan dengan pendekatan setahap demi setahap, mulai dari konseptual, *basic engineering* sampai *detail engineering*¹⁰¹. Konseptual *engineering* dilakukan pada waktu studi kelayakan, merumuskan garis besar dasar pemikiran teknis mengenai sistem yang akan diwujudkan, dan mengemukakan berbagai alternatif, yang didasarkan atas perkiraan kasar, untuk dikaji lebih lanjut mengenai aspek ekonomi dan pemasaran.

3.2.6.2.Procurement

Tahapan pengadaan dari pendukung standar sistem aktivitas pengadaan. berasal dari *engineering* yang utama, dan spesifikasi, teknis, referensi, dan dokumen komersial yang tersedia untuk mendukung kebutuhan pengadaan. sebuah kerjasama yang luas dengan para *vendor*, *suppliers*, kontraktor, dan pengirim yang tersedia. Integrasi informasi yang lingkupnya belum berpengalaman dari pengadaan (pembelian, pengiriman, persediaan, dan menejemen peralatan).

Fase *Procurement* merupakan tahap terdekat dengan fase *engineering*. Fase ini dapat dimulai setelah lingkup proyek ditentukan dan dijabarkan pada *detail engineering* Dengan data-data *engineering drawing, specifications*, dan data lainnya, selanjutnya dapat dimulai kegiatan pengadaan atau pembelian dan *subcontracting* ¹⁰². Kegiatan pengadaan (*Procurement*) meliputi kegiatan-kegiatan pengadaan barang dan jasa. Proses didalam pengadaan barang dan jasa adalah perencanaan pembelian, perencanaan kontrak, penerimaan penawaran dari *vendor*, evaluasi penawaran dan penentuan pemenang, pengelolaan kontrak dan penutupan kontrak ¹⁰³.

Interaksi pase *engineering* dan pase *procurement* akan terjadi pada siklus proyek dimana terjadi aktifitas yang *overlapping*. Salah satu interaksi antara *engineering* dan *procurement* adalah aktifitas *vendor data*.

3.2.6.3.Construction

Kegiatan konstruksi (*construction*) adalah pekerjaan mendirikan atau membangun instalasi dengan cara seefisien mungkin, berdasarkan atas segala sesuatu yang diputuskan pada tahap desain (*engineering*). Garis besar lingkup pekerjaan konstruksi adalah membangun fasilitas sementara, mempersiapkan lahan, menyiapkan *infrastructure*, mendirikan fasilitas fabrikasi, mendirikan bangunan dan pekerjaan sipil lainnya, memasang berbagai macam peralatan, memasang perpipaan, memasang instalasi listrik dan instrumentasi, memasang perlengkapan keselamatan, memasang isolasi dan pengecatan, melakukan *testing*, uji coba, dan *start-up*¹⁰⁴.

3.2.7. Metode Pelaksanaan Pekerjaan

Jam kerja proyek *flyover* kalibata ini dikerjakan hampir 24 jam sehari dan 7 hari dalam seminggu. Pada siang hari pekerjaan hanya terbatas pada pekerjaan kecil saja dan pekerjaan persiapan untuk pekerjaan besar yang akan dilakukan malam hari. Pada malam hari jalan disekitar lokasi ditutup agar tidak mengganggu mobilitas dari alat – alat berat yang bekerja. Pengadaan material juga dilakukan pada malam hari karena material – maerial yang digunakan pada proyek ini berukuran besar sehingga akan mengganggu lalu lintas apabila revisi bab edilakukan pada siang hari.

BAB 4 METODE PENELITIAN

4.1 Pendahuluan

Pada setiap proyek konstruksi, produktivitas alat berat merupakan bagian dari kinerja proyek secara keseluruhan. Dari sisi sumber daya peralatan konstruksi yang digunakan dalam pekerjaan pemasangan *precast* girder, memerlukan suatu perencanaan terhadap sumber daya tersebut. Dalam pelaksanaannya perlu dilakukan identifikasi faktor-faktor internal dan eksternal yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Pada bab ini akan dijelaskan mengenai disain dari penelitian serta tahapan – tahapan yang akan dilalui selama proses penelitian berlangsung dalam menganalisis faktor pengelolaan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder. Tahapan – tahapan tersebut merupakan urutan langkah kerja dalam mencapai tujuan penelitian.

Adapun tahapan – tahapan yang akan dilalui sebagai berikut :

- Menentukan objek penelitian dengan mengumpulkan data kegagalan tujuan proyek akibat menurunya produktivitas peralatan yang terjadi saat pelaksanaan proyek
- 2. Kajian literatur
- 3. Menentukan variabel
- 4. Validasi variabel ke pakar
- 5. Mengumpulkan data penelitian lapangan
- 6. Menganalisis secara deskriptif and statistik Penelitian
- 7. Mensimulasi dan optimasi hasil penelitian
- 8. Validasi hasil penelitian

Sebelum data dikumpulkan maka sebelumnya terlebih dahulu disiapkan model yang dibutuhkan dalam pengumpulan data. Prosedur yang dilakukan dalam mencari data terbagi dua yaitu kuisioner dan wawancara. Kuisioner merupakan cara yang menjadi sumber utama pengumpulan data. Sedangkan metode yang kedua yaitu wawancara berfungsi sebagai penutup kekurangan dalam kuisioner.

Setelah dilakukannnya kedua validasi tersebut maka dilakukan simulasi dan optimasi agar dapat diketahui faktor mana sajakah yang memang paling berpengaruh terhadap produktivitas alat pada pekerjaan pemasangan *precast* grider.

4.2 Rumusan Masalah dan Metode Penelitian

4.2.1 Rumusan Masalah

Untuk menguji hipotesa tersebut, ada beberapa pertanyaan yang harus dijawab dalam penelitian ini, yaitu :

- 1. Faktor-faktor apa saja yang dapat mempengaruhi produktivitas alat berat pada pekerjaan pemasangan girder pada proyek *fly-over*.
- 2. Bagaimana cara meningkatkan produktivitas alat berat pada pekerjaan pemasangan girder pada proyek *fly-over*.

4.2.2 Metode Penelitian

Dalam menyelesaikan penelitian ini diperlukan metode penelitian yang sesuai. Metode penelitian merupakan cara ilmiah untuk mendapatkan data dengan tujuan dan kegunaan tertentu. Cara ilmiah berarti kegiatan penelitian ini didasarkan pada ciri-ciri keilmuan yang rasional, empiris dan sistematis¹⁰⁵.

Naoumi (1999) menyatakan bahwa ada 2 strategi penelitian, yaitu:

1. Penelitian kuantitatif, yaitu penelitian yang menerapkan pendekatan hipotesis secara deduktif, artinya masalah penelitian dipecahkan dengan cara berpikir deduktif melalui pengajuan hipotesis yang dideduksi dan teori-teori yang bersifat universal dan umum, sehingga kesimpulan dalam bentuk hipotesis inilah yang akan diverifikasi secara empiris melalui cara berpikir induktif dengan bantuan statistika inferensial (putrawan, 2007). Menurut arikunto (1993), penelitian kuantitatif adalah pendekatan dengan mencari data yang aktual dan untuk mempelajari fakta-fakta, bagaimana fakta tersebut dan hubungannya, apakah sesuai dengan teori, serta pencarian dari setiap penelitian yang telah dilaksanakan sebelumnya (literatur). Teknik dalam sains digunakan untuk mendapatkan ukuran-ukuran atau data yang dikuantitatifkan. Analisis data digunakan untuk mendapatkan

- hasil yang kuantitatif dan kesimpulan didapatkan dari evaluasi teoriteori yang ada beserta literaturnya.
- Penelitian kualitatif yaitu untuk menggambarkan suatu variabel, gejala atau keadaan apa adanya berdasarkan survei atau wawancara langsung terhadap sasaran atau obyek penelitian (termasuk hasil kuisioner) bukan untuk menguji hipotesis tertentu. Penelitian kualitatif dilakukan untuk mendapatkan informasi yang tersirat dan memahami persepsi obyek. Dalam pendekatan kualitatif, pengertian, pendapat dan pandangan obyek yang diinvestigasi dan data yang dihasilkan belum tentu terstruktur. Konsekuensinya objektifitas dari data kualitatif khususnya sering dipertanyakan, bagi orang-orang yang berpendidikan teknik/ sains, yang mempunyai "tradisi kuantitatif". Analisis data cenderung lebih sulit untuk dipertimbangkan dari pada data kuantitatif (Arikunto, 1993).

Menurut Bryman (1998) ada beberapa perbedaaan antara penelitian kuantitatif dan kualitatif terdapat pada tabel 4.1.

Tabel 4.1 Perbedaan antara Penelitian Kuantitatif dan Kualitatif

No	Kriteria	Kuantitatif	Kualitatif
1	Peranan	Menemukan fakta	Pengukuran sikap/ sifat
	The second secon	berdasarkan petunjuk/	berdasarkan pengukuran
		bukti atau dokumen	opini, pendapat dan sudut
		catatan	pandang
2	Hubungan antara peneliti	Jauh	Dekat
	dan subyek penelitian		
3	Lingkup penemuan	Nomothetic	Idiographic
4	Hubungan antara teori/	Pengujian/ konfirmasi	Penggabungan/
	konsep penelitian		pengembangan
5	Sifat data	Sukar dan dapat	Kaya dan dalam
		dipercaya	

Sumber: Bryman. 1998

Meskipun pada tabel 4.1 penelitian kuantitatif dan kualitatif mempunyai keistimewaan tersendiri, terkadang pada penerapannya tidak terlalu mudah untuk mencari hubungan antara teori/ konsep dan strategi penelitian untuk membuktikan teori/ konsep yang diajukan berdasarkan pengolahan data.

Berdasarkan tabel 4.1, penelitian ini menggunakan strategi penelitian kuantitatif, karena tujuan yang ingin dicapai adalah untuk menemukan fakta berdasarkan catatan dari dokumen, serta membutuhkan pengujian hipotesa penelitian.

Sedangkan berdasarkan pendekatan pengumpulan data dan pertanyaan penelitian yang digunakan mengacu kepada strategi Prof. Dr. Robert K. Yin menyatakan bahwa strategi/ metode penelitian perlu mempertimbangkan 3 hal, yaitu : jenis pertanyaan (*research question*) yang digunakan, kendali dari si peneliti terhadap perilaku kejadian yang diamati serta saat kejadian yang diamati, apakah sejaman (*contemporary*) atau merupakan *historical event*¹⁰⁶.

Tabel 4.2 Strategi Penelitian untuk Masing-Masing Situasi

Strategi	Bentuk pertanyaan penelitian	Kontrol dari peneliti dengan tindakan dari penelitian yang aktual	Tingkat kefokusan dari penelitian yang lalu	
Eksperimen	Bagaimana,	ya	ya	
	mengapa			
Survei	Siapa, apa,	tidak	ya	
	dimana, berapa			
	banyak	IV. A		
Analisis	Siapa, apa,	tidak	ya/ tidak	
Arsip	dimana, berapa			
	banyak	. ~		
Historis	Bagaimana,	tidak	tidak	
	mengapa		1332746545	
Studi kasus	Bagaimana,	tidak	ya	
	mengapa			

Sumber: Prof. Dr. Robert K. Yin. 1994

Strategi metode penelitian yang diambil mempertimbangkan kesesuaian dengan rumusan masalah.

Tabel diatas menjelaskan mengenai tahapan yang kita lakukan dalam penentuan metode penelitian yang akan digunakan. Berdasarkan rumusan masalah, maka metode penelitian yang akan digunakan dapat ditentukan. Maka metode yang tepat untuk menjawab pertanyaan penelitian yang pertama dengan jenis "apa" adalah menggunakan metode survei, sedangkan untuk menjawab

pertanyaan penelitian yang kedua dengan jenis pertanyaan "bagaimana" adalah menggunakan metode studi kasus.

4.3 Skema Metode penelitian Terpilih

Berdasarkan penjelasan pada sub bab 4.3, metode yang digunakan pada penelitian ini yaitu dengan pendekatan survei dan pendekatan studi kasus. Sub bab ini menjelaskan mengenai metode penelitian yang akan digunakan.

4.3.1 Proses Penelitian Survei

Pendekatan penelitian untuk menjawab pertanyaan penelitian pertama adalah dengan menggunakan metode survei. Dalam survei, informasi yang dikumpulkan dari responden dengan menggunakan kuisioner. Umumnya, pengertian survei dibatasi pada penelitian yang datanya dikumpulkan dari sample atas populasi untuk mewakili seluruh sample. Untuk mengidentifkasi faktor-faktor apa yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan precast girder, maka digunakan instrumen kuisioner yang diisi menurut persepsi pakar dan responden.

Metode penelitian survei yang dilakukan pada penelitian ini dibagi kedalam dua tahap sebagai berikut¹⁰⁷:

1. Melakukan survei kuisioner awal kepada pakar/ ahli untuk variabel faktor-faktor yang berpengaruh berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan precast girder yang didapat dari hasil literatur. Kuisioner yang digunakan pada tahap pertama/ awal menggunakan model kuisioner antara lain menggunakan kuisioner terbuka yaitu kuisioner yang disajikan dalam bentuk sederhana sehingga responden dapat memberikan isian sesuai dengan kehendak dan keadaan. Pada tahap awal/ pertama variabel hasil literatur secara umum dibawa ke pakar/ ahli untuk di verifikasi, klarifikasi dan validasi dengan pertanyaan apakah Bapak/Ibu setuju, variabel dibawah ini merupakan faktor-faktor yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan precast girder? Kemudian, pakar diminta untuk mengisikan kolom komentar/ tanggapan/ perbaikan/ masukan yang menyatakan persepsi pakar

mengenai faktor-faktor dominan yang menjadi variabel dalam penelitian ini. Jika varibel penelitian menurut pakar belum lengkap, pakar diminta untuk menambahkan daftar faktor-faktor yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Teknik yang digunakan untuk memperoleh hasil yang sesuai dengan tujuan penelitian, digunakan teknik wawancara dan *brainstorming*.

2. Berdasarkan hasil verifikasi, klarifikasi dan validasi ke pakar dilanjutkan kuisioner tahap dua kepada responden/ stakeholder untuk mengetahui persepsi responden/ stakeholder terhadap faktor-faktor yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder. Model kuisioner tahap kedua adalah kuisioner tertutup yang disajikan dalam bentuk sedemikian rupa sehingga responden diminta untuk memilih satu jawaban yang sesuai dengan karakteristik dirinya/ persepsinya dengan cara memberi tanda silang (x). Survei kuisioner tahap kedua dilakukan terhadap responden/ stakeholder yaitu Project Manager, Site Manager, Kepala Pelaksana yang terlibat langsung dalam proyek pelaksanaan pekerjaan pemasangan precast girder. Hasil analisis dan pembahasan diakhiri dengan penarikan dan penyusunan kesimpulan untuk prioritas faktor-faktor dominan yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan precast girder.

4.3.2 Proses Penelitian Studi kasus

Pendekatan studi kasus digunakan untuk menjawab pertanyaan penelitian kedua: yaitu mengetahui rekomendasi untuk peningkatan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder¹⁰⁸.

1. Pengertian Studi Kasus

Metode studi kasus merupakan pendekatan penelitian yang memusatkan diri secara intensif pada satu obyek tertentu yang mempelajarinya sebagai suatu kasus. Data studi kasus dapat diperoleh dari semua pihak yang bersangkutan, dengan kata lain data dalam studi kasus

ini dikumpulkan dari berbagai sumber. Sebagai sebuah studi kasus maka data yang dikumpulkan berasal dari berbagai sumber dan hasil penelitian ini hanya berlaku pada kasus yang diselidiki. Menurut Arikunto (1986) mengemukakan bahwa metode studi kasus sebagai salah satu jenis pendekatan deskriptif, adalah penelitian yang dilakukan secara intensif, terperinci dan mendalam terhadap suatu organisme (individu), lembaga atau gejala tertentu dengan daerah atau subjek yang sempit.

Penelitian studi kasus atau penelitian lapangan dimaksudkan untuk mempelajari secara intensif tentang latar belakang masalah keadaan dan posisi suatu peristiwa yang sedang berlangsung saat ini, serta interaksi lingkungan unit sosial tertentu yang bersifat apa adanya. Subjek penelitian dapat berupa individu, kelompok, institusi atau masyarakat. Penelitian studi kasus merupakan studi mendalam mengenai unit sosial tertentu dan hasil penelitian tersebut memberikan gambaran luas serta mendalam mengenai unit sosial tertentu. Subjek yang diteliti relatif terbatas, namun variabel-variabel dan fokus yang diteliti sangat luas dimensinya.

Secara ringkasnya studi kasus adalah kedalaman analisisnya pada kasus yang lebih spesifik (baik kejadian maupun fenomena tertentu). Biasanya pendekatan ini juga digunakan untuk menguji keabsahan data dan menemukan kebenaran objektif sesungguhnya. Metode ini sangat tepat untuk menganalisis kejadian tertentu disuatu tempat tertentu dan waktu yang tertentu pula.

Berdasarkan penjelasan diatas dapat dipahami bahwa studi kasus meliputi: sasaran penelitiannya dapat berupa manusia, peristiwa, latar, dan dokumen. Sasaran tersebut ditelaah secara mendalam sebagai suatu totalitas sesuai dengan latar atau konteksnya masing-masing dengan maksud untuk memahami berbagai kaitan yang ada diantara variabelnya.

2. Tipe Disain Studi Kasus

Menurut Naoum (1998) ada 3 (tiga) tipe disain penelitian dengan menggunakan studi kasus, yaitu:

- 1. Studi kasus deskriptif yang serupa dengan konsep survei deskriptif (misal: perhitungan), kecuali bila diaplikasikan pada kasus yang melihat secara detail.
- 2. Studi kasus analisis yang serupa dengan konsep survei analisis (misal: perhitungan, perkumpulan dan hubungan), kecuali bila diaplikasikan pada kasus yang melihat secara detail.
- 3. Studi kasus dengan penjelasan yang menggunakan pendekatan teori terhadap permasalahan. Studi kasus ini menjelaskan penyebab dan hubungan antar obyek penelitian. Dalam studi kasus ini dipertanyakan mengapa suatu peristiwa terjadi dan berjalan seperti saat ini. Studi kasus ini juga menunjukkan bahwa satu penyebab dapat mempunyai suatu dampak tertentu yang khusus. Dengan kata lain, peneliti mengumpulkan berbagai macam fakta dan mempelajari hubungan antar fakta, dengan demikian akan dapat ditemukan hubungan sebab akibat diantara fakta-fakta tersebut.

3. Langkah-Langkah Penelitian Studi Kasus

1. Pemilihan kasus

Dalam pemilihan kasus hendaknya dilakukan secara bertujuan. Kasus dapat dipilih oleh peneliti dengan menjadikan orang, lingkungan, program, proses, dan masyarakat atau unit sosial. Ukuran dan kompleksitas objek studi kasus haruslah masuk akal, sehingga dapat diselesaikan dengan batas waktu dan sumber-sumber tersedia.

2. Pengumpulan data

Terdapat beberapa teknik dalam pengumpulan data, tetapi yang lebih dipakai dalam penelitian kasus adalah observasi, wawancara, dan analisis dokumentasi. Peneliti sebagai instrumen penelitian, dapat menyesuaikan cara pengumpulan data dengan masalah dan lingkungan penelitian, serta dapat mengumpulkan data yang berbeda secara serentak.

3. Analisis data

Setelah data terkumpul peneliti dapat mulai mengagregasi, mengorganisasi, dan mengklasifikasi data menjadi unit-unit yang dapat dikelola. Agregasi merupakan proses mengabstraksi hal-hal khusus menjadi hal-hal umum guna menemukan pola umum data. Data dapat diorganisasi secara kronologis, kategori atau dimasukkan ke dalam tipologi. Analisis data dilakukan sejak peneliti di lapangan, sewaktu pengumpulan data dan setelah semua data terkumpul atau setelah selesai.

4. Perbaikan

Meskipun semua data telah terkumpul, dalam pendekatan studi kasus hendaknya dilakukan penyempurnaan atau penguatan data baru terhadap kategori yang telah ditemukan. Pengumpulan data baru mengharuskan peneliti untuk kembali ke lapangan dan barangkali harus membuat kategori baru, data baru tidak bisa dikelompokkan ke dalam kategori yang sudah ada.

5. Penulisan laporan

Laporan hendaknya ditulis secara komunikatif, mudah dibaca, dan mendeskripsikan suatu gejala dan kesatuan sosial secara jelas, sehingga memudahkan pembaca untuk memahami seluruh informasi penting. Laporan diharapkan dapat membawa pembaca kedalam situasi kasus kehidupan seseorang atau kelompok.

4. Ciri-Ciri Studi Kasus yang Baik

Ada beberapa kriteria ciri-ciri studi kasus yang baik, antara lain:

- 1. Menyangkut sesuatu yang luar biasa, yang berkaitan dengan kepentingan umum atau bahkan dengan kepentingan nasional.
- Batas-batasnya dapat ditentukan dengan jelas, kelengkapan ini juga ditunjukkan oleh kedalaman dan keluasan data yang digali peneliti, dan kasusnya mampu diselesaikan oleh penelitianya dengan baik dan tepat meskipun dihadang oleh berbagai keterbatasan.
- 3. Mampu mengantisipasi berbagai alternatif jawaban dan sudut pandang yang berbeda-beda.

- 4. Studi kasus mampu menunjukkan bukti-bukti yang paling penting saja, baik yang mendukung pandangan peneliti maupun yang tidak mendasarkan prinsip selektifitas.
- 5. Hasilnya ditulis dengan gaya yang menarik sehingga mampu terkomunikasi pada pembaca.

Pada tahapan ini merupakan pengembangan dari hasil penelitian survei. Hasil dari analisis faktor dominan yang berpengaruh terhadap kinerja produktivitas alat berat berat pada pekerjaan pemasangan *precast* girder. Hasil dari analisis ini kemudian di validasi oleh pakar dengan melakukan wawancara. Wawancara merupakan sumber informasi yang *essensial* bagi studi kasus.

4.4 Variabel Penelitian

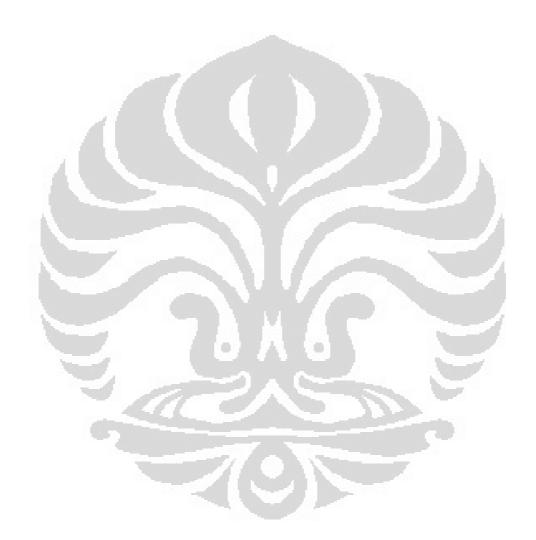
Variabel yang digunakan dalam penelitian ini terdiri atas, variabel terikat dan variabel bebas seperti berikut di bawah ini :

a. Variabel Terikat (dependent)

Keluaran yang penting dari proses penelitian ini adalah kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Variabel terikat penelitian adalah : kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder yang dihitung sebagai berikut :

Kinerja Produktivitas Alat =
$$\frac{\text{Produktivitas alat aktual}}{\text{produktivitas alat rencana}} \times 100\%$$
 (4.1)


Berdasarkan Georgy, Maged E. Chang, L.M. Zhang Lei. *Engineering Performance in the US Industrial Construction Sector, Cost Engineering Journal*, 47, 1 (2005): pp. 29 perkiraan rata-rata kinerja produktivitas alat berat dalam pekerjaan pengangkatan yang pendekatan pengukurannya dengan segi biaya mempunyai jangkauan produktivitas alat antara 80-120 % maka variabel terikat kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder mempunyai intensitas skala seperti pada tabel 4.3.

Tabel 4.3 Penilaian untuk Varibel Y

Level	Penilaian	Keterangan	
1	Kecil	Nilai Kinerja Produktivitas Alat ≤ 80%	
2	Rendah	Nilai Kinerja Produktivitas Alat > 80% - ≤ 93%	

3	Sedang	Nilai Kinerja Produktivitas Alat > 93% - ≤ 106%
4	Tinggi	Nilai Kinerja Produktivitas Alat > 106% - ≤ 120%
5	Sangat Tinggi	Nilai Kinerja Produktivitas Alat > 120%

Sumber: Georgy, Maged E. Chang, L.M. Zhang Lei. *Engineering Performance in the US Industrial Construction Sector*, Cost Engineering Journal, 47, 1 (2005): pp. 29

b. Variabel Bebas (independent)

Setelah mendapatkan informasi dari tinjauan pustaka, pengamatan data dilapangan maka didapatkan variabel-variabel bebas untuk penelitian ini yaitu sebagai berikut :

Tabel 4.4 Variabel Bebas

Indikator	Sub-Indikator	Faktor	Referensi
Tahap	Data Lapangan	Faktor yang berpengaruh pada internal proyek	8 4
Perencanaan	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan	Varghese, 1995.
Konstruksi	Kontraktor		
	X2	Kemampuan kontraktor memprediksi kondisi lapangan dalam pembuatan site	Olomiye, 1998.
		lay - out dan resiko kejadian yang akan datang	Iman Maretdhioko, 2002.
	X3	Pengalaman dan kemampuan orang yang ditugaskan untuk mengestimasi	Imam Soeharto, 1999.
		produktivitas oleh kontraktor	- 4
	X4	Kemampuan kontraktor memahami karakteristik dari proyek tersebut	Hendra S, 1998.
	X5	Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat,	Iman Maretdhioko, 2002.
		serta kapasitas alat yang dibutuhkan	
	X6	Persediaan alat yang dibutuhkan oleh kontaktor	Asiyanto, 2008.
	X7	Waktu perencanaan kontraktor dalam mengestimasi produktivitas	Asiyanto, 2004.
	X8	Validasi oleh estimator produktivitas yang ditunjuk oleh kontraktor	Iman Soeharto, 1999.
	X9	Koordinasi kontraktor dengan stakeholder	Oglesby, 1989.
			Tsimberdonis, 1994.
	Penjadwalan	4// 4/4 1/2	
	X10	Urutan pekerjaan pemasangan <i>precast</i> girder dalam penjadwalan proyek	Hendra Suryadharma & Haryanto
			Yoso Wigroho, 1998.
	X11	Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat,	Hendra Suryadharma & Haryanto
		lokasi tempat kerja, jumlah alat dan volume pekerjaan	Yoso Wigroho, 1998.
	X12	Perubahan jadwal pekerjaan dan design	Hendra Suryadharma & Haryanto
			Yoso Wigroho, 1998.

Tabel 4.4 (Sambungan)

Indikator	Sub – Indikator	Faktor	Referensi
	Alat		
	X13	Kapasitas alat yang digunakan	Kato (Handbook)
	X14	Pemilihan umur alat	Asiyanto, 2008
			Peurifoy, 2006.
	X15	Kebutuhan perlengkapan kerja	Gates, M., & Scarpa A, 1979
	X16	Tata letak penempatan alat	Olomolaiye, Paul O, Ananda
			K.W. Jawayawardane, Frank C.
			Harris., 1998
	X17	Kondisi tempat kerja alat beroperasi	Olomolaiye, Paul O, Ananda
	1		K.W. Jawayawardane, Frank C.
	****		Harris., 1998
Indikator	X18	Perencanaan jumlah alat yang dibutuhkan	Nunnaly, 1998.
Tahap	Sub-Indikator	Faktor	Referensi
Manajemen	Operasional		
Alat berat	X19	Jumlah alat yang beroperasi	Asiyanto, 2008
	X20	Efektivitas penggunaan alat selama beroperasi	Susy Fatena, 2008
	X21	Efisiensi penggunaan alat selama beroperasi	Susy Fatena, 2008
	X22	Metoda kerja dan perubahannya selama beroperasi	Asiyanto, 2008
	X23	Manuver alat selama beroperasi	Andres, A. C., & Smith, R. C., 1998
	X24	Pendanaan dalam biaya operasi alat	Asiyanto, 2008
	Pengadaan Alat		
	X25	Pengadaan jenis alat	Asiyanto, 2008
	X26	Pangadaan kapasitas dan spesifikasi alat	Asiyanto, 2008
	X27	Perubahan kondisi lokasi proyek saat pengadaan	Asiyanto, 2008
	Pemeliharaan		
	X28	Tingkat kerusakan alat selama penyimpanan mempengaruhi pemeliharaan alat	Neil. J. M. 1982.

Tabel 4.4 (Sambungan)

	Perbaikan		
	X29	Pendanaan dalam biaya perbaikan alat	Hendra Suryadharma & Haryanto
	712)	Telidandan dalam olaya perbankan ala	Yoso Wigroho, 1998.
	X30	Penggunaan alat baru selama perbaikan	Hendra Suryadharma & Haryanto
			Yoso Wigroho, 1998.
	X31	Waktu perbaikan	Hendra Suryadharma & Haryanto
Indikator	Y/22		Yoso Wigroho, 1998.
Tahap	X32	Tersedianya spare part mempermudah dalam perbaikan	Procurement Eng, Obrien, 1991.
Manajemen Alat berat	Operator dan Mekanik	Faktor yang berpengaruh pada internal proyek	
	X33	Pengalaman operator	Schexnayder, 1982.
	X34	Shift dari operator alat berat	Suryadharma, 1998.
	X35 Tingkat pendidikan operator alat		Asiyanto, 2008
	X36	Fasilitas yang diberikan oleh operator alat berat	Gates, M., & Scarpa A, 1979
	X37	Pengalaman mekanik	Suryadharma, 1998.
	X38	Tingkat pendidikan mekanik	Asiyanto, 2008
Kondisi	Pencurian Alat	Faktor yang berpengaruh pada eksternal proyek	
Terkendali	X39	Kehilangan/pencurian spare part alat	Suryadharma, 1998.
	Cuaca	Faktor yang berpengaruh pada eksternal proyek	
	X40	Ramalan kondisi dan cuaca	Asiyanto, 2007.
	Bencana Alam	Faktor yang berpengaruh pada eksternal proyek	
Kondisi Tak	X41	Tidak terjadinya bencana alam selama pelaksanaan konstruksi (banjir, dll)	Olomiye, 1998
Terkendali	Hukum	Faktor yang berpengaruh pada eksternal proyek	
1 CI KCHUAH	X42	Perubahan peraturan hukum perundang-undangan	Ovy Dwi Ananto, 2002
	Ekonomi	Faktor yang berpengaruh pada eksternal proyek	
	X43	Perubahan kondisi perekonomian	Mc Connell & Brue 1989
	X44	Pertimbangan terhadap perubahan nilai kurs nilai mata uang ekonomi	Schechnayder, 1982

4.5 Instrumen penelitian

Instrumen penelitian adalah suatu alat yang digunakan untuk mengumpulkan data, sedangkan instrumentasi adalah proses pengumpulan data tersebut. Terdapat dua karakteristik yang harus ada pada setiap instrumen yang akan digunakan dalam penelitian, antara lain 109:

a. Validitas

Suatu instrumen dikatakan valid apabila instrumen tersebut dapat mengukur apa yang seharusnya diukur.

b. Reliabilitas

Reliabilitas (*reliability*) berhubungan dengan konsistensi dan disebut reliable apabila instrumen tersebut konsisten dalam memberikan penilaian atas apa yang diukur.

Dalam verifikasi, klarifikasi, validasi variabel, digunakan instrumen kuisioner terbuka sedangkan untuk mengetahui pengaruh dari variabel, digunakan skala ordinal untuk mengetahui pendapat responden mengenai pengaruh variabel terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Penilaian pengaruh terdiri dari 5 skala, yang dimulai dari 1 yang menyatakan tidak berpengaruh sama sekali (*insignificant*) hingga ke skala 5 yang menyatakan sangat berpengaruh (*catastrophic*), nilai 2, 3, dan 4, menyatakan nilai yang berada diantaranya. Dalam mengukur persepsi responden, digunakan penilaian akibat secara kualitatif yang diperlihatkan pada tabel dibawah ini.

Tabel 4.5 Skala Penilaian Kuisioner Terhadap Dampak/Pengaruh

Level	Penilaian	Keterangan
1	Tidak ada pengaruh	Tidak ada pengaruhnya
2	Rendah	Sangat kecil pengaruhnya
3	Sedang	Kecil pengaruhnya
4	Tinggi	berpengaruh
5	Sangat Tinggi	Sangat berpengaruh

Sumber: Drs. Riduwan, MBA, "Skala Pengukuran Variabel-Variabel Penelitian", Alfabeta, Bandung, 2007

Tabel 4.6 Penilaian untuk Variabel Y

Level	Penilaian	Keterangan
1	Kecil	Nilai Kinerja Produktivitas Alat ≤ 80%
2	Rendah	Nilai Kinerja Produktivitas Alat > 80% - ≤ 93%
3	Sedang	Nilai Kinerja Produktivitas Alat > 93% - ≤ 106%
4	Tinggi	Nilai Kinerja Produktivitas Alat > 106% - ≤ 120%
5	Sangat Tinggi	Nilai Kinerja Produktivitas Alat > 120%

Sumber: Georgy, Maged E. Chang, L.M. Zhang Lei. *Engineering Performance in the US Industrial Construction Sector*, Cost Engineering Journal, 47, 1 (2005): pp. 29

Contoh format kuisioner Tahap 1 dan Tahap 2 dapat dilihat pada tabel sebagai berikut.

Tabel 4.7 Contoh Format Kuisioner kepada Pakar pada Tahap 1

Indikator	Sub- Indikator	Faktor	Setuju	Tidak Setuju	Komentar
Tahap Pekerjaan Konstruksi	Data Lapangan	Faktor yang berpengaruh pada internal proyek			
	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan pekerjaan pemasangan <i>precast</i> girder, lokasi proyek dan jalan akses proyek	V		data merupakan sumber informasi yang menetukan pada tahap perencanaan pemasangan precast girder
7	Pencurian Alat	Faktor yang berpengaruh pada ekstrnal proyek			
	X63	Kehilangan/pencurian spare part alat		$\sqrt{}$	Seharusnya/ tidak perlu ada
	Hukum	- // A			P000
	X64	Perubahan peraturan hukum perundang- undangan			Seharusnya/ tidak perlu ada

Sumber: Hasil Olahan

Tabel 4.8 Contoh Format Kuisioner Kepada Responden pada Tahap 2

Indikator	Sub- Indikator	Faktor	Pengaruh				
			1	2	3	4	5
Tahap Perencanaa n Konstruksi	Data Lapangan	Faktor yang berpengaruh pada internal proyek					
	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan pekerjaan pemasangan <i>precast</i> girder, lokasi proyek dan jalan akses proyek	X				
	Pencurian	Faktor yang berpengaruh					
	Alat	pada ekstrnal proyek					
	X63	Kehilangan/pencurian spare part alat				X	
	Hukum						
	X64	Perubahan peraturan hukum perundang-undangan			1		X

Sumber: Hasil Olahan

Tabel 4.9 Contoh Format Kuisioner Kepada Responden pada Tahap 2 (Data *Eksisting* proyek untuk Penilaian Variabel Y)

No	Spesifikasi	Diisi oleh Responden
1	Durasi Pekerjaan Pemasangan Precast Girder (hari)	
	a. Rencana (hari)	
	b. Aktual (hari)	
2	Waktu kerja (jam/hari)	
3	Volume Pekerjaan (buah)	
4	Produktivitas rencana alat (mobile crane)	
	(buah/jam)	
5	Produktivitas aktual alat (<i>mobile crane</i>) (buah/jam)	4

Sumber : Hasil Olahan

4.6 Pengumpulan Data

Pengumpulan data yang dilakukan pada penelitian ini adalah wawancara, dan studi kasus. Wawancara adalah suatu metode penelitian yang dilakukan dengan mewawancarai narasumber mengenai hal-hal apa saja yang berhubungan dengan objek penelitiaan yang digunakan sehingga data yang diperoleh lebih akurat. Studi kasus adalah suatu cara yang melakukan penyelidikan pada objek penelitian yang ingin diteliti. Terdapat dua jenis data yang digunakan dalam penelitian ini yaitu:

- 1. Data sekunder, yaitu didapat dari hasil studi literatur seperti buku, referensi, jurnal dan penelitian lain yang terkait dengan penelitian ini yang bertujuan untuk identifikasi awal variabel penelitian.
- 2. Data Primer, yaitu data yang diperoleh dari hasil kuisioner.

4.6.1. Teknik Sampling pada Pengumpulan Data Tahap 1

Pengumpulan data dan kuisioner tahap pertama dilaksanakan kepada pakar, dilaksanakan sebagai berikut :

- a. Kuisioner tahap pertama, merupakan variabel yang diperoleh dari literatur yang ada secara general kemudian dibawa kepada pakar untuk validasi sementara, dengan pertanyaan apakah pakar setuju dengan variabel dibawah ini merupakan faktor-faktor yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Jika belum lengkap pakar diminta untuk menambahkan daftar faktor yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Selain itu pakar juga dapat melakukan koreksi terhadap daftar faktor yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.
- b. Responden untuk kuisoiner pada tahap pertama adalah pakar. Pakar berjumlah
 5 orang yaitu orang yang ahli terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

4.6.2. Teknik Sampling pada Pengumpulan Data Tahap 2

Pengumpulan data dan kuisioner tahap kedua dilaksanakan kepada stakeholder, dengan rincian sebagai berikut :

- a. Kuisioner tahap kedua dilakukan kepada para *stakeholders* yaitu, *Project Manager*, *Site Manager*, Kepala Pelaksana yang terlibat langsung dalam proyek pelaksanaan pekerjaan pemasangan *precast* girder.
- b. Jumlah responden disesuaikan dengan orang yang memenuhi kriteria.

4.7 Metode Analisa Data

Metode analisis yang dipakai dalam penelitian ini disesuaikan dengan banyaknya tahap pengumpulan data yaitu analisis data tahap 1 dan analisis data tahap 2.

4.7.1. Analisis Data Tahap 1

Analisis data untuk tahap pertama adalah dengan verifikasi, klarifikasi dan validasi oleh pakar. Variabel penelitian dibawa ke pakar untuk validasi, apakah pakar setuju atau tidak bahwa variabel yang ada berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder jika setuju membiarkan variabel tersebut jika tidak setuju diminta memberikan komentar. Kemudian pakar diminta menambahkan variabel jika ada. Data dari pakar dikumpulkan, variabel yang ada dihitung, jika mayoritas dari pakar berpendapat setuju maka variabel tersebut adalah variabel atau faktor-faktor yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

4.7.2. Analisis Data Tahap 2

Terdapat dua macam teknik statistik inferensial yang dapat digunakan untuk menguji hipotesis penelitian. Yaitu statistik *parametrik* dan statistik *nonparametrik*. Metode statistik *parametrik* dilakukan jika data memiliki terdistribusi normal. Sedangkan metode statistic *nonparametrik* digunakan jika pengujian tidak tergantung dari asumsi tentang distribusi data tersebut.

Menurut Bryman dan Cramer (1997), data dengan kategori nominal dimana tidak diketahui apakah berdistribusi normal atau tidak, dianalisis dengan metode statistic *nonparametrik*. Untuk data dengan jumlah > 2 grup dimana data-data tersebut diuji dengan *mann-whitney*. Sedangkan untuk data dengan jumlah > 3 grup diuji dengan *kruskal-wallis*. Berikut adalah tabel 4.10 dari statistic *non parametrik*¹¹⁰.

Bentuk Hipotesis Deskriptif Komparatif dua sampel Komparatif lebih dari dua sampel Asosiatif Hubung (Satu Sampel) Berpasangan Independen Berpasangan Koefisier Fisher Exact Probability Kontingensi C Mc. Nemar Chi kuadrat 1 Chi kuadrat sampel Sign test Friedman Two Median Korelasi Way Anova Spermar Kruskal-Walli Ordinal one way Korelasi Anova Kendall Tau Kolmogrov smino

Tabel 4.10 Pedoman untuk Memilih Teknik Statistik Nonparametrik

Sumber: Prof. Dr. Sugiyono, 2006

4.7.2.1. Uji Kruskall-Wallis

Pengujian *Kruskall-Wallis* digunakan untuk mengujii adanya pengaruh pendidikan dan pengalaman kerja terhadap jawaban digunakan pengujian k *sample* bebas. Teknik ini digunakan untuk menguji hipotesis k *sample* independen bila datanya berbentuk ordinal. Prosedur pengerjaan. k *sample* berukuran $N_1, N_2, ..., N_k$, dengan jumlah total *sample* keseluruhan adalah $N = N_1 + N_2 + ... + N_k$. kemudian nilai dari ke-N buah *sample* diperingkatkan dan jumlah peringkat untuk *sample* ke-k dinotasikan dengan $R_1, R_2, ..., R_k$. diuji dengan persamaan dibawah ini¹¹¹.

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{N_j} - 3(N+1)$$
(4.4)

dimana :

N = banyak baris dalam tabel

k = banyak kolom

R_i = jumlah ranking dalam kolom

4.7.2.2. Uji Mann-Whitney

Pengujian Mann-Whitney digunakan untuk menguji hipotesis nol yang menyatakan bahwa tidak ada perbedaan yang sesungguhnya antara kedua kelompok data dan dimana data tersebut diambil dari dua sample yang tidak saling terkait. Pengujian ini sering disebut sebagai pengujian U, karena untuk menguji hipotesis nol, kasus dihitung angka statistik yang disebut U.

Hasil pengumpulan data tahap dua diuji dengan pengujian dua *sample* bebas (Uji *U Mann-whitney*) untuk mengetahui adanya pengaruh jabatan terhadap jawaban responden.

Test ini digunakan untuk menguji hipotesis komparatif dua *sample* independen bila datanya berbentuk ordinal. Bila dalam suatu pengamatan data berbentuk interval, maka perlu diubah dulu ke dalam data ordinal. Langkahlangkah pengerjaan¹¹²:

- a. Susun semua *sample* dalam sebuah baris dari yang terkecil hingga yang terbesar dan berikan peringkat untuk nilai-nilai tersebut.
- b. Tentukan jumlah peringkat dari masing-masing sample. Notasikan jumlah ini dengan R_1 dan R_2 , sedangkan N_1 dan N_2 merupakan ukuran masing-masing sample. Untuk mudahnya, pilih N_1 sebagai ukuran yang lebih kecil, jika mereka memiliki ukuran sample yang berbeda, jadi $N_1 < N_2$. suatu beda nyata antara jumlah peringkat R_1 dan R_2 berimplikasi terdapat perbedaan antara kedua sample tersebut.
- c. Gunakan statistik uji

$$U_{1,2} = N_1 N_2 + \frac{N_1 (N_1 + 1)}{2} - R_1$$
(4.5)

Yang berhubungan dengan *sample* 1. distribusi penerikan *sample* U adalah simetrik dengan rataan dan varian berturut-turut,

$$\mu_U = \frac{N_1 N_2}{2} \quad \sigma_U^2 = \frac{N_1 N_2 (N_1 + N_2 + 1)}{12}$$
(4.6)

dimana:

 $N_1 = jumlah sample 1$

 $N_2 = \text{jumlah } sample 2$

 $U_{1,2} = \text{jumlah peringkat } 1 \text{ dan } 2$

 $R_1 = \text{jumlah rangking pada } sample N_1$

 $R_2 = \text{jumlah rangking pada } sample N_2$

4.7.2.3. Validitas dan Reliabilitas

Uji validitas diartikan sebagai pengujian untuk mengetahui sejauhmana ketepatan dan kecermatan suatu alat ukur dalam melakukan fungsi ukurnya. Suatu tes atau instrumen penelitian dapat dinyatakan mempunyai validitas yang tinggi apabila alat ukur tersebut menjalankan fungsi ukurnya atau memberikan hasil ukur yang sesuai dengan maksud dilakukannya pengukuran tersebut. Uji validitas atau kesahihan digunakan untuk mengetahui seberapa tepat suatu alat ukur mampu melakukan fungsi. Alat ukur yang dapat digunakan dalam pengujian validitas suatu kuisioner adalah angka hasil korelasi antara skor pernyataan dan skor keseluruhan pernyataan responden terhadap infomasi dalam kuisioner. Pengujian validitas data dilakukan dengan alat bantu software SPSS¹¹³.

Konsep reliabilitas adalah sejauh mana hasil suatu penelitian dapat dipercaya. Hasil pengukuran dapat dipercaya hanya apabila dalam beberapa kali pelaksanaan pengukuran terhadap kelompok subjek yang mana diperoleh hasil yang relative sama. Hasil ukur erat kaitannya dengan *error* dalam pengambilan *sample* (*sampling erorr*) yang mengacu pada inkonsistensi hasil ukur apabila pengukuran dilakukan ulang pada kelompok individu yang berbeda. Tujuan utama pengujian reliabilitas adalah untuk mengetahui konsistensi atau keteraturan hasil pengukuran apabila instrumen tersebut digunakan lagi sebagai alat ukur suatu responden. Hasil uji reliabilitas mencerminkan dapat dipercaya atau tidaknya suatu instrumen penelitian berdasarkan tingkat kemantapan dan ketepatan suatu alat ukur dalam pengertian bahwa hasil pengukuran yang didapatkan merupakan ukuran yang benar dari suatu ukuran¹¹⁴.

4.7.2.4. Analisis Deskriptif

Analisis ini memiliki kegunaan untuk menyajikan karakteristik tertentu suatu data dari *sample* tertentu. Analisis ini memungkinkan peneliti mengetahui secara cepat gambaran sekilas dan ringkas dari data yang didapat. Dengan bantuan program SPSS, didapat nilai *mean* yang berarti nilai rata-rata, dan nilai *median* yang diperoleh dengan cara mengurutkan semua data. Hasil analisis deskriptif akan disajikan dalam masing-masing variabel. Analisis deskriptif ini dilakukan dengan menyajikan data secara *nonparametrik*. Hal ini karena penyajian data

nonparametrik dapat digunakan untuk bentuk data, jumlah data dan *type* data yang berbagai macam¹¹⁵.

Teknik statistik yang pada umumnya digunakan untuk menganalisis data pada penelitian-penelitian deskriptif adalah dengan menggunakan tabel, grafik, ukuran *central tendency*, dan ukuran perbedaan (*differential data analysis*).

a. Tabel

Data-data kuantitatif yang diperoleh dari penelitian deskriptif pada umumnya dapat dihitung jumlahnya atau frekuensinya. Cara yang terbaik untuk meringkaskan data kedalam bentuk yang mudah dibaca adalah dengan menampilkan data tersebut kedalam bentuk distribusi frekuensi (frequency distribution). Tabel yang nantinya dibuat didasarkan atas distribusi frekuensi. Ada dua macam distribusi frekuensi yaitu distribusi frekuensi sederhana (simple frequency distribution) dan distribusi frekuensi kelompok (group frequency distribution).

- Distribusi Frekuensi Sederhana (*Simple Frequency Distribution*). Tampilan data distribusi frekuensi terdiri dari tiga kolom yaitu variabel, frekuensi, dan presentasi. Distribusi frekuensi sederhana dapat digunakan untuk data-data yang berskala nominal, ordinal. Interval ataupun rasio.
- Distribusi Frekuensi Kelompok (Group Frequency Distribution). Datanya dikelompokkan kedalam kelas-kelas dan tampilan datanya dalam bentuk bilangan desimal karena banyaknya data yang tersebar pada suatu range.
 Pengelompokkan data ini hanya dilakukan jika datanya dalam bentuk interval atau ratio.

b. Grafik

Data-data deskriptif pada umumnya lebih mudah dimengerti apabila digambarkan dalam bentuk grafik atau tabel. Terdapat empat macam grafik yaitu grafik *bar*, *pie*, *histogram*, dan *polygon*. Grafik mana yang akan digunakan tergantung dari skala variabelnya. Jika variabel berskala nominal atau ordinal, gunakan grafik *bar* atau *pie*. Jika skala variabelnya interval atau rasio, gunakan grafik *histogram* atau *polygon*. Pada penelitian ini, penulis menggunakan grafik *histogram* dan grafik *bar*.

• Grafik Bar

Grafik *bar* digunakan bila data dari variabel yang diukur berskala nominal atau ordinal. Apabila data yang dianalisis dalam ukuran skala ordinal, sebaiknya susunan kategorinya diurut dari yang terkecil ke yang terbesar atau yang terbesar ke yang terkecil.

• Grafik Pie

Sama dengan grafik *bar*, grafik *pie* digunakan apabila data dari variabel yang dianalisis berskala nominal atau ordinal.

• Grafik Histogram

Grafik ini digunakan apabila data yang dianalisis berskala interval atau rasio dan dinyatakan dalam bentuk kelompok distribusi frekuensi.

• Grafik Polygon

Grafik ini digunakan apabila data yang dianalisis berskala interval atau rasio dan dapat dinyatakan dalam bentuk grouped frequency distribution dan ungrouped frequency distribution.

c. Ukuran Central Tendency

Ukuran *central tendency* disebut juga sebagai ukuran rata-rata. Terdapat tiga pengertian rata-rata dalam statistik, yaitu *mean, median,* dan *mode*.

• Mean

Mean yaitu ukuran rata-rata dimana jumlah nilai dari setiap *item* dibagi dengan jumlah *item*nya. Mean digunakan apabila data dalam skala interval atau rasio dan bila distribusinya data normal. Jika distribusi data tidak diketahui apakah normal atau tidak, maka dapat diasumsikan normal.

$$\boxed{x = \frac{\sum_{i=1}^{n} xi}{n}}$$
(4.7)

Dimana: x = mean

xi = nilai dari *item* pada urutan ke i

n = jumlah item

• Median

Median yaitu nilai yang berada ditengah-tengah setelah nilai data diurutkan dari yang terkecil sampai dengan yang terbesar. Jika jumlah data genap, median diperoleh dengan cara mengambil dua data yang berada ditengah kemudian dijumlahkan lalu dibagi dua. Median dapat digunakan sebagai ukuran rata-rata apabila distribusi data tidak normal dan juga dapat digunakan pada data yang berskala interval, rasio, dan juga ordinal. Salah satu kelebihan median dari mean adalah dapat digunakan pada data ordinal.

Mode

Mode yaitu nilai yang paling banyak terjadi. Misalnya 3, 5, 4, 3. Modenya adalah 3 sebab nilai inilah yang terbanyak terjadi. Jika dalam kumpulan data suatu nilai terjadi dengan jumlah frequency yang sama, maka tidak ada mode. Mode dapat digunakan pada data yang berskala nominal, ordinal, interval dan rasio. Walaupun mode dapat digunakan untuk semua jenis data, namun jika datanya dalam bentuk skala yang lebih tinggi, yaitu ordinal, interval, dan rasio sebaiknya dalam menghitung rata-rata tidak hanya mengunakan mode tetapi gunakan ukuran rata-rata lainnya seperti median dan mean.

4.7.2.5. Korelasi Statistik Parametrik

a. Korelasi Produk Moment (pearson)

Korelasi ini mencari hubungan dan membuktikan hipotesis hubungan dua variabel bila datanya berasal dari sumber yang sama. Selanjutnya uji t untuk mencari signifikansi koefisien korelasi.

$$r_{xy} = \frac{\sum xy}{\sqrt{(\sum x^2 y^2)}}$$

$$r_{xy} = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{(n\sum x_i^2 - (\sum x_i)^2)(n\sum y_i^2 - (\sum y_i)^2)}}$$
(4.8)

Dimana:

 r_{xy} = Korelasi antara variabel X dengan Y

$$X = (X_{i-}X)$$

$$Y = (Y_{i-}Y)$$

Rumus kedua digunakan apabila sekaligus akan menghitung persamaan regresi¹¹⁶.

4.7.2.6. Analisis Regresi

Regresi merupakan alat yang dipergunakan untuk mengukur pengaruh dari setiap perubahan variabel bebas terhadap variabel terikat. Dengan kata lain, digunakan untuk menaksir variabel terikat setiap ada perubahan variabel bebas. Analisis regresi berganda dalam penelitian ini mengestimasi besarnya koefisien-koefisien yang dihasilkan oleh persamaan yang bersifat linier, yang melibatkan dua variabel bebas, untuk digunakan sebagai alat prediksi besar nilai variabel terikat. Pada penelitian ini ingin diketahui apakah ada faktor-faktor dominan yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder (produktivitas mengalami peningkatan).

Dari model regresi yang telah diperoleh berupa model linier kemudian dilakukan juga beberapa uji model yaiu uji R², uji F, uji T, uji autokorelasi dengan Durbin-Watson. Dimana R² ini digunakan untuk mengukur besarnya kontribusi variabel bebas X terhadap variasi (naik turunnya) variabel terikat Y. Variasi Y yang lainnya disebabkan oleh faktor lain yang juga mempengaruhi Y dan sudah termasuk dalam kesalahan pengganggu (disturbance error). Uji F digunakan untuk mengetahui apakah variabel-variabel independen secara bersama-sama berpengaruh secara signifikan terhadap variabel dependen atau untuk mengetahui apakah model regresi dapat digunakan untuk memprediksi variabel dependen atau tidak. Lalu dilakukan juga uji t untuk mengetahui apakah dalam model regresi variabel independen secara pasrsial berpengaruh signifikan terhadap variabel dependen. Sedangkan untuk uji autokorelasi digunakan dengan metode uji Durbin-Watson untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik, yaitu korelasi yang terjadi antara residual pada satu pengamatan dengan pengamatan lain pada model regresi. Prasyarat yang harus dipenuhi adalah tidak adanya autokorelasi dalam model regresi¹¹⁷.

4.7.2.7. Identifikasi Variabel Penentu dengan Dummy Variabel

Suatu persamaan dari model regresi yang terbentuk dikatakan sempurna apabila mempunyai nilai koefisien penentu $R^2=1$. Apabila nilai $R^2<1$, maka model tersebut ada kemungkinan variabel penentu lainnya masih belum teridentifikasi, yaitu sisanya 1-adjusted R^2 dapat dikontribusi oleh variabel penentu lainnya. Untuk mencari kemungkinan variabel penentu lainnya dilakukan dengan memasukkan variabel dummy ke dalam analisis sampai model regresi yang terbentuk menghasilkan nilai adjusted $R^2=1$ atau $R^2\approx 1^{118}$.

4.7.2.8. Uji Validitas Model

Dari model regresi yang telah diperoleh baik model linier maupun *non* linier, kemudian dilakukan beberapa uji model, yaitu¹¹⁹:

a. Coeficient of Determination Test atau R^2 Test

R² test digunakan untuk mengukur besarnya kontribusi variabel bebas X terhadap variasi (naik turunnya) variabel terikat Y. Variasi Y yang lainnya disebabkan oleh faktor lain yang juga mempengaruhi Y dan sudah termasuk dalam kesalahan pengganggu (disturbance error). R² juga digunakan untuk mengukur seberapa dekat garis regresi terhadap data. Daerah nilai R² adalah dari nol sampai satu. Semakin dekat nilai Y dari model regresi kepada titik-titik data, maka nilai R² semakin tinggi. Rumus R² adalah:

$$\begin{array}{c|c}
 & n \\
 & \Sigma & (Y_i - Y)^2 \\
 & i = 1 \\
 & R^2 = 1 - \frac{n}{\sum_{i=1}^{n} (Y_i - Y_c)^2} \\
 & i = 1
\end{array}$$
(4.9)

Dengan : Y_i= Nilai Y aktual *sample*

Y_c = Nilai Y dihitung dari model regresi

Y = Nilai Y rata-rata

Output SPSS ini juga menghasilkan *adjusted* R² (R² yang disesuaikan) yang merupakan koreksi dari R² sehingga gambarannya lebih mendekati mutu

penjagan model dalam populasi. $Adjusted R^2 (R_a^2)$ dirumuskan sebagai berikut :

$$R_{a}^{2} = R^{2} - \frac{k(1-R^{2})}{n-k-1}$$
(4.10)

b. Uji F (F-Test)

Uji F digunakan untuk menguji hipotesis nol (H_o) bahwa seluruh nilai koefisien variabel babas X_i dari model regresi sama dengan nol, dan hipotesis alternatifnya (H_a) adalah bahwa seluruh nilai koefisien variabel X tidak sama dengan nol. Dengan kata lain rasio F digunakan untuk menguji hipotesis nol (H_a) , yaitu bahwa variabel-variabel bebas secara bersama-sama tidak berpengaruh terhadap variabel terikat, serta hipotesis alternatifnya (Ho), yaitu bahwa variabel bebas berpengaruh terhadap variabel terikat. Secara notasi dapat dituliskan sebagai berikut :

$$H_0: \beta_1 = \beta_2 = \beta_3 = \dots = B_k = 0$$
 $H_a: \beta_1 \neq \beta_2 \neq \beta_3 \neq \dots \neq B_k \neq 0$
(4.11)

Rumus yang digunakan untuk menghitung rasio F adalah sebagai berikut :

Fratio = Sum of squared error
$$_{regression}$$
 / Degrees of freedom $_{regression}$

Sum of squared error $_{total}$ / Degrees of freedom $_{residual}$ (4.12)

Dimana derajat kebebasan regresi adalah jumlah koefisien yang diperkirakan (termasuk konstanta)-1, sedangkan derajat kebebasan residual adalah jumlah sample jumlah koefisien yang diperkirakan (termasuk konstanta). Kriteria yang digunakan dalam pengujian adalah:

Tolak
$$H_0$$
 jika F_0 hitung $> F_{\alpha(k-1)(n-k)}$ tabel

Tidak ditolak jika F_0 hitung $< F_{\alpha(k-1)(n-k)}$ tabel

(4.13)

Dimana:

 $\alpha = \text{tingkat signifikasi } (significant level) = 0.05$

n = jumlah sample

k = variasi bebas dalam model regresi berganda

c. Uji t (t-*Test*)

Uji t digunakan untuk menguji hipotesis nol (H) bahwa masing-masing koefisien dari model regresi sama dengan nol dan hipotesis alternatifnya (H0) adalah jika masing-masing koefisien dari model tidak sama dengan nol. Dengan demikian dapat dinyatakan sebagai berikut:

$$H_0: \beta_1 = 0, \ \beta_2 = 0, \ \beta_3 = 0, \dots = B_k = 0$$

 $H_a: \beta_1 \neq 0, \ \beta_2 \neq 0, \ \beta_3 \neq 0, \dots \neq B_k \neq 0$

$$(4.14)$$

Jika hipotesis nol diterima berarti model yang dihasilkan tidak dapat digunakan untiuk memprediksi nilai Y, sebaliknya jika hipotesis nol ditolak, maka nilai model yang dihasilkan dapat dipergunakan untuk memprediksi nilai Y. Nilai t dari koefisien variabel X dan konstanta regresi dapat dicari dengan menggunakan rumus :

t₀ untuk koefisien variabel X (β_i) :

$$t\beta_0 = \frac{\beta_0}{s_b} \tag{4.15}$$

• t₀ untuk koefisien konstanta X (β_i):

$$\mathbf{t}\boldsymbol{\beta}_{0} = \frac{\boldsymbol{\beta}_{0}}{\mathbf{S}_{b}} \tag{4.16}$$

Dimana S_b adalah kesalahan dari koefisien variabel X dan Sa adalah kesalahan baku dari konstanta regresi.

Kriteria pengujian hipotesis ini adalah sebagai berikut :

$$H_0$$
 ditolak jika t_0 hitung > $t_{a (n-k-1)}$ tabel

 H_0 diterima jika t_0 hitung $\leq t_{a (n-k-1)}$ tabel

(4.17)

d. Uji Auto Korelasi (Durbin-Watson Test)

Durbin-Watson test, dilakukan untuk menguji ada tidaknya auto korelasi antara variabel-variabel yang teliti. Pengujian dilakukan dngan menggunakan rumus :

$$d = \frac{\sum_{\substack{\Sigma \ (e_{j}.e_{j-1})^2 \\ j=2}}^{m}}{\sum_{\substack{E \ e_{j}^2 \\ j=1}}}$$
(4.18)

Statistik pengujian *Durbin-Watson* untuk hipotesis nol (H0) dan hipotesis alternatif (Ha) adalah sebgai berikut :

- Ha: ada autokorelasi positif dan negatif,
- H0: tidak ada autokorelasi positif dan negatif.

Kriteria pengujian:

- H0 akan diterima atau nilai d adalah nyata (*significant*) dan ada korelasi (positif atau negatif) jika $d > d_1$, dan $d_u < d < (4-d_u)$,
- Ho akan ditolak atau tidak ada korelasi jika $d < d_u$ dan $(4-d_u) > d$. Dan hasil pengujian tidak dapat disimpulkan.

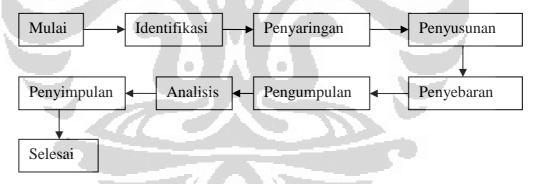
e. Uji Multikolinieritas

Uji multikolinieritas dilakukan untuk mengetahui apakah terdapat multikolinieritas atau terjadinya korelasi diantara sesama variabel terpilih. Model regresi yang baik harus tidak ada multikolinieritas. Menurut Tabachnick (2001) tidak terdapat *multicolinearity* diantara variabel penentu jika angka *condition index* < 17 dan angka *variance proportion* < 0.5.

4.8 Kesimpulan

Dalam penelitian ini digunakan dua metode penelitian yaitu survei dan studi kasus. Metode penelitian survei digunakan untuk mengetahui variable Faktor-faktor dominan yang mempengaruhi produktivitas alat berat pekerjaan pemasangan *precast* girder pada proyek *flyover* dan metode studi kasus digunakan untuk mengetahui nilai optimal dari faktor dominan tersebut. Proses pengumpulan data dilakukan melalui studi literatur, kuisioner, dan wawancara kepada pakar dan *stakeholder*.

BAB 5


PELAKSANAAN PENELITIAN DAN ANALISIS DATA

5.1 Pendahuluan

Pada bab ini akan dijelaskan mengenai tahapan pelaksanaan penelitian yang dimulai dari pengumpulan data penelitian yang berupa variabel-variabel bebas yang mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder yang didapatkan dari data primer yaitu data yang diperoleh dari hasil kuisioner dan data sekunder yaitu didapat dari hasil studi literatur seperti buku, referensi dan penelitian yang terkait. Kemudian variabel-variabel bebas divalidasi oleh pakar sebelum disebarkan kepada responden. Selanjutnya data yang didapat akan diolah dengan analisis statistik menggunakan program Statistical Program for Social Science (SPSS) 17. Pada tahap akhir dibawa kembali ke pakar untuk validasi model penelitian.

5.2 Proses Pelaksanaan Penelitian

Proses pelaksanaan penelitian ini adalah sebagai berikut:

Gambar 5.1 Proses Pelaksanaan Penelitian

Sumber: Hasil Olahan

- 1. Identifikasi yaitu mengumpulkan variabel-variabel bebas yang mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder yang didapatkan dari studi literatur seperti buku, referensi dan penelitian yang terkait.
- **2. Penyaringan** yaitu kumpulan variabel-variabel bebas yang diseleksi oleh para pakar baik yang direduksi, diperbaiki dan ditambahkan.

- **3. Penyusunan** yaitu variabel-variabel bebas yang lolos seleksi oleh para pakar yang dijadikan pertanyaan-pertanyaan pada kuisioner.
- **4. Penyebaran** yaitu kuesioner yang telah siap disebarkan ke responden di lapangan, dengan tujuan untuk mendapatkan jawaban yang unik, yang dapat memberikan ilustrasi mengenai karakteristik lapangan.
- 5. Pengumpulan yaitu dalam jangka waktu yang ditetapkan, maka responden diharuskan dapat menyelesaikan menjawab setiap pertanyaan dalam kuisioner tersebut, baik yang diwawancara langsung atau yang ditinggal. Kemudian setiap kuisioner dikumpulkan dan di input ke dalam microsoft excel agar mempermudah pada saat dianalisis di SPSS 17.
- **6. Analisis** yaitu setiap kuisioner yang telah siap di analisis (komparatif (*mann-whitney* dan *kruskall-wallis*), validitas, reliabilitas, analisis deskriptif, analisis korelasi, analisis regresi, uji validitas *model*, kemudian hasil *model* persamaan di validasi akhir oleh pakar.
- **7. Penyimpulan** yaitu dari hasil analisisa didapatkan kesimpulan, dimana kesimpulan tersebut yang menjawab dari setiap rumusan masalah.

5.3 Pengumpulan Data

Tahap-tahap pengumpulan data ini seperti yang dijelaskan pada sub bab 4.7 pengumpulan data ini dilakukan beberapa tahap agar untuk meminimalkan penyaringan variabel-variabel bebas yang disusun untuk pertanyaan yang berkaitan dengan variabel terikat kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder, maka pengumpulan data ini dilakukan tiga tahap yaitu

1. Tahap pertama

Responden yang menjadi target adalah para pakar yang ahli terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder. pertanyaan yang harus dijawab oleh para pakar berbentuk *essay*. Tujuannya adalah validasi sementara atas variabel-variabel bebas yang memiliki pengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder, dari hasil validasi sementara tersebut maka disusun pertanyaan-pertanyaan yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan

pemasangan *precast* girder. Adapun data umum responden dari para pakar tersebut adalah sebagai berikut :

Tabel 5.1 Data Umum Pakar

No	Pakar	Jabatan	Pengalaman	Pendidikan
1	Pakar 1	Ex. Staff Ahli	40 Tahun	S2
2	Pakar 2	Manager	34 Tahun	S 1
3	Pakar 3	Staff Ahli	30 Tahun	S2

Sumber: Hasil Olahan

Hasil dari pengumpulan data tahap pertama menghasilkan 57 variabel bebas yang menurut pakar memiliki pengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Untuk melihat reduksi dan penambahan variabel X oleh para pakar secara lengkap dapat dilihat pada lampiran A. Berikut adalah variabel-variabel bebas yang didapatkan dari hasil validasi pakar pada tahap pertama yaitu:

Tabel 5.2 Variabel Bebas Hasil Validasi Pakar Tahap Pertama

Indikator	Sub - Indikator	Faktor
Tahap	Data	Faktor yang berpengaruh pada internal proyek
Perencanaan	Lapangan	
Konstruksi X1		Ketersediaan informasi dan kelengkapan data
		mengenai data lapangan
	X2	Data jenis proyek
100	Kontraktor	
	X3	Kemampuan kontraktor memprediksi kondisi
		lapangan dalam pembuatan site lay - out dan resiko
		kejadian yang akan datang
	X4	Pengalaman orang yang ditugaskan untuk
	843	mengestimasi produktivitas oleh kontraktor
	X5	Penggunaan tenaga ahli yang digunakan oleh
		kontraktor untuk mengestimasi produktivitas
	X6	Informasi yang diperoleh orang yang ditugaskan oleh
		kontraktor dalam mengestimasi produktivitas
	X7	Kemampuan kontraktor memahami karakteristik dari
		proyek tersebut
	X8	Kemampuan kontraktor dalam segi finansial

Tabel 5.2 (Lanjutan)

Indikator	Sub -	Faktor
Huikatui	Indikator	Partoi
	murkator	
Tahap	X9	Kemampuan kontraktor dalam mengestimasi
Perencanaa		produktivitas alat, jumlah alat, serta kapasitas alat
n		yang dibutuhkan
Konstruksi	X10	Persediaan alat yang dibutuhkan oleh kontaktor
	X11	Kemampuan evaluasi dari kontraktor terhadap
		kinerja produksi
	X12	Koordinasi kontraktor dengan stakeholder
	X13	Waktu perencanaan kontraktor dalam mengestimasi
		produktivitas
	X14	Sistem dan prosedur evaluasi dan monitoring dari
- 71		kontraktor terhadap kapasitas produksi
A		
	Penjadwalan	
	X15	Urutan pekerjaan pemasangan precast girder dalam
		penjadwalan proyek
	X16	Tingkat keakurasian penjadwalan yang
		memperhatikan waktu penggunaan alat, lokasi
		tempat kerja, jumlah alat dan volume pekerjaan
	X17	Perubahan jadwal pekerjaan dan design
Tahap	Alat	
Manajemen	X18	Kapasitas Alat yang digunakan
Alat Berat	X19	Pemilihan umur alat dan kondisi
1	X20	Kebutuhan perlengkapan kerja
	X21	Tata letak penempatan alat
	X22	Kondisi tempat kerja alat beroperasi
	X23	Perencanaan jumlah alat yang dibutuhkan
	X24	Data jenis Mobile crane yang digunakan
	Operasional	
	X25	Jumlah alat yang beroperasi
	X26	Keseuaian manuver alat saat beroperasi
	X27	Efektivitas dan efisinesi penggunaan alat selama
		beroperasi
	X28	Metoda kerja dan perubahannya selama beroperasi
	X29	Pengadaan stok bahan bakar selama beroperasi
		(mobile crane)
	X30	Kelancaran pendanaan dalam biaya operasi alat
	X31	Umur ekonomis alat selama beroperasi
	X32	Jalan kerja yang diterapkan selama beroperasi
	X33	Tingkat kerusakan alat selama operasional

Tabel 5.2 (Lanjutan)

T 1:14	C1-	E-1-4
Indikator	Sub -	Faktor
	Indikator	
Tahap	Operasional	
Manajemen Alat Berat	X34	Penyediaan dan monitoring suku cadang alat selama beroperasi
	X35	Pengendalian keselamatan dan kesehatan kerja (K3)
	X36	Penerapan jam kerja alat mempengaruhi operasional alat
	X37	Sistem pengamanan alat selama tidak beroperasi
	Pengadaan Alat	
4	X38	Pengadaan jenis alat
J 16	X39	Pangadaan kapasitas dan spesifikasi alat
	X40	Perubahan kondisi lokasi proyek pada saat pengadaan alat berat
1	Pemeliharaan	
	X41	Tingkat kerusakan alat selama penyimpanan mempengaruhi pemeliharaan alat
	Perbaikan	
	X42	Pendanaan dalam biaya perbaikan alat
	X43	Penggunaan alat baru selama perbaikan
	X44	Waktu perbaikan
	X45	Tersedianya <i>spare part</i> mempermudah dalam perbaikan
3.53	X46	Sistem pemeliharaan alat selama beroperasi
	Operator dan Mekanik	
	X47	Pengalaman operator
	X48	Shift dari operator alat berat
	X49	Fasilitas yang diberikan oleh operator alat berat
	X50	Pengalaman mekanik
	X51	Motivasi dari operator alat berat

Tabel 5.2 (Lanjutan)

Indikator	Sub -	Faktor
	Indikator	
Kondisi	Pencurian	
Terkendali	Alat	
	X52	Kehilangan/pencurian spare part alat
Kondisi Tak	Cuaca	
Terkendali	X53	Ramalan kondisi dan cuaca
	Benc. Alam	
	X54	Tidak terjadinya bencana alam selama pelaksanaan
		konstruksi (banjir, dll)
	Hukum	
	X55	Perubahan peraturan hukum perundang-undangan
97		
4	Ekonomi	
	X56	Perubahan kondisi perekonomian
	X57	Pertimbangan terhadap perubahan nilai kurs nilai
	The same of the sa	mata uang ekonomi
Indikator	Sub -	Apakah faktor-faktor berikut berpengaruh
	Indikator	terhadap produktivitas alat pemasangan precast
		girder
Produktivitas	Faktor-	Apakah faktor – faktor dominan yang tepat akan
	Faktor	berpengaruh terhadap produktivitas?
	Dominan	

Sumber: Hasil Olahan

Dari hasi validasi sementara oleh para pakar tersebut diatas telah mengalami reduksi variabel, penambahan variabel, pengkoreksian kalimat kalimat pertanyaan yang digunakan dalam penyebaran kuisioner oleh keenam pakar (semula 44 variabel menjadi 57 variabel).

2. Tahap kedua

Responden yang menjadi target pada penelitian ini adalah para *Project Manager*, *Site Manager*, Kepala Pelaksana yang terlibat langsung dalam proyek pelaksanaan pekerjaan pemasangan *precast* girder. Tujuan dari pengumpulan data tahap kedua ini adalah mencari variat (kombinasi linier dari variabel-variabel bebas) atas lima puluh tujuh variabel yang telah tervalidasi, kemudian dianalisis korelasi untuk mendapatkan korelasi yang signifikan terhadap variabel terikat. Untuk data responden dapat dilihat pada lampiran B. Selanjutnya data yang diterima direkap untuk masing-masing jawaban atas pertanyaan yang berkaitan

dengan variabel bebas yang mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Tabel 5.3 Kode Pengelompokan Responden

Variabel	Uraian	Kode
Jabatan	Project Manager (PM)	1
	Site Operational Manager (SOM)	2
	Site Manager (SM)	2
	Site Engineering Manager (SEM)	2
	Kepala Pelaksana	3
Pengalaman Kerja	1-10 Tahun	1
200.004	> 10 Tahun - < 20 Tahun	2
Pendidikan	STM/ SLTA/ SMAN/ D3	§ 1
	S1	2
	S2	3

Sumber: Hasil Olahan

Tabel 5.4 Data Umum Responden

No	Nama	Jabatan	Pengal.	Pend.	Kode	Kode	Kode
			Kerja (Th.)	Terakhir	Jab.	Pend.	Pengal.
1	R1	PM	21	S2	- 1	3	2
2	R2	PM	19	S2	1	3	2
3	R3	GSI	14	S2	1	3	2
4	R4	Eng. Manager	7	S1	2	2	1
5	R5	Eng. Manager	10	S1	2	2	1
6	R6	Site Manager	18	S2	2	3	2
7	R7	Site Manager	17	S1	2	2	2
8	R8	Chief Proj. Cont.	13	-S1	2	2	2
9	R9	Chief HSE	26	SLTA	2	1	2
10	R10	Chief QC	11	S1	2	2	2
11	R11	Chief Proj. Cont.	4	S2	2	3	1
12	R12	Chief HSE	8	S2	2	3	1
13	R13	Chief QC	13	S2	2	3	2
14	R14	Chief Engineer	15	S2	2	3	2
15	R15	Chief QS	11	S 1	2	2	2
16	R16	Chief QS	14	S2	2	3	2
17	R17	Construction	8	D3	3	2	1
18	R18	Ops. Peralatan	7	STM	3	2	1
19	R19	QC Inspector	13	S 1	3	2	2
20	R20	Safety Officer	9	SLTA	3	2	1
21	R21	Safety Oficer	26	S2	3	3	2
22	R22	Logistic	5	STM	3	1	1

Tabel 5.4 (Lanjutan)

No	Nama	Jabatan	Pengal.	Pend.	Kode	Kode	Kode
			Kerja (Th.)	Terakhir	Jab.	Pend.	Pengal.
23	R23	Drafter	4	S 1	3	2	1
24	R24	Quantity	7	S 1	3	2	1
25	R25	Surveyor	8	S1	3	2	1
26	R26	QC Inspector	12	S1	3	2	2
27	R27	Ops. Peralatan	11	S1	3	2	2
28	R28	Construction	12	S1	3	2	2
29	R29	Construction	19	D3	3	1	2
30	R30	Construction	6	S1	3	2	1
31	R31	Logistic	7	S1	3	2	1

Sumber: Hasil Olahan

3. Tahap ketiga

Setelah data diolah dengan menggunakan SPSS 17 dan mendapatkan hasilnya dilakukan kembali wawancara terhadap para pakar untuk mendapatkan validasi akhir. Hasil dari wawancara kepada para pakar mendapatkan masukan/ komentar mengenai hasil yang telah didapat dari pengolahan data, sehingga dapat diberikan analisis yang sesuai dengan *output* tersebut. Adapun pakar yang diwawancarai adalah sama dengan pakar pada tahap pertama. Hasil yang didapat pada tahap ini akan dibahas pada temuan dan bahasan.

5.4 Analisa Data

5.4.1 Analisis Non parametrik/ Komparatif

Sample penelitian yang diperoleh adalah 31 responden, oleh karena itu dapat diidentifikasikan analisis deskriptif berdasarkan data responden. Analisis deskriptif responden dilihat dari jabatan, pengalaman kerja, dan pendidikan responden. Untuk mengetahui perbedaan pemahaman berdasarkan data responden, maka dilakukan uji non parametrik yaitu dengan memakai uji kruskall-wallis yang memiliki > 2 kriteria dan uji mann-whitney yang < 2 kriteria. Hipotesis yang digunakan adalah sebagai berikut:

Ho = Tidak ada perbedaan persepsi responden yang berbeda jabatan, pendidikan, dan pengalaman kerja

Ha = Ada perbedaaan persepsi minimal satu persepsi responden yang berbeda jabatan, pendidikan, dan pengalaman kerja.

Dan sebagai dasar untuk menyimpulkan hipotesis adalah sebagai berikut:

- Ho diterima jika nilai p-value pada kolom Asymp.Sig (2-tailed) > level of significant (α) sebesar 0,05
- Ho ditolak jika nilai p-value pada kolom Asymp.Sig (2-tailed) < level of 2
 0,05(df) significant (α) sebesar 0,05

Berikut adalah uraian analisis *non parametrik* dengan uji *mann-whitney* untuk kategori jabatan dan untuk kategori pendidikan dan pengalaman kerja dengan menggunakan uji *kruskall-wallis*.

1. Analisis *Non Parametrik* dengan *Mann-whitney* Untuk Kategori Pengalaman Kerja

Uji *mann-whitney* dilakukan untuk menguji perbedaaan jawaban responden dangan latar belakang perbedaan pengalaman kerja. Pengelompokan pengalaman kerja ini dikelompokkan menjadi 2 kelompok, yaitu:

- 1. Kelompok responden dengan pengalaman kerja < 10 tahun
- 2. Kelompok responden dengan pengalaman kerja > 10 tahun

Gambar 5.2 Sebaran Tingkat Pengalaman Kerja Responden

Sumber: Hasil Olahan

Dari gambar 5.2 tersebut dapat diambil kesimpulan bahwa nilai terbesar adalah yang memiliki pengalaman lebih dari 10 tahun yaitu sebesar 58 % sedangkan diurutan kedua adalah yang memiliki pengalaman kurang dari 10 tahun sebesar 42%. Data yang didapatkan ini diolah dengan menggunakan SPSS 17 dengan uji *mann-whitney*. Untuk hasil lengkap dari uji *mann-whitney* ini dapat

dilihat pada lampiran 4. Pada tabel 5.5 ini adalah bagian kecil dari hasil uji *mann-whitney*.

Tabel 5.5 Output untuk Uji Mann-Whitney Kategori Pengalaman

	Kode Pengalaman	N	Mean Rank	Sum of Ranks
	Pengalaman < 10	13	17.73	230.50
X1	Pengalaman > 10	18	14.75	265.50
	Total	31		
	Pengalaman < 10	13	13.42	174.50
X2	Pengalaman > 10	18	17.86	321.50
	Total	31	4	
	Pengalaman < 10	13	16.04	208.50
Х3	Pengalaman > 10	18	15.97	287.50
4	Total	31	<i>a</i>	

Sumber: Hasil Olahan SPSS 17

Dari tabel diatas dapat diketahui perbedaan pengalaman kerja terlalu signifikan dengan dengan rentang terjauh pada X1 yaitu 534. Pada tabel 5.6 adalah bagian kecil *output* dari uji *mann-whitney* untuk menentukan nilai *Asymp.Sig* dengan kategori pengalaman kerja responden. Untuk lebih lengkapnya dapat dilihat pada lampiran 4.

Tabel 5.6 Hasil Uji Pengaruh untuk Kategori Jabatan

	X12	X13	X14	X32	X33	X34
Mann-Whitney U	112.500	61.000	70.500	72.000	60.000	98.000
Wilcoxon W	203.500	152.000	161.500	163.000	151.000	189.000
Z	188	-2.399	-2.038	-1.884	-2.395	803
Asymp. Sig. (2-tailed)	.851	.016	.042	.060	.017	.422

Sumber: Hasil Olahan SPSS 17

Dari uji *mann-whitney* juga didapatkan nilai *Asymp.Sig.* nilai ini dibutuhkan untuk menentukan hipotesis yang diterima. Dari hasil perbandingan ini maka dapat disimpulkan bahwa terdapat perbedaan persepsi responden dari kategori pengalaman kerja yaitu pada variabel X13, X14, X33. Penjelasan perbedaan persepsi ini terdapat pada tabel dibawah ini.

Tabel 5.7 Perbandingan Perbedaan Persepsi untuk Kategori Pengalaman Kerja

No.	Variabel	Keterangan
1	Kemampuan evaluasi	Perbedaan pendapat ini terjadi karena bagi orang
	dari kontraktor terhadap	yang sudah memiliki pengalaman yang cukup lama
	kinerja produksi (X13)	akan berpikir realistis dibandingkan dengan orang
		yang belum berpengalaman akan berpikir secara
		teoritis bagaimana cara evaluasi dari kontraktor
		terhadap kinerja produksi.
2	Sistem dan prosedur	Responden yang berpengalaman lebih lama akan
	evaluasi dan monitoring	melakukan evaluasi dan monitoring terhadap
	terhadap kapasitas	kapasitas produksi sehingga tidak terjadi
	produksi(X14)	keterlamabatan pada proyek tersebut.
3	Tingkat kerusakan alat	Bagi orang yang sudah berpengalaman akan
	selama operasional(X33)	memikirkan tingkat kerusakan alat selama
		operasional karena akan mempengaruhi kinerja
		proyek berbeda dengan orang yang kurang
		berpengalaman, mereka tidak akan memikirkan
1		tingkat kerusakan alat tersebut karena kurangnya
W.		pengalaman mereka.

Sumber: Hasil Olahan

2. Analisis *Non Parametrik* dengan *Kruskall-wallis* Untuk Kategori Pendidikan

Uji *kruskall-wallis* dilakukan untuk menguji perbedaaan jawaban responden dangan latar belakang perbedaan pendidikan. Pengelompokan pendidikan ini dikelompokkan menjadi 4 kelompok, yaitu:

- 1. Kelompok responden dengan pendidikan terakhir STM/ SLTA/ SMAN/ D3
- 2. Kelompok responden dengan pendidikan terakhir S1
- 3. Kelompok responden dengan pendidikan terakhir S2

Gambar 5.3 Sebaran Tingkat Pendidikan Responden

Sumber: Hasil Olahan

Dari gambar diatas dapat diambil kesimpulan bahwa nilai terbesar adalah dengan tingkat pendidikan S1 yaitu sebesar 58 % sedangkan urutan kedua adalah S2 yaitu sebesar 32 %, pada urutan ketiga yaitu D3, SLTA sederajat sebesar 10 %. Selanjutnya data ini diolah dengan menggunakan SPSS 17 dengan uji *kruskall-wallis*. Pada tabel dibawah ini adalah bagian kecil dari hasil uji *kruskall-wallis* untuk uji tingkat pendidikan. Untuk lebih lengkapnya dapat dilihat pada lampiran.

Tabel 5.8 Output untuk Uji Kruskall-wallis Kategori Pendidikan

	Kode Pendidikan	N	Mean Rank
X1	SLTA,D3	3	13,83
7 1	S1	18	17,08
	S2	10	14,70
	Total	31	
X2	SLTA,D3	3	21,33
	S1	18	15,39
	S2	10	15,50
	Total	31	
Х3	SLTA,D3	3	20,67
	S1	18	13,81
44	S2	10	18,55
	Total	31	

Sumber: Hasil Olahan SPSS 17

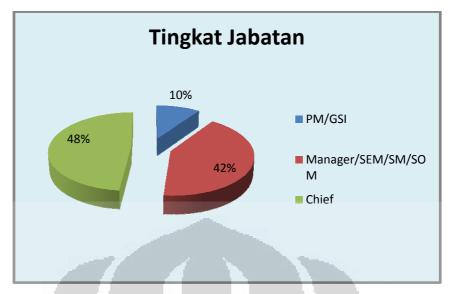
Dari tabel diatas, dapat dilihat bahwa *mean rank* antar variabel tidak memiliki perbedaan yang terlampau jauh. Dari 57 *Sample* yang diuji untuk tiga variabel, maka terlihat bahwa yang memiliki perbedaan paling besar adalah X2 dengan besar perbedaan 5,83. Pada tabel 5,9 adalah bagian kecil *output* dari uji *kruskall-wallis* untuk menentukan nilai *Asymp.Sig* dengan kategori pendidikan. Untuk lebih lengkapnya dapat dilihat pada lampiran.

Tabel 5.9 Hasil Uji Pengaruh untuk Kategori Pendidikan

	X50	X51	X52	X54	X55
Chi-Square	.464	12.224	.114	2.745	7.166
df	2	2	2	2	2
Asymp. Sig.	.793	.002	.945	.253	.028

Sumber: Hasil Olahan SPSS 17

Dari uji *kruskall-wallis* juga didapatkan nilai *Asymp.Sig.* nilai ini dibutuhkan untuk menentukan hipotesis yang diterima. Dari hasil perbandingan ini maka dapat disimpulkan bahwa terdapat perbedaan persepsi responden dari kategori pendidikan yaitu pada variabel X51, X55. Penjelasan perbedaan persepsi ini terdapat pada tabel dibawah ini.


Tabel 5.10 Perbandingan Perbedaan Persepsi untuk Kategori Pendidikan

No.	Variabel	Keterangan			
1	Motivasi dari operator	Bagi_responden yang sudah memiliki tingkat			
	alat berat(X51)	pendidikan tinggi akan berpikir bagaimana cara			
		memotivasi operator agar kerjaan yang mereka			
		lakukan menjadi lebih cepat atau minimal tepat			
		waktu sehingga tidak mempengaruhi kinerja proyek,			
		berbeda dengan orang yang tingkat pendidikan			
		kurang mereka tidak akan akan memikirkan motivasi			
		dari sang operator alat berat.			
2	Perubahan peraturan	Responden yang memilki tingkat pendidikan yang			
	dan hukum perundang-	tinggi akan memikirkan perubahan peraturan dan			
	undangan mengenai	hukum perundang-undangan mengenai alat berat			
	alat berat(X55)	berbeda dengan yang tingkat pendidikannya kurang,			
		mereka tidak akan memikirkan peraturan dan hukum			
		perundang-undangan mengenai alat berat.			

3. Analisis Non Parametrik dengan Kruskall-wallis Untuk Kategori Jabatan

Uji *kruskall-wallis* dilakukan untuk menguji perbedaaan jawaban responden dangan latar belakang perbedaan Jabatan. Pengelompokan Jabatan ini dikelompokkan menjadi 3 kelompok, yaitu:

- 1. Kelompok responden dengan jabatan PM & GSI
- 2. Kelompok responden dengan jabatan SM, SEM, SOM
- 3. Kelompok responden dengan jabatan Kepala Pelaksana dan sederajat

Gambar 5.4 Sebaran Tingkat Pengalaman Kerja Responden

Sumber: Hasil Olahan

Dari gambar 5.4 diatas dapat diambil keputusan bahwa nilai terbesar adalah dengan jabatan kerja adalah kepala pelaksana yaitu sebesar 48 % sedangkan pada urutan kedua adalah *manager* yaitu sebesar 42 % dan pada urutan terakhir adalah jabatan kerja *project manager* yaitu sebesar 10 %. Selanjutnya data ini diolah dengan menggunakan SPSS 17 dengan uji *kruskall-wallis*. Untuk hasil lengkapnya uji dari *kruskall-wallis* ini dapat dilihat pada lampiran 6. Pada tabel dibawah ini adalah bagian kecil dari hasil uji *kruskall-wallis* untuk uji tingkat pengalaman kerja.

Tabel 5.11 Output untuk Uji Kruskall-wallis Kategori Jabatan Kerja

	Kode Jabatan	N	Mean
			Rank
X1	PM, GSI	3	17,33
	SM,SEM,SOM	13	13,38
	Chief	15	18,00
	Total	31	-
X2	PM, GSI	3	17,00
	SM,SEM,SOM	13	14,31
	Chief	15	17,27
	Total	31	
X3	PM, GSI	3	16,83
	SM,SEM,SOM	13	13,54
	Chief	15	17,97
	Total	31	

Sumber: Hasil Olahan SPSS 17

Dari tabel diatas, dapat dilihat bahwa *mean rank* antar variabel tidak memiliki perbedaan yang terlampau jauh. Dari 57 *Sample* yang diuji untuk tiga variabel, maka terlihat bahwa yang memiliki perbedaan paling besar adalah X3 dengan besar perbedaan 8,60. Pada tabel 5.10 adalah bagian kecil *output* dari uji *Kruskall-wallis* untuk menentukan nilai *Asymp*. dengan kategori jabatan responden. Untuk lebih lengkapnya terdapat pada Lampiran.

Tabel 5.12 Hasil Uji Pengaruh untuk Kategori Jabatan

	X5	X6	- X7	X23	X24	X25
Chi-Square	1.197	7.526	.452	1.509	8.738	2.963
df	2	2	2	2	2	2
Asymp. Sig.	.550	.023	.798	.470	.013	.227

Sumber: Hasil Olahan SPSS 17

Dari uji *kruskall-wallis* juga didapatkan nilai *Asymp.Sig.* nilai ini dibutuhkan untuk menentukan hipotesis yang diterima. Dari hasil perbandingan ini maka dapat disimpulkan bahwa terdapat perbedaan persepsi responden dari kategori pendidikan yaitu pada variabel X6, X24. Penjelasan perbedaan persepsi ini terdapat pada tabel dibawah ini.

Tabel 5.13 Perbandingan Perbedaan Persepsi untuk Kategori Jabatan

No.	Variabel Variabel	Keterangan
1	Informasi yang diperoleh orang	PM akan memikirkan informasi-informasi
	yang ditugakan oleh kontraktor	yang dibutuhkan untuk proyek tersebut
	dalam mengestimasi	seperti denah lokasi proyek, kondisi
	produktivitas (X6)	eksisting dari proyek tersebut sehingga
		bisa tepat dalam pemilihan alat sehingga
		tidak menurunkan produktivitas alat yang
		akan digunakan.
2	Data jenis mobile crane yang	Dalam memilih jenis mobile crane yang
	digunakan (X24)	akan digunakan, PM akan memikirkan
		jenis crane yang cocok sesuai dengan
		lokasi proyek serta beban yang akan
		ditanggung oleh alat berat, hal ini yang
		belum dimiliki oleh para manager maupun
		kepala pelaksana.

Sumber: Hasil Olahan

5.4.2 Validitas dan Reliabilitas

Dalam validitas penentuan layak atau tidaknya suatu *item* yang digunakan yaitu dengan uji signifikansi koefisien korelasi pada tahap signifikan 0,05 yang artinya variabel penelitian dianggap valid jika *item* berkorelasi signifikan terhadap skor total. Sedangkan untuk uji reliabilitas digunakan untuk mengetahui konsistensi alat ukur, apakah alat pengukur yang digunakan tetap konsisten. Pengujian validitas data digunakan dengan menggunakan *corrected item-total correlation* yang menggunakan nilai r dari tabel. Sedangkan untuk uji reliabilitas digunakan dengan menggunakan Cronbach's Alpha yaitu 0,05 dimana variabel penelitian dikatakan reliable bila nilai Cronbach's Alpha lebih besar dari r kritis *product moment*. Berikut adalah tabel hasil *output* pengolahan data dengan menggunakan program SPSS 17.

Tabel 5.14 *Output* Uji Reliabilitas

	11/	N	%
Cases	Valid	31	100,0
	Excluded ^a	0	,0
	Total	31	100,0

Tabel 5.15 *Output* Uji Realibility Reliability Statistics

Cronbach's Alpha	N of Items
.949	58

Sumber: Hasil Olahan SPSS 17

Dari tabel *output* uji reliabilitas dapat disimpulan bahwa data yang diteliti adalah 31 responden dengan nilai valid 100 %. Dari 31 responden yang didapat maka semua data dapat diterima. Nilai cronbach's alpha didapat sebesar 0,949. Nilai yang didapat dibandingkan dengan nilai r tabel *product moment* dengan dk = N - 1 = 31 - 1 = 30, signifikansi 0,05 maka diperoleh r tabel = 0,361. Dari hasil ini didapatkan bahwa nilai cronbach's alpha > r tabel yaitu 0,946 > 0,361, maka semua data ini reliable. Sedangkan untuk menguji validitas dari setiap pertanyaan variabel ini digunakan nilai kriteria indeks korelasinya harus lebih besar dari 0,367 dengan Df = 31 - 2 = 29. Maka variabel yang dihilangkan yaitu terdapat pada tabel dibawah ini.

Tabel 5.16 Hasil Uji Validitas 1

			Item-Total S	tatistics	
		Scale	Scale	Corrected	Cronbach's
		Mean if	Variance if	Item-Total	Alpha if Item
		Item	Item	Correlation	Deleted
		Deleted	Deleted	2.15	0.40
	X1	202,06	732,729	,347	,949
	X2	202,58	726,252	,363	,949
	X3	202,35	713,370	,799	,947
	X7	202,71	722,746	,619	,947
	X8	202,42	729,852	,358	,949
	X9	202,16	722,873	,488	,948
	X13	202,71	735,546	,378	,948
	X14	202,39	740,778	,274	,949
	X15	202,32	730,959	,362	,949
	X16	202,90	720,690	,522	,948
	X18	202,06	726,062	,514	,948
	X19	201,90	741,624	,242	,949
M.	X20	202,13	728,183	,503	,948
	X38	201,90	732,490	,441	,948
١.	X39	202,13	736,716	,256	,949
	X40	202,42	716,185	,681	,947
	X41	202,16	740,540	,219	,949
	X42	202,55	718,323	,677	,947
	X45	202,35	720,637	,673	,947
	X46	202,45	738,856	,305	,949
	X47	201,90	725,957	,515	,948
	X52	202,13	728,183	,503	,948
	X53	202,68	734,092	,309	,949
	X54	202,55	734,989	,230	,950
	X55	202,84	747,873	,050	,950
	X56	202,81	737,361	,420	,948

Dari tabel ini dapat diambil kesimpulan bahwa jika nilai *corrected item total correlation*nya lebih besar dari r tabel maka dinyatakan pada butir pertanyaan tersebut sudah valid. Dari uji validitas pertama ini didapatkan variabel yang tidak valid diantaranya adalah X1, X2, X8, X14, X15, X19, X33, X39, X41, X46, X53, X54, dan X55.

Dari data yang sudah tidak valid kemudian dihilangkan dan kemudian di uji kembali dengan menggunakan SPSS 17 sehingga mendapatkan data yang valid.

Berikut adalah bagian kecil hasil pengujian kedua dari validitas ini dapat dilihat pada tabel dibawah ini. Untuk lebih lengkapnya untuk melihat hasil uji validitas 2 dapat dilihat pada lampiran 7.

Tabel 5.17 Hasil Uji Validitas 2

Item-Total Statistics							
	Scale	Scale	Corrected	Cronbach's			
	Mean	Variance	Item-Total	Alpha if			
	if Item	if Item	Correlation	Item			
	Deleted	Deleted		Deleted			
Х3	160,06	533,196	,790	,951			
X4	160,16	538,273	,570	,952			
X12	160,10	546,824	,400	,953			
X13	160,42	552,452	,366	,953			
X14	160,10	556,957	,262	,953			
X16	160,61	538,912	,526	,952			
X17	159,97	535,232	,638	,952			
X18	159,77	543,314	,526	,952			
X20	159,84	545,606	,504	,952			
X21	159,48	548,258	,450	,953			
X22	159,94	541,196	,629	,952			
X25	159,81	534,628	,674	,951			
X26	159,90	540,424	,624	,952			
X27	159,84	540,206	,544	,952			
X28	160,00	547,267	,596	,952			
X29	159,71	548,413	,437	,953			
X35	159,45	545,056	,551	,952			
X42	160,26	536,931	,681	,951			
X43	160,39	535,178	,623	,952			
X44	160,00	542,133	,598	,952			
X45	160,06	538,729	,683	,952			
X47	159,61	542,645	,541	,952			
X49	160,32	545,692	,558	,952			
X51	160,06	539,729	,577	,952			
X52	159,84	545,606	,504	,952			
X56	160,52	554,258	,398	,953			
Y	160,55	549,189	,506	,952			

Sumber: Hasil Olahan SPSS 17

Dari tabel tersebut terdapat 2 variabel yang tidak valid yaitu X13, dan X14 yang selanjutnya variabel itu dihilangkan dan diuji kembali validitasnya dengan menggunakan SPSS 17. Hasil dari pengujian validitas 3 ini semua variabel

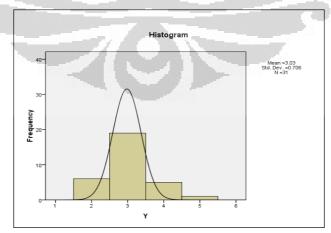
dinyatakan valid dengan jumlah variabel 41 variabel. Berikut adalah hasil uji validitas 3 dapat dilihat pada tabel dibawah ini.

Tabel 5.18 Hasil Uji Validitas 3

	Ite	em-Total S	tatistics	
	Scale	Scale		Cronbach's
	Mean	Variance	Corrected	Alpha if
	if Item	if Item	Item-Total	Item
	Deleted	Deleted	Correlation	Deleted
X3	153,42	511,252	,788	,951
X4	153,52	515,591	,582	,952
X5	153,42	520,852	,521	,953
X6	153,55	516,989	,488	,953
X7	153,77	519,647	,595	,952
X9	153,23	517,714	,510	,953
X10	153,10	516,624	,594	,952
X11	153,74	512,465	,538	,953
X12	153,45	523,523	,422	,953
X16	153,97	517,832	,503	,953
X17	153,32	512,559	,651	,952
X18	153,13	521,116	,524	,953
X26	153,26	517,798	,635	,952
X29	153,06	526,196	,433	,953
X37	153,58	518,585	,503	,953
X38	152,97	526,699	,449	,953
X40	153,48	513,725	,668	,952
X42	153,61	514,845	,680	,952
X49	153,68	523,759	,547	,952
X50	153,03	517,832	,635	,952
X52	153,19	523,961	,486	,953
X56	153,87	531,983	,391	,953
Y	153,90	527,157	,496	,953

Sumber: Hasil Olahan SPSS 17

5.4.3 Analisis Deskriptif


Analisis deskriptif bertujuan untuk mendapatkan nilai *mean* dan *median* dari keseluruhan penilaian yang telah diberikan oleh para responden atas variabel yang ditanyakan. Penggunaan nilai *mean* dan *median* ditujukan untuk mendapatkan gambaran secara kualitatif mengenai tingkat pemahaman dan penguasaan kompetensi oleh para responden. Tabel berikut adalah hasil rangkuman pengolahan data, sedangkan lebih lengkapnya dapat dilihat pada lampiran 8.

Hasil analisis deskritif akan disajikan dalam masing-masing variabel. Untuk variabel Y, yang merupakan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder diperoleh nilai modus sebesar 1, yang berarti faktor dominan yang berpengaruh kecil akan berdampak pada kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder yang tinggi.

Tabel 5.19 Hasil Analisis Deskriptif Variabel Y

		Frequ	Perce	Valid	Cumulativ
		ency_	nt	Percent	e Percent
Valid	Kinerja Produktivitas alat > 80% - <	6	19,4	19,4	19,4
	93%				
i Team	Kinerja Produktivitas alat > 93% -	19	61,3	61,3	80,6
	106%				
	Kinerja Produktivitas alat > 106% -	5	16,1	16,1	96,8
1	120%				
	Kinerja Produktivitas alat > 120%	1	3,2	3,2	100,0
	Total	31	100,0	100,0	

Sumber: Hasil Olahan SPSS 17

Gambar 5.5 Histogram Variabel Y

Sumber: Hasil Olahan SPSS 17

Tabel 5.20 Output Uji Deskriptif Variabel X dan Y

Descriptive Statistics								
	N	Mini mum	Maxi mum	Mean	Std. Deviation	Pengaruh		
X1	31	2	5	3,81	,980	berpengaruh tinggi		
X2	31	1	5	3,29	1,243	berpengaruh sedang		
X3	31	2	5	3,52	,890	berpengaruh tinggi		
X4	31	1	5	3,42	1,025	berpengaruh sedang		
X5	31	2	5	3,52	,926	berpengaruh tinggi		
X6	31	1	5	3,39	1,145	berpengaruh sedang		
X7	31	2	5	3,16	,860	berpengaruh sedang		
X8	31	1	5	3,45	1,091	berpengaruh sedang		
X9	31	1	5	3,71	1,071	berpengaruh tinggi		
X10	31	1	5	3,84	,969	berpengaruh tinggi		
X11	31	1	5	3,19	1,223	berpengaruh sedang		
X12	31	2	5	3,48	,996	berpengaruh sedang		
X13	31	2	4	3,16	,779	berpengaruh sedang		
X14	31	2	5	3,48	,724	berpengaruh sedang		
X15	31	2	5	3,55	1,028	berpengaruh tinggi		
X16	31	1	5	2,97	1,080	berpengaruh sedang		
X17	31	2	5	3,61	1,022	berpengaruh tinggi		
X18	31	2	5	3,81	,910	berpengaruh tinggi		
X19	31	3	5	3,97	,752	berpengaruh tinggi		
X20	31	2	5	3,74	,855	berpengaruh tinggi		
X21	31	3	5	4,10	,831	berpengaruh tinggi		
X22	31	2	5	3,65	,839	berpengaruh tinggi		
X23	31	2	5	3,65	,915	berpengaruh tinggi		
X24	31	2	5	3,84	,860	berpengaruh tinggi		
X25	31	1	5	3,77	,990	berpengaruh tinggi		
X26	31	2	5	3,68	,871	berpengaruh tinggi		
X27	31	1	5	3,74	,999	berpengaruh tinggi		
X28	31	2	5	3,58	,672	berpengaruh tinggi		
X29	31	2	5	3,87	,846	berpengaruh tinggi		
X30	31	1	5	3,81	1,078	berpengaruh tinggi		
X31	31	2	5	3,52	,851	berpengaruh tinggi		
X32	31	2	5	3,61	,989	berpengaruh tinggi		
X33	31	2	5	3,81	,946	berpengaruh tinggi		
X34	31	1	5	3,58	,992	berpengaruh tinggi		
X35	31	2	5	4,13	,806	berpengaruh tinggi		

Hasil dari uji deskriptif untuk variabel X didapat variabel terbanyak memiliki pengaruh tinggi terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

5.4.4 Analisis Korelasi

Uji korelasi ini untuk mendapatkan variabel-variabel X yang berpengaruh tinggi terhadap variabel Y. Adapun untuk dapat memberikan penafsiran terhadap koefisien korelasi yang d*item*ukan tersebut besar atau kecil, maka dapat berpedoman pada ketentuan pada tabel dibawah ini sebagai berikut.

Tabel 5.21 Pedoman untuk Memberikan Interprestasi Terhadap Koefisien Korelasi

Interval Koefisien Tingkat Hubungan 0 - 0,199 Sangat Rendah 0,2 - 0,399 Rendah 0,4 - 0,599 Sedang 0,6 - 0,799 Kuat 0,8 - 1 Sangat Kuat

Sumber: Prof. Dr. Sugiyono, 2006

Dalam analisis korelasi terdapat satu angka yang disebut dengan koefisien determinasi yang besarnya adalah kuadrat dari koefisien korelasi (r²). Koefisien ini disebut koefisien penentu, karena varian yang terjadi pada variabel dependen dapat dijelaskan melalui varian yang terjadi pada variabel *independent* (122). Pada uji korelasi ini menggunakan uji korelasi *pearson* untuk mengetahui hubungan korelasi variabel X dan Y. Adapun bagian kecil dari hasil uji korelasi *pearson* ini dapat dilihat pada tabel 5.20. untuk hasil lengkap uji korelasi *pearson* dapat dilihat pada lampiran 9.

Tabel 5.22 Hasil Uji Korelasi *Pearson*

		X3	X52	X56	X57	Y
X3	Pearson Correlation	1	.444*	.355*	.534**	.450*
	Sig. (2-tailed)		,012	,050	,002	,011
X5	Pearson Correlation	.435*	,300	,113	,287	.432*
	Sig. (2-tailed)	,015	,101	,547	,118	,015
X7	Pearson Correlation	.454*	,240	.535**	.613**	.485**
	Sig. (2-tailed)	,010	,194	,002	,000	,006
X11	Pearson Correlation	.610**	,177	.460**	,324	.649**
	Sig. (2-tailed)	,000	,341	,009	,076	,000

Tabel 5.22 (Lanjutan)

X16	Pearson Correlation	.643**	,316	.396*	,348	.701**
	Sig. (2-tailed)	,000	,084	,028	,055	,000
X17	Pearson Correlation	.557**	,034	.403*	.590**	.526**
	Sig. (2-tailed)	,001	,854	,025	,000	,002
X18	Pearson Correlation	,333	,105	-,036	.561**	.477**
	Sig. (2-tailed)	,067	,574	,849	,001	,007
X25	Pearson Correlation	.461**	,283	,078	.543**	.440*
	Sig. (2-tailed)	,009	,123	,678	,002	,013
X38	Pearson Correlation	,354	,183	-,062	.385*	.477**
	Sig. (2-tailed)	,051	,323	,739	,033	,007

Dari hasil uji korelasi *pearson* didapatkan variabel X yang berkorelasi kuat yaitu variabel X3, X5, X7, X11, X16, X17, X18, X25 dan X38.

5.4.5 Analisis Regresi

Setelah dilakukan uji korelasi *pearson* selanjutnya dilakukan pengujian regresi unutk mengetahui arah hubungan antara variabel *independent* dengan variabel *dependent*, mengetahui apakah masing-masing variabel *independent* hubungan positif/ negatif, dan untuk memprediksi nilai dari variabel *dependent* (X) apakah nilai variabel *independent* yaitu (Y) mengalami kenaikan/ penurunan. Dimana dalam regresi ini dengan menggunakan regresi linier. Untuk variabel-variabel X yang berkorelasi selanjutnya dimasukkan ke dalam variabel *dependent* dan untuk variabel Y dimasukkan ke dalam variabel *independent*. Tujuan dari analisis regresi adalah untuk mendapatkan suatu *model statistic* dan untuk mencari variabel X yang dominan yang mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder yaitu dengan melihat variabel X yang ada pada persamaan *model*.

Hal-hal yang harus dilihat pada saat melakukan uji regresi dengan menggunakan software SPSS 17. Dari hasil *output* pada regresi dilihat *model summary* yang menggambarkan tingkat kepercayaan *model* (R²) dan jumlah *model* yang mungkin terbentuk. Selanjutnya dilihat juga collinearity diagnostics yaitu nilai *condition index* (CI) yang menunjukkan bahwa *model* yang dibuat terdapat *multicolinearity* atau tidak, jadi dapat diketahui apakah variabel X yang ada dalam *model* tersebut memiliki hubungan kuat diantara sesama variabel X. disyaratkan untuk nilai CI harus < 17 karena apabila CI > 17 maka variabel

tersebut sebaiknya dihilangkan. Untuk CI > 17 apabila tetap dipertahankan jika hubungan antara variabel X dengan variabel X yang terdapat dalam *model* tersebut. Lebih kecil dari nilai korelasi terkecil antara variabel Y dengan variabel X. Dan untuk nilai R^2 semakin besar maka semakin tinggi nilai kepercayaan *model* yang dibuat. Nilai R^2 dapat dilihat pada *model summary* hasil *output* dari uji regresi. Nilai R^2 dapat ditingkatkan dengan cara mereduksi dari responden.

Tabel 5.23 Model Summary Hasil Uji Metode Stepwise untuk 31 Responden

	Model Summary									
Model	Model R R Adjusted Std. Change Statistics Square R Square Error of					Durbin- Watson				
		Square	Roquare	the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	w atson
1	.701 ^a	,491	,474	,513	,491	27,985	1	29	,000	
2	.755 ^b	,570	,539	,480	,079	5,108	1	28	,032	2,238

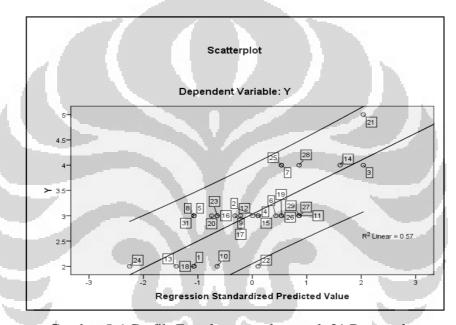
Sumber: Hasil Olahan SPSS 17

Tabel 5.24 Nilai Collinearity Test Metode Stepwise untuk 31 Responden

			Collinearity	y Diagnostic	iagnostics ^a				
Model Dimension Eigenva		Eigenvalue	Condition	Variance Proportions					
				Index	(Constant)	X16	X18		
	1	1	1,942	1,000	,03	,03			
7		2	,058	5,762	,97	,97			
	2	1	2,903	1,000	,01	,01	,01		
	100	2	,070	6,423	,10	,99	,12		
	-	3	,027	10,462	,90	,00	,87		

Sumber: Hasil Olahan SPSS 17

Tabel 5.25 Summary Perbandingan Nilai R²


No.	Kombinasi	Nilai RSquare	Keterangan
1	X16	0,491	Tidak diambil
2	X16 dan X18	0,570	Diambil

Sumber: Hasil Olahan dengan SPSS 17

Berdasarkan dari tabel diatas dapat disimpulkan bahwa nilai R^2 terbesar antara kombinasi variabel y dengan 2 variabel yaitu X16 dan X38. Dari hasil nilai R^2 didapatkan yaitu 0,570 yang artinya hanya menggambarkan 570 % dari populasi. Sedangkan nilai CI yaitu artinya sudah mencakupi karena CI < 17.

Karena hasil R^2 belum mencapai nilai kepercayaan > 60 % maka dilakukan reduksi *sample* responden. Dari grafik *zpred scatterplot* hasil dari *output* regresi untuk melihat *sample* responden yang menyebar terjauh dari garis alpha agar dihilangkan dan dilakukan regresi kembali untuk meningkatkan nilai R^2 . Berikut adalah *sample* yang menyebar terjauh adalah R22. karena hal itu maka dihilangkan dan dilakukan uji regresi kembali untuk meningkatkan R^2 .

Berikut adalah hasil dari pembuangan *sample* responden untuk meningkatkan R² dapat dilihat pada tabel dibawah ini.

Gambar 5.6 Grafik Zpred scatterplot untuk 31 Responden

Sumber: Hasil Olahan SPSS 17

Adapun dari tahap-tahap pembuangan *sample* dalam rangka meningkatkan nilai R². Untuk lebih lengkapnya mengenai pengurangan responden untuk meningkatkan R² dapat dilihat pada lampiran 10. Berikut adalah tabel rangkuman dari hasil reduksi *sample* untuk responden yang dilakukan dapat dilihat pada tabel dibawah ini.

Tabel 5.26 Rekap Output Hasil Regresi

No.	Deskripsi	N	Rsquare	Cor	ndition	Ket
		(Sampel)		I	ndex	
1	Input SPSS 17 variabel	31	57,0%	X16	6,423	
				X18	10,462	
2	Input SPSS 17 variabel	30	62,4%	X16	6,324	Tanpa R22
				X18	10,284	

Sumber: Hasil Olahan SPSS 17

Adapun dari tahap pembuangan sample dalam rangka meningkatkan nilai R^2 . Untuk lebih lengkapnya mengenai pengurangan responden untuk meningkatkan R^2 dapat dilihat pada tabel 5.27.

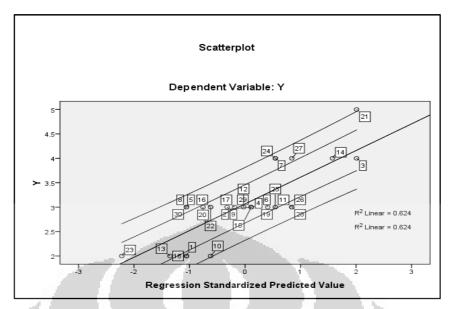
Tabel 5.27 Koefisien Model untuk 30 Responden

					Coeffic	ients ^a					
	Model		ndardized fficients	Standardized Coefficients	t	Sig.	C	orrelation		Collinearity S	Statistics
		В	Std. Error	Beta	7		Zero- order	Partial	Part	Tolerance	VIF
1	(Constant)	1.704	.257		6.631	.000	8				
	X16	.459	.081	.730	5.646	.000	.730	.730	.730	1.000	1.000
2	(Constant)	.979	.367		2.668	.013					
	X16	.400	.078	.635	5.134	.000	.730	.703	.606	.911	1.098
	X18	.237	.092	.317	2.565	.016	.507	.443	.303	.911	1.098

Sumber: Hasil Olahan SPSS 17

Dari hasil *output* diatas maka dapat dibuat *model* persamaan sebagai berikut ; Dimana :

$$Y = 0.979 + 0.400 \text{ X}16 + 0.237 \text{ X}18 \tag{5.1}$$


- Y = Kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder
- X16 = Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan
- X18 = Kapasitas alat yang digunakan

5.4.6 Identifikasi Variabel Penentu dengan Variabel Dummy

Model regresi yang telah diperoleh dan diterapkan melalui proses analisis, didapatkan nilai adjust R^2 yaitu sebesar 0,624. Berarti masih ada kemungkinan variabel lain yang berpengaruh yang belum terindentifikasi dalam analisis.

Tabel 5.29 Input Data Variabel Dummy

Voda														Re	espo	onde	en													
Kode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Dummy	1	2	2	2	3	2	3	3	2	1	1	2	2		2	2	2	2		2	3	2	1 1	2	1	3	1	2	3	2

Gambar 5.7 Grafik Zpred scatterplot untuk 30 Responden

Input data variabel dummy dilakukan dengan memperhatikan sebaran data pada scatter plot pada gambar regresi linier, kemudian ditetapkan nilai variable dummy untuk masing-masing sample (n = 30 sample) seperti terlihat pada tabel dan dilakukan analisis regresi kembali sehingga didapatkan nilai adjust R² = 0,754. Karena R² masih kurang dari 95 % jadi dapat disimpulkan bahwa masih ada variabel lain yang mempengaruhi produktivitas alat berat pada pekerjaan pemasangan *precast* girder pada proyek *flyover*.

Tabel 5.29 Model Summary Hasil Uji Metode Stepwise dengan Variabel Dummy

	die	-		Model S	Summary ^e		1			
Model	R	R	Adjusted	Std. Error		Change	Statist	ics		Durbin-
		Square	R Square	of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Watson
1	.730 ^a	,532	,516	,481	,532	31,878	1	28	,000	
2	.790 ^b	,624	,596	,439	,092	6,579	1	27	,016	
3	.839°	,704	,670	,397	,080,	7,064	1	26	,013	
4	.869 ^d	,754	,715	,369	,050	5,102	1	25	,033	2,167

Sumber: Hasil Olahan SPSS 17

Tabel 5.30 Nilai Collinearity Test Metode Stepwise dengan Variabel Dummy

			Colline	arity Diagno	stics ^a			
Model	Dimension	Eigenvalue	Condition		Varia	nce Proport	ions	
			Index	(Constant)	X16	X18	dummy	X11
1	1	1,940	1,000	,03	,03			
	2	,060	5,672	,97	,97			
2	1	2,900	1,000	,01	,01	,01		
	2	,073	6,324	,10	,99	,12		
	3	,027	10,284	,90	,00	,87		
3	1	3,813	1,000	,00	,01	,00	,01	
	2	,108	5,929	,00	,46	,01	,38	
	3	,058	8,075	,03	,52	,41	,25	
	4	,020	13,797	,97	,02	,58	,36	
4	1	4,735	1,000	,00	,00	,00	,00	,00
	2	,146	5,693	,01	,08	,00	,26	,13
	3	,061	8,776	,02	,06	,45	,36	,06
	4	,038	11,171	,00	,86	,00	,00	,78
	5	,020	15,469	,96	,00	,55	,38	,02

Tabel 5.31 Koefisien Model dengan Dummy

		30.23 S	_		Coe	fficients	a			À	
	Model		ndardized ficients	Standa rdized Coeffic			Co	orrelations		Colline Statist	
	742	Б	Std. Error	Beta	t T	Sig.	order -	Partial P	Part	Tolerance	VIF
1	(Constant	1.704	.257		6.631	.000			4 - 12	A	
1	X16	.459	.081	.730	5.646	.000	.730	.730	.730	1.000	1.000
	(Constant	.979	.367	0	2.668	.013					
2	X16	.400	.078	.635	5.134	.000	.730	.703	.606	.911	1.098
	X18	.237	.092	.317	2.565	.016	.507	.443	.303	.911	1.098
	(Constant	.262	.428		.613	.545				_	
3	X16	.403	.070	.640	5.731	.000	.730	.747	.611	.910	1.098
3	X18	.256	.084	.342	3.050	.005	.507	.513	.325	.904	1.106
	dummy	.308	.116	.285	2.658	.013	.223	.462	.283	.991	1.009
	(Constant	.110	.403	7 8	.273	.787					
	X16	.273	.087	.434	3.141	.004	.730	.532	.311	.514	1.947
4	X18	.239	.078	.320	3.054	.005	.507	.521	.303	.896	1.116
	dummy	.330	.108	.306	3.056	.005	.223	.522	.303	.982	1.018
	X11	.173	.077	.311	2.259	.033	.666	.412	.224	.518	1.931

Sumber: Hasil Olahan SPSS 17

Kemudian dilakukan analisis korelasi terhadap variabel bebas untuk mengetahui variabel penentu lainnya yang dapat mewakili dummy. Dari hasil uji korelasi didapatkan bahwa dummy`X50 yaitu pengalaman mekanik. Kemudian dilakukan uji analisis regresi kembali sehingga didapatkan :

Tabel 5.32 Model Summary Hasil Uji Metode Stepwise dengan Dummy

				Model	Summary ^c					
Mode	R	R	Adjusted	Std. Error		Change	Statisti	ics		Durbin-
		Square	R Square	of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Watson
1	.730 ^a	,532	,516	,481	,532	31,878	1	28	,000	
2	.790 ^b	,624	,596	,439	,092	6,579	1	27	,016	1,702

Setelah dilihat hasil *model summary*-nya ternyata X50 tidak terlalu berpengaruh pada peoduktivitas alat berat pada pemasangan precast girder yang artinya masih ada variabel lain yang lebih berpengaruh yang tidak disebutkan didalam variabel-variabel yang disebutkan diatas. Jadi persamaan regresi yang saya gunakan adalah persamaan regresi yang awal.

5.4.7 Uji Validitas Model

Pada uji validitas *model* ini dilakukan beberapa pengujian untuk menilai apakah *model* yang terbentuk tersebut sudah dapat mewakili populasi dan untuk mengetahui apakah *model* regresi pada penelitian ini sudah benar/ belum. Berikut adalah uji-uji yang digunakan adalah:

- 1. Uji F
- 2. Uji T
- 3. Uji autokorelasi dengan durbin Watson
- 4. Uji multicollinearity

Berikut adalah uraian untuk masing-masing uji validitas model.

1. Uii F

Uji hipotesis yang digunakan pada tahap ini adalah dengan menggunakan nilai F yang terbentuk, berikut dapat dilihat pada tabel di bawah ini :

Tabel 5.33 Tabel Anova

		AN	OVA	d		
Мо	del	Sum of	df	Mean	F	Sig.
		Squares		Square		
1	Regression	7,382	1	7,382	31,878	$.000^{a}$
	Residual	6,484	28	,232		
	Total	13,867	29			

Tabel 5.33 (Lanjutan)

2	Regression	8,653	2	4,326	22,404	.000 ^b
	Residual	5,214	27	,193		
	Total	13,867	29			

Hipotesisnya adalah sebagai berikut:

H0: Tidak ada hubungan linier antara faktor dominan terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder

H1: Ada hubungan linier antara faktor dominan terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder

Selanjutnya dilakukan perhitungan tabel F dengan taraf signifikansi 0,05 dan derajat kebebasan (DK). Diketahui bahwa jumlah variabel 2 - 1 = 1 dan denumerator yaitu jumlah responden - 4 = 26, dengan ketentuan tersebut, dari tabel distribusi F diperoleh angka yaitu 4,23. Selanjutnya untuk menentukan kriteria uji hipotesis adalah sebagai berikut : jika F penelitian > Tabel F maka H0 ditolak dan H1 diterima dan jika F penelitian < tabel F maka H0 diterima dan H1 ditolak. Dari hasil penelitian didapatkan F penelitian sebesar 22,404 > tabel F sebesar 4,23. Maka H0 ditolak dan H1 diterima. Artinya ada hubungan linier antara faktor dominan terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Dengan hasil tersebut bahwa *model* regresi sudah layak dan benar. Jadi dapat disimpulkan bahwa ada pengaruh dominan terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

2. Uji t

Pada uji t ini untuk melihat besarnya pengaruh variabel tersebut terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder secara sendiri/ parsial digunakan uji T.

Tabel 5.33 Tabel Coeficients

				Co	oefficien	ts ^a					
	Model	0	lardized icients	Standardized Coefficients	t	Sig.	Co	orrelation	S	Collinea Statisti	
		В	Std.	Beta			Zero-	Partial	Part	Tolerance	VIF
			Error				order				
1	(Constant)	1,704	,257		6,631	,000					
	X16	,459	,081	,730	5,646	,000	,730	,730	,730	1,000	1,000
2	(Constant)	,979	,367		2,668	,013					
	X16	,400	,078	,635	5,134	,000	,730	,703	,606	,911	1,098
	X18	,237	,092	,317	2,565	,016	,491	,443	,303	,911	1,098

Hipotesisnya adalah sebagai berikut:

- H0: Tidak ada hubungan linier antara faktor dominan terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder
- H1: Ada hubungan linier antara faktor dominan terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Kemudian dilakukan perhitungan t tabel dengan taraf signifikansi 0,05 dan Derajat Kebebasan (DK) dengan ketentuan: DK= n-2=28. Dari ketentuan tersebut diperoleh angka t tabel sebesar 2,048. Selanjutnya adalah menentukan kriteria uji hipotesis sebagai berikut:

- Jika t penelitian > t tabel maka H0 ditolak dan H1 diterima
- Jika t penelitian < t tabel maka H0 diterima dan H1 ditolak

Didasarkan hasil perhitungan, diperoleh angka t penelitian sebesar 5,134 > t tabel sebesar 2,048 maka H0 ditolak dan H1 diterima. Artinya, ada hubungan linier antara faktor dominan terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

3. Uji Durbin-Watson

Untuk mengetahui ada tidaknya penyimpangan asumsi klasik autokorelasi, yaitu korelasi yang terjadi antara residual pada satu pengamatan dengan pengamatan lain pada *model* regresi dilakukan uji *Durbin-Watson* dengan ketentuan sebagai berikut:

1) Jika d lebih kecil dari dL atau lebih besar dari (4-dL) maka hipotesis nol ditolak, yang berarti terdapat autokorelasi.

2) Jika d terletak antara dU dan (4 - dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi. 3). Jika d terletak antara dL dan dU atau diantara (4 – du) dan (4 - dL), maka tidak menghasilkan kesimpulan yang pasti.

Tabel 5.35 *Model Summary*

				Model	Summary ^c					
Mode	R	R	Adjusted	Std. Error		Change	Statist	ics		Durbin-
1		Square	R Square	of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Watson
1	.730 ^a	,532	,516	,481	,532	31,878	1	28	,000	
2	.790 ^b	,624	,596	,439	,092	6,579	1	27	,016	1,702

Sumber: Hasil Olahan SPSS 17

Dari hasil *output* diatas didapat nilai DW yang dihasilkan dari *model* regresi adalah 1,702. Sedangkan dari tabel DW dengan signifikansi 0,05 dan jumlah data (n) = 28, serta k = 2 (k adalah jumlah variabel *independent*, yaitu X16, dan X18) diperoleh nilai dL sebesar 1,2553 dan dU sebesar 1,5596 Karena nilai DW berada pada daerah antara dL dan (4-dU), 1,2552 < 1,702 < 2,4404, maka disimpulkan bahwa tidak ada autokorelasi.

4. Uji Multikolinearitas

Karena nilai CI > 17 maka adanya gangguan multikolinearitas. Akan tetapi didapatkan nilai VIF (*Variance Inflation Factor*) berkisar antara 1 yaitu 1,014 maka persamaan regresi bebas multikolinearitas. Untuk lebih menyakinkan dilakukan analisis korelasi antara masing-masing variabel. Berikut adalah hasil analisis uji korelasi.

Tabel 5.36 Hasil Analisis Uji Korelasi

		X16	X18
X16	Pearson Correlation	1	,299
50000	Sig. (2-tailed)	-	,102
X18	Pearson Correlation	,299	1
	Sig. (2-tailed)	,102	

Sumber: Hasil Olahan SPSS 17

Dapat dilihat bahwa antarvariabel sebagai variabel-variabel *independent* tidak berkorelasi secara erat. Koefisien korelasinya yaitu 0,299; dan 0,102 ini menunjukan bahwa korelasinya tidak kuat. Nilai probabilitas sebesar 0,102 > 0,05 menunjukkan bahwa hubungan antara variabel-variabel tidak signifikan.

5.5 Kesimpulan

Dari pembahasan pada bab 5.1, 5.2, 5.3 dan 5.4 diatas maka dapat disimpulkan bahwa telah dilakukan pengolahan data pada penelitian ini dengan menggunakan tiga tahap pengumpulan data, dimana pada tahap satu dan tiga dilakukan proses wawancara terhadap pakar yang berkompeten terhadap penelitian ini. Sedangkan pada tahap kedua dilakukan proses pengolahan data dengan melakukan alat berupa program SPSS 17.

Adapun pengujian yang dilakukan dari program ini dibagi menjadi lima bagian, yaitu berupa analisis validitas reabilitas, analisis non parametrik dengan menggunakan Kruskall-Wallis dan Mann-Whitney, analisis deskriptif, dan analisis korelasi dan regresi dengan uji F, uji T, dan Durbin Watson.

Untuk pembahasan selanjutnya mengenai temuan yang didapat dari hasil pengumpulan dan analisis data serta kesimpulan apa yang dapat diambil dari hasil temuan tersebut akan dianalisis dan dibahas pada bab 6.

BAB 6 TEMUAN DAN BAHASAN

6.1 Pendahuluan

Pada bab ini akan menjelaskan hasil temuan dan bahasan hasil dari bab 5 yaitu pelaksanaan penelitian dan analisis data. Hasil dari bab 5 yang akan dibahas pada bab 6 ini adalah hasil dari analisa korelasi, analisa regresi yang mendapatkan model persamaan. Selanjutnya dari model persamaan di validasi pakar apakah model sudah mewakili faktor dominan yang berpengaruh terhadap kinerja produktivtias alat berat pada pekerjaan pemasangan *precast* girder.

6.2 Temuan

6.2.1 Hasil Korelasi

Dari hasil analisa korelasi diperoleh variabel-variabel yang mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder, yaitu:

- 1. X7; Kemampuan kontraktor memahami karakteristik dari proyek tersebut
- 2. X11; Kemampuan evaluasi dari kontraktor terhadap kinerja produksi
- 3. X16; Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lookasi tempat kerja, jumlah alat dan volume pekerjaan
- 4. X18; Kapasitas alat yang digunakan

6.2.2 Hasil Regresi

Dari hasil analisa regresi diperoleh persamaan model yang mewakili faktorfaktor dominan yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder adalah sebagai berikut :

$$Y = 0.979 + 0.400 X16 + 0.237 X18$$
 (6.1)

Keterangan:

- Y = Kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder
- X16 = Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerjam jumlah alat dan volume pekerjaan
- X18 = Kapasitas alat yang digunakan

6.3 Pembahasan

6.3.1 Pembahasan Korelasi

Berdasarkan hasil analisa korelasi pertama didapatkan variabel X yang memiliki korelasi yang kuat terhadap variabel Y terdapat 9 variabel X. Variabel yang memiliki korelasi paling tinggi adalah X11, X16, dan X18. Kemudian untuk meningkatkan tingkat kepercayaan (R²) maka digunakan pengurangan jumlah responden. Setelah dianalisa regresi kembali kemudian di uji korelasi kembali untuk mendapat mengetahui nilai tingkat kepercayaan (R²) agar bisa mewakili seluruh populasi yang ada. Berikut adalah penjelasan untuk masing-masing variabel yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

1. Variabel X11

Kemampuan evaluasi dari kontraktor terhadap kinerja produksi

Korelasi variabel X29 ini kuat karena jika kemampuan evaluasi kinerja produksi dari kontraktor rendah maka kesalahan dalam mengevaluasi oleh orang yang ditunjuk oleh kontraktor akan sangat mempengaruhi produktivitas alat berat. Sebaliknya, apabila kemampuan evaluasi dari kontraktor terhadap kinerja produksi tinggi maka bisa meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Berdasarkan hasil wawancara dengan pakar mengatakan bahwa kemampuan evaluasi dari kontraktor terhadap kinerja produksi bisa menjadi sangat berpengaruh dalam produktivitas alat berat karena apabila evaluasi dilakukan dengan benar bisa meningkatkan produktivitas alat berat sebaliknya jika evaluasi yang dilakukan tidak benar maka akan menurunkan produktivitas alat berat pemasangan *precast* girder. Misalkan dalam 1 malam alat berat bisa melakukan pekerjaan sesuai dengan volume pekerjaan yang direncanakan maka tidak akan menurunkan produktivitas alat berat sebaliknya jika alat berat melakukan pekerjaannya tidak sesuai dengan yang direncanakan maka kemampuan evaluasi dari kontraktor dapat meningkatkan produktitas alat berat pada

pekerjaan pemasangan precat girder sehingga tidak menurunkan produktivitas dari alat berat.

2. Variabel X16

Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan untuk meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder

Korelasi variabel X16 ini kuat karena apabila tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan tinggi maka akan meningkatkan produktivitas dari alat berat. Seblaiknya apabila tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan rendah maka akan mennurunkan produktivitas alat untuk pemasangan *precast* girder.

Berdasarkan wawancara dengan pakar keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat serta volume pekerjaan akan sangat mempengaruhi dari produktivitas alat berat. Penentuan kapan alat tersebut digunakan akan mempengaruhi produktivitas alat berat karena dalam pekerjaan pemasangan precast girder tidak bisa dilakukan siang hari karena jalanan disekitar proyek tidak ditutup dan masih banyak kendaraan yang melewati daerah sekitar proyek. Pekerjaan pemasangan precast girder ini hanya bisa dilakukan malam hari sehingga jam kerja untuk penggunaan alat berat terbatas sehingga keakurasian penjadwalan yang memperhatikan waktu penggunaan alat sangat berpengaruh besar terhadap produktivitas alat. Kemampuan untuk mengetahui lokasi tempat kerja juga sangat mempengaruhi produktivitas alat karena dengan mengetahui lokasi tenpat kerja maka kontrakor bisa membuat site plan untuk menentukan lokasi penempatan dari alat berat pada saat operasional. Selain itu, jumlah alat yang beropersi serta volume pekerjaan juga harus sudah diketahui demi menjaga produktivitas alat berat tetap sesuai rencana dan tidak

menyebabkan produktivitas alat berat menjadi rendah apabila ada kejadian-kejadian yang bisa menghambat kinerja dari alat berat.

Variabel X18

Kapasitas alat yang digunakan

Korelasi variabel ini kuat karena kesesuain penggunaan kapasitas alat yang digunakan dengan yang dibutuhkan maka kinerja dari alat berat akan maksimal yang nantinya akan menentukan produktivitas dari alat berat. Sebaliknya apabila kapasitas alat yang digunakan tidak sesuai maka akan menurunkan produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Berdasarkan hasil wawancara dengan pakar kesesuaian kapasitas dari alat berat yang digunakan sangat mempengaruhi produktivitas alat berat sehingga pemilihan kapasitas alat yang digunakan harus sesuai dengan volume pekerjaan atau dalam hal pengangkatan *precast* girder ini adalah berat dari *precast* girder yang akan di *erection* ke tempatnya. Kapasitas alat harus lebih besar dari berat *precast* girder yang akan diangkat oleh alat berat dalam hal ini *mobile crane*.

6.3.2 Pembahasan Regresi

Hasil dari persamaan model regresi kemudian dilakukan validitas terhadap 3 pakar dengan tujuan untuk mengetahui apakah variabel yang didapat sudah layak menjadi hasil penelitian dan para pakar memberi komentar terhadap variabel X pada persamaan tersebut terhadap variabel Y. Dari hasil validasi dengan pakar didapatkan para pakar tersebut setuju terhadap model persamaan tersebut. Berikut adalah kriteria pakar untuk validasi akhir model persamaan, yaitu:

Tabel 6.1 Data Umum Pakar untuk Tahap 3

No	Pakar	Jabatan	Pengalaman	Pendidikan
1	Pakar 1	Ex. Staff Ahli	40 Tahun	S2
2	Pakar 2	Staff Ahli Perusahaan	40 Tahun	S2
3	Pakar 3	Manager	30 Tahun	S 1

Sumber: Hasil Olahan

Dari hasil uji regresi didapatkan 3 variabel yang dapat meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder. Variabel pertama yaitu kemampuan evaluasi dari kontraktor terhadap kinerja produksi. Variabel X16 ini bertanda positif (+) yang artinya meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder. Menurut pendapat pakar dalam suatu proyek yang ada pekerjaan pemasangan precast girder yang menggunakan alat berat tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan apabila diperhatikan dengan benar-benar dapat meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder.Dan variabel yang terakhir adalah variabel X18 ini juga bertanda positif (+) yang artinya meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder. Pemilihan kapasitas alat yang tidak tepat akan berpengaruh terhadap besarnya produktivitas, apabila terjadi nilai produktivitas yang rendah dapat diatasi dengan meningkatkan kapasitas alat yang digunakan. Menurut pendapat pakar apabila penggunaan kapasitas alat tidak sesuai maka harus dilakukan penggantian alat berat yang digunakan agar nilai produktivitas ini meningkat.

Dari hasil R² dapat disimpulan bahwa persentase pengaruh variabel tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja jumlah alat dan volume pekerjaan, dan kapasitas alat yang digunakan serta kemampuan evaluasi dari kontraktor terhadap kinerja produksi hasilnya 62,4% atau variasi variabel *independent* yang digunakan dalam model dapat menjelaskan 62,4% variasi variabel *dependent*. Dari hasil tersebut bahwa dapat disimpulkan sisanya dipengaruhi atau dijelaskan oleh variabel lain yang tidak dimasukkan dalam model penelitian.

Dari hasil uji F adalah tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja jumlah alat dan volume pekerjaan, dan kapasitas alat yang digunakan serta kemampuan evaluasi dari kontraktor terhadap kinerja produksi tersebut mempengaruhi kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Dari hasil uji t dihasilkan hubungan antara 2 variabel tersebut yaitu tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja jumlah alat dan volume pekerjaan, dan kapasitas alat yang digunakan serta kemampuan evaluasi dari kontraktor terhadap kinerja produksi pada pekerjaan pemasangan *precast* girder bahwa ada hubungan linier diantara variabel X dan Y.

Dari hasil uji *Durbin-Watson* dihasilkan tidak adanya autokorelasi antara variabel *dependent* yaitu kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan variabel *independent* tersebut yaitu tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja jumlah alat dan volume pekerjaan, dan kapasitas alat yang digunakan serta kemampuan evaluasi dari kontraktor terhadap kinerja produksi berarti tidak ada penyimpangan asumsi antara satu pengamatan dan pengamatan lain.

Dari hasil uji multikolineritas tidak terjadinya korelasi diantara variabel X tersebut yaitu tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja jumlah alat dan volume pekerjaan, dan kapasitas alat yang digunakan serta kemampuan evaluasi dari kontraktor terhadap kinerja produksi.

Dari hasil uji validasi melalui prediksi didapatkan bahwa model persamaan yang terbentuk dapat mewakili populasinya.

6.4 Pengujian Hipotesa

Hipotesa dari penelitian ini menyatakan bahwa "Dengan pengelolaan sumber daya dana, manusia, dan alat akan meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder".

Kemudian dengan model yang telah dihasilkan perlu dilakukan pengujian terhadap hipotesa tersebut yaitu dengan uji F, uji t, uji durbin Watson dan uji multikolinieritas. Dari hasil uji yang dilakukan bahwa model persamaan sudah tepat sebagai faktor dominan yang berpengaruh terhadap kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Dari model persamaan didapatkan satu variabel terikat yaitu kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan tiga variabel bebas yaitu tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja jumlah alat dan volume pekerjaan, dan kapasitas alat yang digunakan serta kemampuan evaluasi dari kontraktor terhadap kinerja produksi. Dari hasil pengujian dapat disimpulkan bahwa model yang diperoleh telah membuktikan hipotesa dari penelitian ini.

BAB 7 KESIMPULAN DAN SARAN

7.1 Kesimpulan

Dari hasil analisa yang dilakukan pada temuan dan bahasan pada penelitian ini dapat disimpulkan bahwa ada faktor dominan yang berpengaruh dapat meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Dan berdasarkan tujuan penelitian yaitu mengetahui faktor dominan yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan mengetahui rekomendasi untuk meningkatkan kinerja produktivitas alat berat pada pekejaan pemasangan *precast* girder, maka untuk kesimpulan pertama diperoleh persamaan model, yaitu :

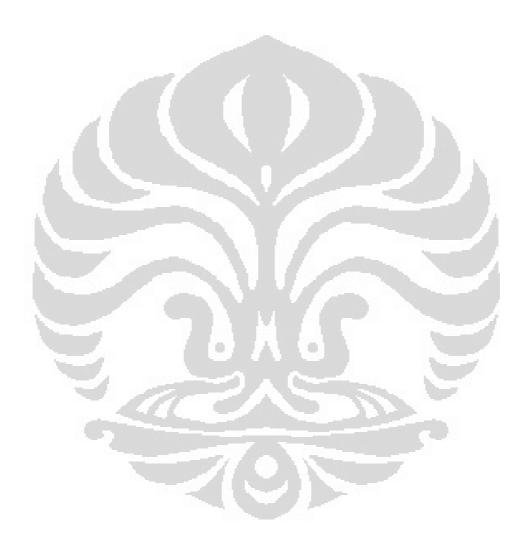
$$Y = 0.979 + 0.400 X16 + 0.237 X18$$
 (7.1)

Keterangan:

Y = Kinerja produktivitas alat berat pada pekerjaan pemasangan precast girder

X16 = Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan

X18 = Kapasitas alat yang digunakan


Dan untuk kesimpulan kedua bahwa telah didapatkan rekomendasi untuk meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan untuk penjelasannya dapat dilihat pada sub bab 6.3 pembahasan.

7.2 Saran

Dalam penelitian ini saran atau masukan yang dapat diberikan adalah sebagai berikut ;

- 1. Persamaan model ini dapat diperkuat dengan *sample* yang banyak jumlahnya dan dapat dikaji pada jenis-jenis proyek *flyover* yang lainnya
- 2. Bagi pihak-pihak yang terlibat dalam proses pekerjaan pemasangan precast girder yang menggunakan alat berat yaitu mobile crane agar mempertimbangkan faktor dominan ini yaitu tingkat keakurasian

- penjadwalan yang memperhatikan waktu penggunaan alat, lokasi kerja, jumlah alat dan volume pekerjaan dan kapasitas alat yang digunakan.
- 3. Penelitian ini dapat dilanjutkan untuk upaya optimasi pengelolaan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

DAFTAR ACUAN

- 1. Asiyanto, *Manajemen Alat Berat Untuk Konstruksi*, Jakarta : PT. Pradnya Paramita. 2008. Hal 1
- 2. Rostyanti, Susy Fatena. *Alat Berat Untuk Proyek Konstruksi*, Jakarta. PT. Rineka Cipta. 2008. Hal 1
- 3. Neil, J. M. "Construction Methods and Management." Fourth Edition Prentice Hall, 1998
- 4. Karano 2008
- 5. Genius 2002
- 6. Nanang, P., Prasetya, 2008
- 7. Key, J.M. "Earthmoving and Heavy Equipment". ASCE Journal, Vol. 13, No.4, Desember 1987
- 8. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 20
- 9. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 21
- 10. Mirza, M.Rifky Iskandar. *Identifikasi Resiko Faktor-Faktor yang Mempengaruhi Produktivitas Alat pada Proyek Konstruksi Jalan dengan Perkerasan Kaku [Rigid Pavement]*. Tesis UI, 2006. Hal. 2
- 11. Rostiyanti, Susy Fatena. *Alat Berat untuk Proyek Konstruksi*. Jakarta: PT. Rineka Cipta. 2008. Hal. 6
- 12. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 1
- 13. Soeharto, Iman. "Manajemen Proyek, Dari Konseptual Sampai Operasional." PT. Erlangga. Jakarta. 1997
- 14. Anondho, Basuki. Studi Proses Pemilihan dan Optimasi Metode Konstruksi Basement: 'TOP-DOWN'." Tesis UI, 1995
- 15. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 11
- 16. Asiyanto. Manajemen Alat Berat Untuk Konstruksi. Jakarta:PT. Pradnya Paramita. 08. Hal. 1
- 17. Nursin, Afrizal. Analisis Operasi Backhoe, Studi Menentukan Faktor Koreksi Waktu Siklus Dalam Menghitung Produksi. Master Skripsi, 1995, Hal. Iii
- 18. Nuryanto, R. Bambang. *Alat-Alat Berat-Pemindahan Tanah Mekanis*, Diktat Alat Berat, 2000. Hal. 2
- 19. Rostiyanti, Susy Fatena. *Alat Berat untuk Proyek Konstruksi*. Jakarta: PT. Rineka Cipta. 2008. Hal. 76
- 20. http://sagabanget.wordpress.com/2009/06/29/tower-crane-1-pendahuluan/
- 21. Rostiyanti, Susy Fatena. *Alat Berat untuk Proyek Konstruksi*. Jakarta: PT. Rineka Cipta. 2008. Hal. 76-78

- 22. Suryadharma, Hendra., & Yoso Haryanto Wigroho "Alat Alat Berat." Penerbit Universitas Atmajaya Yogyakarta, 1998 Hal. 139
- 23. Suryadharma, Hendra., & Yoso Haryanto Wigroho "*Alat Alat Berat.*" Penerbit Universitas Atmajaya Yogyakarta, 1998 Hal. 139
- 24. Suryadharma, Hendra., & Yoso Haryanto Wigroho "*Alat Alat Berat.*" Penerbit Universitas Atmajaya Yogyakarta, 1998 Hal 139
- 25. Suryadharma, Hendra., & Yoso Haryanto Wigroho "*Alat Alat Berat.*" Penerbit Universitas Atmajaya Yogyakarta, 1998 Hal. 139
- 26. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 35
- 27. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 35
- 28. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 143 144
- 29. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 143
- 30. Mall, 1978
- 31. Sumanth, 1984
- 32. Mall, 1978
- 33. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 143 144
- 34. Olomolaiye, Paul O, Ananda K.W. Jawayawardane, Frank C. Harris. *Construction Productivity Management*. The Chartered Institute of Building. 1998. Hal 281
- 35. Sumanth, 1984
- 36. Amirkhanian, 1992
- 37. Olomolaiye, Paul O, Ananda K.W. Jawayawardane, Frank C. Harris. *Construction Productivity Management*. The Chartered Institute of Building. 1998. Hal 16
- 38. Rostiyanti, Susy Fatena. *Alat Berat untuk Proyek Konstruksi*. Jakarta: PT. Rineka Cipta. 2008. Hal. 6-7
- 39. Olomolaiye, Paul O, Ananda K.W. Jawayawardane, Frank C. Harris. *Construction Productivity Management*. The Chartered Institute of Building. 1998. Hal 9-10
- 40. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 121-122
- 41. PP, 2003
- 42. http://arie-yona.blogspot.com/2010/05/struktur-jembatan.html
- 43. Asiyanto, 2005
- 44. Wastuti, 2006
- 45. Watson, 1978
- 46. Watson, 1978
- 47. Podlny, W., Muller, 1982
- 48. Wahyudi, et. Al, 2007
- 49. Wahyudi, et. Al, 2007
- 50. Peurifoy, 2006

- 51. Peurifoy, 2006
- 52. PP, 2003
- 53. Asiyanto, 2005
- 54. Wastuti, 2006
- 55. Key, J. M. "Earthmoving and Heavy Equipment." ASCE Journal, Vol. 13, No.4, Desember 1987
- 56. Singh, J. "Heavy Construction Planning, Equipment, and Methods." Rotterdam. 1993
- 57. Tavakoli, A. "Fleet, Equipment Management System." Journal of ASCE, Vol. 6, No.2, April 1990
- 58. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 9
- 59. Varghese, K. & O'connor, J. T. "Routing Large Vehicles On Industrial Construction Site.", Journal of Construction Engineering and Management, Vol. 121, No.1, March 1995
- 60. Andres, A. C., & Smith, R. C. "Priciples And Practice Of Heavy Construction." Fifth Edition, Prentice Hall, Inc. 1998
- 61. Maretdhioko, Imam. Merancang Sistem Informasi Manajemen Peralatan pada Tahap Pelaksanaan Proyek Konstruksi. Skripsi UI, 2002. Hal.12
- 62. Nunnaly, S. W. "Construction Methods and Management." Fourth Edition, Prentice Hall, 1998
- 63. Singh, J. "Heavy Construction Planning, Equipment, and Methods." Rotterdam, 1993
- 64. O'Brien, J. J. "Contractor's Management Handbook." Second Edition, McGraw-Hill, 1991
- 65. Suryadharma, Hendra., & Yoso Haryanto Wigroho "Alat Alat Berat." Penerbit Universitas Atmajaya Yogyakarta, 1998
- 66. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 15
- 67. Suryadharma, Hendra., & Yoso Haryanto Wigroho "*Alat Alat Berat.*" Penerbit Universitas Atmajaya Yogyakarta, 1998. Hal.154
- 68. Suryadharma, Hendra., & Yoso Haryanto Wigroho "Alat Alat Berat." Penerbit Universitas Atmajaya Yogyakarta, 1998. Hal.164
- 69. Suryadharma, Hendra., & Yoso Haryanto Wigroho "Alat Alat Berat." Penerbit Universitas Atmajaya Yogyakarta, 1998. Hal.166
- 70. Rostiyanti, Susy Fatena. *Alat Berat untuk Proyek Konstruksi*. Jakarta: PT. Rineka Cipta. 2008. Hal. 25
- 71. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 7
- 72. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 83-85
- 73. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 119-120
- 74. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta: PT. Pradnya Paramita. 2008. Hal. 137

- 75. Maretdhioko, Imam. Merancang Sistem Informasi Manajemen Peralatan pada Tahap Pelaksanaan Proyek Konstruksi. Skripsi UI, 2002. Hal.13
- 76. Suryadharma, Hendra., & Yoso Haryanto Wigroho "*Alat Alat Berat.*" Penerbit Universitas Atmajaya Yogyakarta, 1998. Hal.158
- 77. Soeharto, Iman."*Manajemen Proyek, Dari Konseptual Sampai Operasiona*)." PT. Erlangga. Jakarta. 1999. Hal. 220
- 78. Asiyanto. *Construction Project Cost Management*. Jakarta: PT. Pradnya Paramita. 2003. Hal. 39
- 79. Maloney, W. F. "Framework Analysis Of Performance." ASCE Journal, Vol. 116, No. 3, September 1990
- 80. Maloney, W. F. "Framework Analysis Of Performance." ASCE Journal, Vol. 116, No. 3, September 1990
- 81. Asiyanto." *Siklus Biaya Proyek Sebagai Strategi*. "Kursus Singkat Manajemen Konstruksi, Lembaga Pendidikan dan Pengembangan Sumber Daya, 2000
- 82. Thomas, H. R., & Maloney, W. F. "Modeling Construction Labor Produktivity." Journal of ASCE, Vol.116, No.4, December 1990
- 83. Humpreys, K. K. "Jelen's Cost And Optimizing Engineering." Third Edition, McGraw Hill,
- 84. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 23
- 85. Wiyanto, H. "Produktivitas Dalam Pekerjaan Konstruksi." Jurnal Teknik Sipil UNTAR, No.1, Tahun ke II, 1996
- 86. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 24-25
- 87. Anondho, B. Dasar-Dasar Analisa Risiko Dalam Perhitungan Biaya Pekerjaan Konstruksi. Tesis UI, 1995
- 88. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis, UI 2002. Hal. 25-26
- 89. Tsimberdonis, 1994
- 90. Schexnayder, 1981
- 91. Phasukyud, 1988
- 92. Asiyanto. *Manajemen Alat Berat Untuk Konstruksi*. Jakarta:PT. Pradnya Paramita. 2007. Hal. 143- 144.
- 93. Olomolaiye, Paul O, Ananda K.W. Jawayawardane, Frank C. Harris. *Construction Productivity Management*. The Chartered Institute of Building. 1998. Hal 9-10.
- 94. Mc Connell & Brue 1989
- 95. Olomolaiye, Paul O, Ananda K.W. Jawayawardane, Frank C. Harris. *Construction Productivity Management*. The Chartered Institute of Building. 1998. Hal 8.
- 96. Olomolaiye, Paul O, Ananda K.W. Jawayawardane, Frank C. Harris. *Construction Productivity Management*. The Chartered Institute of Building. 1998. Hal 16.

- 97. Firmansyah, Bayu Aditya. Analisis Multiplier Effect Pembangunan Infrastruktur Listrik, Gas dan Air Bersih terhadap Sektor Konstruksi Perekonomian Nasional. Tesis UI, 2007. Hal. 33
- 98. Soeharto, Iman. *Manajemen Proyek dari Konseptual sampai Operasional. Jilid 1*. Erlangga. 1998. Hal. 1.
- 99. A Guide to the Project Management Body of Knowledge (PMBOK@ Guide) Third Edition, Project Management Institute, 2004, hal. 5.
- 100. *Managing an EPC Contract*. Chen, Mark T. transactions of AACE International; 1993; ABI/ INFORM Global. PG, G. 8.1
- 101. Soeharto, Iman. *Manajemen Proyek dari Konseptual sampai Operasional. Jilid* 2. Erlangga. 1998. Hal. 98
- 102. KT. Yeo and J.H Ning. *Integrating supply chain and critical chain conceps in EPC project*, International Journal of Project Management, 2002.
- 103. A Guide to the Project Management Body of Knowledge (PMBOK@ Guide) Third Edition, Project Management Institute, 2004, hal. 269.
- 104. Soeharto, Iman. Manajemen Proyek dari Konseptual sampai Operasional. Jilid 2. Erlangga. 1998. Hal. 105
- 105. Firmansyah, Bayu Aditya. Analisis Multiplier Effect Pembangunan Infrastruktur Listrik, Gas dan Air Bersih terhadap Sektor Konstruksi Perekonomian Nasional. Tesis UI, 2007. Hal. 34-35
- 106. Prof. Dr. Robert K.Yin. *Studi Kasus Desain dan Metode*. PT Raja Grafindo Persada, Jakarta. 2006. Hal 8
- 107. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 77
- 108. Firmansyah, Bayu Aditya. Analisis Multiplier Effect Pembangunan Infrastruktur Listrik, Gas dan Air Bersih terhadap Sektor Konstruksi Perekonomian Nasional. Tesis UI, 2007. Hal. 42-45
- 109. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 82
- 110. Noershanti, Esther. Analisa Faktor Risiko Terhadap Kinerja NPV pada Proyek Migas. Tesis UI, 2009. Hal. 66
- 111. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 87
- 112. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 87
- 113. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 89
- 114. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 89

- 115. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 89
- 116. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 90
- 117. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 91 92
- 118. Anisah, Yeni. Faktor Dominan Yang Berpengaruh Terhadap Produktivitas Alat Piling Rig Pada Proyek Epc [Studi Kasus Proyek A Pada Pt. Y]. Skripsi UI, 2009. Hal. 92 – 95
- 119. Ananto, Ovy Dwi. Pengaruh Tindakan dari Identifikasi Faktor Risiko Terhadap Kinerja Produktivitas Alat pada Tahap Pekerjaan Penggalian Basement. Tesis UI, 2002. Hal. 48

<u>LAMPIRAN A</u> <u>KUISIONER VALIDASI PAKAR</u>

Lampiran 1: Kuisioner Validasi Pakar Tahap 1

ANALISA FAKTOR – FAKTOR PRODUKTIVITAS ALAT BERAT PEKERJAAN PEMASANGAN *PRECAST* GIRDER PADA PROYEK *FLYOVER*(STUDY KASUS : FLYOVER KALIBATA)

KUISIONER PENELITIAN SKRIPSI KEPADA PAKAR (VERIFIKASI, KLARIFIKASI, DAN VALIDASI)

AGUS SAPUTRA 0606071960

FAKULTAS TEKNIK
PROGRAM STUDI TEKNIK SIPIL
DEPOK
DESEMBER 2010

Abstrak

Pada suatu proyek konstruksi peralatan menyumbangkan biaya proyek yang cukup besar dan dapat mencapai 20-30% dari total biaya proyek. Oleh karena itu diperlukan suatu rencana atau metode kerja yang tepat terhadap peralatan yang digunakan untuk pemasangan *precast* girder agar perbandingan antara masukan dan keluaran menjadi optimal. Penelitian ini bertujuan untuk mengetahui faktor – faktor yang berpengaruh terhadap produktivitas alat berat pekerjaan pemasangan *precast* girder dan mencari tahu bagaimana cara meningkatkan produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Masalah utama dari proses perencanaan sumber daya alat berat pada pekerjaan pemasangan *precast* girder ini adalah faktor-faktor dominan apa yang mempengaruhi produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Kata Kunci: Produktivitas, girder, flyover, alat

Tujuan Pelaksanaan Penelitian

Tujuan dari pelaksanaan penelitian ini adalah untuk mengetahui faktor-faktor dominan yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan mengetahui rekomendasi untuk meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Hasil Validasi

Setelah memberikan komentar dan masukan terhadap variabel penelitian ini, selanjutnya variabel akan diperbaiki dan disebarkan kepada responden.

Kerahasiaan Informasi

Seluruh informasi yang Bapak/ Ibu berikan dalam penelitian ini akan dijamin kerahasiaannya.

Informasi dari Hasil Penelitian

Setelah seluruh informasi yang masuk dianalisis, temuan dari studi ini akan disampaikan kepada perusahaan Bapak/Ibu.

Apabila Bapak/Ibu memiliki pertanyaan mengenai penelitian ini, dapat menghubungi:

1. Peneliti/Mahasiswa : Agus Saputra pada HP 0856697135757/021-99057223 atau e-mail agus.saputra13@gmail.com

2. Dosen Pembimbing 1 : Ir. Setyo Supriyadi Supadi, M. Si pada HP 0818705726 atau e-mail sprijadi@ui.ac.id

3. Dosen Pembimbing 2 : Ir. Bambang Setiadi, MSc. pada HP 0816822625 atau e-mail bambang.setiadi@ui.ac.id

Terima kasih telah berpartisipasi sebagai pakar untuk memvalidasi variabel penelitian ini.

Hormat saya,

DATA PAKAR

1. Nama Pakar :

2. Nama Perusahaan :

3. Alamat Perusahaan:

4. Jabatan :

5. Pengalaman Kerja : (tahun)

6. Pendidikan Terakhir: SLTA/ D3/ S1/ S2/ S3 (coret yang tidak perlu)

7. Tanda tangan

Keterangan

Dalam kuisioner berikut akan diberikan variabel - variabel eksternal dan internal yang mungkin muncul terhadap faktor – faktor yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

A. Petunjuk pengisian kuisioner

- 1. Jawaban merupakan persepsi Bapak/ Ibu terhadap faktor faktor pengaruh yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder
- 2. Pengisian kuesioner dilakukan dengan memberikan komentar, tanggapan, masukan, perbaikan, dan koreksi mengenai variabel faktor pengaruh pada kolom yang telah disediakan, komentar, tanggapan, masukan, perbaikan, dan koreksi mengenai variabel tersebut dapat berupa pernyataan setuju, tidak setuju, memberikan masukan, perbaikan atau koreksi susunan kata dalam variabel faktor pengaruh tersebut.
- 3. Jika variabel faktor pengaruh dalam kuisioner ini menurut Bapak/Ibu kurang lengkap, mohon ditambahkan variabel faktor pengaruh yang pernah Bapak/Ibu alami pada table II. Rekomendasi Variabel faktor pengaruh yang terdapat pada bagian akhir kuisioner ini.

B. Contoh pengisian kuisioner

1. Faktor-faktor pengaruh apa saja yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder

Apakah Bapak/Ibu setuju, variabel dibawah ini merupakan faktor-faktor pengaruh yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder?

Indikator	Sub - Indikator	Faktor	Setuju	Tidak Setuju	Komentar
Tahap Perencanaan Konstruksi	Data Lapangan	Faktor pengaruh yang terjadi pada internal proyek	1		
	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan	V		data merupakan sumber informasi yang menetukan pada tahap perencanaan pemasangan <i>precast</i> girder
	Kontraktor				
	Х3	Kemampuan kontraktor memprediksi kondisi lapangan dalam pembuatan site lay - out dan resiko kejadian yang akan datang	V	U	Kondisi lapangan dan site lay – out sangat berpengaruh tehadap mobilisasi alat berat pada pekerjaan pemasangan <i>precast</i> girder
	Pencurian Alat	Faktor pengaruh yang terjadi pada eksternal proyek			
	X63	Kehilangan/pencurian spare part alat		V	Seharusnya/ tidak perlu ada
	Hukum	Faktor pengaruh yang terjadi pada eksternal proyek		0	
	X66	Perubahan peraturan hukum perundang- undangan		V	Seharusnya/ tidak perlu ada

1. Faktor-faktor pengaruh apa saja yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan precast girder

Apakah Bapak/Ibu setuju, variabel dibawah ini merupakan faktor-faktor pengaruh yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder?

Indikator	Sub - Indikator	Faktor	Setuju	Tidak Setuju	Referensi
	Data Lapangan	Faktor yang berpengaruh pada internal proyek			
	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan	1		Varghese, 1995.
	X2	Data jenis proyek eksisting			Varghese, 1995.
	Kontraktor				
Tahap Perencanaan	Х3	Kemampuan kontraktor memprediksi kondisi lapangan dalam pembuatan site lay - out dan resiko kejadian yang akan datang	77		Olomiye, 1998. Iman Maretdhioko, 2002.
Konstruksi	X 4	Pengalaman orang yang ditugaskan untuk mengestimasi produktivitas oleh kontraktor			Imam Soeharto, 1999.
	X5	Penggunaan tenaga ahli yang digunakan oleh kontraktor untuk mengestimasi produktivitas			Imam Soeharto, 1999.
	X6	Informasi yang diperoleh orang yang ditugaskan oleh kontraktor dalam mengestimasi produktivitas	7 /2		Imam Soeharto, 1999.
	X 7	Kemampuan kontraktor memahami karakteristik dari proyek tersebut	100		Iman Maretdhioko, 2002.
	X8	Kemampuan kontraktor dalam segi finansial			Andri Hermawan, 2009

Indikator	Sub - Indikator	Faktor	Setuju	Tidak Setuju	Referensi
	Х9	Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat, serta kapasitas alat yang dibutuhkan			Iman Maretdhioko, 2002.
	X10	Persediaan alat yang dibutuhkan oleh kontaktor			Asiyanto, 2008.
Tahap Perencanaan Konstruksi Tahap Manajemen	X11	Waktu perencanaan kontraktor dalam mengestimasi produktivitas			Asiyanto, 2004.
	X12	Koordinasi kontraktor dengan stakeholder			Oglesby, 1989. Tsimberdonis, 1994.
	X13	Kemampuan evaluasi dari kontraktor terhadap kinerja produksi			Iman Maretdhioko, 2002.
Perencanaan	X14	Sistem dan prosedur evaluasi dan monitoring dari kontraktor terhadap kapasitas produksi			Iman Maretdhioko, 2002.
Konstruksi					
	Penjadwalan			_4	
	X15	Urutan pekerjaan pemasangan <i>precast</i> girder dalam penjadwalan proyek			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X16	Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X17	Perubahan jadwal pekerjaan dan design	2		Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	Alat				
Tahap	X18	Kapasitas Alat yang digunakan			Kato (Handbook)
Manajemen Alat Berat	X19	Pemilihan umur alat dan kondisi			Asiyanto, 2008 Peurifoy, 2006.

Indikator	Sub - Indikator	Faktor	Setuju	Tidak Setuju	Referensi
	Alat				
	X20	Kebutuhan perlengkapan kerja			
	X21	Tata letak penempatan alat		9	Olomolaiye, Paul O, Frank C. Harris., 1998
	X22	Kondisi tempat kerja alat beroperasi			Olomolaiye, Paul O, Frank C. Harris., 1998
	X23	Perencanaan jumlah alat yang dibutuhkan			Nunnaly, 1998.
	X24	Data jenis Mobile crane yang digunakan		"),	Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	Operasional				
Tahap	X25	Jumlah alat yang beroperasi		1	Asiyanto, 2008
Manajemen	X26	Keseuaian manuver alat saat beroperasi	H		Andres, A. C., & Smith, R. C., 1998
	X27	Efektivitas dan efisinesi penggunaan alat selama beroperasi			Susy Fatena, 2008
	X28	Metoda kerja dan perubahannya selama beroperasi			Asiyanto, 2008
	X29	Pengadaan stok bahan bakar selama beroperasi (mobile crane)			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X30	Kelancaran pendanaan dalam biaya operasi alat			Asiyanto, 2008
	X31	Umur ekonomis alat selama beroperasi			Asiyanto, 2008
	X32	Jalan kerja yang diterapkan selama beroperasi	400		Gates, M., & Scarpa A, 1979
	X33	Tingkat kerusakan alat selama operasional			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.

Indikator	Sub - Indikator	Faktor	Setuju	Tidak Setuju	Referensi
	Operasional				
Tahap Manajemen Alat Berat	X34	Penyediaan dan monitoring suku cadang alat selama beroperasi			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X35	Pengendalian keselamatan dan kesehatan kerja (K3)		a	Asiyanto, 2008
	X36	Penerapan jam kerja alat mempengaruhi operasional alat			Yeni Anisah, 2009
	X37	Sistem pengamanan alat selama tidak beroperasi			Yeni Anisah, 2009
	Pengadaan Alat				
	X38	Pengadaan jenis alat yang tidak sesuai dengan rencana			Asiyanto, 2008
Tahan	X39	Pangadaan kapasitas dan spesifikasi alat			Asiyanto, 2008
_	X40	Perubahan kondisi lokasi proyek saat pengadaan			Asiyanto, 2008
Alat Berat	Pemeliharaan			Secret 1	
	X41	Tingkat kerusakan alat selama penyimpanan mempengaruhi pemeliharaan alat			Neil. J. M. 1982.
	Perbaikan				
	X42	Pendanaan dalam biaya perbaikan alat			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X43	Penggunaan alat baru selama perbaikan			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X44	Waktu perbaikan			Hendra Suryadharma & Haryanto Yoso Wigroho, 1998.
	X45	Tersedianya <i>spare part</i> memudahkan dalam perbaikan			Procurement Eng, Obrien, 1991.
	X46	Sistem pemeliharaan alat selama beroperasi			Yeni Anisah, 2009

Indikator	Sub - Indikator	Faktor	Setuju	Tidak Setuju	Referensi
	Operator dan Mekanik				
Tahap	X47	Pengalaman operator			Schexnayder, 1982.
Manajemen	X48	Shift dari operator alat berat			Suryadharma, 1998.
Alat Berat	X49	Fasilitas yang diberikan oleh operator alat berat			Gates, M., & Scarpa A, 1979
	X50	Pengalaman mekanik			Suryadharma, 1998.
	X51	Motivasi dari operator alat berat			Suryadharma, 1998.
Kondisi Terkendali	Pencurian Alat	Faktor Pengaruh yang terjadi pada eksternal proyek			
	X52	Kehilangan/pencurian spare part alat		194	Suryadharma, 1998.
	Cuaca				
Manajemen Alat Berat Kondisi	X53	Ramalan kondisi dan cuaca		-49	Asiyanto, 2007.
	Benc. Alam				
Tahap Manajemen Alat Berat Kondisi Terkendali Kondisi Tak	X54	Tidak terjadinya bencana alam selama pelaksanaan konstruksi (banjir, dll)			Olomiye, 1998
Kondici Tak	Hukum			Constitution of the	
Kondisi Tak	X55	Perubahan peraturan hukum perundang-undangan tentang alat berat yang digunakan			Ovy Dwi Ananto, 2002
	Ekonomi			-400	
	X56	Perubahan kondisi perekonomian			Mc Connell & Brue 1989
	X57	Pertimbangan terhadap perubahan nilai kurs nilai mata uang ekonomi			Schechnayder, 1982

2. Rekomendasi Variabel Faktor Pengaruh

Apakah menurut Bapak/ Ibu faktor-faktor pengaruh yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder diatas sudah cukup lengkap?...... kalau kurang lengkap mohon ditambahkan peristiwa-peristiwa yang pernah Bapak/Ibu alami:

Sub - Indikator	Faktor	Komentar
Data Lapangan	Faktor pengaruh yang terjadi pada internal proyek	
Kontraktor	Faktor pengaruh yang terjadi pada internal proyek	
Penjadwalan	Faktor pengaruh yang terjadi pada internal proyek	
Operasional	Faktor pengaruh yang terjadi pada internal proyek	
Pengadaan Alat	Faktor pengaruh yang terjadi pada internal proyek	
Pemeliharaan	Faktor pengaruh yang terjadi pada internal proyek	

Operator dan	Faktor pengaruh yang terjadi pada internal proyek
Mekanik	
Pencurian Alat	Faktor pengaruh yang terjadi pada eksternal proyek
Hukum	Faktor pengaruh yang terjadi pada eksternal proyek
Ekonomi	Faktor pengaruh yang terjadi pada eksternal proyek

Lainnya	

Terimakasih atas kesediaan Bapak/ Ibu meluangkan waktu untuk mengisi kuisioner ini.

Hormat Saya,

LAMPIRAN B KUISIONER RESPONDEN

ANALISA FAKTOR – FAKTOR PRODUKTIVITAS ALAT BERAT PEKERJAAN PEMASANGAN *PRECAST* GIRDER PADA PROYEK *FLYOVER*

KUISIONER PENELITIAN SKRIPSI KEPADA STAKEHOLDER (ANALISA FAKTOR DOMINAN)

AGUS SAPUTRA 0606071960

FAKULTAS TEKNIK
PROGRAM STUDI TEKNIK SIPIL
DEPOK
DESEMBER 2010

Abstrak

Pada suatu proyek konstruksi peralatan menyumbangkan biaya proyek yang cukup besar dan dapat mencapai 20-30% dari total biaya proyek. Oleh karena itu diperlukan suatu rencana atau metode kerja yang tepat terhadap peralatan yang digunakan untuk pemasangan *precast* girder agar perbandingan antara masukan dan keluaran menjadi optimal. Penelitian ini bertujuan untuk mengetahui faktor – faktor yang berpengaruh terhadap produktivitas alat berat pekerjaan pemasangan *precast* girder dan mencari tahu bagaimana cara meningkatkan produktivitas alat berat pada pekerjaan pemasangan *precast* girder. Masalah utama dari proses perencanaan sumber daya alat berat pada pekerjaan pemasangan *precast* girder ini adalah faktor-faktor dominan apa yang mempengaruhi produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Kata Kunci: Produktivitas, girder, flyover, alat

Tujuan Pelaksanaan Penelitian

Tujuan dari pelaksanaan penelitian ini adalah untuk mengetahui faktor-faktor dominan yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder dan mengetahui rekomendasi untuk meningkatkan kinerja produktivitas alat berat pada pekerjaan pemasangan *precast* girder.

Kerahasiaan Informasi

Seluruh informasi yang Bapak/ Ibu berikan dalam penelitian ini akan dijamin kerahasiaannya.

Informasi dari Hasil Penelitian

Setelah seluruh informasi yang masuk dianalisis, temuan dari studi ini akan disampaikan kepada perusahaan Bapak/ Ibu.

Apabila Bapak/ Ibu memiliki pertanyaan mengenai penelitian ini, dapat menghubungi:

1. Peneliti/Mahasiswa : **Agus Saputra** pada HP 0856697135757/021-99057223 atau e-mail agus.saputra13@gmail.com

2. Dosen Pembimbing 1 : Ir. Setyo Supriyadi Supadi, M. Si pada HP 0818705726 atau e-mail sprijadi@ui.ac.id

3. Dosen Pembimbing 2 : Ir. Bambang Setiadi, MSc. pada HP 0816822625 atau e-mail bambang.setiadi@ui.ac.id

Terima kasih telah berpartisipasi sebagai responden untuk mengisi kuisioner variabel penelitian ini.

Hormat saya,

DATA RESPONDEN

1. Nama Responden

2. Nama Proyek

3. Jabatan pada Proyek

: Tanggal

Bulan

Tahun

Tahun

: Tanggal

Bulan

6. Lokasi Proyek

5. Rencana Selesai

4. Proyek Mulai

7. Pemilik Proyek

8. Perusahaan

9. Pengalaman Kerja

10. Pendidikan Terakhir

11. Tanda Tangan

A. Petunjuk pengisian kuisioner

- 1. Jawaban merupakan persepsi Bapak/ Ibu terhadap faktor faktor pengaruh yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder.
- 2. Pengisian kuesioner dilakukan dengan memberikan tanda **X** pada kolom yang telah disediakan.

B. Keterangan Penilaian untuk "pengaruh produktivitas alat berat pada pekerjaan pemasangan precast girder"

1. Tidak ada pengaruh = Tidak ada dampak

2. Ada pengaruh yang rendah = Perlu penangan

3. Ada pengaruh yang sedang

= Perlu ditangani oleh manajer, penurunan produktivitas cukup berarti

4. Ada pengaruh yang tinggi

= Adanya kegagalan, kerugian keuangan cukup berarti, terjadi keterlambatan waktu proyek 1-2 hari

5. Ada pengaruh yang sangat tinggi

= Kerugian besar, perlu penanganan khusus, terjadi keterlambatan waktu proyek 3-5 hari

C. Keterangan Penilaian Untuk "Variabel Y"

1. Kecil = Nilai produktivitas proyek adalah < 80%

2. Rendah = Nilai produktivitas proyek adalah 80% - 93%

3. Sedang = Nilai produktivitas proyek adalah 93% - 106%

4. Tinggi = Nilai produktivitas proyek adalah106% - 120%

5. Sangat Tinggi = Nilai produktivitas optimal vaitu sebesar >120%.

D. Contoh Pengisian kuesioner

Apakah faktor-faktor berikut berpengaruh terhadap produktivitas alat berat pada tahap perencanaan dan pelaksanaan pada pekerjaan pemasangan *precast* girder?

Bagaimana persepsi Bapak/Ibu terhadap pengaruh faktor dibawah ini yang terjadi pada tahap pelaksanaan dan perencanaan pada pekerjaan pemasangan *precast* girder yang langsung Bapak/ Ibu alami dan rasakan pada proyek yang telah dan sedang dikerjakan?

Indikator	Sub - Indikator		Pengaruh						
			1	2	3	4	5		
Tahap Perencanaan Konstruksi	Data Lapangan	Faktor yang berpengaruh pada internal proyek		<i>D</i>					
	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan	X						
	X2	Kemampuan kontraktor memprediksi kondisi lapangan dalam pembuatan site lay - out dan resiko kejadian yang akan datang			X				
	Pencurian	Faktor yang berpengaruh pada eksternal		l bassard					
	Alat	proyek							
	X39	Kehilangan/pencurian spare part alat				X			
	Hukum	Faktor yang berpengaruh pada eksternal proyek							
	X42	Perubahan peraturan hukum perundang-undangan		X					
		4(0)>							

1. Faktor-faktor pengaruh apa saja yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder?

Apakah Bapak/Ibu setuju, variabel dibawah ini merupakan faktor-faktor pengaruh yang berpengaruh terhadap produktivitas alat berat pada pekerjaan pemasangan *precast* girder?

Indikator	Sub - Indikator	To belle	Pengaruh						
		Faktor	1	2	3	4	5		
	Data Lapangan	Faktor yang berpengaruh pada internal proyek			1				
	X1	Ketersediaan informasi dan kelengkapan data mengenai data lapangan							
	X2	Data jenis proyek							
-	Kontraktor								
Tahap	X3	Kemampuan kontraktor memprediksi kondisi lapangan dalam pembuatan site lay - out dan resiko kejadian yang akan datang							
Perencanaan Konstruksi	X4	Pengalaman orang yang ditugaskan untuk mengestimasi produktivitas oleh kontraktor							
	X5	Penggunaan tenaga ahli yang digunakan oleh kontraktor untuk mengestimasi produktivitas							
	X6	Informasi yang diperoleh orang yang ditugaskan oleh kontraktor dalam mengestimasi produktivitas							
	X 7	Kemampuan kontraktor memahami karakteristik dari proyek tersebut							
	X8	Kemampuan kontraktor dalam segi finansial		1-2					

Sub - Indikator	To-Lida	Pengaruh						
	raktor	1	2	3	4	5		
Х9	Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat, serta kapasitas alat yang dibutuhkan							
X10	Persediaan alat yang dibutuhkan oleh kontaktor							
X11	Waktu perencanaan kontraktor dalam mengestimasi produktivitas	A.						
X12	Koordinasi kontraktor dengan stakeholder		7					
X13	Kemampuan evaluasi dari kontraktor terhadap kinerja produksi							
X14	Sistem dan prosedur evaluasi dan monitoring dari kontraktor terhadap kapasitas produksi	L						
Penjadwalan		- X	-47					
X15	Urutan pekerjaan pemasangan <i>precast</i> girder dalam penjadwalan proyek							
X16	Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan							
X17	Perubahan jadwal pekerjaan dan design							
			ed.					
Alat			93					
X18	Kapasitas Alat yang digunakan							
X19	Pemilihan umur alat dan kondisi							
	X9	X9	Indikator Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat, serta kapasitas alat yang dibutuhkan X10 Persediaan alat yang dibutuhkan oleh kontaktor X11 Waktu perencanaan kontraktor dalam mengestimasi produktivitas X12 Koordinasi kontraktor dengan stakeholder Kemampuan evaluasi dari kontraktor terhadap kinerja produksi X14 Sistem dan prosedur evaluasi dan monitoring dari kontraktor terhadap kapasitas produksi Penjadwalan X15 Urutan pekerjaan pemasangan precast girder dalam penjadwalan proyek Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan X17 Perubahan jadwal pekerjaan dan design Alat X18 Kapasitas Alat yang digunakan	Indikator Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat, serta kapasitas alat yang dibutuhkan X10 Persediaan alat yang dibutuhkan oleh kontaktor Waktu perencanaan kontraktor dalam mengestimasi produktivitas X12 Koordinasi kontraktor dengan stakeholder X13 Kemampuan evaluasi dari kontraktor terhadap kinerja produksi Sistem dan prosedur evaluasi dan monitoring dari kontraktor terhadap kapasitas produksi Penjadwalan X15 Urutan pekerjaan pemasangan precast girder dalam penjadwalan proyek Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan X17 Perubahan jadwal pekerjaan dan design	Indikator Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat, serta kapasitas alat yang dibutuhkan X10 Persediaan alat yang dibutuhkan oleh kontaktor X11 Waktu perencanaan kontraktor dalam mengestimasi produktivitas X12 Koordinasi kontraktor dengan stakeholder X13 Kemampuan evaluasi dari kontraktor terhadap kinerja produksi X14 Sistem dan prosedur evaluasi dan monitoring dari kontraktor terhadap kapasitas produksi Penjadwalan X15 Urutan pekerjaan pemasangan precast girder dalam penjadwalan proyek Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan X17 Perubahan jadwal pekerjaan dan design	Indikator Kemampuan kontraktor dalam mengestimasi produktivitas alat, jumlah alat, serta kapasitas alat yang dibutuhkan X10 Persediaan alat yang dibutuhkan oleh kontaktor X11 Waktu perencanaan kontraktor dalam mengestimasi produktivitas X12 Koordinasi kontraktor dengan stakeholder X13 Kemampuan evaluasi dari kontraktor terhadap kinerja produksi X14 Sistem dan prosedur evaluasi dan monitoring dari kontraktor terhadap kapasitas produksi X15 Urutan pekerjaan pemasangan precast girder dalam penjadwalan proyek Tingkat keakurasian penjadwalan yang memperhatikan waktu penggunaan alat, lokasi tempat kerja, jumlah alat dan volume pekerjaan X17 Perubahan jadwal pekerjaan dan design Alat X18 Kapasitas Alat yang digunakan		

Indikator	Sub - Indikator	Faktor	Pengaruh					
			1	2	3	4	5	
	Alat							
	X20	Kebutuhan perlengkapan kerja						
	X21	Tata letak penempatan alat						
	X22	Kondisi tempat kerja alat beroperasi						
	X23	Perencanaan jumlah alat yang dibutuhkan						
	X24	Data jenis Mobile crane yang digunakan		9 1				
	Operasional							
	X25	Jumlah alat yang beroperasi						
Tahap Manajemen	X26	Keseuaian manuver alat saat beroperasi						
Alat Berat	X27	Efektivitas dan efisinesi penggunaan alat selama beroperasi						
	X28	Metoda kerja dan perubahannya selama beroperasi		-				
	X29	Pengadaan stok bahan bakar selama beroperasi (mobile crane)						
	X30	Kelancaran pendanaan dalam biaya operasi alat	. 1					
	X31	Umur ekonomis alat selama beroperasi						
	X32	Jalan kerja yang diterapkan selama beroperasi						
	X33	Tingkat kerusakan alat selama operasional						

Indikator	Sub - Indikator	Faktor	Pengaruh				
			1	2	3	4	5
	Operasional						
	X34	Penyediaan dan monitoring suku cadang alat selama beroperasi	2000000				
	X35	Pengendalian keselamatan dan kesehatan kerja (K3)					
	X36	Penerapan jam kerja alat mempengaruhi operasional alat					
	X37	Sistem pengamanan alat selama tidak beroperasi	- 3				
	Pengadaan Alat		E				
	X38	Pengadaan jenis alat					
Tahap	X39	Pangadaan kapasitas dan spesifikasi alat					
Manajemen	X40	Perubahan kondisi lokasi proyek saat pengadaan		100			
Alat Berat	Pemeliharaan						
	X41	Tingkat kerusakan alat selama penyimpanan mempengaruhi pemeliharaan alat	1				
	Perbaikan						
	X42	Pendanaan dalam biaya perbaikan alat					
	X43	Penggunaan alat baru selama perbaikan	-				
	X44	Waktu perbaikan					
	X45	Tersedianya <i>spare part</i> mempermudah dalam perbaikan					
	X46	Sistem pemeliharaan alat selama beroperasi					

Indikator	Sub - Indikator	Faktor	Pengaruh				
			1	2	3	4	5
	Operator dan Mekanik						
Tahap	X47	Pengalaman operator					
Manajemen	X48	Shift dari operator alat berat					
Alat Berat	X49	Fasilitas yang diberikan oleh operator alat berat					
	X50	Pengalaman mekanik			1		
	X51	Motivasi dari operator alat berat		T			
Kondisi Terkendali	Pencurian Alat						
	X52	Kehilangan/pencurian spare part alat		67			
	Cuaca						
	X53	Ramalan kondisi dan cuaca					
	Benc. Alam						
	X54	Tidak terjadinya bencana alam selama pelaksanaan konstruksi (banjir, dll)					
Kondisi Tak Terkendali	Hukum						
	X55	Perubahan peraturan hukum perundang-undangan		Description of			
			il.				
	Ekonomi						
	X56	Perubahan kondisi perekonomian					
	X57	Pertimbangan terhadap perubahan nilai kurs nilai mata uang ekonomi		6-95			

Indikator	Sub - Indikator	Apakah faktor-faktor berikut berpengaruh terhadap produktivitas alat pemasangan precast girder	Pengaruh					
			1	2	3	4	5	
Produktivitas	Faktor- Faktor Dominan	Apakah faktor – faktor dominan yang tepat akan berpengaruh terhadap produktivitas?						

Terimakasih atas kesediaan Bapak/ Ibu meluangkan waktu untuk mengisi kuisioner ini.

Hormat Saya,

LAMPIRAN C DATA RESPONDEN

Nama	Jabatan	Pengalaman Kerja	
R1	Project Manager	21	S2
R2	Project Manager	19	S2
R3	GSI	14	S2
R4	Engineering Manager	7	S1
R5	Engineering Manager	10	S1
R6	Site Manager	18	S2
R7	Site Manager	17	S1
R8	Chief Project Control	13	S1
R9	Chief HSE	26	D3
R10	Chief QC	11	S1
R11	Chief Project Control	4	S2
R12	Chief HSE	8	S2
R13	Chief QC	13	S2
R14	Chief Enginner	15	-S2
R15	Chief QS	11	S1
R16	Chief QS	-14	S2
R17	Construction	8	D3
R18	Ops. Peralatan	7	S1
R19	QC Inspector	13	S1
R20	Safety Officer	9	S1
R21	Safety Officer	26	S1
R22	Logistic	5	D3
R23	Drafter	4	S1
R24	Quantity Surveyor	7	S1
R25	Surveyor	8	S1
R26	QC Inspector	12	S1
R27	Ops. Peralatan	11	S1
R28	Construction	12	S1
R29	Construction	19	D3
R30	Construction	6	S1
R31	Logistic	7	S1

LAMPIRAN D

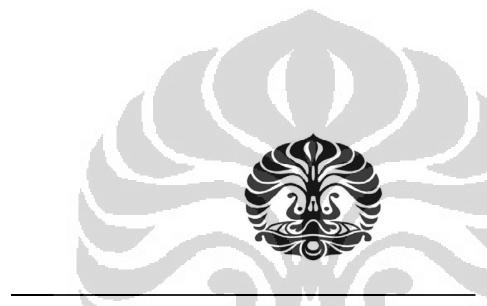
TABULASI DATA

Tabulasi data

	X1	X2	Х3	X4 X	(5 X	6 X7	X8	X9	X10	X11	X12	X13	X14	X15	X16 X	17 X1	8 X19	X20	X21	X22	X23	X24 X	25 2	X26 X2	X28	X29	X30	X31	X32	X33	Х34 У	X35 Z	X36 X	37 X38	X39	X40	X41 X42	X43	X44	X45	X46 X4	7 X48	8 X49	X50	X51	X52 X	X53	X54 X	X55 X56	6 X57	Y
R1	3	3	3	4	3 4	3	4	4	4	3	3	3	3	5	2	1 3	3	4	4	4	4	4 .	4	4 4	4	4	4	3	4	4	4	4	4 3	3 3	3	3	3 3	4	4	4	3 5	4	4	3	4	4	3	3	3 4	5	2
R2	4	4	3	3	1 2	2 3	3	4	3	3	2	4	4	4	3	3 4	4	3	3	4	3	4	4	4 4	4	4	4	3	2	3	4	4	3 3	3 4	4	4	4 4	3	4	2	2 4	2	3	4	4	3	3	4	5 3	3	3
R3	5	3	5	5	5 5	3	5	5	5	5	5	3	3	3	5	5 5	5	3	5	5	5	5	5	5 5	5	4	5	4	4	3	5	5	2 5	5 5	5	4	3 5	3	3	5	2 5	4	3	5	4	3	5	1	1 2	5	4
R4	4	2	4	3	1 3	3	4	4	4	2	3	3	3	5	3	1 4	4	4	4	4	4	3 .	4	4 4	4	4	4	3	4	3	4	4	3 4	1 4	4	4	4 4	4	3	4	4 4	3	3	4	3	4	4	4	3 3	4	3
R5	3	1	2	3	2 2	2	2	3	3	2	3	2	2	3	2	2 3	3	3	3	2	2	3	3	3 3	3	2	2	4	3	3	2	3	3 2	2 3	3	2	3 3	3	3	3	3 4	3	3	3	3	3	3	3	3 3	3	3
R6	2	3	3	3	1 2	2 3	3	2	4	4	3	4	5	2	4 :	2 3	4	4	5	5	5	2	3	3 4	3	3	4	2	3	3	2	4	3 3	3 3	4	4	4 4	4	4	5	5 5	4	4	4	4	4	3	4	3 3	2	3
R7	4	2	3	3	1 3	3	2	4	5	3	3	4	4	5	3	1 5	5	3	5	5	4	3	5	5 5	4	5	5	3	4	5	4	3	3 3	3 4	3	4	4 4	4	4	3	4 4	3	3	4	3	3	3	3	2 3	4	4
R8	4	3	3	4	2 3	3 2	4	3	4	2	3	3	4	3	2 :	3 3	. 4	5	3	3	4	3	2	3 2	3	4	4	4	4	4	3	4	2 3	3 3	2	2	4 4	4	4	3	3 5	3	2	5	3	5	2	3	2 2	2	3
R9	3	5	3	2	1 2	2 3	5	3	3	3	5	2	3	4	3	5 3	5	3	5	3	5	4	4	5 2	3	4	2	5	3	4	4	5	3 4	1 5	4	3	4 3	4	5	3	3 3	2	3	3	4	3	3	5	3 3	3	3
R10	2	3	2	2	2 3	3 2	4	3	4	2	3	3	4	2	2	3 4	3	3	4	3	2	3	3	2 3	3	4	3	2	3	5	4	3	2 2	2 4	4	3	5 2	2	3	2	2 2	2	2	2	2	3	2	1	2 2	3	2
R11	4	3	4	4	1 4	4	2	5	4	4	4	4	4	5	4	4	3	4	4	4	4	3	4	4 4	4	4	4	4	4	4	5	5	4 5	5 4	4	4	4 4	4	4	4	4 4	4	4	4	4	4	4	4	4 4	4	3
R12	3	2	4	2	1 2	2	4	2	3	4	3	2	3	2	4 :	3 2	4	4	3	3	4	3	3	3 4	4	4	4	3	4	3	3	5	3 3	3 4	3	2	2 2	1	2	3	3 3	3	3	4	4	4	4	4	4 3	3	3
R13	4	2	3	3	3 3	3	3	4	4	1	4	3	3	3	1.	3 4	4	3	4	4	4	4	1	3 4	4	4	4	3	4	4	4	4	2 1	1 4	4	2	3 3	3	3	4	4 3	3	3	4	4	3	3	3	3 2	4	2
R14	4	4	5	4	3 4	4	2	5	4	5	5	4	4	4	5	5 4	3	4	3	4	4	4	4	3 3	3	3	5	5	4	-5	5	5	4 3	3 4	4	5	4 3	4	4	4	3 4	3	3	4	4	4	4	4	4 4	5	4
R15	5	5	3	3	3 2	4	4	4	4	3	4	4	4	4	3	1 4	4	4	4	3	4	3	4	4 4	4	4	4	4	4	4	3	4	3 4	1 3	3	3	4 3	3	3	3	3 4	4	3	4	4	4	3	4	3 3	3	3
R16	4	5	3	3	2 3	2	2	5	4	5	4	2	3	3	2	4	4	3	5	4	3	5	3	2 3	3	3	3	3	2	4	4	.5	3 4	1 5	4	4	4 3	3	3	3	4 4	4	2	4	4	3	2	1	4 3	3	3
R17	5	5	5	5	1 5	4	5	5	5	5	5	3	3	3	2	5 5	5	_5	5	5	5	5	5	5 5	4	5	5	4	5	4	5	5	3 4	1 5	5	5	4 4	5	5	5	5 5	4	5	5	5	5	2	5	2 3	5	3
R18	5	3	3	4	3 4	2	4	4	3	2	3	2	3	4	2	3	4	3	3	3	3	3	3	3 3	3	3	3	3	3	3	4	4	3 3	3 3	3	3	3 3	2	3	3	3 4	4	3	4	3	3	2	2	2 3	4	2
R19	5	5	3	3	1 5	4	3	5	3	2	3	3	3	3	3	3 5	5	- 4	5	4	4	3	4	4 4	4	3	4	3	4 -	4	5	4	3 4	1 3	3	3	4 4	3	4	3	3 4	3	3	4	3	4	4	2	2 3	4	3
R20	3	2	3	2	3 3	3	1	2	1	4	2	4	4	4	3 1	2 2	4	3	3	3	2	3	1	2 1	2	2	1	3	2	2	3	2	3 2	2 3	3	2	2 1	2	2	3	3 2	3	4	2	3	3	5	5	5 3	3	3
R21	4	3	5	3	4 3	4	3	4	4	5	2	4	5	5	5	5 5	5	5	5	4	4	5 .	5	4 4	4	4	5	- 5	5	5	3	4	4 3	3 5	1	. 5	4 4	5	5	4	4 4	4	4	5	5	5	5	5	5 4	5	5
R22	4	3	4	3	3 4	3	4	4	4	3	3	3	4	5	3	3 4	4	3	3	4	4	4	3	4 4	4	4	5	4	3	3	4	4	3 4	1 3	3	3	3 3	3	3	3	3 5	3	4	4	4	3	3	4	4 3	4	2
R23	5	5	4	4	3 4	3	3	4	3	3	4	2	3	4	2	1 4	3	2	4	2	4	4	4	3 4	3	4	4	2	3	4	3	3	3 2	2 4	4	3	4 4	2	4	4	4 4	4	3	4	3	2	3	4	2 3	3	3
R24	5	1	3	5	1 5	5 2	4	2	5	1	2	3	2	4	1 :	2 2	4	4	4	3	4	4	4	4 4	3	5	4	5	4	5	2	5	3 4	4 4	5	3	5 3	3	4	3	4 4	4	3	4	3	4	4	1	1 3	2	2
R25	5	3	3	3	5 5	5	4	5	5	4	5	2	3	3	3	5 5	4	3	5	3	3	4	5	5 5	4	3	3	3	3	2	3	4	3 2	2 5	4	4	2 2	2	3	3	3 3	2	3	3	1	3	2	5	4 3	5	4
R26	2	2	3	1	5 1	2	2	1	3	2	2	4	3	2	3	2 5	5	5	5	3	2	5	5	4 5	3	5	3	4	5	5	1	5	2 5	5 5	5	5	5 2	1	3	3	3 2	2	2	2	2	5	2	3	2 2	4	3
R27	3	3	5	5	4	4	5	4	5	4	4	4	4	4	4	4	3	5	4	3	3	5	4	4 5	3	5	5	4	5	-5	3	4	4 4	4	5	3	5 4	4	3	5	4 5	4	4	5	4	5	4	3	3 4	4	3
R28	4	5	4	5	5 4	4	4	4	4	5	4	4	4	4	4	4	5	5	5	5	5	5	5	4 4	4	4	5	4	5	4	4	5	4 4	1 5	5	5	4 4	4	5	4	4 4	4	5	4	5	5	4	4	4 4	4	4
R29	4	4	5	4	1 5	4	5	3	4	3	4	4	4	4	4	1 4	3	5	4	4	3	4	4	4 4	5	- 5	-5	4	5	4	4	5	3 5	5 4	5	4	4 5	4	5	5	3 5	4	4	5	5	5	4	4	4 3	5	3
R30	4	5	3	4	3 2	4	4	4	2	3	5	3	3	2	3	5 4	4	3	3	4	3	4	2	3 2	4	3	2	3	2	2	3	3	4 4	1 3	2	3	2 3	4	3	3	4 4	4	3	4	3	3	3	3	3 4	4	3
R31	2	3	3	4	2 4	4	3	4	5	2	3	3	4	2	2	3	3	4	5	3	3	5	4	4 4	3	5	3	3	2	5	4	4	3 2	2 5	5	3	5 3	2	3	3	4 5	4	3	5	2	4	1	2	2 3	5	3

LAMPIRAN E

UJI MANN-WHITNEY UNTUK KATEGORI PENGALAMAN KERJA


Mann Whitney (Pengalaman)

	R	anks		
	Kode Pengalaman	N	Mean Rank	Sum of Ranks
	Pengalaman < 10 Tahun	13	17,73	230,50
X1	Pengalaman > 10 Tahun	18	14,75	265,50
	Total	31		
	Pengalaman < 10 Tahun	13	13,42	174,50
X2	Pengalaman > 10 Tahun	18	17,86	321,50
	Total	31		
	Pengalaman < 10 Tahun	13	16,04	208,50
X3	Pengalaman > 10 Tahun	18	15,97	287,50
	Total	31	The same	
	Pengalaman < 10 Tahun	13	17,00	221,00
X4	Pengalaman > 10 Tahun	18	15,28	275,00
	Total	31	- 1	
4	Pengalaman < 10 Tahun	13	14,65	190,50
X5	Pengalaman > 10 Tahun	18	16,97	305,50
	Total	31		
	Pengalaman < 10 Tahun	13	17,73	230,50
X6	Pengalaman > 10 Tahun	18	14,75	265,50
	Total	31		
	Pengalaman < 10 Tahun	13	15,77	205,00
X7	Pengalaman > 10 Tahun	18	16,17	291,00
	Total	31	4 1	
	Pengalaman < 10 Tahun	13	15,73	204,50
X8	Pengalaman > 10 Tahun	18	16,19	291,50
46	Total	31	Time I	
	Pengalaman < 10 Tahun	13	15,96	207,50
X9	Pengalaman > 10 Tahun	18	16,03	288,50
	Total	31		
	Pengalaman < 10 Tahun	13	15,42	200,50
X10	Pengalaman > 10 Tahun	18	16,42	295,50
	Total	31	5.0	
	Pengalaman < 10 Tahun	13	14,69	191,00
X11	Pengalaman > 10 Tahun	18	16,94	305,00
	Total	31		
	Pengalaman < 10 Tahun	13	15,65	203,50
X12	Pengalaman > 10 Tahun	18	16,25	292,50
	Total	31		
V12	Pengalaman < 10 Tahun	13	11,69	152,00
X13	Pengalaman > 10 Tahun	18	19,11	344,00

	Total	31		
	Pengalaman < 10 Tahun	13	12,42	161,50
X14	Pengalaman > 10 Tahun	18	18,58	334,50
	Total	31		
	Pengalaman < 10 Tahun	13	15,96	207,50
X15	Pengalaman > 10 Tahun	18	16,03	288,50
	Total	31		
	Pengalaman < 10 Tahun	13	13,27	172,50
X16	Pengalaman > 10 Tahun	18	17,97	323,50
	Total	31		
	Pengalaman < 10 Tahun	13	14,73	191,50
X17	Pengalaman > 10 Tahun	18	16,92	304,50
	Total	31		
	Pengalaman < 10 Tahun	13	13,12	170,50
X18	Pengalaman > 10 Tahun	18	18,08	325,50
1	Total	31		
	Pengalaman < 10 Tahun	13	13,81	179,50
X19	Pengalaman > 10 Tahun	18	17,58	316,50
	Total	31		
	Pengalaman < 10 Tahun	13	13,42	174,50
X20	Pengalaman > 10 Tahun	18	17,86	321,50
	Total	31		
	Pengalaman < 10 Tahun	13	12,65	164,50
X21	Pengalaman > 10 Tahun	18	18,42	331,50
	Total	31		
200	Pengalaman < 10 Tahun	13	12,69	165,00
X22	Pengalaman > 10 Tahun	18	18,39	331,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,23	185,00
X23	Pengalaman > 10 Tahun	18	17,28	311,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,38	187,00
X24	Pengalaman > 10 Tahun	18	17,17	309,00
	Total	31		
	Pengalaman < 10 Tahun	13	13,46	175,00
X25	Pengalaman > 10 Tahun	18	17,83	321,00
	Total	31		
	Pengalaman < 10 Tahun	13	15,19	197,50
X26	Pengalaman > 10 Tahun	18	16,58	298,50
	Total	31		
X27	Pengalaman < 10 Tahun	13	15,19	197,50

	Pengalaman > 10 Tahun	18	16,58	298,50
	Total	31	·	-
	Pengalaman < 10 Tahun	13	15,00	195,00
X28	Pengalaman > 10 Tahun	18	16,72	301,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,62	190,00
X29	Pengalaman > 10 Tahun	18	17,00	306,00
	Total	31		
	Pengalaman < 10 Tahun	13	12,77	166,00
X30	Pengalaman > 10 Tahun	18	18,33	330,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,58	189,50
X31	Pengalaman > 10 Tahun	18	17,03	306,50
	Total	31		
	Pengalaman < 10 Tahun	13	12,54	163,00
X32	Pengalaman > 10 Tahun	18	18,50	333,00
	Total	31		
	Pengalaman < 10 Tahun	13	11,62	151,00
X33	Pengalaman > 10 Tahun	18	19,17	345,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,54	189,00
X34	Pengalaman > 10 Tahun	18	17,06	307,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,19	184,50
X35	Pengalaman > 10 Tahun	18	17,31	311,50
	Total	31		J
N.	Pengalaman < 10 Tahun	13	17,00	221,00
X36	Pengalaman > 10 Tahun	18	15,28	275,00
	Total	31		
7	Pengalaman < 10 Tahun	13	14,31	186,00
X37	Pengalaman > 10 Tahun	18	17,22	310,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,69	191,00
X38	Pengalaman > 10 Tahun	18	16,94	305,00
	Total	31		
	Pengalaman < 10 Tahun	13	15,15	197,00
X39	Pengalaman > 10 Tahun	18	16,61	299,00
	Total	31		
	Pengalaman < 10 Tahun	13	13,31	173,00
X40	Pengalaman > 10 Tahun	18	17,94	323,00
	Total	31		

	Pengalaman < 10 Tahun	13	12,65	164,50
X41	Pengalaman > 10 Tahun	18	18,42	331,50
	Total	31		
	Pengalaman < 10 Tahun	13	13,15	171,00
X42	Pengalaman > 10 Tahun	18	18,06	325,00
	Total	31		
	Pengalaman < 10 Tahun	13	13,00	169,00
X43	Pengalaman > 10 Tahun	18	18,17	327,00
	Total	31		
	Pengalaman < 10 Tahun	13	12,54	163,00
X44	Pengalaman > 10 Tahun	18	18,50	333,00
	Total	31		
	Pengalaman < 10 Tahun	13	14,69	191,00
X45	Pengalaman > 10 Tahun	18	16,94	305,00
	Total	31		
W	Pengalaman < 10 Tahun	13	18,04	234,50
X46	Pengalaman > 10 Tahun	18	14,53	261,50
	Total	31		
10-1-1	Pengalaman < 10 Tahun	13	15,31	199,00
X47	Pengalaman > 10 Tahun	18	16,50	297,00
	Total	31		
	Pengalaman < 10 Tahun	13	16,92	220,00
X48	Pengalaman > 10 Tahun	18	15,33	276,00
	Total	31		
	Pengalaman < 10 Tahun	13	17,23	224,00
X49	Pengalaman > 10 Tahun	18	15,11	272,00
100	Total	31		
	Pengalaman < 10 Tahun	13	15,15	197,00
X50	Pengalaman > 10 Tahun	18	16,61	299,00
1	Total	31		
	Pengalaman < 10 Tahun	13	12,54	163,00
X51	Pengalaman > 10 Tahun	18	18,50	333,00
	Total	31		
	Pengalaman < 10 Tahun	13	13,42	174,50
X52	Pengalaman > 10 Tahun	18	17,86	321,50
	Total	31		
	Pengalaman < 10 Tahun	13	15,23	198,00
X53	Pengalaman > 10 Tahun	18	16,56	298,00
	Total	31		
X54	Pengalaman < 10 Tahun	13	17,65	229,50
110 !	Pengalaman > 10 Tahun	18	14,81	266,50

LAMPIRAN F

UJI KRUSKALL-WALLIS UNTUK KATEGORI PENDIDIKAN

	Total	31		
	Pengalaman < 10 Tahun	13	15,81	205,50
X55	Pengalaman > 10 Tahun	18	16,14	290,50
	Total	31		
	Pengalaman < 10 Tahun	13	17,00	221,00
X56	Pengalaman > 10 Tahun	18	15,28	275,00
	Total	31		
	Pengalaman < 10 Tahun	13	15,88	206,50
X57	Pengalaman > 10 Tahun	18	16,08	289,50
	Total	31		
	Pengalaman < 10 Tahun	13	14,04	182,50
Y	Pengalaman > 10 Tahun	18	17,42	313,50
	Total	31	1	

Test Statistics^b

	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
Mann-Whitney U	94,500	83,500	######	######	99,500	94,500	######	######	######	######
Wilcoxon W	######	######	######	######	######	######	######	######	######	######
Z	-,949	-1,400	-,022	-,545	-,740	-,929	-,127	-,146	-,021	-,318
Asymp. Sig. (2-tailed)	,343	,161	,982	,586	,459	,353	,899	,884	,983	,751
Exact Sig. [2*(1-tailed Sig.)]	.373 ^a	.183 ^a	.984 ^a	.622 ^a	.489 ^a	.373 ^a	.921ª	.890 ^a	.984 ^a	.767 ^a

Test Statistics^b

	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20
Mann-Whitney U	######	######	61,000	70,500	######	81,500	######	79,500	88,500	83,500
Wilcoxon W	######	######	######	######	######	######	######	######	######	######
Z	-,700	-,188	-2,399	-2,038	-,021	-1,479	-,686	-1,596	-1,225	-1,428
Asymp. Sig. (2-tailed)	,484	,851	,016	,042	,983	,139	,493	,111	,220	,153
Exact Sig. [2*(1-tailed Sig.)]	.514 ^a	.859 ^a	.025 ^a		.984 ^a	.157 ^a	.514 ^a	.135 ^a	.258 ^a	.183 ^a

Test Statistics^b

	X21	X22	X23	X24	X25	X26	X27	X28	X29	X30
Mann-Whitney U	73,500	74,000	94,000	96,000	84,000	######	######	######	99,000	75,000
Wilcoxon W	######	######	######	######	######	######	######	######	######	######
Z	-1,851	-1,835	-,979	-,889	-1,404	-,448	-,456	-,577	-,775	-1,762
Asymp. Sig. (2-tailed)	,064	,067	,328	,374	,160	,654	,649	,564	,438	,078
Exact Sig. [2*(1-tailed Sig.)]	.082a	.089 ^a	.373 ^a	.417 ^a	.196 ^a	.679 ^a	.679 ^a	.622a	.489 ^a	.097 ^a

Test Statistics^b

	X31	X32	X33	X34	X35	X36	X37	X38	X39	X40
Mann-Whitney U	98,500	72,000	60,000	98,000	93,500	######	95,000	######	######	82,000
Wilcoxon W	######	######	######	######	######	######	######	######	######	######
Z	-,790	-1,884	-2,395	-,803	-1,015	-,599	-,917	-,723	-,461	-1,469
Asymp. Sig. (2-tailed)	,430	,060	,017	,422	,310	,549	,359	,469	,645	,142
Exact Sig. [2*(1-tailed Sig.)]	.465 ^a	.075 ^a	.022 ^a	.465 ^a	.352 ^a	.622ª	.395 ^a	.514 ^a	.679 ^a	.170°

Test Statistics^b

	X41	X42	X43	X44	X45	X46	X47	X48	X49	X50
Mann-Whitney U	73,500	80,000	78,000	72,000	######	90,500	######	######	######	######
Wilcoxon W	######	######	######	######	######	######	######	######	######	######
Z	-1,889	-1,577	-1,636	-1,930	-,742	-1,151	-,388	-,529	-,709	-,486
Asymp. Sig. (2-tailed)	,059	,115	,102	,054	,458	,250	,698	,597	,478	,627
Exact Sig. [2*(1-tailed Sig.)]	.082ª	.146 ^a	.125 ^a	.075 ^a	.514 ^a	.293 ^a	.737 ^a	.650 ^a	.540 ^a	.679 ^a

Test Statistics^b

	X51	X52	X53	X54	X55	X56	X57	Y
Mann-Whitney U	72,000	83,500	######	95,500	######	######	######	91,500
Wilcoxon W	######	######	######	######	######	######	######	######
Z	-1,909	-1,428	-,418	-,892	-,104	-,599	-,063	-1,172
Asymp. Sig. (2-tailed)	,056	,153	,676	,373	,918	,549	,950	,241
Exact Sig. [2*(1-tailed Sig.)]	.075 ^a	.183 ^a	.708 ^a	.395 ^a	.921 ^a	.622ª	.953ª	.312a

Kruskal-Wallis Test (Pendidikan)

Rank			
	Kode Pendidikan	N	Mean Rank
	SLTA,D3	3	13,83
X1	S1	18	17,08
Al	S2	10	14,70
	Total	31	
	SLTA,D3	3	21,33
X2	S1	18	15,39
Λ2	S2	10	15,50
	Total	31	
	SLTA,D3	3	20,67
X3	S1	18	13,81
AS	S2	10	18,55
17	Total	31	
	SLTA,D3	3	12,33
X4	S1	18	16,83
Α4	S2	10	15,60
	Total	31	
4	SLTA,D3	3	17,33
X5	S1	18	15,36
AS	S2	10	16,75
1	Total	31	400
	SLTA,D3	3	18,17
X6	S1	18	16,53
Λ0	S2	10	14,40
	Total	31	
	SLTA,D3	3	17,67
X7	S1	18	16,06
A/	S2	10	15,40
	Total	31	
	SLTA,D3	3	26,17
V0	S1	18	16,11
X8	S2	10	12,75
	Total	31	
	SLTA,D3	3	11,17
vo	S1	18	15,19
X9	S2	10	18,90
	Total	31	

	SLTA,D3	3	13,50
****	S1	18	15,86
X10	S2	10	17,00
	Total	31	
	SLTA,D3	3	15,00
3711	S1	18	13,22
X11	S2	10	21,30
	Total	31	
	SLTA,D3	3	20,50
3710	S1	18	15,14
X12	S2	10	16,20
	Total	31	, 1
	SLTA,D3	3	14,33
V12	S1	18	15,39
X13	S2	10	17,60
	Total	31	
	SLTA,D3	3	18,50
V14	S1	18	14,61
X14	S2	10	17,75
	Total	31	
	SLTA,D3	3	22,83
V15	S1	18	14,64
X15	S2	10	16,40
	Total	31	
	SLTA,D3	3	19,83
X16	S1	18	13,19
A10	S2	10	19,90
	Total	31	
	SLTA,D3	3	19,17
X17	S1	18	14,61
Λ1/	S2	10	17,55
	Total	31	
	SLTA,D3	3	14,00
X18	S1	18	16,36
A10	S2	10	15,95
	Total	31	
	SLTA,D3	3	16,33
X19	S1	18	16,36
	S2	10	15,25

	Total	31	
	SLTA,D3	3	14,67
X20	S1	18	16,36
A20	S2	10	15,75
	Total	31	
	SLTA,D3	3	15,00
W21	S1	18	16,14
X21	S2	10	16,05
	Total	31	
	SLTA,D3	3	16,50
Vaa	S1	18	13,14
X22	S2	10	21,00
	Total	31	
	SLTA,D3	3	19,00
Waa	S1	18	13,72
X23	S2	10	19,20
	Total	31	
	SLTA,D3	3	18,00
WO4	S1	18	15,14
X24	S2	10	16,95
	Total	31	
	SLTA,D3	3	14,00
X25	S1	18	16,08
A25	S2	10	16,45
	Total	31	7
	SLTA,D3	3	22,67
Vac	S1	18	15,94
X26	S2	10	14,10
	Total	31	
	SLTA,D3	3	12,67
X27	S1	18	16,28
A21	S2	10	16,50
	Total	31	
	SLTA,D3	3	20,17
Vao	S1	18	13,83
X28	S2	10	18,65
	Total	31	
	SLTA,D3	3	20,67
V20	S1	18	16,50
X29	S2	10	13,70
	Total	31	
		<u> </u>	

			SLTA,D3	3	19,00
14,67		X30	S1	18	13,97
16,36		A30	S2	10	18,75
15,75			Total	31	
			SLTA,D3	3	24,50
15,00		X31	S1	18	14,86
16,14		A31	S2	10	15,50
16,05			Total	31	
			SLTA,D3	3	15,83
16,50		X32	S1	18	15,97
13,14		A32	S2	10	16,10
21,00			Total	31	
			SLTA,D3	3	14,17
19,00		X33	S1	18	16,58
13,72	\ /	ASS	S2	10	15,50
19,20		and the same	Total	31	
	17		SLTA,D3	3	20,00
18,00		X34	S1	18	13,78
15,14		Α34	S2	10	18,80
16,95	램 # .		Total	31	
			SLTA,D3	3	21,83
14,00		X35	S1	18	12,94
16,08		ASS	S2	10	19,75
16,45	M 4		Total	31	
ί			SLTA,D3	3	15,00
22,67) A C	X36	S1	18	15,17
15,94		A30	S2	10	17,80
14,10			Total	31	
	7		SLTA,D3	3	24,50
12,67		X37	S1	18	14,92
16,28	1	A3/	S2	10	15,40
16,50			Total	31	
			SLTA,D3	3	16,33
20,17		X38	S1	18	15,14
13,83			S2	10	17,45
18,65			Total	31	
			SLTA,D3	3	17,83
20,67		X39	S1	18	16,11
16,50		A39	S2	10	15,25
13,70			Total	31	
		X40	SLTA,D3	3	15,00
	ļ			1	·

	S1	18	14,75
	S2	10	18,55
	Total	31	
	SLTA,D3	3	14,83
X41	S1	18	17,53
Λ41	S2	10	13,60
	Total	31	
	SLTA,D3	3	17,83
X42	S1	18	14,92
Λ42	S2	10	17,40
	Total	31	
	SLTA,D3	3	20,00
X43	S1	18	14,33
Λ43	S2	10	17,80
	Total	31	
	SLTA,D3	3	22,50
X44	S1	18	14,56
Λ44	S2	10	16,65
9	Total	31	
	SLTA,D3	3	16,67
X45	S1	18	14,06
Λ43	S2	10	19,30
	Total	31	
	SLTA,D3	3	10,50
X46	S1	18	16,92
A40	S2	10	16,00
	Total	31	
	SLTA,D3	3	19,83
X47	S1	18	14,97
Λ47	S2 4	10	16,70
	Total	31	
	SLTA,D3	3	12,33
X48	S1	18	15,75
7140	S2	10	17,55
	Total	31	
	SLTA,D3	3	21,33
X49	S1	18	14,58
	S2	10	16,95

	Total	31	
	SLTA,D3	3	16,50
	S1	18	15,17
X50	S2	10	17,35
	Total	31	17,00
	SLTA,D3	3	23,83
	S1	18	11,44
X51	S2	10	21,85
	Total	31	,
	SLTA,D3	3	14,67
	S1	18	16,36
X52	S2	10	15,75
	Total	31	
	SLTA,D3	3	17,33
	S1	18	13,94
X53	S2	10	19,30
	Total	31	9
	SLTA,D3	3	23,67
	S1	18	14,61
X54	S2	10	16,20
4	Total	31	-6
6	SLTA,D3	3	21,67
3755	S1	18	12,42
X55	S2	10	20,75
e d	Total	31	
	SLTA,D3	3	15,00
WEC	S1	18	15,17
X56	S2	10	17,80
	Total	31	
	SLTA,D3	3	17,83
X57	S1	18	15,03
A37	S2	10	17,20
	Total	31	
	SLTA,D3	3	11,83
v	S1	18	15,92
Y	S2	10	17,40
	Total	31	

Test Statistics^{a,b}

	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12
Chi-Square	,700	1,247	3,197	,722	,247	,575	,162	5,469	2,252	,394	5,415	,986
df	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,705	,536	,202	,697	,884	,750	,922	,065	,324	,821	,067	,611

Test Statistics^{a,b}

	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24
Chi-Square	,563	1,219	2,290	4,426	1,159	,196	,116	,114	,046	5,470	3,044	,465
df	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,755	,544	,318	,109	,560	,906	,944	,945	,977	,065	,218	,793

Test Statistics^{a,b}

- 2	X25	X26	X27	X28	X29	X30	X31	X32	X33	X34	X35	X36
Chi-Square	,193	2,332	,529	3,075	1,718	2,347	3,337	,003	,249	2,901	5,779	,768
df	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,908	,312	,768	,215	,424	,309	,189	,999	,883	,234	,056	,681

Test Statistics^{a,b}

8 1	X37	X38	X39	X40	X41	X42	X43	X44	X45	X46	X47	X48
Chi-Square	3,167	,474	,211	1,278	1,476	,696	1,732	2,341	2,562	1,507	,956	,959
df	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,205	,789	,900	,528	,478	,706	,421	,310	,278	,471	,620	,619

Test Statistics^{a,b}

				-						
	X49	X50	X51	X52	X53	X54	X55	X56	X57	Y
Chi-Square	1,934	,464	12,224	,114	2,504	2,745	7,166	,768	,549	1,144
df	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,380	,793	,002	,945	,286	,253	,028	,681	,760	,564

LAMPIRAN G

UJI KRUSKALL-WALLIS UNTUK KATEGORI JABATAN

Kruskal-Wallis Test (Jabatan)

Rank	s		
	Kode Jabatan	N	Mean Rank
	PM, GSI	3	17,33
X1	SM,SEM,SOM	13	13,38
ΛΙ	Chief	15	18,00
	Total	31	
	PM, GSI	3	17,00
X2	SM,SEM,SOM	13	14,31
AL	Chief	15	17,27
	Total	31	
	PM, GSI	3	16,83
V2	SM,SEM,SOM	13	13,54
X3	Chief	15	17,97
	Total	31	
	PM, GSI	3	20,83
X4	SM,SEM,SOM	13	12,08
Λ4	Chief	15	18,43
	Total	31	
8 4	PM, GSI	3	20,17
V.5	SM,SEM,SOM	13	12,92
X5	Chief	15	17,83
	Total	31	
- 1	PM, GSI	3	18,17
V.C	SM,SEM,SOM	13	10,92
X6	Chief	15	19,97
	Total	31	
	PM, GSI	3	14,00
V7	SM,SEM,SOM	13	12,88
X7	Chief	15	19,10
	Total	31	
	PM, GSI	3	20,17
3 70	SM,SEM,SOM	13	13,54
X8	Chief	15	17,30
	Total	31	
	PM, GSI	3	21,00
370	SM,SEM,SOM	13	14,85
X9	Chief	15	16,00
	Total	31	
X10	PM, GSI	3	17,00

		SM,SEM,SOM	13	16,19
		Chief	15	15,63
		Total	31	-,
		PM, GSI	3	19,50
		SM,SEM,SOM	13	15,15
	X11	Chief	15	16,03
		Total	31	
		PM, GSI	3	14,33
		SM,SEM,SOM	13	17,19
	X12	Chief	15	15,30
		Total	31	
		PM, GSI	3	17,50
		SM,SEM,SOM	13	15,19
	X13	Chief	15	16,40
		Total	31	
		PM, GSI	3	14,00
×		SM,SEM,SOM	13	16,73
	X14	Chief	15	15,77
1	1	Total	31	
		PM, GSI	3	19,67
		SM,SEM,SOM	13	15,23
	X15	Chief	15	15,93
		Total	31	
		PM, GSI	3	18,00
	****	SM,SEM,SOM	13	15,69
	X16	Chief	15	15,87
		Total	31	
1		PM, GSI	3	19,17
	V17	SM,SEM,SOM	13	15,35
	X17	Chief	15	15,93
		Total	31	
		PM, GSI	3	17,50
	V10	SM,SEM,SOM	13	13,88
	X18	Chief	15	17,53
		Total	31	
		PM, GSI	3	16,33
	V10	SM,SEM,SOM	13	14,65
	X19	Chief	15	17,10
		Total	31	
,				

	PM, GSI	3	11,83			SM,SEM,SOM	13	14,65
X20	SM,SEM,SOM	13	14,85			Chief	15	16,37
A 20	Chief	15	17,83			Total	31	
	Total	31				PM, GSI	3	14,00
	PM, GSI	3	15,00		W21	SM,SEM,SOM	13	15,46
X/0.1	SM,SEM,SOM	13	14,96		X31	Chief	15	16,87
X21	Chief	15	17,10			Total	31	
	Total	31				PM, GSI	3	14,00
	PM, GSI	3	23,33		3/22	SM,SEM,SOM	13	15,15
3700	SM,SEM,SOM	13	15,73		X32	Chief	15	17,13
X22	Chief	15	14,77			Total	31	
	Total	31				PM, GSI	3	10,83
	PM, GSI	3	19,00		****	SM,SEM,SOM	13	16,73
W 22	SM,SEM,SOM	13	17,50		X33	Chief	15	16,40
X23	Chief	15	14,10			Total	31	
	Total	31			A 650	PM, GSI	3	23,00
1	PM, GSI	3	21,17	1	7724	SM,SEM,SOM	13	16,23
	SM,SEM,SOM	13	10,65		X34	Chief	15	14,40
X24	Chief	15	19,60	6.3		Total	31	/
	Total	31	1 A			PM, GSI	3	17,67
7	PM, GSI	3	21,00			SM,SEM,SOM	13	16,12
	SM,SEM,SOM	13	13,12		X35	Chief	15	15,57
X25	Chief	15	17,50	11		Total	31	1
	Total	31	/ /4	M .		PM, GSI	3	15,33
	PM, GSI	3	22,67	11	XXO.	SM,SEM,SOM	13	14,23
	SM,SEM,SOM	13	12,96	A C	X36	Chief	15	17,67
X26	Chief	15	17,30		4	Total	31	
	Total	31				PM, GSI	3	17,83
	PM, GSI	3	21,17	-	XIOT.	SM,SEM,SOM	13	14,42
3/07	SM,SEM,SOM	13	12,88	0 1	X37	Chief	15	17,00
X27	Chief	15	17,67			Total	31	
	Total	31				PM, GSI	3	16,33
	PM, GSI	3	24,83		***	SM,SEM,SOM	13	14,73
3/20	SM,SEM,SOM	13	14,46		X38	Chief	15	17,03
X28	Chief	15	15,57			Total	31	
	Total	31				PM, GSI	3	17,83
	PM, GSI	3	17,00		Wan	SM,SEM,SOM	13	13,73
3/20	SM,SEM,SOM	13	14,12		X39	Chief	15	17,60
X29	Chief	15	17,43]		Total	31	
	Total	31		1	37.10	PM, GSI	3	18,50
X30	PM, GSI	3	20,00	1	X40	SM,SEM,SOM	13	14,27

	SM,SEM,SOM	13	14,65
	Chief	15	16,37
	Total	31	
	PM, GSI	3	14,00
X31	SM,SEM,SOM	13	15,46
ASI	Chief	15	16,87
	Total	31	
	PM, GSI	3	14,00
X32	SM,SEM,SOM	13	15,15
A32	Chief	15	17,13
	Total	31	
	PM, GSI	3	10,83
X33	SM,SEM,SOM	13	16,73
ASS	Chief	15	16,40
	Total	31	
450	PM, GSI	3	23,00
X34	SM,SEM,SOM	13	16,23
A34	Chief	15	14,40
	Total	31	
	PM, GSI	3	17,67
X35	SM,SEM,SOM	13	16,12
ASS	Chief	15	15,57
	Total	31	
	PM, GSI	3	15,33
X36	SM,SEM,SOM	13	14,23
A30	Chief	15	17,67
	Total	31	
	PM, GSI	3	17,83
V27	SM,SEM,SOM	13	14,42
X37	Chief	15	17,00
	Total	31	
	PM, GSI	3	16,33
X38	SM,SEM,SOM	13	14,73
AJ8	Chief	15	17,03
	Total	31	
	PM, GSI	3	17,83
V20	SM,SEM,SOM	13	13,73
X39	Chief	15	17,60
	Total	31	
VAO	PM, GSI	3	18,50
X40	SM,SEM,SOM	13	14,27
			<u> </u>

	Chief	15	17,00
	Total	31	
	PM, GSI	3	11,17
X41	SM,SEM,SOM	13	16,38
Λ41	Chief	15	16,63
	Total	31	
	PM, GSI	3	21,83
X42	SM,SEM,SOM	13	14,88
Λ42	Chief	15	15,80
	Total	31	100
	PM, GSI	3	16,50
37.42	SM,SEM,SOM	13	17,19
X43	Chief	15	14,87
	Total	31	16
	PM, GSI	3	17,50
X44	SM,SEM,SOM	13	15,00
Λ44	Chief	15	16,57
	Total	31	
	PM, GSI	3	17,67
X45	SM,SEM,SOM	13	14,92
Λ43	Chief	15	16,60
	Total	31	7
	PM, GSI	3	4,83
X46	SM,SEM,SOM	13	16,38
Λ40	Chief	15	17,90
	Total	31	<u> </u>
	PM, GSI	3	23,00
X47	SM,SEM,SOM	13	13,65
Λ47	Chief	15	16,63
	Total	31	
	PM, GSI	3	16,67
X48	SM,SEM,SOM	13	13,35
Λ40	Chief	15	18,17
	Total	31	
	PM, GSI	3	17,17
V40	SM,SEM,SOM	13	12,50
X49	Chief	15	18,80
	Total	31	
		-	-

X50		PM, GSI	3	16,50
Chief	V50	SM,SEM,SOM	13	14,23
PM, GSI 3 21,00	A30	Chief	15	17,43
X51		Total	31	
Chief		PM, GSI	3	21,00
Chief	V51	SM,SEM,SOM	13	16,08
PM, GSI 3 11,83 SM,SEM,SOM 13 14,85 Chief 15 17,83 Total 31 PM, GSI 3 19,33 SM,SEM,SOM 13 15,00 Chief 15 16,20 Total 31 PM, GSI 3 11,67 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total 15 16,10 Total 15 16,10 Total Total Total 31 Total Total 31 Total 3	ASI	Chief	15	14,93
SM,SEM,SOM 13 14,85 Chief 15 17,83 Total 31 PM, GSI 3 19,33 SM,SEM,SOM 13 15,00 Chief 15 16,20 Total 31 PM, GSI 3 11,67 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Chief 15 16,10		Total	31	
Chief		PM, GSI	3	11,83
Chief 15 17,83 Total 31 PM, GSI 3 19,33 SM,SEM,SOM 13 15,00 Chief 15 16,20 Total 31 PM, GSI 3 11,67 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	V52	SM,SEM,SOM	13	14,85
PM, GSI 3 19,33 SM,SEM,SOM 13 15,00 Chief 15 16,20 Total 31 PM, GSI 3 11,67 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,83 SM,SEM,SOM 13 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total Total Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total	A32	Chief	15	17,83
X53 SM,SEM,SOM 13 15,00 Chief 15 16,20 Total 31 PM, GSI 3 11,67 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total SM,SEM,SOM 13 15,92 Chief 15 16,10 Total Tota		Total	31	
Chief		PM, GSI	3	19,33
Chief 15 16,20 Total 31 PM, GSI 3 11,67 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	V52	SM,SEM,SOM	13	15,00
PM, GSI 3 11,67	ASS	Chief	15	16,20
X54 SM,SEM,SOM 13 15,85 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total Total Total Total Total Total Total Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total Total	and the	Total	31	1
X54 Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 11,65 Chief 15 18,77 Total 31 15,83 SM,SEM,SOM 13 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10		PM, GSI	3	11,67
Chief 15 17,00 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	V51	SM,SEM,SOM	13	15,85
PM, GSI 3 15,83 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10 Total Tot	A34	Chief	15	17,00
X55 SM,SEM,SOM 13 16,54 Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10		Total	31	
X55 Chief 15 15,57 Total 31 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	400	PM, GSI	3	15,83
Chief 15 15,57 Total 31 PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	V55	SM,SEM,SOM	13	16,54
PM, GSI 3 15,33 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	A33	Chief	15	15,57
X56 SM,SEM,SOM 13 14,23 Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10		Total	31	
Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10		PM, GSI	3	15,33
Chief 15 17,67 Total 31 PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	V56	SM,SEM,SOM	13	14,23
PM, GSI 3 21,00 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	A30	Chief	15	17,67
X57 SM,SEM,SOM 13 11,65 Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10		Total	31	
Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	i con	PM, GSI	3	21,00
Chief 15 18,77 Total 31 PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	V57	SM,SEM,SOM	13	11,65
PM, GSI 3 15,83 SM,SEM,SOM 13 15,92 Chief 15 16,10	A3/	Chief	15	18,77
Y SM,SEM,SOM 13 15,92 Chief 15 16,10		Total	31	
Y Chief 15 16,10		PM, GSI	3	15,83
Chief 15 16,10	v	SM,SEM,SOM	13	15,92
Total 31	I	Chief	15	16,10
		Total	31	

						Test S	Statisti	cs ^{a,b}							
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15
Chi-Square	2,072	,848	2,046	4,761	3,044	7,526	3,819	2,054	1,253	,074	,590	,452	,244	,286	,629
df	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,355	,654	,360	,093	,218	,023	,148	,358	,534	,963	,745	,798	,885	,867	,730

	Test Statistics ^{a,b}														
	X16	X17	X18	X19	X20	X21	X22	X23	X24	X25	X26	X27	X28	X29	X30
Chi-Square	,177	,466	1,370	,586	1,643	,481	2,543	1,509	8,738	2,963	3,834	3,524	3,980	1,120	,978
df	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,915	,792	,504	,746	,440	,786	,280	,470	,013	,227	,147	,172	,137	,571	,613

	Test Statistics ^{a,b}														
	X31	X32	X33	X34	X35	X36	X37	X38	X39	X40	X41	X42	X43	X44	X45
Chi-Square	,372	,537	1,192	2,508	,159	1,341	,753	,510	1,527	,966	1,111	1,629	,511	,341	,414
df	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,830	,765	,551	,285	,923	,511	,686	,775	,466	,617	,574	,443	,774	,843	,813

	Test Statistics ^{a,b}												
	X46	X47	X48	X49	X50	X51	X52	X53	X54	X55	X56	X57	Y
Chi-Square	6,125	3,159	2,393	4,163	1,064	1,252	1,643	,618	,930	,086	1,341	5,764	,005
df	2	2	2	2	2	2	2	2	2	2	2	2	2
Asymp. Sig.	,047	,206	,302	,125	,587	,535	,440	,734	_,628	,958	,511	,056	,998

<u>LAMPIRAN H</u> <u>UJI REABILITAS DAN VALIDITAS</u>

Reliability

Case I	Processing S	Sum	mary
		N	%
Cases	Valid	31	100,0
	Excluded ^a	0	,0
	Total	31	100,0

Reliability Statistics

Cronbach's Alpha	N of Items
,949	58

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
205,87	752,116	27,425	58

	Item Statistics			
		Std.	The case	
	Mean	Deviation	N	
X1	3,81	,980	31	
X2	3,29	1,243	31	
X3	3,52	,890	31	
X4	3,42	1,025	31	
X5	3,52	,926	31	
X6	3,39	1,145	31	
X7	3,16	,860	31	
X8	3,45	1,091	31	
X9	3,71	1,071	31	
X10	3,84	,969	31	
X11	3,19	1,223	31	
X12	3,48	,996	31	
X13	3,16	,779	31	
X14	3,48	,724	31	
X15	3,55	1,028	31	
X16	2,97	1,080	31	
X17	3,61	1,022	31	
X18	3,81	,910	31	
X19	3,97	,752	31	
X20	3,74	,855	31	
X21	4,10	,831	31	
X22	3,65	,839	31	
X23	3,65	,915	31	
X24	3,84	,860	31	
X25	3,77	,990	31	
X26	3,68	,871	31	
X27	3,74	,999	31	
X28	3,58	,672	31	

X30 X31 X32 X33 X34 X35 X36 X37	3,81 3,52 3,61 3,81 3,58 4,13 3,06 3,35 3,97	1,078 ,851 ,989 ,946 ,992 ,806 ,629 1,050	31 31 31 31 31 31 31
X32 X33 X34 X35 X36 X37	3,61 3,81 3,58 4,13 3,06 3,35	,989 ,946 ,992 ,806 ,629	31 31 31 31
X33 X34 X35 X36 X37	3,81 3,58 4,13 3,06 3,35	,946 ,992 ,806 ,629	31 31 31
X34 X35 X36 X37	3,58 4,13 3,06 3,35	,992 ,806 ,629	31
X35 X36 X37	4,13 3,06 3,35	,806 ,629	31
X36 X37	3,06 3,35	,629	
X37	3,35		31
		1,050	
V29	3,97	,	31
AJO		,795	31
X39	3,74	1,032	31
X40	3,45	,961	31
X41	3,71	,902	31
X42	3,32	,909	31
X43	3,19	1,046	31
X44	3,58	,848	31
X45	3,52	,851	31
X46	3,42	,765	31
X47	3,97	,912	31
X48	3,35	,755	31
X49	3,26	,773	31
X50	3,90	,870	31
X51	3,52	,962	31
X52	3,74	,855	31
X53	3,19	1,014	31
X54	3,32	1,249	31
X55	3,03	1,110	31
X56	3,06	,629	31
X57	3,77	,956	31
Y	3,03	,706	31

	Item-Total Statistics			
				Cronbach's
	Scale Mean	Scale	Corrected	Alpha if
	if Item	Variance if	Item-Total	Item
	Deleted	Item Deleted	Correlation	Deleted
X1	202,06	732,729	,347	,949
X2	202,58	726,252	,363	,949
X3	202,35	713,370	,799	,947
X4	202,45	720,456	,556	,948
X5	202,35	724,570	,535	,948
X6	202,48	722,191	,465	,948
X7	202,71	722,746	,619	,947
X8	202,42	729,852	,358	,949
X9	202,16	722,873	,488	,948
X10	202,03	722,166	,557	,948
X11	202,68	714,626	,551	,948
X12	202,39	729,712	,398	,948
X13	202,71	735,546	,378	,948
X14	202,39	740,778	,274	,949
X15	202,32	730,959	,362	,949
X16	202,90	720,690	,522	,948
X17	202,26	715,731	,646	,947
X18	202,06	726,062	,514	,948
X19	201,90	741,624	,242	,949
X20	202,13	728,183	,503	,948
X21	201,77	731,381	,446	,948
X22	202,23	723,847	,611	,948
X23	202,23	721,581	,604	,947
X24	202,03	729,299	,475	,948
X25	202,10	715,557	,672	,947
X26	202,19	722,095	,625	,947
X27	202,13	723,183	,520	,948
X28	202,29	730,746	,576	,948
X29	202,00	731,133	,443	,948
X30	202,06	707,729	,754	,947
X31	202,35	731,237	,438	,948
X32	202,26	718,531	,615	,947
X33	202,06	737,529	,267	,949
X34	202,29	727,880	,434	,948
X35	201,74	727,531	,551	,948
X36	202,81	737,361	,420	,948
X37	202,52	722,258	,509	,948
X38	201,90	732,490	,441	,948
X39	202,13	736,716	,256	,949
X40	202,42	716,185	,681	,947
X41	202,16	740,540	,219	,949
X42	202,55	718,323	,677	,947
X43	202,68	715,226	,640	,947
X44	202,29	722,546	,633	,947
X45	202,35	720,637	,673	,947
X46	202,45	738,856	,305	,949

X47	201,90	725,957	,515	,948
X48	202,52	734,791	,409	,948
X49	202,61	727,178	,584	,948
X50	201,97	722,366	,620	,947
X51	202,35	719,703	,610	,947
X52	202,13	728,183	,503	,948
X53	202,68	734,092	,309	,949
X54	202,55	734,989	,230	,950
X55	202,84	747,873	,050	,950
X56	202,81	737,361	,420	,948
X57	202,10	722,824	,552	,948
Y	202,84	732,406	,502	,948

Case Processing Summary					
N %					
Cases	Valid	31	100,0		
	Excluded ^a	0	,0		
	Total	31	100,0		

Reliability Statistics

Cronbach's Alpha		N of Items	
,9	53	46	

Scale Statistics

ſ		70.7	Std.	N of
L	Mean	Variance	Deviation	Items
I	163,58	566,452	23,800	46

	Item Statistics					
195	Mean	Std. Deviation	N			
X3	3,52	,890	31			
X4	3,42	1,025	31			
X5	3,52	,926	31			
X6	3,39	1,145	31			
X7	3,16	,860	31			
X9	3,71	1,071	31			
X10	3,84	,969	31			
X11	3,19	1,223	31			
X12	3,48	,996	31			
X13	3,16	,779	31			
X14	3,48	,724	31			
X16	2,97	1,080	31			
X17	3,61	1,022	31			
X18	3,81	,910	31			
X20	3,74	,855	31			
X21	4,10	,831	31			
X22	3,65	,839	31			
X23	3,65	,915	31			
X24	3,84	,860	31			

X25	3,77	,990	31
X26	3,68	,871	31
X27	3,74	,999	31
X28	3,58	,672	31
X29	3,87	,846	31
X30	3,81	1,078	31
X31	3,52	,851	31
X32	3,61	,989	31
X34	3,58	,992	31
X35	4,13	,806	31
X36	3,06	,629	31
X37	3,35	1,050	31
X38	3,97	,795	31
X40	3,45	,961	31
X42	3,32	,909	31
X43	3,19	1,046	31
X44	3,58	,848	31
X45	3,52	,851	31
X47	3,97	,912	31
X48	3,35	,755	31
X49	3,26	,773	31
X50	3,90	,870	31
X51	3,52	,962	31
X52	3,74	,855	31
X56	3,06	,629	31
X57	3,77	,956	31
Y	3,03	,706	31

		Item-Total St	atistics					
				Item-Total Statistics				
		Scale	Corrected	Cronbach's				
	Scale Mean if	Variance if	Item-Total	Alpha if Item				
	Item Deleted	Item Deleted	Correlation	Deleted				
X3	160,06	533,196	,790	,951				
X4	160,16	538,273	,570	,952				
X5	160,06	543,129	,520	,952				
X6	160,19	540,028	,472	,953				
X7	160,42	541,452	,606	,952				
X9	159,87	540,583	,497	,953				
X10	159,74	538,998	,589	,952				
X11	160,39	534,112	,546	,952				
X12	160,10	546,824	,400	,953				
X13	160,42	552,452	,366	,953				
X14	160,10	556,957	,262	,953				
X16	160,61	538,912	,526	,952				
X17	159,97	535,232	,638	,952				
X18	159,77	543,314	,526	,952				
X20	159,84	545,606	,504	,952				
X21	159,48	548,258	,450	,953				
X22	159,94	541,196	,629	,952				
X23	159,94	540,662	,587	,952				
X24	159,74	546,531	,477	,953				
X25	159,81	534,628	,674	,951				

X26	159,90	540,424	,624	,952
X27	159,84	540,206	,544	,952
X28	160,00	547,267	,596	,952
X29	159,71	548,413	,437	,953
X30	159,77	527,714	,759	,951
X31	160,06	549,129	,416	,953
X32	159,97	537,499	,610	,952
X34	160,00	545,333	,434	,953
X35	159,45	545,056	,551	,952
X36	160,52	554,258	,398	,953
X37	160,23	540,847	,502	,953
X38	159,61	549,512	,437	,953
X40	160,13	535,383	,678	,951
X42	160,26	536,931	,681	,951
X43	160,39	535,178	,623	,952
X44	160,00	542,133	,598	,952
X45	160,06	538,729	,683	,952
X47	159,61	542,645	,541	,952
X48	160,23	550,981	,420	,953
X49	160,32	545,692	,558	,952
X50	159,68	540,092	,633	,952
X51	160,06	539,729	,577	,952
X52	159,84	545,606	,504	,952
X56	160,52	554,258	,398	,953
X57	159,81	539,561	,585	,952
Y	160,55	549,189	,506	,952

Case Processing Summary				
	1.4	N	%	
Cases	Valid	31	100,0	
100	Excluded ^a	0	,0	
	Total	31	100,0	

Reliability Statistics

Cronbach's A	pha N	N of Items
	,953	44

Scale Statistics

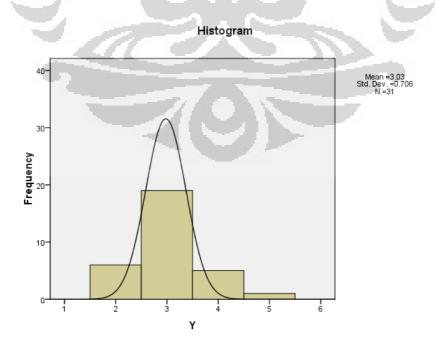
Mean	Variance	Std. Deviation	N of Items
156,94	543,729	23,318	44

		Item Statistics	
		Std.	
	Mean	Deviation	N
X3	3,52	,890	31
X4	3,42	1,025	31
X5	3,52	,926	31
X6	3,39	1,145	31
X7	3,16	,860	31
X9	3,71	1,071	31
X10	3,84	,969	31
X11	3,19	1,223	31

X12	3,48	,996	31
X16	2,97	1,080	31
X17	3,61	1,022	31
X18	3,81	,910	31
X20	3,74	,855	31
X21	4,10	,831	31
X22	3,65	,839	31
X23	3,65	,915	31
X24	3,84	,860	31
X25	3,77	,990	31
X26	3,68	,871	31
X27	3,74	,999	31
X28	3,58	,672	31
X29	3,87	,846	31
X30	3,81	1,078	31
X31	3,52	,851	31
X32	3,61	,989	31
X34	3,58	,992	31
X35	4,13	,806	31
X36	3,06	,629	31
X37	3,35	1,050	31
X38	3,97	,795	31
X40	3,45	,961	31
X42	3,32	,909	31
X43	3,19	1,046	31
X44	3,58	,848	31
X45	3,52	,851	31
X47	3,97	,912	31
X48	3,35	,755	31
X49	3,26	,773	31
X50	3,90	,870	31
X51	3,52	,962	31
X52	3,74	,855	31
X56	3,06	,629	31
X57	3,77	,956	31
Y	3,03	,706	31

		Item-Total St	atistics	
		Scale	Corrected	Cronbach's
	Scale Mean if	Variance if	Item-Total	Alpha if Item
	Item Deleted	Item Deleted	Correlation	Deleted
X3	153,42	511,252	,788	,951
X4	153,52	515,591	,582	,952
X5	153,42	520,852	,521	,953
X6	153,55	516,989	,488	,953
X7	153,77	519,647	,595	,952
X9	153,23	517,714	,510	,953
X10	153,10	516,624	,594	,952
X11	153,74	512,465	,538	,953
X12	153,45	523,523	,422	,953
X16	153,97	517,832	,503	,953
X17	153,32	512,559	,651	,952

X18	153,13	521,116	,524	,953
X20	153,19	523,961	,486	,953
X21	152,84	525,740	,454	,953
X22	153,29	519,480	,616	,952
X23	153,29	518,146	,594	,952
X24	153,10	523,757	,489	,953
X25	153,16	512,140	,683	,952
X26	153,26	517,798	,635	,952
X27	153,19	517,761	,549	,952
X28	153,35	524,703	,603	,952
X29	153,06	526,196	,433	,953
X30	153,13	506,183	,750	,951
X31	153,42	526,652	,419	,953
X32	153,32	515,492	,607	,952
X34	153,35	522,770	,440	,953
X35	152,81	522,228	,566	,952
X36	153,87	531,983	,391	,953
X37	153,58	518,585	,503	,953
X38	152,97	526,699	,449	,953
X40	153,48	513,725	,668	,952
X42	153,61	514,845	,680	,952
X43	153,74	513,531	,614	,952
X44	153,35	520,037	,594	,952
X45	153,42	516,585	,683	,952
X47	152,97	520,299	,543	,952
X48	153,58	528,518	,422	,953
X49	153,68	523,759	,547	,952
X50	153,03	517,832	,635	,952
X51	153,42	517,918	,569	,952
X52	153,19	523,961	,486	,953
X56	153,87	531,983	,391	,953
X57	153,16	517,140	,590	,952
Y	153,90	527,157	,496	,953



LAMPIRAN I UJI DESKRIPTIF

Uji Deskriptif (Frequencies)

St	Statistics									
Y										
N	Valid	31								
	Missing	0								
Mean	3,03									
Median	3,00									
Mode		3								
Percentiles	10	2,00								
59-54-	25	3,00								
	50	3,00								
	75	3,00								
4	90	4,00								

		Y			1
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Kinerja Produktivitas alat > 80% - < 93%	6	19,4	19,4	19,4
	Kinerja Produktivitas alat > 93% - 106%	19	61,3	61,3	80,6
	Kinerja Produktivitas alat > 106% - 120%	5	16,1	16,1	96,8
	Kinerja Produktivitas alat > 120%	1	3,2	3,2	100,0
	Total	31	100,0	100,0	

Descriptives

Descriptive Statistics												
			Descripti	ve stat	Std.							
	N	Minimum	Maximum	Mean	Deviation	Pengaruh						
X1	31	2	5	3,81		berpengaruh tinggi						
X2	31	1	5	3,29	1,243	berpengaruh sedang						
X3	31	2	5	3,52		berpengaruh tinggi						
X4	31	1	5	3,42		berpengaruh sedang						
X5	31	2	5	3,52		berpengaruh tinggi						
X6	31	1	5	3,39	1,145	berpengaruh sedang						
X7	31	2	5	3,16	,860	berpengaruh sedang						
X8	31	1	5	3,45		berpengaruh sedang						
X9	31	1	5	3,71		berpengaruh tinggi						
X10	31	1	5	3,84		berpengaruh tinggi						
X11	31	1	5	3,19		berpengaruh sedang						
X12	31	2	5	3,48		berpengaruh sedang						
X13	31	2	4	3,16		berpengaruh sedang						
X14	31	2	5	3,48		berpengaruh sedang						
X15	31	2	5	3,55		berpengaruh tinggi						
X16	31	1	.5	2,97		berpengaruh sedang						
X17	31	2	5	3,61		berpengaruh tinggi						
X18	31	2	5	3,81		berpengaruh tinggi						
X19	31	3	5	3,97		berpengaruh tinggi						
X20	31	2	5	3,74		berpengaruh tinggi						
X21	31	3	5	4,10		berpengaruh tinggi						
X22	. 31	2	5	3,65		berpengaruh tinggi						
X23	31	2	5	3,65		berpengaruh tinggi						
X24	31	2	5	3,84		berpengaruh tinggi						
X25	31	1	5	3,77		berpengaruh tinggi						
X26	31	2	5	3,68		berpengaruh tinggi						
X27	31	1	5	3,74		berpengaruh tinggi						
X28	31	2	5	3,58		berpengaruh tinggi						
X29	31	2	5	3,87		berpengaruh tinggi						
X30	31	1	5	3,81		berpengaruh tinggi						
X31	31	2	5	3,52	,851	1 0 00						
X32	31	2	5	3,61		berpengaruh tinggi						
X33	31	2	5	3,81		berpengaruh tinggi						
X34	31	1	5	3,58		berpengaruh tinggi						
X35	31	2	5	4,13		berpengaruh tinggi						
X36	31	2	4	3,06		berpengaruh sedang						
X37	31	1	5	3,35		berpengaruh sedang						
X38	31		5	3,97		berpengaruh tinggi						
X39	31	1	5	3,74		berpengaruh tinggi						
X40	31	2	5	3,45	,961	berpengaruh sedang						
X41	31	2	5	3,71		berpengaruh tinggi						
X42	31	1	5	3,32		berpengaruh sedang						
X43	31	1	5	3,19		berpengaruh sedang						
X44	31	2	5	3,58	,848	berpengaruh tinggi						
X45	31	_2	5	3,52	,851	1 0 00						
X46	31	2	5	3,42		1 0						
X47	31	2	5	3,97		berpengaruh tinggi						
X48	31	2	4	3,35	,755	berpengaruh sedang						
X49	31	2	5	3,26	,773	berpengaruh sedang						
X50	31	2	5	3,90	,870	berpengaruh tinggi						
X51	31	1	5	3,52	,962	berpengaruh tinggi						
X52	31	2	5	3,74		berpengaruh tinggi						
X53	31	1	5	3,19		berpengaruh sedang						
X54	31	1	5	3,32	1,249	berpengaruh sedang						
X55	31	1	5	3,03	1,110	berpengaruh sedang						
X56	31	2	4	3,06	,629	berpengaruh sedang						
X57	31	2	5	3,77		berpengaruh tinggi						
Y	31	2	5	3,03	,706	berpengaruh sedang						
Valid N	31											
(listwise)												

Frequencies

	Statistics												
		X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12
N	Valid	31	31	31	31	31	31	31	31	31	31	31	31
	Missing	0	0	0	0	0	0	0	0	0	0	0	0
Мє	ean	3,81	3,29	3,52	3,42	3,52	3,39	3,16	3,45	3,71	3,81	3,19	3,48
Мє	edian	4,00	3,00	3,00	3,00	4,00	3,00	3,00	4,00	4,00	4,00	3,00	3,00
Mo	ode	4	3	3	3	4	4	3 ^a	4	4	4	3	3

	Statistics												
		X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24
N	Valid	31	31	31	31	31	31	31	31	31	31	31	31
	Missing	0	-0	0	0	0	0	0	0	0	0	0	0
M	ean	3,16	3,48	3,55	2,97	3,61	3,81	3,97	3,74	4,10	3,65	3,65	3,84
M	edian	3,00	3,00	4,00	3,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
M	ode	3 ^a	3	4	3	4	4	4	3	5	3 ^a	4	3 ^a

	Statistics												
		X25	X26	X27	X28	X29	X30	X31	X32	X33	X34	X35	X36
N	Valid	31	31	31	31	31	31	31	31	31	31	31	31
	Missing	_0	0	0	0	0	0	0	0	0	0	0	0
M	ean	3,77	3,68	3,74	3,58	3,87	3,81	3,52	3,61	3,81	3,58	4,13	3,06
M	edian	4,00	4,00	4,00	4,00	4,00	4,00	3,00	4,00	4,00	4,00	4,00	3,00
M	ode	4	4	4	4	4	4	3	4	4	4	4	3

	Statistics Statistics														
		X37	X38	X39	X40	X41	X42	X43	X44	X45	X46	X47	X48		
N	Valid	31	31	31	31	31	31	31	31	31	31	31	31		
	Missing	0	0	0	0	0	0	0	0	0	0	0	0		
M	ean	3,35	3,97	3,74	3,45	3,71	3,32	3,19	3,58	3,52	3,42	3,97	3,35		
M	edian	3,00	4,00	4,00	3,00	4,00	3,00	3,00	3,00	3,00	3,00	4,00	4,00		
Mode		4	4	4	3	4	3 ^a	4	3	3	3	4	4		
					7	·	4								

	Statistics														
		X49	X50	X51	X52	X53	X54	X55	X56	X57	Y				
N	Valid	31	31	31	31	31	31	31	31	31	31				
	Missing	0	0	0	0	0	0	0	0	0	0				
M	ean	3,26	3,90	3,52	3,74	3,19	3,32	3,03	3,06	3,77	3,03				
M	edian	3,00	4,00	4,00	4,00	3,00	4,00	3,00	3,00	4,00	3,00				
Mode		3	4	4	3	3	4	2 ^a	3	4	3				

LAMPIRAN J UJI KORELASI PEARSON

Correlations

		X3	X4	X5	X6	X7	X9	X10	X11	X12	X16	X17	X18	X20
X3	Pearson Correlation	1	.486**	.435*	.452*	.454*	,338	,332	.610**	,348	.643**	.557**	,333	.444*
	Sig. (2-tailed)		,006	,015	,011	,010	,063	,068	,000	,055	,000	,001	,067	,012
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X4	Pearson Correlation	.486**	1	,080	.680**	,336	.479**	.506**	,226	.382*	,043	,351	,054	,242
	Sig. (2-tailed)	,006		,667	,000	,064	,006	,004	,222	,034	,819	,053	,772	,190
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X5	Pearson Correlation	.435*	,080	1	,182	,352	-,012	,207	,321	,118	.517**	,253	.399*	,300
	Sig. (2-tailed)	,015	,667		,326	,052	,949	,263	,078	,528	,003	,169	,026	,101
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X6	Pearson Correlation	.452*	.680**	,182	1	$.408^{*}$.530**	.508**	,159	,298	,010	,303	,202	,105
	Sig. (2-tailed)	,011	,000	,326		,023	,002	,003	,393	,104	,956	,097	,275	,573
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X7	Pearson Correlation	.454*	,336	,352	.408*	1	.559**	,272	.413*	.490**	.437*	.604**	.467**	,240
	Sig. (2-tailed)	,010	,064	,052	,023		,001	,139	,021	,005	,014	,000	,008	,194
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X9	Pearson Correlation	,338	.479**	-,012	.530**	.559**	1	.403*	.375*	.574**	,136	.686**	.556**	-,157
	Sig. (2-tailed)	,063	,006	,949	,002	,001	Page 1	,025	,037	,001	,466	,000	,001	,398
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X10	Pearson Correlation	,332	.506**	,207	.508**	,272	.403*	1	,140	,256	,059	,305	,341	,310
	Sig. (2-tailed)	,068	,004	,263	,003	,139	,025		,453	,164	,754	,095	,060	,090
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X11	Pearson Correlation	.610**	,226	,321	,159	.413*	.375*	,140	. 1	.413*	.687**	.569**	,275	,177
	Sig. (2-tailed)	,000	,222	,078	,393	,021	,037	,453		,021	,000	,001	,135	,341
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X12	Pearson Correlation	,348	.382*	,118	,298	.490**	.574**	,256	.413*	1	,201	.747**	,328	-,123
	Sig. (2-tailed)	,055	,034	,528	,104	,005	,001	,164	,021		,278	,000	,072	,511
	N	31	31	31	31	31	31	31	31	31	31	31	31	31

X16	Pearson Correlation	.643**	,043	.517**	,010	.437*	,136	,059	.687**	,201	1	.411*	,299	,316
	Sig. (2-tailed)	,000	,819	,003	,956	,014	,466	,754	,000	,278		,022	,102	,084
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X17	Pearson Correlation	.557**	,351	,253	,303	.604**	.686**	,305	.569**	.747**	.411*	1	.526**	,034
	Sig. (2-tailed)	,001	,053	,169	,097	,000	,000	,095	,001	,000	,022		,002	,854
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X18	Pearson Correlation	,333	,054	.399*	,202	.467**	.556**	,341	,275	,328	,299	.526**	1	,105
	Sig. (2-tailed)	,067	,772	,026	,275	,008	,001	,060	,135	,072	,102	,002		,574
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X20	Pearson Correlation	.444*	,242	,300	,105	,240	-,157	,310	,177	-,123	,316	,034	,105	1
	Sig. (2-tailed)	,012	,190	,101	,573	,194	,398	,090	,341	,511	,084	,854	,574	
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X21	Pearson Correlation	,111	,029	.453*	,205	,304	,183	.475**	,243	,183	,115	,281	.511**	,224
	Sig. (2-tailed)	,554	,877	,011	,270	,096	,326	,007	,187	,324	,538	,126	,003	,226
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X22	Pearson Correlation	.388*	,295	.415*	,217	,313	.364*	,337	.459**	,212	.392*	,340	.431*	,240
	Sig. (2-tailed)	,031	,107	,020	,241	,086	,044	,064	,009	,251	,029	,061	,015	,194
	N	31	31	31	- 31	31	31	31	31	31	31	31	31	31
X23	Pearson Correlation	.437*	.413*	.381*	,263	,245	,300	.384*	,332	.378*	,258	.419*	,115	,177
	Sig. (2-tailed)	,014	,021	,035	,153	,185	,101	,033	,068	,036	,161	,019	,538	,340
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X24	Pearson Correlation	.461**	,344	,233	,269	,262	,273	,288	,348	,250	,102	.419*	.385*	,259
	Sig. (2-tailed)	,009	,058	,206	,144	,155	,137	,117	,055	,175	,585	,019	,033	,160
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X25	Pearson Correlation	.402*	,228	.640**	,315	.396*	,345	.621**	,203	,216	,242	.438*	.653**	,283
	Sig. (2-tailed)	,025	,218	,000	,085	,027	,057	,000	,275	,243	,189	,014	,000	,123
	N	31	31	31	31	31	31	31	31	31	31	31	31	31

X26	Pearson Correlation	,351	,268	.667**	,330	.472**	,289	.528**	,123	,263	,237	.454*	.465**	,242
	Sig. (2-tailed)	,053	,144	,000	,070	,007	,114	,002	,509	,153	,200	,010	,008	,189
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X27	Pearson Correlation	.380*	,239	.581**	,323	,283	,239	.678**	,124	,063	,177	,160	.567**	,271
	Sig. (2-tailed)	,035	,195	,001	,076	,123	,195	,000	,506	,738	,340	,390	,001	,141
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X28	Pearson Correlation	.430*	,264	.466**	,305	.409*	.427*	,353	,183	,313	,348	.484**	.517**	,153
	Sig. (2-tailed)	,016	,152	,008	,096	,022	,016	,051	,324	,086	,055	,006	,003	,410
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X29	Pearson Correlation	.357*	,256	,300	,191	,075	-,080	.583**	-,136	-,042	-,041	,133	,226	.459**
	Sig. (2-tailed)	,049	,164	,101	,304	,687	,671	,001	,465	,822	,826	,476	,221	,009
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X30	Pearson Correlation	.699**	.498**	.371*	.441*	,287	,354	.639**	,308	,121	.396*	,323	.436*	.450*
	Sig. (2-tailed)	,000	,004	,040	,013	,118	,051	,000	,092	,516	,028	,076	,014	,011
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X31	Pearson Correlation	.429*	,240	,243	,130	,156	,024	,225	,189	,128	,309	,276	,047	.464**
	Sig. (2-tailed)	,016	,193	,188	,485	,403	,900	,223	,308	,492	,091	,134	,801	,009
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X32	Pearson Correlation	.576**	,264	.516**	,254	,193	-,015	.419*	,147	,061	,331	,209	.358*	.745**
	Sig. (2-tailed)	,001	,151	,003	,167	,297	,935	,019	,431	,744	,069	,258	,048	,000
	N	31	-31	31	31	31	31	31	-31	31	31	31	31	31
X34	Pearson Correlation	.367*	,342	-,011	.529**	.355*	.760**	,274	,289	.448*	,174	.525**	,313	-,092
	Sig. (2-tailed)	,043	,059	,955	,002	,050	,000	,136	,115	,011	,350	,002	,086	,621
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X35	Pearson Correlation	.462**	,255	.444*	,233	,065	,122	.454*	,278	,293	,273	,265	,126	.485**
	Sig. (2-tailed)	,009	,166	,012	,207	,728	,513	,010	,130	,109	,137	,150	,499	,006
	N	31	31	31	31	31	31	31	31	31	31	31	31	31

X36	Pearson Correlation	.355*	.370*	,113	,149	.535**	,326	,018	.460**	,161	.396*	.403*	-,036	,218
	Sig. (2-tailed)	,050	,040	,547	,423	,002	,074	,925	,009	,386	,028	,025	,849	,239
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X37	Pearson Correlation	.440*	,229	.491**	,131	,119	,065	,189	,256	,181	.422*	,256	,284	.439*
	Sig. (2-tailed)	,013	,216	,005	,481	,524	,728	,308	,164	,330	,018	,164	,122	,013
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X38	Pearson Correlation	,354	,058	.431*	,161	,203	,184	.425*	.384*	,273	,193	.435*	.406*	,183
	Sig. (2-tailed)	,051	,757	,016	,388	,274	,321	,017	,033	,137	,299	,014	,024	,323
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X40	Pearson Correlation	.498**	,174	.554**	,169	.393*	,294	.367*	.548**	,182	.497**	.456*	.637**	.390*
	Sig. (2-tailed)	,004	,350	,001	,363	,029	,109	,042	,001	,327	,004	,010	,000	,030
	N	31	31	_31	31	31	31	31	31	31	31	31	31	31
X42	Pearson Correlation	.529**	.601**	,271	.356*	,272	.408*	.439*	,182	,227	,317	,354	.401*	,282
	Sig. (2-tailed)	,002	,000	,141	,049	,138	,023	,013	,327	,219	,083	,051	,026	,124
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X43	Pearson Correlation	.426*	.481**	,100	,186	.409*	.379*	,328	,335	,291	,271	.509**	,251	.393*
	Sig. (2-tailed)	,017	,006	,593	,317	,022	,035	,072	,066	,112	,140	,003	,174	,029
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X44	Pearson Correlation	,341	.363*	,285	,276	,325	,192	,280	,210	,169	,167	.383*	,280	.398*
	Sig. (2-tailed)	,061	,045	,120	,133	,075	,301	,127	,258	,362	,370	,033	,127	,027
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X45	Pearson Correlation	.737**	.546**	.370*	.404*	.383*	,206	.387*	.445*	.403*	.418*	,352	,219	.418*
	Sig. (2-tailed)	,000	,001	,041	,024	,033	,265	,032	,012	,024	,019	,052	,236	,019
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X47	Pearson Correlation	.432*	.728**	-,059	.427*	,262	.400*	.484**	,185	,201	,134	,236	,073	,288
	Sig. (2-tailed)	,015	,000	,754	,017	,155	,026	,006	,319	,278	,471	,201	,698	,116
	N	31	31	31	31	31	31	31	31	31	31	31	31	31

X48	Pearson Correlation	.413*	.706**	-,080	.376	,217	,255	,263	,284	,163	,096	,184	-,091	,250
	Sig. (2-tailed)	,021	,000	,669	,037	,241	,165	,153	,121	,381	,606	,322	,627	,175
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X49	Pearson Correlation	.527**	.448*	.366*	.373*	.537**	,174	,146	.474**	,135	,330	,215	,026	.356*
	Sig. (2-tailed)	,002	,012	,043	,039	,002	,349	,432	,007	,467	,070	,246	,890	,049
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X50	Pearson Correlation	.627**	.682**	,064	.407*	,333	.434*	.495**	,238	,248	,245	.369*	,186	.369*
	Sig. (2-tailed)	,000	,000	,732	,023	,067	,015	,005	,198	,178	,184	,041	,316	,041
	N	31	31	31	31	31	31	31	-31	31	31	31	31	31
X51	Pearson Correlation	.613**	,348	,177	,085	,178	,183	,092	.508**	,183	.402*	,312	,042	.370*
	Sig. (2-tailed)	,000	,055	,340	,650	,338	,325	,622	,004	,324	,025	,088	,823	,040
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X52	Pearson Correlation	.444*	,242	,300	,105	,240	-,157	,310	,177	-,123	,316	,034	,105	1.000**
	Sig. (2-tailed)	,012	,190	,101	,573	,194	,398	,090	,341	,511	,084	,854	,574	,000
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X56	Pearson Correlation	.355*	.370*	,113	,149	.535**	,326	,018	.460**	,161	.396*	.403*	-,036	,218
	Sig. (2-tailed)	,050	,040	,547	,423	,002	,074	,925	,009	,386	,028	,025	,849	,239
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
X57	Pearson Correlation	.534**	,270	,287	.478**	.613**	.553**	,319	,324	.364*	,348	.590**	.561**	,212
	Sig. (2-tailed)	,002	,142	,118	,007	,000	,001	,080	,076	,044	,055	,000	,001	,253
	N	31	31	31	31	31	31	31	31	31	31	31	31	31
Y	Pearson Correlation	.450*	,073	.432*	,025	.485**	,277	,154	.649**	,214	.701**	.526**	.477**	,235
	Sig. (2-tailed)	,011	,697	,015	,893	,006	,131	,408	,000	,248	,000	,002	,007	,203
	N	31	31	31	31	31	31	31	31	31	31	31	31	31

		X21	X22	X23	X24	X25	X26	X27	X28	X29	X30	X31	X32	X34	X35	X36	X37
X3	Pearson Correlation	,111	.388*	.437*	.461**	.402*	,351	.380*	.430*	.357*	.699**	.429*	.576**	.367*	.462**	.355*	.440*
	Sig. (2-tailed)	,554	,031	,014	,009	,025	,053	,035	,016	,049	,000	,016	,001	,043	,009	,050	,013
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X4	Pearson Correlation	,029	,295	.413*	,344	,228	,268	,239	,264	,256	.498**	,240	,264	,342	,255	.370*	,229
	Sig. (2-tailed)	,877	,107	,021	,058	,218	,144	,195	,152	,164	,004	,193	,151	,059	,166	,040	,216
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X5	Pearson Correlation	.453*	.415*	.381*	,233	.640**	.667**	.581**	.466**	,300	.371*	,243	.516**	-,011	.444*	,113	.491**
	Sig. (2-tailed)	,011	,020	,035	,206	,000	,000	,001	,008	,101	,040	,188	,003	,955	,012	,547	,005
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X6	Pearson Correlation	,205	,217	,263	,269	,315	,330	,323	,305	,191	.441*	,130	,254	.529**	,233	,149	,131
	Sig. (2-tailed)	,270	,241	,153	,144	,085	,070	,076	,096	,304	,013	,485	,167	,002	,207	,423	,481
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X7	Pearson Correlation	,304	,313	,245	,262	.396*	.472**	,283	.409*	,075	,287	,156	,193	.355*	,065	.535**	,119
	Sig. (2-tailed)	,096	,086	,185	,155	,027	,007	,123	,022	,687	,118	,403	,297	,050	,728	,002	,524
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X9	Pearson Correlation	,183	.364*	,300	,273	,345	,289	,239	.427*	-,080	,354	,024	-,015	.760**	,122	,326	,065
	Sig. (2-tailed)	,326	,044	,101	,137	,057	,114	,195	,016	,671	,051	,900	,935	,000	,513	,074	,728
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X10	Pearson Correlation	.475**	,337	.384*	,288	.621**	.528**	.678**	,353	.583**	.639**	,225	.419*	,274	.454*	,018	,189
	Sig. (2-tailed)	,007	,064	,033	,117	,000	,002	,000	,051	,001	,000	,223	,019	,136	,010	,925	,308
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X11	Pearson Correlation	,243	.459**	,332	,348	,203	,123	,124	,183	-,136	,308	,189	,147	,289	,278	.460**	,256
	Sig. (2-tailed)	,187	,009	,068	,055	,275	,509	,506	,324	,465	,092	,308	,431	,115	,130	,009	,164
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X12	Pearson Correlation	,183	,212	.378*	,250	,216	,263	,063	,313	-,042	,121	,128	,061	.448*	,293	,161	,181
	Sig. (2-tailed)	,324	,251	,036	,175	,243	,153	,738	,086	,822	,516	,492	,744	,011	,109	,386	,330
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

X16	Pearson Correlation	,115	.392*	,258	,102	,242	,237	,177	,348	-,041	.396*	,309	,331	,174	,273	.396*	.422*
	Sig. (2-tailed)	,538	,029	,161	,585	,189	,200	,340	,055	,826	,028	,091	,069	,350	,137	,028	,018
	N	31	31	31	- 31	31	31	31	31	31	31	31	31	31	31	31	31
X17	Pearson Correlation	,281	,340	.419*	.419*	.438*	.454*	,160	.484**	,133	,323	,276	,209	.525**	,265	.403*	,256
	Sig. (2-tailed)	,126	,061	,019	,019	,014	,010	,390	,006	,476	,076	,134	,258	,002	,150	,025	,164
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X18	Pearson Correlation	.511**	.431*	,115	.385*	.653**	.465**	.567**	.517**	,226	.436*	,047	.358*	,313	,126	-,036	,284
	Sig. (2-tailed)	,003	,015	,538	,033	,000	,008	,001	,003	,221	,014	,801	,048	,086	,499	,849	,122
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X20	Pearson Correlation	,224	,240	,177	,259	,283	,242	,271	,153	.459**	.450*	.464**	.745**	-,092	.485**	,218	.439*
	Sig. (2-tailed)	,226	,194	,340	,160	,123	,189	,141	,410	,009	,011	,009	,000	,621	,006	,239	,013
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X21	Pearson Correlation	1	.386*	,354	.396*	.676**	.505**	.513**	,195	,350	,208	,021	,290	,091	,329	-,076	,227
	Sig. (2-tailed)		,032	,051	,028	,000	,004	,003	,294	,053	,262	,910	,113	,625	,071	,684	,220
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X22	Pearson Correlation	.386*	1	.569**	,149	,342	,340	,325	.555**	,168	.549**	,032	,271	.496**	,317	,171	.375*
	Sig. (2-tailed)	,032		,001	,423	,060	,061	,075	,001	,366	,001	,866	,140	,005	,083	,357	,038
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X23	Pearson Correlation	,354	.569**	. 1	,052	.387*	.479**	,261	.401*	,240	.571**	,243	.359*	.381*	.471**	,157	,274
	Sig. (2-tailed)	,051	,001		,781	,031	,006	,156	,026	,193	,001	,188	,047	,034	,007	,399	,135
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X24	Pearson Correlation	.396*	,149	,052	1	.504**	,329	,338	,167	.428*	,253	.391*	,238	,113	.416*	,143	,250
	Sig. (2-tailed)	,028	,423	,781		,004	,071	,063	,368	,016	,170	,030	,198	,544	,020	,443	,175
	N	31	31	31	-31	31	31	31	31	31	31	31	31	31	31	31	31
X25	Pearson Correlation	.676**	,342	.387*	.504**	1	.763**	.815**	.504**	.561**	.582**	,301	.588**	,206	.497**	,078	,272
	Sig. (2-tailed)	,000	,060	,031	,004		,000	,000	,004	,001	,001	,100	,000	,267	,004	,678	,139
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

	1															-	
X26	Pearson Correlation	.505**	,340	.479**	,329	.763**	1	.629**	.558**	.529**	.428*	.412*	.430*	,224	.394*	,100	.421*
	Sig. (2-tailed)	,004	,061	,006	,071	,000	1	,000	,001	,002	,016	,021	,016	,226	,028	,592	,018
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X27	Pearson Correlation	.513**	,325	,261	,338	.815**	.629**	1	.529**	.590**	.664**	,005	.536**	,055	.374*	-,026	,249
	Sig. (2-tailed)	,003	,075	,156	,063	,000	,000		,002	,000	,000	,978	,002	,768	,038	,891	,177
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X28	Pearson Correlation	,195	.555**	.401*	,167	.504**	.558**	.529**	1	,312	.575**	,100	.400*	.427*	,349	,066	.407*
	Sig. (2-tailed)	,294	,001	,026	,368	,004	,001	,002		,088	,001	,594	,026	,017	,054	,724	,023
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X29	Pearson Correlation	,350	,168	,240	.428*	.561**	.529**	.590**	,312	1	.557**	,234	.536**	,052	.416*	-,109	,353
	Sig. (2-tailed)	,053	,366	,193	,016	,001	,002	,000	,088		,001	,204	,002	,779	,020	,559	,051
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X30	Pearson Correlation	,208	.549**	.571**	,253	.582**	.428*	.664**	.575**	.557**	1	,258	.678**	.358*	.452*	,167	,328
	Sig. (2-tailed)	,262	,001	,001	,170	,001	,016	,000	,001	,001		,161	,000	,048	,011	,371	,072
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X31	Pearson Correlation	,021	,032	,243	.391*	,301	.412*	,005	,100	,234	,258	1	.483**	,028	.531**	,247	.459**
	Sig. (2-tailed)	,910	,866	,188	,030	,100	,021	,978	,594	,204	,161		,006	,881	,002	,180	,009
	N	31	31	-31	31	31	31	31	31	31	31	31	31	31	31	31	31
X32	Pearson Correlation	,290	,271	.359*	,238	.588**	.430*	.536**	.400*	.536**	.678**	.483**	1	,033	.483**	,095	.425*
	Sig. (2-tailed)	,113	,140	,047	,198	,000	,016	,002	,026	,002	,000	,006		,861	,006	,611	,017
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X34	Pearson Correlation	,091	.496**	.381*	,113	,206	,224	,055	.427*	,052	.358*	,028	,033	1	,237	,152	,148
	Sig. (2-tailed)	,625	,005	,034	,544	,267	,226	,768	,017	,779	,048	,881	,861		,200	,416	,428
	N	31	31	31	31	31	31	31	-31	-31	31	31	31	31	31	31	31
X35	Pearson Correlation	,329	,317	.471**	.416*	.497**	.394*	.374*	,349	.416*	.452*	.531**	.483**	,237	1	,049	.614**
	Sig. (2-tailed)	,071	,083	,007	,020	,004	,028	,038	,054	,020	,011	,002	,006	,200		,794	,000
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

X36	Pearson Correlation	-,076	,171	,157	,143	,078	,100	-,026	,066	-,109	,167	,247	,095	,152	,049	1	,166
	Sig. (2-tailed)	,684	,357	,399	,443	,678	,592	,891	,724	,559	,371	,180	,611	,416	,794		,372
	N	31	31	31	- 31	31	31	31	31	31	31	31	31	31	31	31	31
X37	Pearson Correlation	,227	.375*	,274	,250	,272	.421*	,249	.407*	,353	,328	.459**	.425*	,148	.614**	,166	1
	Sig. (2-tailed)	,220	,038	,135	,175	,139	,018	,177	,023	,051	,072	,009	,017	,428	,000	,372	
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X38	Pearson Correlation	.661**	,182	,167	.723**	.668**	.418*	.409*	,161	.439*	,187	,272	,238	,151	.527**	-,062	,174
	Sig. (2-tailed)	,000	,327	,369	,000	,000	,019	,022	,387	,013	,314	,139	,198	,417	,002	,739	,350
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X40	Pearson Correlation	.528**	.578**	,264	.454*	.671**	.419*	.473**	,303	,279	.474**	,276	.401*	,205	.482**	,281	.464**
	Sig. (2-tailed)	,002	,001	,151	,010	,000	,019	,007	,097	,128	,007	,133	,026	,268	,006	,125	,009
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X42	Pearson Correlation	,266	.505**	.543**	,154	.417*	.431*	.389*	.556**	.359*	.679**	,165	.403*	.377*	,305	,137	.435*
	Sig. (2-tailed)	,148	,004	,002	,408	,020	,016	,031	,001	,047	,000	,374	,025	,037	,095	,461	,014
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X43	Pearson Correlation	,169	.575**	.527**	,110	,204	,327	,017	,309	,142	.448*	.408*	.365*	,338	,167	.487**	,299
	Sig. (2-tailed)	,362	,001	,002	,556	,270	,073	,926	,091	,446	,011	,023	,044	,063	,369	,005	,102
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X44	Pearson Correlation	.391*	.393*	.533**	,224	.479**	.443*	,144	,266	,340	.456*	.402*	.436*	,260	.375*	,303	,285
	Sig. (2-tailed)	,030	,029	,002	,225	,006	,013	,441	,148	,061	,010	,025	,014	,159	,038	,098	,120
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X45	Pearson Correlation	,304	.452*	.500**	,254	,341	,277	.397*	,333	,234	.549**	,172	.562**	,186	,337	,247	,310
	Sig. (2-tailed)	,096	,011	,004	,168	,061	,132	,027	,067	,204	,001	,355	,001	,317	,064	,180	,089
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X47	Pearson Correlation	,048	.377*	.465**	,163	,139	,322	,283	.358*	,253	.570**	,151	,170	,279	,233	,294	,291
	Sig. (2-tailed)	,797	,037	,008	,381	,455	,077	,123	,048	,169	,001	,418	,359	,128	,208	,108	,113
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

LAMPIRAN K OUTPUT UJI REGRESI

Regression

$\mathbf{ANOVA}^{\mathsf{c}}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.351	1	7.351	27.985	.000 ^a
	Residual	7.617	29	.263		
	Total	14.968	30			
2	Regression	8.526	2	4.263	18.529	.000 ^b
	Residual	6.442	28	.230		
	Total	14.968	30			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

	Ć	Unstandardize	d Coefficients	Standardized Coefficients	И,	
Mode		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.672	.273		6.119	.000
	X16	.458	.087	.701	5.290	.000
2	(Constant)	.974	.401		2.432	.022
	X16	.401	.085	.613	4.719	.000
	X18	.228	.101	.294	2.260	.032

a. Dependent Variable: Y

Coefficients^a

		(Correlations		Collinearity	Statistics
Mode	el	Zero-order	Partial	Part	Tolerance	VIF
1	X16	.701	.701	.701	1.000	1.000
2	X16	.701	.666	.585	.911	1.098
	X18	.477	.393	.280	.911	1.098

a. Dependent Variable: Y

Model Summary^c

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.701ª	.491	.474	.513
2	.755 ^b	.570	.539	.480

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Collinearity Diagnostics^a

	Dimensi			Varia	nce Proportio	ons
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18
1	1	1.942	1.000	.03	.03	
	2	.058	5.762	.97	.97	
2	1	2.903	1.000	.01	.01	.01
	2	.070	6.423	.10	.99	.12
	3	.027	10.462	.90	.00	.87

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

Observed Cum Prob

Model Summary^c

		_		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.730ª	.532	.516	.481
2	.790 ^b	.624	.596	.439

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

ANOVA^c

Model	Sum of Squares	df	Mean Squ	ıare	F	Sig.
1 Regression	7.382	1	7.	382	31.878	.000ª
Residual	6.484	28		232		
Total	13.867	29				e e
2 Regression	8.653	2	4.	326	22.404	.000 ^b
Residual	5.214	27		193		
Total	13.867	29				

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

	Unstandardi	Unstandardized Coefficients Standardized Coefficients				
Model	В	Std. Error	Beta	t	Sig.	
1 (Constant)	1.704	.257		6.631	.000	
X16	.459	.081	.730	5.646	.000	
2 (Constant)	.979	.367		2.668	.013	
X16	.400	.078	.635	5.134	.000	
X18	.237	.092	.317	2.565	.016	

a. Dependent Variable: Y

Coefficients^a

		Correlations			Collinearity Statistics		
Model		Zero-order	Partial	Part	Tolerance	VIF	
1	X16	.730	.730	.730	1.000	1.000	
2	X16	.730	.703	.606	.911	1.098	
	X18	.507	.443	.303	.911	1.098	

a. Dependent Variable: Y

Collinearity Diagnostics^a

	Dimensi		20 X	.97 .97 .01 .01 .01		
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18
1	1	1.940	1.000	.03	.03	
- 2	2	.060	5.672	.97	.97	
2	1	2.900	1.000	.01	.01	.01
	2	.073	6.324	.10	.99	.12
	3	.027	10.284	.90	.00	.87

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

Regression

Model Summary^c

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.722 ^a	.521	.504	.474
2	.796 ^b	.634	.606	.423

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.618	1	6.618	29.426	.000 ^a
	Residual	6.072	27	.225		
	Total	12.690	28			
2	Regression	8.044	2	4.022	22.512	.000 ^b
	Residual	4.645	26	.179		
	Total	12.690	28			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Mode	ıl	В	Std. Error	Beta	t	Sig.
1	(Constant)	1.780	.259		6.862	.000
	X16	.441	.081	.722	5.425	.000
2	(Constant)	1.023	.354		2.889	.008
	X16	.374	.076	.613	4.909	.000
	X18	.253	.089	.353	2.826	.009

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.780	.259		6.862	.000
	X16	.441	.081	.722	5.425	.000
2	(Constant)	1.023	.354		2.889	.008
	X16	.374	.076	.613	4.909	.000
	X18	.253	.089	.353	2.826	.009

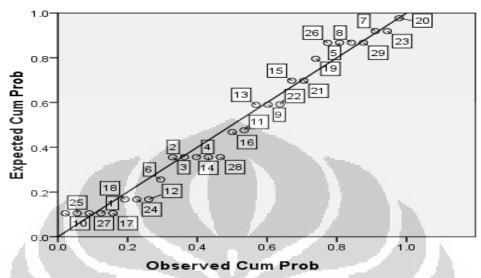
a. Dependent Variable: Y

Coefficients^a

Г	Correlations			Collinearity Statistics		
M	odel	Zero-order	Partial	Part	Tolerance	VIF
1	X16	.722	.722	.722	1.000	1.000
2	X16	.722	.694	.583	.904	1.106
L	X18	.543	.485	.335	.904	1.106

a. Dependent Variable: Y

Collinearity Diagnostics^a


	Dimensi		D A	Variance Proportions			
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18	
1	1	1.941	1.000	.03	.03		
	2	.059	5.716	.97	.97		
2	1	2.901	1.000	.01	.01	.01	
	2	.071	6.398	.10	.99	.13	
	3	.028	10.109	.89	.00	.87	

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Y

Regression

Model Summary^c

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.739 ^a	.546	.529	.470
2	.811 ^b	.657	.630	.417

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

ANOVA^c

Мо	odel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.923	1	6.923	31.278	.000 ^a

	Residual	5.755	26	.221	li.	
	Total	12.679	27			
2	Regression	8.333	2	4.167	23.973	.000 ^b
	Residual	4.345	25	.174		
	Total	12.679	27			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		, 1
Model	41	В	Std. Error	Beta	t	Sig.
1	(Constant)	1.749	.259		6.760	.000
	X16	.458	.082	.739	5.593	.000
2	(Constant)	.997	.350		2.850	.009
	X16	.391	.076	.631	5.128	.000
	X18	.251	.088	.350	2.848	.009

a. Dependent Variable: Y

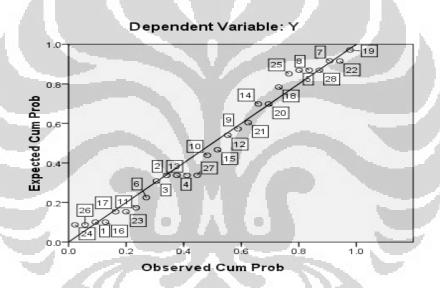
Coefficients^a

		C	Correlations Collinea			Statistics
Model		Zero-order	Partial	Part	Tolerance	VIF
1	X16	.739	.739	.739	1.000	1.000
2	X16	.739	.716	.600	.905	1.105
	X18	.545	.495	.333	.905	1.105

a. Dependent Variable: Y

Collinearity Diagnostics^a

	Jagnesies								
	Dimensi			Variance Proportions					
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18			
1	1	1.939	1.000	.03	.03				
	2	.061	5.641	.97	.97				
2	1	2.898	1.000	.01	.01	.01			
	2	.073	6.308	.10	.99	.13			
	3	.029	9.927	.89	.00	.86			


Coefficients^a

		(Correlations			Statistics
Model		Zero-order	Partial	Part	Tolerance	VIF
1	X16	.739	.739	.739	1.000	1.000
2	X16	.739	.716	.600	.905	1.105
	X18	.545	.495	.333	.905	1.105

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

Regression

Model Summary^c

Model	R	R Square	Adjusted R Square	Std. Error of the
Model	IX	11 Square	Square	Latimate
1	.758 ^a	.574	.557	.464
2	.827 ^b	.684	.658	.408

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Model Summary^c

		Change Statistics							
	R Square								
Model	Change	F Change	df1	df2	Sig. F Change	Durbin-Watson			
1	.574	33.731	1	25	.000				
2	.110	8.344	1	24	.008	1.876			

c. Dependent Variable: Y

$\mathbf{ANOVA}^{\mathbf{c}}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.275	1	7.275	33.731	.000 ^a
	Residual	5.392	25	.216	N	1
	Total	12.667	26			
2	Regression	8.666	2	4.333	25.991	.000 ^b
	Residual	4.001	24	.167		A
	Total	12.667	26			74

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

((Unstandardized Coefficients		Standardized Coefficients	3	
Model	7	В	Std. Error	Beta	ı	Sig.
1	(Constant)	1.713	.257		6.669	.000
	X16	.478	.082	.758	5.808	.000
2	(Constant)	.967	.343		2.818	.010
	X16	.411	.076	.652	5.409	.000
	X18	.249	.086	.348	2.889	.008

a. Dependent Variable: Y

Coefficients^a

		Correlations			Collinearity Statistics			
Mod	el	Zero-order	Partial	Part	Tolerance	VIF		
1	X16	.758	.758	.758	1.000	1.000		
2	X16	.758	.741	.621	.907	1.103		

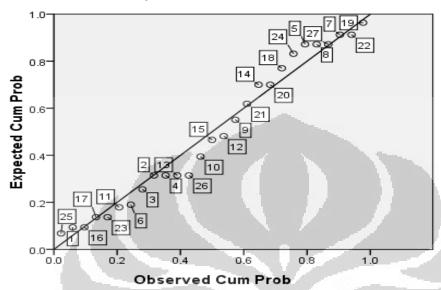
	_		l l		
X18	.547	.508	331	.907	1.103
A10	.547	.508	.331	.907	1.103

Collinearity Diagnostics^a

	Dimensi			Variance Proportions				
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18		
1	1	1.937	1.000	.03	.03			
	2	.063	5.567	.97	.97			
2	1	2.895	1.000	.01	.01	.01		
	2	.075	6.219	.10	.98	.13		
	3	.030	9.743	.89	.00	.86		

a. Dependent Variable: Y

Residuals Statistics^a


	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	1.88	4.27	3.11	.577	27
Residual	608	.732	.000	.392	27
Std. Predicted Value	-2.139	2.004	.000	1.000	27
Std. Residual	-1.489	1.792	.000	.961	27

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Y

Regression

Model Summary^c

-				L A
			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.779 ^a	.607	.591	.455
2	.846 ^b	.715	.691	.396

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

ANOVA^c

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.683	1	7.683	37.091	.000 ^a
	Residual	4.971	24	.207		
	Total	12.654	25			

2	Regression	9.052	2	4.526	28.898	.000 ^b
	Residual	3.602	23	.157		
	Total	12.654	25			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

		Unstandardized Coefficients Coefficients				
Model		Std. Error	Beta	t	Sig.	
1	(Constant)	1.671	.253		6.596	.000
	X16	.501	.082	.779	6.090	.000
2	(Constant)	.932	.333		2.797	.010
	X16	.434	.075	.675	5.782	.000
(8)	X18	.247	.084	.345	2.957	.007

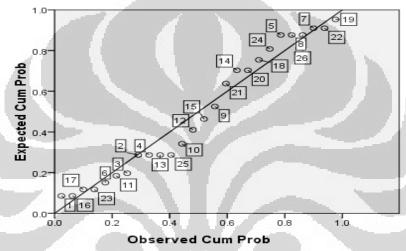
a. Dependent Variable: Y

Coefficients^a

Model		C	orrelations	Collinearity Statistics		
		Zero-order	Partial	Part	Tolerance	VIF
1	X16	.779	.779	.779	1.000	1.000
2	X16	.779	.770	.643	.909	1.101
- 3	X18	.549	.525	.329	.909	1.101

a. Dependent Variable: Y

Collinearity Diagnostics^a


			, ,					
	Dimensi			Variance Proportions				
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18		
1	1	1.936	1.000	.03	.03			
	2	.064	5.495	.97	.97			
2	1	2.891	1.000	.01	.01	.01		

2	.077	6.131	.10	.98	.14
3	.032	9.555	.89	.00	.86

Charts

Normal P-P Plot of Regression Standardized Residual

Regression

Model Summary^c

Model R		R Square	Adjusted R Square	Std. Error of the Estimate
1	.800 ^a	.640	.625	.430
2	.850 ^b	.722	.697	.387

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Model Summary^c

			model odn	iiiai y		
	R Square					
Model	Change	F Change	df1	df2	Sig. F Change	Durbin-Watson

1	.640	40.928	1	23	.000	
2	.082	6.495	1	22	.018	1.758

$\mathbf{ANOVA}^{\mathsf{c}}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.580	1	7.580	40.928	.000 ^a
	Residual	4.260	23	.185		
	Total	11.840	24			
2	Regression	8.551	2	4.276	28.601	.000 ^b
	Residual	3.289	22	.149		
	Total	11.840	24			1

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

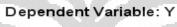
Coefficients^a

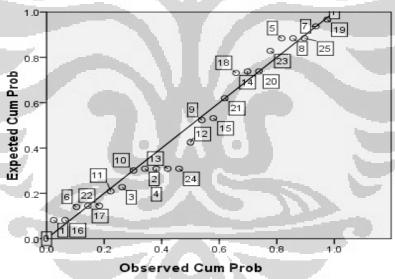
		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.648	.240		6.868	.000
	X16	.497	.078	.800	6.398	.000
2	(Constant)	1.011	.330		3.062	.006
	X16	.440	.073	.708	5.994	.000
	X18	.216	.085	.301	2.549	.018

a. Dependent Variable: Y

Coefficients^a

		C	Correlations			Statistics
Mode	el	Zero-order	Zero-order Partial Part			VIF
1	X16	.800	.800	.800	1.000	1.000
2	X16	.800	.788	.674	.906	1.104
	X18	.518	.477	.286	.906	1.104


a. Dependent Variable: Y


Collinearity Diagnostics^a

	Dimensi			Variance Proportions			
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18	
1	1	1.933	1.000	.03	.03		
	2	.067	5.389	.97	.97		
2	1	2.889	1.000	.01	.01	.01	
	2	.080	6.027	.10	.99	.13	
	3	.032	9.547	.89	.00	.87	

Charts

Normal P-P Plot of Regression Standardized Residual

Regression

Model Summary^c

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate

1	.807 ^a	.652	.636	.433
2	.861 ^b	.742	.717	.382

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Model Summary^c

Model	R Square Change F Change df1 df2 Sig. F Change				Durbin-Watson	
1	.652	41.143	1	22	.000	
2	.090	7.321	1	21	.013	1.930

c. Dependent Variable: Y

ANOVA^c

Model	1	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.710	1	7.710	41.143	.000ª
	Residual	4.123	22	.187		/
	Total	11.833	23			
2	Regression	8.776	2	4.388	30.142	.000 ^b
	Residual	3.057	21	.146		\mathcal{A}
À	Total	11.833	23			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

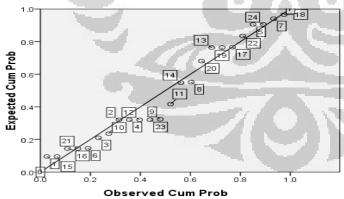
		Unstandardize	Unstandardized Coefficients C		5	
Model	I	В	Std. Error	Beta	t	Sig.
1	(Constant)	1.601	.247		6.467	.000
	X16	.508	.079	.807	6.414	.000
2	(Constant)	.915	.334		2.735	.012
	X16	.451	.073	.716	6.183	.000
	X18	.227	.084	.314	2.706	.013

a. Dependent Variable: Y

Coefficients^a

		(Correlations			Statistics
Mode	el	Zero-order	Zero-order Partial Part			VIF
1	X16	.807	.807	.807	1.000	1.000
2	X16	.807	.803	.686	.916	1.091
	X18	.521	.508	.300	.916	1.091

Collinearity Diagnostics^a


	Dimensi			Variance Proportions				
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18		
1	1	1.934	1.000	.03	.03			
	2	.066	5.417	.97	.97			
2	1	2.888	1.000	.01	.01	.01		
1	2	.080	6.014	.09	.98	.14		
	3	.032	9.553	.90	.01	.86		

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Y

Regression

Model Summary^c

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate

1	.815 ^a	.665	.649	.435
2	.874 ^b	.765	.741	.373

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Model Summary^c

		Change Statistics					
	R Square						
Model	Change	F Change	df1	df2	Sig. F Change	Durbin-Watson	
1	.665	41.628	1	21	.000		
2	.100	8.491	1	20	.009	1.962	

c. Dependent Variable: Y

ANOVA^c

Model	1	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.861	1	7.861	41.628	.000ª
	Residual	3.965	21	.189		/
	Total	11.826	22			
2	Regression	9.042	2	4.521	32.484	.000 ^b
	Residual	2.784	20	.139		\mathcal{A}
1	Total	11.826	22	• E		

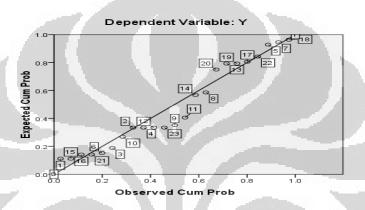
a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients	5 5	
Model	I	В	Std. Error	Beta	t	Sig.
1	(Constant)	1.547	.255		6.056	.000
	X16	.521	.081	.815	6.452	.000
2	(Constant)	.801	.337		2.379	.027
	X16	.465	.072	.727	6.453	.000
	X18	.241	.083	.328	2.914	.009


a. Dependent Variable: Y

Coefficients^a

		Correlations			Collinearity Statistics		
Model		Zero-order	Partial	Part	Part Tolerance V		
1	X16	.815	.815	.815	1.000	1.000	
2	X16	.815	.822	.700	.927	1.078	
	X18	.524	.546	.316	.927	1.078	

Charts

Normal P-P Plot of Regression Standardized Residual

Regression

Model Summary^c

		Ph 1		
Model	D	R Square	Adjusted R Square	Std. Error of the Estimate
wodei		K Square	Square	Estimate
1	.825 ^a	.680	.664	.435
2	.890 ^b	.792	.770	.360

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Model Summary^c

		Change Statistics							
	R Square								
Model	Change	F Change	df1	df2	Sig. F Change	Durbin-Watson			
1	.680	42.489	1	20	.000				
2	.112	10.264	1	19	.005	1.688			

c. Dependent Variable: Y

ANOVA^c

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8.036	1	8.036	42.489	.000 ^a
	Residual	3.782	20	.189	l.	
	Total	11.818	21			
2	Regression	9.362	2	4.681	36.217	.000 ^b
	Residual	2.456	19	.129		
	Total	11.818	21			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Dependent Variable: Y

Coefficients^a

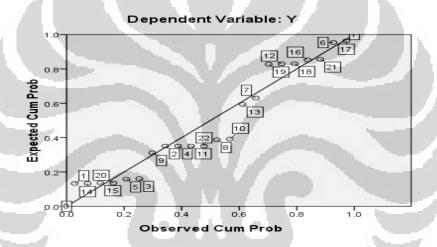
		Unstandardize	ed Coefficients	Standardized Coefficients		7
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.484	.263		5.633	.000
	X16	.536	.082	.825	6.518	.000
2	(Constant)	.666	.336		1.984	.062
12	X16	.481	.070	.740	6.855	.000
	X18	.258	.080	.346	3.204	.005

a. Dependent Variable: Y

Coefficients^a

		Correlations			Collinearity Statistics		
Model		Zero-order	Partial	Part	Tolerance	VIF	
1	X16	.825	.825	.825	1.000	1.000	
2	X16	.825	.844	.717	.940	1.064	
	X18	.527	.592	.335	.940	1.064	

a. Dependent Variable: Y


Collinearity Diagnostics^a

	Dimensi		Varia	nce Proporti	ons
Model	on	Condition Index	(Constant)	X16	X18

1	1	1.936	1.000	.03	.03	
	2	.064	5.500	.97	.97	
2	1	2.888	1.000	.01	.01	.01
	2	.080	5.992	.07	.96	.16
	3	.031	9.628	.92	.02	.83

Charts

Normal P-P Plot of Regression Standardized Residual

Regression

Model Summary^d

	The second secon				
			Adjusted R	Std. Error of the	
Model	R	R Square	Square	Estimate	
1	.857 ^a	.734	.720	.392	
2	.902 ^b	.814	.793	.337	
3	.926 ^c	.857	.832	.303	

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Predictors: (Constant), X16, X18, X11

d. Dependent Variable: Y

$\textbf{ANOVA}^{\textbf{d}}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8.036	1	8.036	52.347	.000 ^a
	Residual	2.917	19	.154		
	Total	10.952	20			
2	Regression	8.910	2	4.455	39.258	.000 ^b
	Residual	2.043	18	.113		
	Total	10.952	20			
3	Regression	9.390	3	3.130	34.053	.000°
	Residual	1.563	17	.092		
	Total	10.952	20			

a. Predictors: (Constant), X16

b. Predictors: (Constant), X16, X18

c. Predictors: (Constant), X16, X18, X11

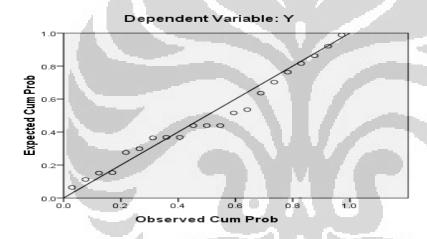
d. Dependent Variable: Y

Coefficients^a

	7	Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.440	.238		6.052	.000
	X16	.536	.074	.857	7.235	.000
2	(Constant)	.763	.319		2.395	.028
	X16	.489	.066	.782	7.430	.000
	X18	.217	.078	.292	2.775	.012
3	(Constant)	.628	.293		2.147	.047
	X16	.377	.077	.603	4.912	.000
	X18	.208	.071	.279	2.943	.009
	X11	.152	.066	.278	2.285	.035

a. Dependent Variable: Y

Collinearity Diagnostics^a


-	=		_				
	Dimensi				Variance Pr	oportions	
Model	on	Eigenvalue	Condition Index	(Constant)	X16	X18	X11
1	1	1.933	1.000	.03	.03		
	2	.067	5.382	.97	.97		

2	1	2.885	1.000	.01	.01	.01	
	2	.083	5.893	.08	.97	.15	
	3	.031	9.579	.92	.02	.85	
3	1	3.816	1.000	.00	.00	.00	.01
	2	.108	5.956	.09	.14	.17	.21
	3	.046	9.152	.01	.86	.00	.76
	4	.031	11.071	.89	.00	.83	.03

a. Dependent Variable: Y

Charts

Normal P-P Plot of Regression Standardized Residual

LAMPIRAN L UJI KORELASI PEARSON UNTUK DUMMY

X48	Pearson Correlation	,103	,258	,333	,194	,022	-,023	,125	,172	,126	,333	,069	,190	,116	,141	.442*	,256
	Sig. (2-tailed)	,582	,161	,067	,296	,908	,903	,501	,356	,499	,067	,714	,306	,533	,448	,013	,164
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X49	Pearson Correlation	,115	.454*	.417*	,165	,209	,326	,219	,279	,104	.382*	,196	,353	,233	,105	.581**	,171
	Sig. (2-tailed)	,536	,010	,020	,375	,259	,074	,237	,128	,579	,034	,291	,052	,208	,573	,001	,358
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X50	Pearson Correlation	,106	.363*	.500**	,290	,245	,309	,315	.441*	.390*	.655**	,250	,304	,337	,351	,195	,258
	Sig. (2-tailed)	,572	,045	,004	,113	,185	,091	,084	,013	,030	,000	,176	,097	,063	,053	,294	,162
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X51	Pearson Correlation	,019	.524**	.556**	,225	,161	,126	,074	.398*	,166	.550**	.397*	.427*	,339	.427*	.384*	.374*
	Sig. (2-tailed)	,920	,002	,001	,224	,386	,500	,693	,027	,371	,001	,027	,017	,062	,016	,033	,038
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X52	Pearson Correlation	,224	,240	,177	,259	,283	,242	,271	,153	.459**	.450*	.464**	.745**	-,092	.485**	,218	.439*
	Sig. (2-tailed)	,226	,194	,340	,160	,123	,189	,141	,410	,009	,011	,009	,000	,621	,006	,239	,013
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X56	Pearson Correlation	-,076	,171	,157	,143	,078	,100	-,026	,066	-,109	,167	,247	,095	,152	,049	1.000**	,166
	Sig. (2-tailed)	,684	,357	,399	,443	,678	,592	,891	,724	,559	,371	,180	,611	,416	,794	,000	,372
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X57	Pearson Correlation	,280	,354	,058	.522**	.543**	.470**	.426*	.522**	,210	,344	,189	,327	.494**	,212	,302	,149
	Sig. (2-tailed)	,127	,051	,757	,003	,002	,008	,017	,003	,257	,058	,309	,072	,005	,252	,099	,424
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
Y	Pearson Correlation	.392*	,301	,225	,283	.440*	,342	,201	,240	-,049	,271	,304	,257	,067	,110	,295	,119
	Sig. (2-tailed)	,029	,099	,224	,123	,013	,059	,278	,193	,795	,140	,096	,163	,718	,557	,107	,524
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

		X38	X40	X42	X43	X44	X45	X47	X48	X49	X50	X51	X52	X56	X57	Y
Х3	Pearson Correlation	,354	.498**	.529**	.426*	,341	.737**	.432*	.413*	.527**	.627**	.613**	.444*	.355*	.534**	.450*
	Sig. (2-tailed)	,051	,004	,002	,017	,061	,000	,015	,021	,002	,000	,000	,012	,050	,002	,011
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X4	Pearson Correlation	,058	,174	.601**	.481**	.363*	.546**	.728**	.706**	.448*	.682**	,348	,242	.370*	,270	,073
	Sig. (2-tailed)	,757	,350	,000	,006	,045	,001	,000	,000	,012	,000	,055	,190	,040	,142	,697
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X5	Pearson Correlation	.431*	.554**	,271	,100	,285	.370*	-,059	-,080	.366*	,064	,177	,300	,113	,287	.432*
	Sig. (2-tailed)	,016	,001	,141	,593	,120	,041	,754	,669	,043	,732	,340	,101	,547	,118	,015
	N	31	31	31	31	31	31	31	31	31	-31	31	31	31	31	31
X6	Pearson Correlation	,161	,169	.356*	,186	,276	.404*	.427*	.376*	.373*	.407*	,085	,105	,149	.478**	,025
	Sig. (2-tailed)	,388	,363	,049	,317	,133	,024	,017	,037	,039	,023	,650	,573	,423	,007	,893
	N	31	31	31	-31	31	31	31	31	31	31	31	31	31	31	31
X7	Pearson Correlation	,203	.393*	,272	.409*	,325	.383*	,262	,217	.537**	,333	,178	,240	.535**	.613**	.485**
	Sig. (2-tailed)	,274	,029	,138	,022	,075	,033	,155	,241	,002	,067	,338	,194	,002	,000	,006
	N	31	31	- 31	31	31	31	31	31	31	31	31	31	31	31	31
X9	Pearson Correlation	,184	,294	.408*	.379*	,192	,206	.400*	,255	,174	.434*	,183	-,157	,326	.553**	,277
	Sig. (2-tailed)	,321	,109	,023	,035	,301	,265	,026	,165	,349	,015	,325	,398	,074	,001	,131
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X10	Pearson Correlation	.425*	.367*	.439*	,328	,280	.387*	.484**	,263	,146	.495**	,092	,310	,018	,319	,154
	Sig. (2-tailed)	,017	,042	,013	,072	,127	,032	,006	,153	,432	,005	,622	,090	,925	,080,	,408
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X11	Pearson Correlation	.384*	.548**	,182	,335	,210	.445*	,185	,284	.474**	,238	.508**	,177	.460**	,324	.649**
	Sig. (2-tailed)	,033	,001	,327	,066	,258	,012	,319	,121	,007	,198	,004	,341	,009	,076	,000
	N	31	31	31	-31	31	31	31	31	31	31	31	31	31	31	31
X12	Pearson Correlation	,273	,182	,227	,291	,169	.403*	,201	,163	,135	,248	,183	-,123	,161	.364*	,214
	Sig. (2-tailed)	,137	,327	,219	,112	,362	,024	,278	,381	,467	,178	,324	,511	,386	,044	,248
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

X16	Pearson Correlation	,193	.497**	,317	,271	,167	.418*	,134	,096	,330	,245	.402*	,316	.396*	,348	.701**
	Sig. (2-tailed)	,299	,004	,083	,140	,370	,019	,471	,606	,070	,184	,025	,084	,028	,055	,000
	N	31	31	31	- 31	31	31	31	31	31	31	31	31	31	31	31
X17	Pearson Correlation	.435*	.456*	,354	.509**	.383*	,352	,236	,184	,215	.369*	,312	,034	.403*	.590**	.526**
	Sig. (2-tailed)	,014	,010	,051	,003	,033	,052	,201	,322	,246	,041	,088	,854	,025	,000	,002
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X18	Pearson Correlation	.406*	.637**	.401*	,251	,280	,219	,073	-,091	,026	,186	,042	,105	-,036	.561**	.477**
	Sig. (2-tailed)	,024	,000	,026	,174	,127	,236	,698	,627	,890	,316	,823	,574	,849	,001	,007
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X20	Pearson Correlation	,183	.390*	,282	.393*	.398*	.418*	,288	,250	.356*	.369*	.370*	1.000**	,218	,212	,235
	Sig. (2-tailed)	,323	,030	,124	,029	,027	,019	,116	,175	,049	,041	,040	,000	,239	,253	,203
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X21	Pearson Correlation	.661**	.528**	,266	,169	.391*	,304	,048	,103	,115	,106	,019	,224	-,076	,280	.392*
	Sig. (2-tailed)	,000	,002	,148	,362	,030	,096	,797	,582	,536	,572	,920	,226	,684	,127	,029
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X22	Pearson Correlation	,182	.578**	.505**	.575**	.393*	.452*	.377*	,258	.454*	.363*	.524**	,240	,171	,354	,301
	Sig. (2-tailed)	,327	,001	,004	,001	,029	,011	,037	,161	,010	,045	,002	,194	,357	,051	,099
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X23	Pearson Correlation	,167	,264	.543**	.527**	.533**	.500**	.465**	,333	.417*	.500**	.556**	,177	,157	,058	,225
	Sig. (2-tailed)	,369	,151	,002	,002	,002	,004	,008	,067	,020	,004	,001	,340	,399	,757	,224
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X24	Pearson Correlation	.723**	.454*	,154	,110	,224	,254	,163	,194	,165	,290	,225	,259	,143	.522**	,283
	Sig. (2-tailed)	,000	,010	,408	,556	,225	,168	,381	,296	,375	,113	,224	,160	,443	,003	,123
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X25	Pearson Correlation	.668**	.671**	.417*	,204	.479**	,341	,139	,022	,209	,245	,161	,283	,078	.543**	.440*
	Sig. (2-tailed)	,000	,000	,020	,270	,006	,061	,455	,908	,259	,185	,386	,123	,678	,002	,013
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

X26	Pearson Correlation	.418*	.419*	.431*	,327	.443*	,277	,322	-,023	,326	,309	,126	,242	,100	.470**	,342
	Sig. (2-tailed)	,019	,019	,016	,073	,013	,132	,077	,903	,074	,091	,500	,189	,592	,008	,059
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X27	Pearson Correlation	.409*	.473**	.389*	,017	,144	.397*	,283	,125	,219	,315	,074	,271	-,026	.426*	,201
	Sig. (2-tailed)	,022	,007	,031	,926	,441	,027	,123	,501	,237	,084	,693	,141	,891	,017	,278
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X28	Pearson Correlation	,161	,303	.556**	,309	,266	,333	.358*	,172	,279	.441*	.398*	,153	,066	.522**	,240
	Sig. (2-tailed)	,387	,097	,001	,091	,148	,067	,048	,356	,128	,013	,027	,410	,724	,003	,193
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X29	Pearson Correlation	.439*	,279	.359*	,142	,340	,234	,253	,126	,104	.390*	,166	.459**	-,109	,210	-,049
	Sig. (2-tailed)	,013	,128	,047	,446	,061	,204	,169	,499	,579	,030	,371	,009	,559	,257	,795
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X30	Pearson Correlation	,187	.474**	.679**	.448*	.456*	.549**	.570**	,333	.382*	.655**	.550**	.450*	,167	,344	,271
	Sig. (2-tailed)	,314	,007	,000	,011	,010	,001	,001	,067	,034	,000	,001	,011	,371	,058	,140
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X31	Pearson Correlation	,272	,276	,165	.408*	.402*	,172	,151	,069	,196	,250	.397*	.464**	,247	,189	,304
	Sig. (2-tailed)	,139	,133	,374	,023	,025	,355	,418	,714	,291	,176	,027	,009	,180	,309	,096
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X32	Pearson Correlation	,238	.401*	.403*	.365*	.436*	.562**	,170	,190	,353	,304	.427*	.745**	,095	,327	,257
	Sig. (2-tailed)	,198	,026	,025	,044	,014	,001	,359	,306	,052	,097	,017	,000	,611	,072	,163
	N	31	31	31	-31	31	31	31	31	31	31	31	31	31	31	31
X34	Pearson Correlation	,151	,205	.377*	,338	,260	,186	,279	,116	,233	,337	,339	-,092	,152	.494**	,067
	Sig. (2-tailed)	,417	,268	,037	,063	,159	,317	,128	,533	,208	,063	,062	,621	,416	,005	,718
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X35	Pearson Correlation	.527**	.482**	,305	,167	375 [*]	,337	,233	,141	,105	,351	.427*	.485**	,049	,212	,110
	Sig. (2-tailed)	,002	,006	,095	,369	,038	,064	,208	,448	,573	,053	,016	,006	,794	,252	,557
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

X36	Pearson Correlation	-,062	,281	,137	.487**	,303	,247	,294	.442*	.581**	,195	.384*	,218	1.000**	,302	,295
	Sig. (2-tailed)	,739	,125	,461	,005	,098	,180	,108	,013	,001	,294	,033	,239	,000	,099	,107
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X37	Pearson Correlation	,174	.464**	.435*	,299	,285	,310	,291	,256	,171	,258	.374*	.439*	,166	,149	,119
	Sig. (2-tailed)	,350	,009	,014	,102	,120	,089	,113	,164	,358	,162	,038	,013	,372	,424	,524
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X38	Pearson Correlation	1	.587**	,107	,008	,276	,173	-,139	-,091	,014	,140	,066	,183	-,062	.385*	.477**
	Sig. (2-tailed)		,001	,566	,967	,133	,352	,455	,625	,940	,453	,724	,323	,739	,033	,007
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X40	Pearson Correlation	.587**	1	.362*	.374*	.527**	.358*	,131	,093	,287	,174	,281	.390*	,281	.478**	.567**
	Sig. (2-tailed)	,001		,045	,038	,002	,048	,481	,617	,118	,350	,126	,030	,125	,007	,001
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X42	Pearson Correlation	,107	.362*	1	.633**	.614**	.596**	.737**	.459**	,305	.758**	.528**	,282	,137	,202	,295
	Sig. (2-tailed)	,566	,045		,000	,000	,000	,000	,009	,096	,000	,002	,124	,461	,276	,107
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X43	Pearson Correlation	,008	.374*	.633**	1	.696**	.520**	.566**	.374*	.513**	.497**	.626**	.393*	.487**	,212	,307
	Sig. (2-tailed)	,967	,038	,000		,000	,003	,001	,038	,003	,004	,000	,029	,005	,253	,093
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X44	Pearson Correlation	,276	.527**	.614**	.696**	1	.356*	.370*	,188	.425*	,350	.520**	.398*	,303	,167	,302
	Sig. (2-tailed)	,133	,002	,000	,000		,049	,041	,311	,017	,054	,003	,027	,098	,369	,099
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X45	Pearson Correlation	,173	.358*	.596**	.520**	.356*	1	.537**	.587**	.601**	.520**	.560**	.418*	,247	.394*	,249
	Sig. (2-tailed)	,352	,048	,000	,003	,049		,002	,001	,000	,003	,001	,019	,180	,028	,178
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X47	Pearson Correlation	-,139	,131	.737**	.566**	.370*	.537**	1	.646**	.390*	.794**	.438*	,288	,294	,221	,053
	Sig. (2-tailed)	,455	,481	,000	,001	,041	,002		,000	,030	,000	,014	,116	,108	,233	,775
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

X48	Pearson Correlation	-,091	,093	.459**	.374*	,188	.587**	.646**	1	.466**	.612**	.474**	,250	.442*	,161	,040
	Sig. (2-tailed)	,625	,617	,009	,038	,311	,001	,000	1	,008	,000	,007	,175	,013	,387	,829
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X49	Pearson Correlation	,014	,287	,305	.513**	.425*	.601**	.390*	.466**	1	,286	.622**	.356*	.581**	,352	,167
	Sig. (2-tailed)	,940	,118	,096	,003	,017	,000	,030	,008		,119	,000	,049	,001	,052	,368
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X50	Pearson Correlation	,140	,174	.758**	.497**	,350	.520**	.794**	.612**	,286	1	.500**	.369*	,195	,253	,276
	Sig. (2-tailed)	,453	,350	,000	,004	,054	,003	,000	,000	,119	-	,004	,041	,294	,169	,132
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X51	Pearson Correlation	,066	,281	.528**	.626**	.520**	.560**	.438*	.474**	.622**	.500**	1	.370*	.384*	,131	,171
	Sig. (2-tailed)	,724	,126	,002	,000	,003	,001	,014	,007	,000	,004		,040	,033	,482	,358
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X52	Pearson Correlation	,183	.390*	,282	.393*	.398*	.418*	,288	,250	.356*	.369*	.370*	1	,218	,212	,235
	Sig. (2-tailed)	,323	,030	,124	,029	,027	,019	,116	,175	,049	,041	,040		,239	,253	,203
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X56	Pearson Correlation	-,062	,281	,137	.487**	,303	,247	,294	.442*	.581**	,195	.384*	,218	1	,302	,295
	Sig. (2-tailed)	,739	,125	,461	,005	,098	,180	,108	,013	,001	,294	,033	,239		,099	,107
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
X57	Pearson Correlation	.385*	.478**	,202	,212	,167	.394*	,221	,161	,352	,253	,131	,212	,302	1	.357*
	Sig. (2-tailed)	,033	,007	,276	,253	,369	,028	,233	,387	,052	,169	,482	,253	,099		,049
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
Y	Pearson Correlation	.477**	.567**	,295	,307	,302	,249	,053	,040	,167	,276	,171	,235	,295	.357*	1
	Sig. (2-tailed)	,007	,001	,107	,093	,099	,178	,775	,829	,368	,132	,358	,203	,107	,049	
	N	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31

<u>LAMPIRAN M</u> <u>RISALAH SIDANG SKRIPSI</u>

UNIVERSITAS INDONESIA FAKULTAS TEKNIK

PROGRAM STUDI TEKNIK SIPIL PROGRAM PENDIDIKAN S1 REGULER PERNYATAAN PERBAIKAN SKRIPSI

Dengan ini dinyatakan bahwa:

Hari/Tanggal: Jumat / 7 Januari 2011

Jam : 09.00 s/d 10.00 WIB

Tempat : A.102 Gedung Engineering Center – Depok

Telah berlangsung Ujian Skripsi Semester Ganjil Program Studi Teknik Sipil, Fakultas Teknik Universitas Indonesia dengan peserta:

Nama : Agus Saputra

NPM : 0606071960

Judul Skripsi : Analisa Faktor-Faktor Produktivitas Alat Berat Pekerjaan

Pemasangan

Precast Girder Pada Proyek Flyover (Studi Kasus : Flyover

Kalibata)

Tim Penguji:

1. Ir. El Khobar M. Nazech, M.Eng

2. Ir. Setyo Supriyadi, M.Si

3. M. Ali Berawi, M. Eng. Sc. PhD

4. Ir. Bambang Setiadi, M.Sc

Perbaikan yang diminta:

1. Pebimbing: Ir. Setyo Supriyadi, M.Si

No	Pertanyaan/Masukan	Keterangan
1	Bagaimana cara melakukan evaluasi pada	Sudah dilakukan di bab 6
	X11? Karena membutuhkan waktu yang	
	tidak sedikit!	

2. Pebimbing: Ir. Bambang Setiadi, M.Sc

No	Pertanyaan/Masukan	Keterangan
1	Tambahkan gambaran umum proyek karena	Sudah dilakukan pada bab 3
	apabila diproyek tersebut tidak terjadi	
	keterlambatan, maka tidak akan ada	
	masalah di proyek tersebut	

3. Penguji : Ir. El Khobar M. Nazech, M.Eng

No	Pertanyaan/Masukan	Keterangan
1	Perbaikan penulisan abstrak dan format	Sudah dilakukan
	penulisan skripsi	

4. Penguji: M. Ali Berawi, M. Eng. Sc. PhD

No	Pertanyaan/Masukan	Keterangan
1	Pemakaian variabel dummy	Sudah dilakukan pada bab 5

Skripsi ini sudah diperbaiki dan telah disetujui sesuai dengan keputusan sidang Ujian Skripsi tanggal 7 Januari2011 dan telah mendapat persetujuan dari dosen pembimbing.

Jakarta, Januari 2011

Menyetujui,

Dosen Pembimbing 1

Dosen Pembimbing 2

(Ir. Setyo Supriyadi Supadi, M. Si)

(Ir. Bambang Setiadi, MSc.)

Dosen Penguji 1

Dosen Penguji 2

(M. Ali Berawi, M.Eng Sc, Ph.D)

(Ir. El Khobar M. Nazech, M.Eng)