

UNIVERSITAS INDONESIA

SIMULASI CFD PERFORMA TURBIN INWARD FLOW RADIAL

SKRIPSI

MAS PRASETYO WIBOWO

06 06 07 33 54

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK MESIN DEPOK DESEMBER 2010

Simulasi cfd..., Mas Prasetyo Wibobo, FT UI, 2010

UNIVERSITAS INDONESIA

SIMULASI CFD PERFORMA TURBIN *INWARD FLOW RADIAL*

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

MAS PRASETYO WIBOWO

06 06 07 33 54

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK MESIN KEKHUSUSAN KONVERSI ENERGI DEPOK

DESEMBER 2010

Simulasi cfd..., Mas Prasetyo Wibobo, FT UI, 2010

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini	adalah hasil	karya saya	sendiri,

dan semua sumber baik yang dikutip maupun dirujuk

telah saya nyatakan dengan benar

	Nama	: Mas Prasetyo Wibowo
	NPM	: 06 06 07 33 54
	Tanda Tangan	
	Tanggal	
100	$z \cap$	ALLE
5		
	10	

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh

Nama	:	Mas Prasetyo Wibowo
NPM	:	06 06 07 33 54
Program Studi	÷	Teknik Mesin
Judul Skripsi	:	SIMULASI CFD PERFORMA TURBIN INWARD
		FLOW RADIAL

:

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian dari persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi, Teknik Mesin Fakultas Teknik, Universitas Indonesia

DEWAN PENGUJI

Pembimbing	: Dr. Ir. Ahmad Indra Siswantara ()
Penguji	: Dr. Ir. Warjito, M.Eng.)
Penguji	: Dr. Ir. Engkos A. Kosasih, MT. ()
Penguji	: Ir. Agung Subagio, Dipl., Eng. ()

Ditetapkan di :

Tanggal :

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat rahmat-Nya, penulis dapat menyelesaikan skripsi ini. Penulisan laporan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Jurusan Teknik Mesin pada Fakultas Teknik Universitas Indonesia. Penulis menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan skripsi ini, sangatlah sulit bagi penulis untuk menyelesaikan skripsi ini. Oleh karena itu, penulis mengucapkan terima kasih kepada:

- Dr. Ir. Ahmad Indra Siswantara selaku dosen pembimbing yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan skripsi ini;
- 2) Karyawan Departemen Teknik Mesin FT UI khususnya karyawan labaratorium (bengkel) lantai 1 dan laboratorium mekanika fluida lantai 3.
- Orang tua dan keluarga saya yang telah memberikan bantuan dukungan material dan moral; dan;
- 4) Sahabat yang telah banyak membantu saya dalam menyelesaikan skripsi ini.

Akhir kata penulis berharap semoga penulisan laporan skripsi ini dapat bermanfaat bagi pengembangan dalam bidang keilmuan teknik.

Jakarta, 12 Desember 2010

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini :

Nama : Mas Prasetyo Wibowo

NPM : 06 06 07 33 54

Program Studi : Teknik Mesin

Departemen : Teknik Mesin

Fakultas : Teknik

Jenis Karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul :

SIMULASI CFD PERFORMA TURBIN INWARD FLOW RADIAL

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal :

Yang menyatakan

(MAS PRASETYO WIBOWO)

ABSTRAK

Nama : Mas Prasetyo Wibowo

Program Studi : Teknik Mesin

Judul : Simulasi CFD Performa Turbin Inward Flow Radial

Gas turbin radial banyak digunakan di dunia industri dan otomotif sebagai penggerak mesin dengan kecepatan tinggi. Performa dari suatu turbin gas dapat dilihat dari beberapa parameter antara lain *specific speed, speed parameter, flow parameter*, rasio tekanan, effisiensi, dan daya. Simulasi *computational fluid dynamics* dengan menggunakan *flow simulation solidworks 2010* dapat memperlihatkan aliran dalam pada turbin untuk mengetahui performa dari suatu model turbin. Sehingga diketahui pada pendekatan model turbin IFR IHI RHB 32, pada putaran 10000 rpm, laju masssa 0.01 kg/s, menghasilkan daya 9.936 W dan effisiensi *overall* 12.958%. Namun pada *flow parameter* yang tinggi akan mempercepat tercapainya fenomena tersebut. Secara fisik yang terjadi adalah aliran dengan *high Mach number*.

Kata kunci : Turbin, IFR, performa, daya, efisiensi.

ABSTRACT

Name : Mas Prasetyo Wibowo

Study Program : Mechanical Engineering

Title : CFD Simulation of Inward Flow Radial Turbine Performance

Radial gas turbines are widely used in industry and automotive engine to drive a high speed. Performance of a gas turbine can be seen from some specific parameters such as speed, speed parameters, flow parameters, pressure ratio, efficiency, and power. Computational fluid dynamics simulations using flow simulation SolidWorks 2010 can show the flow in the turbine to determine the performance of a model turbine. So that is known at IFR turbine model approach IHI RHB 32, on speed 10 000 rpm, the rate of masss 0.01 kg/s, resulting in overall efficiency of 12.958% and power of 9.936 W. But in high-flow parameters that will lead to chocking flow phenomena, and operation at high speed parameters that will accelerate the achievement of such phenomena. Physically what happens is the flow with high Mach number.

Keywords: Turbine, IFR, performance, power, efficiency.

DAFTAR ISI

HALAMAN PERNYATAAN ORISINALITAS ii
HALAMAN PENGESAHAN iii
KATA PENGANTARiv
ABSTRAKvi
ABSTRACTvii
DAFTAR ISIviii
DAFTAR GAMBAR x
DAFTAR TABELxii
BAB 1
PENDAHULUAN
1.1. LATAR BELAKANG 1
1.2. PERUMUSAN MASALAH
1.3. TUJUAN PENELITIAN2
1.4. BATASAN MASALAH2
1.5. METODOLOGI PENELITIAN
1.6. SISTEMATIKA PENULISAN
BAB 2
DASAR TEORI
2.1. INWARD FLOW RADIAL TURBINE ^[1]
2.2. DIAGRAM KECEPATAN ^[1]
2.3. PROSES EKSPANSI TURBIN DAN EFISIENSI
BAB 3
PEMODELAN
3.1. MODEL CAD
3.2. PEMODELAN SIMULASI (PRE-PROCESSOR) 12
3.2.1. Physical Features
3.2.2. Initial Condition
3.2.3. Boundary Condition14
3.2.4. Meshing

3AB 4 1	.7
IASIL SIMULASI DAN ANALISA DATA1	.7
4.1. DATA HASIL FLOW SIMULATION	.7
4.2. ANALISA	.8
3AB 52	27
XESIMPULAN2	27
DAFTAR PUSTAKA	28
AMPIRAN	29

DAFTAR GAMBAR

	Gambar 2. 1 90° inward flow turbine.	5
	Gambar 2. 2 Segitiga kecepatan 90° IFR <i>turbine</i>	6
	Gambar 2. 3 Proses ekspansi pada turbin satu tingkat. ^[2]	7
	200 A.C.	
	Gambar 3. 1 Impeller turbin CAD	9
	Gambar 3. 2 Tampak depan	10
	Gambar 3. 3 Tampak samping	10
	Gambar 3. 4 Volute turbin	11
1	Gambar 3. 5 Volute dimension	11
	Gambar 3, 6 Turbin dengan <i>lid</i> di tiap lubang pada <i>volute</i>	12
	Gambar 3.7 Subtansi Produk Keluaran Gas Turbin	14
	Gambar 3. 8 Mesh level 3, front	16
	Gambar 3. 9 Mesh level 3, right	16
	Gambar 4. 1 Turbine characteristic curve	19
	Gambar 4. 2 Turbine operating range	20
	Gambar 4. 3 <i>Turbine characteristic curves</i> ^[6]	21
	Gambar 4. 4 Sepcific speed vs effisiensi ^[2]	. 22
	Gambar 4. 5 Distribusi tekanan (0.01 kg/s)	23
	Gambar 4. 6 Distribusi temperatur (0.01 kg/s)	23
	Gambar 4. 7. Distribusi mach number (0.01 kg/s)	24
	Sumbar 4. 7 Distribusi mach number (0.01 kg/s)	24
	Gambar 4. 8 Distribusi tekanan (0.0328 kg/s)	24
	Gambar 4. 9 Distribusi temperatur (0.0328 kg/)	25

Gambar 4.10	Distribusi mach number	(0.0328 kg/s)	
-------------	------------------------	---------------	--

DAFTAR TABEL

Tabel 4.1	Hasil simulasis surface parameter1	18
Tabel 4. 2	Data MS. Excel 1	19

BAB 1 PENDAHULUAN

1.1. LATAR BELAKANG

Energi merupakan kebutuhan utama bagi seluruh makhluk hidup di dunia termasuk manusia. Jumlah energi yang dipakai oleh manusia semakin besar seiring dengan bertambahnya kebutuhan manusia saat ini. Hal ini memicu manusia untuk mendirikan pabrik-pabrik atau *plan* yang berfugsi untuk memenuhi kebutuhan manusia saat ini. Pabrik atau *plan* terdiri dari banyak alat-alat yang membuatnya beroperasi. Salah satu alat yang banyak digunakan adalah turbin yang berfungsi sebagai pengerak mesin atau alat lainnya seperti pompa ataupun kompresor. Fungsi dari turbin adalah sebagai penghasil daya atau energi listrik yang biasa terdapat pada *power plan*.

Turbin pada *power plan* biasanya merupakan jenis turbin reaksi aliran aksial. Turbin jenis ini biasanya memiliki dimensi yang besar, khususnya yang berfungsi sebagai penghasil listrik ke generator. Turbin aksial juga berfungsi sebagai penggerak pompa maupun *rotating equipment* lainnya, biasanya lebih dikenal dengan nama *expander*. *Expander* biasanya memiliki dimensi yang lebih kecil dari turbin aksial untuk pembagkit. Turbin jenis ini memanfaatkan gas sisa olahan pabrik atau uap sisa olahan pabrik, dimana entalpi yang diterima turbin jenis ini tidak sebesar turbin pembagkit. Namun tidak semua alat *rotating equipment* menggunakan turbin, ini hanya dipakai untuk alat yang membutuhkan putaran yang sangat tinggi sehingga tidak memungkinkan untuk memakai motor, atau bila pabrik memang memiliki gas sisa ataupun uap sisa yang masih memiliki entalpi yang tinggi.

Turbin reaksi jenis lainnya adalah turbin radial atau *mixed flow*. Turbin jenis ini memiliki dimensi yang jauh lebih kecil bila dibandingkan dengan turbin pembangkit listrik. Turbin ini digunakan untuk daya yang tidak besar. Turbin radial biasa digunakan pada dunia industi atau pabrik dan dunia otomotif. Turbin ini biasanya bekerja pada putaran yang sangat tinggi, dapat mencapai puluhan bahkan ratusan ribu RPM. Pada dunia industri turbin radial digunakan sebagai penggerak alat-alat pabrik sama halnya dengan *expander*. Pada dunia otomotif turbin ini dipakai pada turbo atau *turbocharger*. Fungsinya adalah sebagai penggerak kompresor, yang memanfaatkan gas hasil pembakaran ruang bakar (*engine*).

Prinsip kerja dari turbin adalah sama, baik yang aksial maupun radial, keduanya menggunakan fluida kerja yang berupa gas ataupun uap untuk menghasilkan daya. Daya dari turbin dapat dimanfaatkan untuk banyak aplikasi. Turbin radial dapat digunakan sebagai pembangkit daya untuk skala kecil, sehingga harus dicari tahu berapa daya maksimal yang dapat dihasilkan untuk dapat memenuhi kebutuhan listrik rumahan skala kecil. Hal ini dapat bermanfaat untuk menjangkau daerah-daerah terpelosok yang tidak dapat dialiri listrik, karena turbin radial berdimensi kecil sehingga memungkinkan untuk menjadi pembangkit listrik dan penggerak untuk *mini power plan*.

1.2. PERUMUSAN MASALAH

Mini power plan yang akan dibuat harus dapat dimasukkan atau dapat dibawa dengan menggunakan mobil *pick up*. Sehingga harus dipilih turbin yang berukuran sekecil mungkin dan daya yang semaksimal mungkin.

1.3. TUJUAN PENELITIAN

Mengetahui performa dari sebuah turbin *inward flow radial* pada kecepatan operasi rendah.

1.4. BATASAN MASALAH

Penelitian ini permasalahannya dibatasi sebagai berikut :

- 1. Menggunakan turbin dari turbocharger IHI RHB 32.
- 2. Temperatur rata-rata sisi masuk adalah 535°C.

- 3. Tekanan (gage) sisi masuk adalah 0.52 bar.
- 4. Temperatur lingkungan adalah 25°C.
- 5. Tekanan lingkungan adalah 1.005 bar.
- 6. Fluida kerja adalah Gas.
- 7. Putaran 10000 RPM
- Laju massa adalah 0.01 kg/s, 0.02 kg/s, 0.03 kg/s, 0.031 kg/s, 0.032 kg/s, 0.0325 kg/s, 0.0326 kg/s, 0,0327 kg/s, 0.0328 kg/s, 0.0329 kg/s, dan 0.033 kg/s.

1.5. METODOLOGI PENELITIAN

- 1. Memilih objek penelitian.
- 2. Melakukan studi literatur.
- 3. Mengambar objek penelitian.
- 4. Melakukan simulasi pada objek penelitian dengan batasan masalah yang telah ditentukan.
- 5. Mengolah data yang diperoleh dari hasil simulasi.
- 6. Menganalisa data yang diperoleh.
- 7. Membuat kesimpulan.

1.6. SISTEMATIKA PENULISAN

Sistematika penulisan laporan tugas akhir adalah sebagai berikut :

BAB1 PENDAHULUAN

Berisikan latar belakang, perumusan masalah, tujuan penelitian, batasan masalah, metodologi penelitian, dan sitematika penulisan.

BAB 2 DASAR TEORI

Memuat tentang teori dasar analisis dan performa turbin radial.

BAB 3 PEMODELAN

Membahas pemodelan objek penelitian dari mulai pembuatan gambar CAD, pemodelan simulasi berupa *initial condition, boundary condition, dan meshing*.

BAB 4 HASIL SIMULASI DAN ANALISA DATA

Penyajian hasil simulasi berupa data, tabel, dan grafik, beserta pembahasannya.

BAB 5 KESIMPULAN DAN SARAN

Penarikan kesimpulan dari hasil penelitian yang sesuai dengan tujuan penelitian.

BAB 2 DASAR TEORI

2.1. INWARD FLOW RADIAL TURBINE^[1]

Pemilihan turbin disesuaikan dengan penggunaannya, sehingga pada kenyataannya tidak ada satu jenis turbin yang paling bagus dalam segala kondisi. Pada keadaan laju massa dari fluida kerja yang kecil maka turbin radial memiliki efisiensi yang lebih baik dari pada turbin aksial. Turbin radial mampu memberikan rasio tekanan yang tinggi dalam satu *stage* dari pada turbin aksial. Akan tetapi turbin aksial lebih mudah untuk disusun dalam beberapa tingkat (*multistage*) sehingga rasio tekanan yang besar dapat dicapai oleh turbin aksial.

Inward flow radial turbine merupakan jenis turbin mixed flow, yaitu gas masuk pada arah radial dan keluar dari sisi keluar secara aksial. Rotor turbin jenis ini biasanya dibuat dari cast nickel alloy, yang memiliki sudu berkurva untuk merubah aliran masuk secara radial menjadi keluar dengan arah aksial. Turbin jenis ini biasa ditemukan pada turbocharger.

Gambar 2. 1 90° inward flow turbine.

2.2. DIAGRAM KECEPATAN^[1]

Diagram kecepatan pada *inward flow turbine* adalah berupa segi tiga kecepatan, sama halnya dengan alat *turbomachinery* lainnya hanya saja berbeda pada arahnya. Diagramnya adalah sebagai berikut :

Gambar 2. 2 Segitiga kecepatan 90° IFR turbine.

Kerja yang dilakukan per unit laju massa diberikan oleh persamaan *Euler's turbine* :

$$W_t = (U_2 C_{w2} - U_3 C_{w3})....(2.1)$$

Jika whirl velocity adalah nol pada keluaran maka,

Untuk kecepatan relatif radial pada sisi masuk maka,

$$W_t = U_2^2$$
(2.3)

2.3. PROSES EKSPANSI TURBIN DAN EFISIENSI

Proses ekspansi turbin diwakili pada grafik *h-s* atau diagram Mollier (lihat Gambar 2.3). *Nozzle* digunakan untuk menyediakan ekspansi parsial dari gas dan untuk mengarahkan aliran masuk ke rotor dengan mulus. Titik o1 mewakili kodisi stagnasi sisi masuk. Ekspansi *nozzle* terjadi sepanjang kurva 1—2. Perubahan pada tekanan stagnasi disebabkan hanya oleh efek viskos, karena tidak ada kerja yang dihasilkan dari fluida di dalam *nozzle vanes*. Proses sepanjang kurva 2—3 mewakili ekspansi melalui rotor, tekanan stagnasi keluar menjadi P_{o3} . Jika aliran adalah isentropik pada *nozzle*, kondisi 2_s akan tercapai. Jika aliran hanya isentropik pada rotor, kondisi $o3_s$ atau 3_s akan tercapai. Titik $o3_{ss}$ dan 3_{ss} mewakili kondisi aliran stagnasi dan statik, ketika kondisi isentropik timbul diseluruh *stage*, termasuk celah antara *nozzle* dan *blade*.^[2]

Gambar 2. 3 Proses ekspansi pada turbin satu tingkat.^[2]

Effisiensi pada sistem gas turbin ada beberapa macam. Effisiensi yang penting dalam perhitungan performa turbin adalah *overall efficiency* dan *isentropic efficiency*. *Overall efficiency* adalah sebagai berikut^[3]:

 $\eta_0 = \frac{\text{mechanical energy available at coupling of output shaft in unit time}}{\text{maximum energy difference possible for the fluid in unit time}}.$

isentropic efficiency adalah sebagai berikut^[3]:

$$\eta_t(\text{or } \eta_h) = \frac{\text{mechanical energy supplied to the rotor in unit time}}{\text{maximum energy difference possible for the fluid in unit time}}$$

Effisiensi mekanik merupakan perbandingan dari energi yang dihasilkan pada kopling shaft turbin dengan energi yang diberikan oleh fluida ke impeller turbin. Sehingga **effisiensi mekanik adalah** *Overall efficiency* **dibanding** *isentropic efficiency*.^[3]

Ada dua cara mendefinisikan efisiensi isentropik dari suatu turbin, tergantung dari aplikasinya. Pada banyak situasi, energi pada keluaran $(V_3^2/2)$ dipertimbangkan sebagai kerugian (*losses*), oleh karena itu tujuan dari disain adalah mencapai energi keluaran yang serendah-rendahnya. Pada situasi seperti ini efisiensi total-statik didefinisikan sebagai berikut, dengan menganggap c_p konstan^[2]:

 $\eta_{ts} = \frac{daya \, poros \, yang \, dihasilkan \, turbin \, aktual}{(daya \, poros \, yang \, dihasilkan + daya \, buangan \, pada \, sisi \, keluar) dari \, turbin \, ideal}$

$$\eta_{ts} = \frac{c_p(T_{o1} - T_{o3})}{c_p(T_{o1} - T_{o3ss}) + c_p(T_{o3ss} - T_{3ss})} \dots (2.4)$$

Karena $o1-3_{ss}$ adalah proses isentropik maka dapat dinyatakan dalam tekanan sebagai berikut^[2]:

$$\eta_{ts} = \frac{1 - (T_{o3}/T_{o1})}{1 - (P_3/P_{o1})^{(\gamma-1)}/\gamma} \dots (2.5)$$

Pada sebagian besar aplikasi *aeronautical*, definisi efisiensi berdasarkan kondisi stagnasi, karena kecepatan jet digunakan untuk memperoleh daya. Sehingga efisiensi total—total yang didefinisikan sebagai efisiensi isentropik adalah sebagai berikut^[2]:

$$\eta_{tt} = \frac{daya \ aktual \ yang \ dihasilkan}{daya \ ideal \ yang \ dihasilkan} = \frac{T_{01} - T_{03}}{T_{01} - T_{03SS}} = \frac{1 - (T_{03}/T_{01})}{1 - (P_{03}/P_{01})^{(\gamma-1)}/\gamma} \dots (2.6)$$

BAB 3 PEMODELAN

3.1. MODEL CAD

Objek penelitian adalah turbin dari *turbocharger* IHI RHB32. Dalam pemodelan CAD dilakukan penyederhanaan dikarenakan keterbatasan alat ukur. Pengukuran objek penelitian dilakukan hanya dengan menggunakan jangka sorong. Pemodelan objek penelitian berupa CAD digambar dengan menggunakan *solidworks 2009*.

Pemodelan CAD impeller turbin berdasarkan ukuran *tip diameter, hub diameter,* tinggi sudu sisi masuk, tinggi sudu sisi keluar, dan tebal sudu. Sedangkan bentuk kurva sudu dilakukan pendekatan dengan menggunakan tinggi sudu sisi masuk, tinggi sudu sisi keluar, jarak antara *tip* dan *hub*, dan jarak antara ujung—ujung sudu. Sehingga model dalam bentuk CAD adalah seperti berikut :

Gambar 3.1 Impeller turbin CAD

Gambar beserta dimensi (dalam millimeter) adalah sebagai berikut :

Gambar 3. 3 Tampak samping

Model CAD *volute* digambar berdasarkan dimensi diameter *inlet*, diameter *outlet*, diameter dalam *volute*, dan jarak tiap permukaan dengan acuan permukaan bagian belakang *volute*. Sehingga model dalam bentuk CAD adalah sebagai berikut :

Gambar 3. 4 Volute turbin

Gambar beserta dimensi dalam millimeter adalah sebagai berikut :

Gambar 3. 5 Volute dimension

3.2. PEMODELAN SIMULASI (PRE-PROCESSOR)

Sebelum model CAD disimulasikan menggunakan *flow simulation solidworks 2009*, model di*-asssembly* terlebih dahulu dan setiap lubang yang terdapat pada *assembly* model CAD harus ditutup dengan menggunkan *lid*, *feature* ini terdapat pada *toolbar flow simulation*.

Gambar 3. 6 Turbin dengan lid di tiap lubang pada volute

3.2.1. Physical Features

Setelah pemodelan secara geometri, tahapan selanjutnya adalah pemodelan kondisi fisik yang mewakili kondisi nyata atau kondisi kerja yang diiginkan. Halhal yang ditentukan adalah jenis analisa, konduksi kalor di *solid*, *time dependent/steady*, efek gravitasi, rotasi, fluida kerja, jenis aliran, aliran dengan *high Mach number*, kelembaban, kekasaran permukaan, dan kondisi dinding.

Jenis analisa simulasi ini adalah *internal flow* dimana fluida bekerja di dalam ruangan atau dalam hal ini di dalam *volute* turbin. Walaupun pada simulasi juga menganalisa aliran disekitar impeller turbin yang merupakan aliran eksternal, namun yang akan dianalisa adalah aliran yang terjadi pada turbin, hal ini mencakup aliran fluida di dalam *volute* dan aliran yang meyelubungi atau disekitar *impeller*. Sehingga bila analisa yang dipilih adalah *external flow* maka analisa yang dilakukan hanya aliran disekitar impeller. Oleh karena itu jenis aliran yang dipilih adalah *internal flow* sehingga analisa meliputi aliran fluida di dalam *volute* dan aliran fluida di dalam *volute* dan aliran fluida di dalam yang dipilih adalah *internal flow* sehingga analisa meliputi aliran fluida di dalam *volute* dan aliran fluida di dalam *volute* dan aliran fluida di sekitar impeller.

Analisa yang akan dilakukan adalah pada saat turbin bekerja dengan kata lain impeller turbin berputar. *Feature rotation* diaktifkan untuk pemodel kondisi ini. Jenis *rotation frame* yang dipakai adalah global rotating dimana keseluruhan model akan berputar pada sumbu referensinya. Model impeller turbin berputar terhadap sumbu Z, dengan suatu kecepatan angular. Kecepatan angular pada simulasi turbin *inward flow radial* adalah **10000 rpm**.

Physical features lainnya tidak definisikan karena dianggap tidak berpengaruh atau kondisi tersebut tidak menjadi cakupan analisa yang akan dilakukan. *Time dependent* tidak diaktifkan karena simulasi ini untuk menganalisa keadaan *steady* dan dipilih *adiabatic wall* karena kondisi yang diinginkan adalah tidak ada kalor yang keluar masuk dari dinding.

3.2.2. Initial Condition

Initial condition atau kondisi awal pada analisa aliran di dalam ruangan (*internal flow*) didefinisikan sebagai kondisi lingkungan di sekitar benda kerja. Sehingga pada simulasi nilai yang ditentukan adalah tekanan lingkungan dan temperatur lingkungan.

Thermodynamic parameters	Static Pressure: 100500 Pa
	Temperature: 298.15 K
Velocity parameters	Velocity vector
	Velocity in X direction: 0 m/s
	Velocity in Y direction: 0 m/s
	Velocity in Z direction: 0 m/s
	Relative to rotating frame: Off
Turbulence parameters	Turbulence intensity and length
	Intensity: 2 %
	Length: 0.00105675912

Subtansi gas hasil pembakaran sebagai fluida kerja dari sebuah turbin gas adalah sebagai berikut^[4] :

GAS TURBINE EXHAUST PRODUCTS FROM HYDROCARBON FUEL COMBUSTION IN DRY AIR

% BY WEIGHT	REMARKS
74.16	Mostly inert, from atmosphere
16.47	From excess air
5.47	Product of complete combustion
2.34	Product of complete combustion
1.26	Inert, from atmosphere
trace	Product of incomplete combustion
trace	Product of incomplete combustion
trace	
	From fixation of atmospheric N ₂
	From fuel bound nitrogen
	From Sulfur in fuel
	% BY WEIGHT 74.16 16.47 5.47 2.34 1.26 trace trace

Gambar 3. 7 Subtansi Produk Keluaran Gas Turbin

Berdasarkan data di atas maka dibuat pendekatan substansi gas sebagai fluida kerja sebagai berikut :

Concentrations	Substance fraction by mass
	Nitrogen
	0.7416
	Oxygen
	0.1647
	Carbon dioxide
	0.0547
	Argon
	0.126
	Air
	0.0264

3.2.3. Boundary Condition

Boundary condition adalah nilai parameter yang diberikan pada model simulasi, biasanya berupa kecepatan, laju massa, laju aliran, tekanan, temperatur, dan lain-lain. Pada simulasi nilai dari parameter *boundary condition* adalah sesuai dengan yang dijelaskan pada batasan masalah.

Pada sisi masuk parameter yang didefinisikan adalah tekanan total sebesar 1.525 bar dan temperatur sebesar 535 °C. Pada sisi keluar parameter yang didefinisan adalah laju massa yang besarnya bervariasi : 0.01 kg/s, 0.02 kg./s, 0.03 kg/s, 0.031 kg/s, 0.032 kg/s, 0.0325 kg/s, 0.0326 kg/s, 0.0327 kg/s, 0.0328 kg/s, 0.0329 kg/s, dan 0.033 kg/s. Namun semua parameter akan dirubah dalam satuan SI. Oleh karena simulasi ini menggunakan *global rotation* maka *volute* perlu didefinisikan sebagai stator, namun yang didefinisikan hanya bagian dalamnya saja. Hal tersebut dikarenakan analisa terjadi pada aliran di dalam *volute*.

3.2.4. Meshing

Mesh yang digunakan adalah level tiga. Semakin rapat selnya maka akan semakin akurat hasil perhitungan yang didapat, namun hal ini juga akan menambah waktu penyelesaian perhitungan simulasi. Oleh karena itu sebelum di*running*, mesh pada model doperiksa terlebih dahulu agar tidak ada ukuran mesh yang besar meliputi ujung dari model yang berukuran jauh lebih kecil dari ukuran mesh.

Bila level mesh telah dipililih lalu *solver* melakukan *meshing* maka *solver* akan memperhalus bagian-bagian yang dibutuhkan penghalusan mesh, seperti pada ujung-ujung atau sudut, bagian yang berkurva, bagian beradius kecil, dan bagian yang sangat kecil dibandingkan dengan ukuran bagian lainnya pada model. Hasil akhir dari penghalusan mesh tergantung berdasarkan level mesh yang dipilih, semakin tinggi levelnya maka akan semakin halus. Namun tidak harus keseluruhan model diberi meshing yang halus seragam, yang terpenting adalah meshing yang halus meliputi bagian model yang perlu penghalusan mesh. Sehingga sebelum *running* jumlah mesh dan kondisi mesh dari model diperiksa terlebih dahulu.

Berikut ini adalah gembar mesh level 3 dari model turbin.

Gambar 3.9 Mesh level 3, right

Daerah perbatasan antara fluida dengan permukaan sudu adalah bagian yang secar geometri memerlukan mesh yang halus dikarenakan bentuknya yang berkurva dan tipis. Selain itu daerah tersebut adalah daerah yang mengalami perubahan nilai parameter yang sangat banyak dan cepat.

BAB 4

HASIL SIMULASI DAN ANALISA DATA

4.1. DATA HASIL FLOW SIMULATION

Simulasi dengan flow *simulation solidworks 2010* dilakukan tanpa mendefinisikan *goal* hal ini untuk menghemat waktu simulasi. Parameterparameter yang dibutuhkan bisa diperoleh dengan menggunakan *feature surface parameter* pada *result*. Hal ini sudah mencukupi karena nilai dari torsi, daya, efisiensi, dan bebrapa parameter lainnya dapat diolah dari parameter sisi masuk dan sisi keluar, kecuali torsi yang hanya bisa didapat dari permukaan impeller yang bersentuhan dengan fluida kerja.

Parameter-parameter yang diperlukan untuk mengetahui performa model turbin IFR beserta nilainya adalah sebagai berikut :

No.	N (rpm)	mg (kg/s)	N (rad/s)	у	Po1 (Pa)	Po2 (Pa)	To1 (K)	T₀2 (K)
1	10000	0,01	1047,198	1,33	152551	147435	809,46	805,61
2	10000	0,02	1047,198	1,33	152529	142133	810,49	807,5
3	10000	0,03	1047,198	1,33	152502	133395	811,84	808,36
4	10000	0,031	1047,198	1,33	152502	132399	812	808,43
5	10000	0,032	1047,198	1,33	152502	131398	812,16	808,5
6	10000	0,0325	1047,198	1,33	152503	131106	812,25	808,54
7	10000	0,0326	1047,198	1,33	152503	131062	812,26	808,55
8	10000	0,0327	1047,198	1,33	152503	130959	812,28	808,56
9	10000	0,0328	1047,198	1,33	152502	130866	812,29	808,57

Т	Cp1	Cp2	<i>p</i> 1	<i>p</i> 2
(Nm)	$(J/(kg^*K))$	$(J/(kg^*K))$	(kg/m^3)	(kg/m^3)
0,0095	1123,94	1122,95	0,635778	0,616216
0,0327	1123,95	1123,52	0,635488	0,590975
0,0777	1123,94	1123,4	0,635846	0,551018
0,083	1123,94	1123,37	0,635845	0,546426
0,0884	1123,94	1123,33	0,635845	0,541779

0,0897	1123,94	1123,31	0,635844	0,540354
0,0894	1123,94	1123,32	0,635844	0,540153
0,09	1123,94	1123,31	0,635844	0,539671
0,0906	1123,94	1123,31	0,635845	0,539232

m 1	m2	Q 1	Q 2
(kg/s)	(kg/s)	(m^3/s)	(m^3/s)
0,01	-0,01	0,015855	-0,016228
0.02	-0.02	0.031898	- 0.0338416
0,02	0,02	0,001070	-
0,03	-0,03	0,0482354	0,0544647
7.0			-
0,031	-0,031	0,0498897	0,0567549
		1000	1 1-1
0,032	-0,032	0,0515487	0,0590911
		1 10	
0,0325	-0,0325	0,0523807	0,0601741
			-
0,0326	-0,0326	0,0525475	0,0603819
	NU		-
0,0327	-0,0327	0,0527136	0,0606215
			-
`0,0328	-0,0328	0,0528802	0,0608566

Tabel 4. 1 Hasil simulasis surface parameter

4.2. ANALISA

Dari data di atas maka akan diperoleh parameter-parameter yang dibutuhkan untuk mengetahui performa model turbin, yang selanjutnya dihitung dengan menggunakan *MS. Excel* adalah sebagi berikut :

Pt (W)	Pa (W)	nm (%)	nu (%)	no (%)
43,283	9,936	22,956	56,449	12,958
67,143	34,265	51,033	21,226	10,832
117,607	81,410	69,222	13,151	9,104
124,559	86,905	69,770	12,774	8,913
131,814	92,574	70,231	12,438	8,735
135,371	93,898	69,364	12,393	8,596
135,934	93,664	68,904	12,379	8,530
136,719	94,265	68,948	12,350	8,515
137,432	94,851	69,017	12,320	8,503

mT01^(1/2)/Po1	P01/P02	N/To1^(1/2)	gH	Ns
1,87E-06	1,035	351,482	8046,834	0,155
3,73E-06	1,073	351,258	16359,082	0,129
6,01E-06	1,143	350,965	30049,729	0,101
5,79E-06	1,152	350,931	31616,196	0,099
5,98E-06	1,161	350,896	33190,479	0,097
6,07E-06	1,163	350,878	33651,336	0,096
6,09E-06	1,164	350,875	33720,535	0,096
7,11E-06	1,165	350,871	33882,525	0,096
6,13E-06	1,165	350,868	34027,161	0,096

Tabel 4. 2Data MS. Excel

Terlihat pada tabel di atas simulasi dengan laju massa **0.01 kg/s** memiliki *overall efficiency* yang paling tinggi namun memiliki *pressure ratio* paling rendah. Sebaliknya laju massa **0.0328 kg/s** memiliki *overall efficiency* paling rendah namun memiliki *pressure ratio* paling tinggi. Bila di sajikan dalam data grafik adalah sebagi berikut :

Gambar 4. 1 Turbine characteristic curve

Gambar 4.1 menunjukkan bahwa perubahan laju alir massa pada putaran yang sama, rasio tekanan turbin berubah. Seiring dengan bertambahnya laju massa yang diberikan, maka rasio tekanan juga bertambah. Rasio tekanan terus bertambah hingga kondisi choking flow tercapai pada laju massa sebesar 0.0329 kg/s dan seterusnya. Nilai parameter kecepatan pada semua laju aliran massa dapat dikatakan relatif sama, sehingga dapat dikatakan Gambar 13 turbin bekerja pada parameter kecepatan yang sama. Parameter rasio pada laju massa 0.0329 kg/s dan 0.03 kg/s bernilai kurang dari satu hal ini membuat turbin tidak berfungsi sebagai mesin ekspansi lagi namun berfungsi seperti kompressor. Fenomena ini yang disebut choking flow, aliran kejepit. Bila bekerja pada daerah ini maka rasio turbin tidak akan bertambah. Pada fenomena ini timbul aliran sonic atau bahkan supersonic, hal ini karena pada aliran terdapt nilai high mach number, kecepatan fluida yang melalui turbin lebih tinggi dari kecepatan suara (acoustic velocity) pada keadaan yang sama dengan fluida. Pada fenomena ini laju aliran massa juga tidak akan bertambah, sehingga tidak akan menambah nilai rasio tekanannya^[6]. Lihat gambar di bawah.

Gambar 4. 3 Turbine characteristic curves^[6]

Semakin tinggi kecepatannya maka akan semakin cepat *choking flow* tercapai walaupun dengan laju masa yang sama.

Gambar 4.2 memperlihatkan daerah operasi model turbin berdasarkan nilai *specific Speed* dan effisiensi. Grafik yang mewakili karakteristik berbagai macam turbin adalah sebagai berikut :

Specific speed, Q , (rad)

Gambar 4. 4 Sepcific speed vs effisiensi^[2].

Dibandingkan dengan kurva pada Gambar 4.4 maka turbin yang disimulasikan memiliki effisiensi yang rendah. Hal ini bisa dikarenakan fluida kerja gas yang dipakai pada simulasi, geometri *volute*, dan geometri impeller turbin.

Secara keseluruhan hasil simulasi dengan menggunakan *flow simulation solidworks 2010* sudah mencapai konvergen hal ini dapat diperiksa dari parameter laju massa dan laju aliran yang bernilai sama pada sisi masuk dan sisi keluar.

Berikut ini adalah gambaran secara kuantitatif aliran yang terjadi pada laju massa 0.01 kg/s :

Gambar 4. 6 Distribusi temperatur (0.01 kg/s)

Gambar 4.7 Distribusi mach number (0.01 kg/s)

Berikut ini adalah gambaran secara kuantitatif aliran yang terjadi pada laju massa 0.328 kg/s :

Gambar 4. 8 Distribusi tekanan (0.0328 kg/s)

Gambar 4. 10 Distribusi mach number (0.0328 kg/s)

Pada Gambar 4.5 dan Gambar 4.8 terlihat tekanan pada sisi masuk lebih besar dari tekanan pada sisi keluar, yang menunjukkan terjadi ekspansi. Secara kualitatif

dapat dilihat bahwa rasio tekanan pada laju massa 0.0328 kg/s lebih besar dari rasio tekanan pada laju massa 0.01 kg/s.

Pada Gambar 4.6 dan Gambar 4.9 terlihat beda temperatur sisi masuk dengan sisi keluar sangat kecil. Faktor ini yang menyebabkan effisiensi isotermik turbin bernilai kecil selain faktor beda tekanan.

Pada Gambar 4.7 dan Gambar 4.10 dapat dilihat aliran tidak memiliki *high mach number*. Nilai *mach number* yang paling besar berada disekitar impeller.

BAB 5

KESIMPULAN

Hal-hal yang dapat disimpulkan dari simulasi turbin *inward flow radial* pendekatan model IHI RHB 32 denganm menggunakan *flow simulaton solidworks* 2010 adalah sebagai berikut :

- Efisiensi maksimum turbin pada putaran 10000 rpm dicapai pada laju massa 0.01kg/s.
- 2. Efisiensi *overall* maksimum turbin pada putaran 10000 rpm adalah sebesar 12.958 %.
- Daya yang dihasilkan turbin pada putaran 10000 rpm adalah sebesar 9.936 W.
- 4. Pada putaran 10000 rpm turbin bekerja pada laju massa 0.01 kg/s.
- 5. *Flow simulation solidworks 2010* tidak dapat digunakan untuk simulasi rotasi pada keadaan aliran dengan *high mach number*.
- 6. Coking flow terjadi pada laju massa lebih dari 0.0328 kg/s.

DAFTAR PUSTAKA

- Lakshminarayana, Budugur. "Fluid Dynamics And Heat Transfer Of Turbomachinery". John Wiley & Sons, Inc. United State of America. 1996.
- [2] S. R. Gorla, Rama, Aijas A. Khan. "*Turbomachinery Design And Theory*". Marcel Dekker, Inc. United State of America. 2003.
- [3] S. L. Dixon. "Fluid Mechanics And Thermodynamics Of Turbomachinery". Butterworth-Heinemann. 1998.
- [4] Giampaolo, Tony. "Gas turbine handbook: principles and practice. 4th ed". Fairmont Press, Inc. 2009.
- [5] "Manual Book GT85-2 TWO SHAFT GAS TURBINE". TQ International.
- [6] Wright, Terry. "Fluid machinery : performance, analysis, and design". CRC Press LLC. 1999.

FULL REPORT

1. System Info

General Info

2

Product	Flow Simulation 2010 0.0. Build: 1063
Computer name	MPW_LAPTOP
User name	Pras
Processors	Intel(R) Pentium(R) Dual CPU T3400 @
	2.16GHz
Memory	3032 MB / 2047 MB
Operating system	Professional (Build 7600)
CAD version	SolidWorks 2010 SP264370176
CPU speed	2166 MHz

	And the second sec
Model	D:\Skripsi\Model & Simulasi IHI
	RHB32\Simulasi IFR Turbine\10000 rpm
	(goals) - Rev - Gas\Turbine.SLDASM
Project name	0.01 kgs-1 (10000 rpm)
Project path	D:\Skripsi\Model & Simulasi IHI
	RHB32\Simulasi IFR Turbine\10000 rpm
	(goals) - Rev - Gas\1
Units system	SI (m-kg-s)
Analysis type	Internal
Exclude cavities without flow conditions	On
Coordinate system	Global coordinate system
Reference axis	X

INPUT DATA

Initial Mesh Settings

Automatic initial mesh: On Result resolution level: 3 Advanced narrow channel refinement: Off Refinement in solid region: Off

3. Geometry Resolution

Evaluation of minimum gap size: Automatic Evaluation of minimum wall thickness: Automatic

Computational Domain

4. Size

X min	-0.0426383193 m
X max	0.0579508943 m
Y min	-0.0560219992 m

Y max	0.050362122 m
Z min	-0.00458916656 m
Z max	0.0490580981 m

5. Boundary Conditions

2D plane flow	None
At X min	Default
At X max	Default
At Y min	Default
At Y max	Default
At Z min	Default
At Z max	Default

Physical Features

Heat conduction in solids: Off Time dependent: Off Gravitational effects: Off Flow type: Laminar and turbulent High Mach number flow: Off Humidity: Off Default roughness: 0 micrometer

6. Rotating Reference Frame

Axis of coordinate system	Z
Velocity	1047.19755 m/s

Default wall conditions: Adiabatic wall

Initial Conditions

Thermodynamic parameters	Static Pressure: 100500 Pa
	Temperature: 298.15 K
Velocity parameters	Velocity vector
	Velocity in X direction: 0 m/s
	Velocity in Y direction: 0 m/s
	Velocity in Z direction: 0 m/s
	Relative to rotating frame: Off
Concentrations	Substance fraction by mass
	Nitrogen
	0.7416
	Oxygen
	0.1647
	Carbon dioxide
	0.0547
	Argon
	0.126
	Air
	0.0264

Turbulence parameters	Turbulence intensity and length
	Intensity: 2 %
	Length: 0.00105675912 m

Material Settings

7. Fluids

Nitrogen Oxygen Carbon dioxide Argon Air

Boundary Conditions

Environment Pressure 1			
Туре	Environment Pressure		
Faces	Face <1 >		
Coordinate system	Face Coordinate System		
Reference axis	X		
Thermodynamic parameters	Environment pressure: 152500 Pa		
	Temperature: 808.15 K		
Concentrations	Substance fraction by mass		
	Nitrogen		
	1		
	Oxygen		
	0		
	Carbon dioxide		
	0		
	Argon		
	0		
	Air		
	0		
Turbulence parameters	Turbulence intensity and length		
	Intensity: 2 %		
	Length: 0.00105675912 m		
Boundary layer parameters	Boundary layer type: Turbulent		
Outlet Mass Flow 1			

Туре	Outlet Mass Flow
Faces	Face <1 >
Coordinate system	Face Coordinate System
Reference axis	X
Flow parameters	Flow vectors direction: Normal to face
	Mass flow rate normal to face: 0.01 kg/s
	Relative to rotating frame: No
	Inlet profile: 0

Real Wall 1

Туре	Real wall
Faces	Face <1 >
	Face <1 >
Coordinate system	Global coordinate system
Reference axis	X

Calculation Control Options

8. Finish Conditions

Finish conditions	If one is satisfied
Maximum travels	4
Goals convergence	Analysis interval: 0.5

9. Solver Refinement

Refinement: Disabled

10. Results Saving

Save before refinement	On

11. Advanced Control Options

Flow Freezing

Flow freezing strategy Disabled

RESULTS

General Info

Iterations: 130 CPU time: 829 s

12. Log

Mesh generation started	06:17:02, Jan 04
Mesh generation normally finished	06:18:05, Jan 04
Preparing data for calculation	14:32:52, Jan 04
Calculation started 0	14:33:32, Jan 04
Calculation has converged since the following	14:50:14 , Jan 04
criteria are satisfied: 129	
Goals are converged 129	
Calculation finished 130	14:50:21 , Jan 04

Calculation Mesh

13. Basic Mesh Dimensions

Number of cells in X	16
Number of cells in Y	16
Number of cells in Z	8

14. Number Of Cells

Total cells	43453
Fluid cells	15434
Solid cells	9714
Partial cells	18305
Irregular cells	0
Trimmed cells	147

Maximum refinement level: 4

Goals

Name	Unit	Value	Progress	Use in	Delta	Criteria
	-		1	convergenc		
	1000			e	1	

2 1

Min/Max Table

Name	Minimum	Maximum
Relative Pressure [Pa]	45272.3	52568.5
Pressure [Pa]	145772	153069
Temperature [K]	802.354	809.658
Velocity [m/s]	0	133.079
X – Component of Velocity	-96.9168	87.5436
[m/s]		
Y – Component of Velocity	-85.5934	111.72
[m/s]		
Z – Component of Velocity	-65.7261	85.2676
[m/s]		
Fluid Temperature [K]	802.354	809.658
Cartesian X [m]	-0.0424796	0.0577258
Cartesian Y [m]	-0.0559158	0.0500513
Cartesian Z [m]	-0.00347106	0.0490046
Phi (cylindrical) [rad]	0.000171431	6.28297
Radius r (cylindrical) [m]	0.000208918	0.0748118
Z-axis (cylindrical) [m]	-0.00347106	0.0490046
Phi (spherical) [rad]	0.000171431	6.28297
Theta (spherical) [rad]	-0.329914	1.55835
Position Vector R (spherical)	0.00231857	0.0766722
[m]		

Total Pressure [Pa]	145775	155203
Dynamic Pressure [Pa]	0	5529.08
Mach Number []	0	0.233503
Friction Coefficient []	0	1.29378
Shear Stress [Pa]	0	455.926
Axial Velocity [m/s]	-65.7261	85.2676
Radial Velocity [m/s]	-67.8874	49.6428
Circumferential Velocity [m/s]	-69.7251	128.413
Circumferential Velocity RRF	-77.6521	81.3946
[m/s]		
Peripheral Velocity [m/s]	0.218778	78.3428
Relative Velocity (M*) []	0	0.252367
Normal Velocity [m/s]	-133.079	133.079
Tangential Velocity [m/s]	0	133.079
Vorticity [1/s]	55.4006	139118
Velocity RRF [m/s]	0	101.912
X – Component of Velocity	-78.5548	67.3074
RRF [m/s]		
Y – Component of Velocity	-68.2272	81.0838
RRF [m/s]	N V	A
Z – Component of Velocity	-65.7261	85.2676
RRF [m/s]		
Reference Pressure [Pa]	100500	100500
Stanton Number []	0	0
Heat Transfer Coefficient	0	0
[W/m^2/K]		
Surface Heat Flux [W/m ²]	0	0
Heat Transfer Coefficient	0	0
Internal [W/m ² /K]		
Reference Fluid Temperature	802.571	809.43
Reference Fluid Temperature Internal [K]	802.571	809.43
Reference Fluid Temperature Internal [K] Total Temperature [K]	802.571 802.354	809.43 813.528
Reference Fluid Temperature Internal [K] Total Temperature [K] Density [kg/m^3]	802.571 802.354 0.609369	809.43 813.528 0.639493
Reference Fluid Temperature Internal [K] Total Temperature [K] Density [kg/m^3] Turbulent Viscosity [Pa*s]	802.571 802.354 0.609369 3.01673e-12	809.43 813.528 0.639493 0.00973961
Reference Fluid Temperature Internal [K] Total Temperature [K] Density [kg/m^3] Turbulent Viscosity [Pa*s] Specific Heat (Cp) [J/(kg*K)]	802.571 802.354 0.609369 3.01673e-12 1121.66	809.43 813.528 0.639493 0.00973961 1124.32
Reference Fluid Temperature Internal [K] Total Temperature [K] Density [kg/m^3] Turbulent Viscosity [Pa*s] Specific Heat (Cp) [J/(kg*K)] Dynamic Viscosity [Pa*s]	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 5	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 6.51127
Reference Fluid TemperatureInternal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137
Reference Fluid TemperatureInternal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 2.0017404
Reference Fluid TemperatureInternal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 2.00041.07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.002520205
Reference Fluid TemperatureInternal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985
Reference Fluid TemperatureInternal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985
Reference Fluid Temperature Internal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []Argon Mass Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07 -6.77156e-07 1.41870-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985 0.00133832 0.00280405
Reference Fluid Temperature Internal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []Argon Mass Fraction []Air Mass Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07 -6.77156e-07 -1.41879e-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985 0.00133832 0.000280406
Reference Fluid Temperature Internal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []Argon Mass Fraction []Air Mass Fraction []Nitrogen Volume Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07 -6.77156e-07 -1.41879e-07 0.996886	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985 0.00133832 0.000280406 1 0.00153200
Reference Fluid Temperature Internal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []Argon Mass Fraction []Air Mass Fraction []Nitrogen Volume Fraction []Oxygen Volume Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07 -6.77156e-07 -1.41879e-07 0.996886 -7.74952e-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985 0.00133832 0.000280406 1 0.00153288 0.000270147
Reference Fluid Temperature Internal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []Argon Mass Fraction []Air Mass Fraction []Nitrogen Volume Fraction []Oxygen Volume Fraction []Oxygen Volume Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07 -6.77156e-07 -1.41879e-07 0.996886 -7.74952e-07 -1.87128e-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985 0.00133832 0.000280406 1 0.00153288 0.000370147
Reference Fluid Temperature Internal [K]Total Temperature [K]Density [kg/m^3]Turbulent Viscosity [Pa*s]Specific Heat (Cp) [J/(kg*K)]Dynamic Viscosity [Pa*s]Prandtl Number []Nitrogen Mass Fraction []Oxygen Mass Fraction []Carbon dioxide Mass Fraction []Argon Mass Fraction []Air Mass Fraction []Nitrogen Volume Fraction []Oxygen Volume Fraction []Carbon dioxide Volume Fraction []Oxygen Volume Fraction []	802.571 802.354 0.609369 3.01673e-12 1121.66 3.49757e-05 0.714599 0.996051 -8.85154e-07 -2.93964e-07 -6.77156e-07 -1.41879e-07 0.996886 -7.74952e-07 -1.87128e-07	809.43 813.528 0.639493 0.00973961 1124.32 3.51511e-05 0.715137 1 0.0017494 0.000580985 0.00133832 0.000280406 1 0.00153288 0.000370147

Air Volume Fraction []	-1.37254e-07	0.000271493
Stagnation Density [kg/m^3]	0.609376	0.645495
Fluid Thermal Conductivity	0.0549067	12.2113
[W/(m*K)]		
Turbulent Time [s]	1.63189e-06	0.629419
Turbulent Length [m]	3.40557e-06	0.00210115
Turbulent Intensity [%]	0.201421	1000
Turbulent Energy [J/kg]	7.81038e-06	648.385
Turbulent Dissipation [W/kg]	1.5343e-05	1.01581e+08
Wall Temperature [K]	802.328	815.207

FULL REPORT

15. System Info

Product	Flow Simulation 2010 0.0. Build: 1063
Computer name	MPW_LAPTOP
User name	Pras
Processors	Intel(R) Pentium(R) Dual CPU T3400 @
	2.16GHz
Memory	3032 MB / 2047 MB
Operating system	Professional (Build 7600)
CAD version	SolidWorks 2010 SP293468160
CPU speed	2166 MHz

16. General Info

Model	D:\Skripsi\Model & Simulasi IHI
	RHB32\Simulasi IFR Turbine\10000 rpm
	(goals) - Rev - Gas\Turbine.SLDASM
Project name	0.0328 kgs-1 (10000)
Project path	D:\Skripsi\Model & Simulasi IHI
	RHB32\Simulasi IFR Turbine\10000 rpm
	(goals) - Rev - Gas\5
Units system	SI (m-kg-s)
Analysis type	Internal
Exclude cavities without flow conditions	On
Coordinate system	Global coordinate system
Reference axis	X

INPUT DATA

Initial Mesh Settings

Automatic initial mesh: On Result resolution level: 3 Advanced narrow channel refinement: Off Refinement in solid region: Off

17. Geometry Resolution

Evaluation of minimum gap size: Automatic Evaluation of minimum wall thickness: Automatic

Computational Domain

18. Size

X min	-0.0426383193 m
X max	0.0579508943 m
Y min	-0.0560219992 m

Y max	0.050362122 m
Z min	-0.00458916656 m
Z max	0.0490580981 m

19. Boundary Conditions

2D plane flow	None
At X min	Default
At X max	Default
At Y min	Default
At Y max	Default
At Z min	Default
At Z max	Default

Physical Features

Heat conduction in solids: Off Time dependent: Off Gravitational effects: Off Flow type: Laminar and turbulent High Mach number flow: Off Humidity: Off Default roughness: 0 micrometer

20. Rotating Reference Frame

Axis of coordinate system	Z
Velocity	1047.19755 m/s

Default wall conditions: Adiabatic wall

Initial Conditions

Thermodynamic parameters	Static Pressure: 100500 Pa
rnemocynamic parameters	Transactores 200 15 V
	Temperature: 298.15 K
Velocity parameters	Velocity vector
	Velocity in X direction: 0 m/s
	Velocity in Y direction: 0 m/s
	Velocity in Z direction: 0 m/s
	Relative to rotating frame: Off
Concentrations	Substance fraction by mass
	Nitrogen
	0.7416
	Oxygen
	0.1647
	Carbon dioxide
	0.0547
	Argon
	0.126
	Air
	0.0264

Turbulence parameters	Turbulence intensity and length
	Intensity: 2 %
	Length: 0.00105675912 m

Material Settings

21. Fluids

Nitrogen Oxygen Carbon dioxide Argon Air

Boundary Conditions

Environment Pressure 1	
Туре	Environment Pressure
Faces	Face <1 >
Coordinate system	Face Coordinate System
Reference axis	X
Thermodynamic parameters	Environment pressure: 152500 Pa
	Temperature: 808.15 K
Concentrations	Substance fraction by mass
	Nitrogen
	1
	Oxygen
	0
	Carbon dioxide
	0
	Argon
	0
	Air
	0
Turbulence parameters	Turbulence intensity and length
	Intensity: 2 %
	Length: 0.00105675912 m
Boundary layer parameters	Boundary layer type: Turbulent

Outlet Mass Flow 1

Туре	Outlet Mass Flow
Faces	Face <1 >
Coordinate system	Face Coordinate System
Reference axis	X
Flow parameters	Flow vectors direction: Normal to face
	Mass flow rate normal to face: 0.0328 kg/s
	Relative to rotating frame: No
	Inlet profile: 0

Real Wall 1

Туре	Real wall
Faces	Face <1 >
	Face <1 >
Coordinate system	Global coordinate system
Reference axis	X

Calculation Control Options

22. Finish Conditions

Finish conditions	If one is satisfied
Maximum travels	4
Goals convergence	Analysis interval: 0.5

23. Solver Refinement

Refinement: Disabled

24. Results Saving

Save before refinement	On

25. Advanced Control Options

Flow Freezing

Flow freezing strategy Disabled

RESULTS

General Info

Iterations: 184 CPU time: 1151 s

26. Log

Mesh generation started	19:58:24 , Jan 04
Mesh generation normally finished	19:59:42, Jan 04
Preparing data for calculation	19:59:47, Jan 04
Calculation started 0	20:00:26 , Jan 04
Calculation has converged since the following	20:23:52 , Jan 04
criteria are satisfied: 183	
Goals are converged 183	
Calculation finished 184	20:24:03, Jan 04

Calculation Mesh

27. **Basic Mesh Dimensions**

Number of cells in X	16
Number of cells in Y	16
Number of cells in Z	8

Number Of Cells *28*.

Total cells	43453
Fluid cells	15434
Solid cells	9714
Partial cells	18305
Irregular cells	0
Trimmed cells	147

Maximum refinement level: 4

Goals

Name	Unit	Value	Progress	Use in	Delta	Criteria
	-		1	convergenc		
	14			е	14	

Min/Max Table

Min/Max Table					
Name	Minimum	Maximum			
Pressure [Pa]	119340	163321			
Temperature [K]	772.796	811.188			
Velocity [m/s]	0	269.586			
X – Component of Velocity	-228.883	176.581			
[m/s]					
Y – Component of Velocity	-209.793	221.241			
[m/s]					
Z – Component of Velocity	-119.341	244.357			
[m/s]					
Fluid Temperature [K]	772.796	811.188			
Mach Number []	0	0.482218			
Shear Stress [Pa]	0	3214.02			
Velocity RRF [m/s]	0	274.302			
X – Component of Velocity	-214.002	167.945			
RRF [m/s]					
Y – Component of Velocity	-192.713	185.447			
RRF [m/s]					
Z – Component of Velocity	-119.341	244.357			
RRF [m/s]					
Heat Transfer Coefficient	0	0			
[W/m^2/K]					

Surface Heat Flux [W/m ²]	0	0
Density [kg/m^3]	0.498694	0.684229

