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ABSTRACT 

Electroencephalography (EEG) is recording of the electrical signals on the scalp. These 

signals come from sources of activity within the brain; however it can be difficult to determine 

where the sources originate from just by looking at the signals. Through signal processing, these 

EEG signals can be analyzed and displayed as more useful information. This research explored 

the evolution of EEG (Brain-waves) topography. The aim of this research was to extract the 

origins of brain-waves within the brain from EEG data and develop an algorithm to analyze and 

display this information. This was done in the MATLAB environment by creating: a working 

software to display and pre-process multichannel EEG data; software/algorithms that could 

localize sources of EEG within the brain; and a clinician-friendly GUI block. Neural networks 

are a supervised machine learning technique that can be used to train a system based on 

previously seen data. Using this approach, it is possible to accurately extract signal positions 

within the brain. 
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Introduction 
Brain-wave analysis is the process of 

studying and analyzing the electrical activity 

given off by the brain. It is an ongoing study 

with new advances every few years. 

Currently, there are many techniques that can 

be used to analyze the activity of the brain 

[1]. EEG is a method for measuring electrical 

impulses given off by the brain. The EEG 

signals are measured by placing a series of 

sensors at set positions on the scalp. This is a 

non-invasive and relatively cheap technique 

to perform, and as such, will be the technique 

used for the analysis. 

Source localization techniques are 

employed to extract the source locations 

from a set of measuring devices. There are 

many techniques which use either Magnetic 

Resonance Imaging (MRI) data or EEG data 

to process and locate source origins [1]. 

However, most of these techniques use an 

iterative method to locate the source origins. 

Although the source locations are considered 

quite accurate, the time taken to produce 

these results is not desired when looking at a 

very large set of data. As such, a neural 

network was used to dramatically reduce the 

time, as the iterative process is done before 

hand in the training step. 

Neural Networks are a supervised 

training method in which the input and 

output data is known, and a network is 
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trained to look at that data and learn how to 

produce the output based on the input. For a 

new set of data with known inputs, but 

unknown outputs, the neural network will 

guess the output based on what it has 

previously seen. The initial learning stage 

requires a lot of memory and time to process 

if there is a large amount of training data. 

However, once trained, the network will be 

able to reproduce the output given an input 

within a very short time. This is ideal as once 

it is trained it will not need to be trained again 

unless the number of signals being input is 

changed. 

There are already quite a few 

programs which can locate source origins, 

such as EEGLab [2] and ICALab [3-7]. 

However, these programs require a higher 

level of understanding to use effectively. The 

main objective of this research is to identify 

sources of activity within the brain using 

EEG data, and to display the position of brain 

activity and observe how those sources move 

over a period of time. This is to all be done 

in a simple and easy to use Graphical User 

Interface (GUI). In the research [8] the 

possibilities that lie within the domain of 

Brain-Computer Interfaces were investigated 

and explored, using friendly equipment that 

has recently become available. The Brain-

Computer Interfaces (BCI) is a driving force 

for utilizing EEG that is the process of 

recording brain activity from the scalp using 

electrodes. The artificial neural networks 

(ANNs) proposed brain signal processing 

which is analyzed to classify EEG and MEG 

for brain images [9]. EEG data was divided 

into frequency bands and indicated that the 

low initial power increase mainly improved 

the frequency [10]. The performance of EEG 

analysis software used in clinical and 

research settings has been examined by using 

BCI but the forecast has some errors [11]. 

The overall goal at this stage of the 

research is to implement an algorithm to 

locate the origins of brain activity, and 

display the data as it moves over time. This 

research will only look at simulated data. 

The organization of the rest of the 

research is as follows. Section 2 details the 

methods employed in this research, viz., head 

modeling, electrode positioning, neural 

network training, and GUI development. 

Results are presented in section 3. Discussion 

and future work are presented in section 4. 

Finally, Section 5 contains a conclusion. 

 

Methods  
This research will look at the 

localization of sources from EEG signals. 

This will be done by first simulating the 

potential voltages on the scalp of a source 

within the brain using a head model. Then by 

using the simulated potentials we pass that 

data to a learning algorithm to train a 

network. 

Head model 

 

 
 

Fig. 1. Three concentric shell head model. 

 

Fig. 1 shows the head model that will 

be used for this research. It is a three 

concentric shell model, in which the shells 

are the brain, the skull, and the scalp. 

The voltage on the scalp is calculated as 

 

V(𝜃, ∅)  =  
1

4𝜋𝜎
   

 

(𝑚𝑟𝑛𝑝𝑛
0(cos𝜃) + 𝑚𝑡𝑃𝑛

1(cos𝜃)cos∅))        (1) 

 

Where  𝑑𝑛  is given as 
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𝑑𝑛 = (𝑛 + 𝑛𝑒 + 𝑒) (
𝑛𝑒

𝑛+1
+ 1 + 1(1 −

𝑒)(𝐹1 − 𝐹2)) − 𝑛(1 − 𝑒)2 𝐹1

𝐹2
                 (2) 

 

And  𝐹1 and  𝐹2 are calculated as 

 

𝐹1 = (
𝑟1

𝑅
)

2𝑛+1
   and 

 𝐹2 = (
𝑟2

𝑅
)

2𝑛+1
                   (3) 

 

In equations (1) – (3), b is the eccentricity of 

dipole location, 𝑚𝑟 is the radial component 

of the dipole moment, 𝑚𝑡  is the tangential 

component of the dipole moment, 𝑟1  is the 

radius of the sphere representing the brain, 

𝑟2 is the outside radius of the shell 

representing the skull, R is the outside radius 

of the shell representing the scalp, 𝑒   is the 

brain/skull conductivity ratio (=80),  𝜎 is the 

conductivity of the brain, and 𝑃𝑛
𝑖 denotes the 

legendry polynomial. Equations (1) - (3) 

calculate the voltage at point P (Fig. 2.), 

given a dipole source position in the z-axis. 

As sources are said to be independent of each 

other, multiple dipoles can be represented by 

first calculating the potential at certain points 

for each source, then simply adding them 

together. 

 

 

 
Fig. 2. Diploe M is used to calculate the 

voltage at scalp position P. 

 

2.2 Electrode positioning 

 
Fig. 3. 10-20 system of electrode placement. 

 

The point P is the position of the 

electrodes on the scalp. These points are 

predetermined positions set by an 

international standard. The electrode 

placement system used for this report is the 

10-20 system of electrode placement. In this 

system, electrodes are placed at 10% and 

20% intervals as shown in Fig. 3. There are 

other types of electrode placement systems 

available which increase the number of 

electrodes used, such as the 10-10 system 

where electrodes are placed at 10% intervals 

of each other. This increases the number of 

measurements resulting in more accurate 

source positions. However, the 10-20 system 

was chosen due to computational 

complexities. 

Neural networks 

Fig. 4 shows the process flow 

diagram of the neural network. The neural 

network was trained using source parameters 

generated by the head model. A series of 

fixed dipole positions representing the ocular 
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dipoles, as well as dipole moment parameters 

that were randomly generated, were used to 

calculate the scalp potentials. Using the 

calculated voltages as inputs, they were fed 

into a neural network with their respective 

original source parameters used as target 

values. The network was trained using the 

Neural Network Toolbox in MATLAB until 

it was sufficiently trained to be able to 

accurately guess the source location, given a 

set of scalp voltages. The neural network 

training involved training a network for a set 

of randomized data, as well as testing on 

another generated test data set in order to the 

test the generalization of the network. 

A large number of training points are 

required to train the network for as many 

possibilities as possible. An increase in 

training points resulted in a better trained 

network. However, increasing the training 

points too much would lead to a longer time 

spent training as well as using up more 

memory. 

As neural networks themselves 

utilize various algorithms, various 

parameters and training algorithms had to be 

decided upon. Fig. 5 shows a block diagram 

of a neural network. Here there are three 

layers: the input layer, the hidden layer, and 

the output layer. During training the input 

and output layers are known, and the hidden 

layers are unknown. The hidden layer 

contains a set of weights (neurons) that is 

updated for each iteration of the input and 

output data. As these weights are updated, a 

more accurate solution is achieved. Initially, 

the choice of the number of neurons within 

each hidden layer, as well as the number of 

layers, had to be decided upon. As the 

parameters of neural networks vary from 

application to application, using existing 

literature as a starting point and performing 

trial-and-error tests was the most efficient 

way of choosing these parameters. As such, 

two hidden layers with 30 nodes in each layer 

was deemed efficient. 

 Various tests were undertaken in 

order to analyze the effectiveness of 

changing the number of layers and neurons. 

By increasing the number of hidden layers, 

the computational power of the network 

increases resulting in a more accurate 

solution at the cost of computational time and 

memory requirement. In this research, a two 

hidden layer network was deemed to be 

sufficient with little error. Increasing the 

number of layers did not produce a network 

that was more generalized for test data, hence 

it was deemed unnecessary to create a more 

complex network that would require more 

computational time. A similar result was 

found with the number of neurons. Too few 

neurons would not produce a network that 

would accurately calculate the source 

positions, whereas increasing the number of 

neurons above 30 did not produce a network 

that performed significantly better.  

 The Neural Network Toolbox offers 

a range of training algorithms, including the 

traditional gradient descent method. Four 

training algorithms were investigated: the 

LM algorithm, gradient descent, Bayesian 

regularization and one step secant 

backpropagation. The LM algorithm and 

gradient descent were accurate and fast at 

converging for smaller sets of data, but failed 

to generalize for larger sets of data that were 

used in the training. Bayesian regularization 

was the strongest algorithm that provided the 

most generalized solution, but took the 

longest to converge. One step secant 

backpropagation provided the fastest 
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Fig. 4. Source location process flow diagram. 

 

 

converging and decent generalization with 

large sets of data and was deemed to be the 

most effective in this research, as it provided 

similar generalization to Bayesian 

regularization for the same training data. 

GUI development 

The GUI was developed using 

MATLAB’s graphical development package 

called GUIDE. The development 

environment has very basic functions which 

can be expanded with the use of the JAVA 

script language. However, due to having no 

knowledge of the JAVA language, the entire 

GUI was developed using GUIDE. 

 

 

 
 

Fig. 5. Neural network architecture. 
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Fig. 6. Contour map of voltages calculated 

on the scalp given a source position. a) 

Dipole located in the center of the head with 

only a radial component. b) The rotation of 

(a) to a random point within the brain. c) 

Dipole located in center of the head with only 

a tangential component. d) the rotation of (c) 

to a random point within the brain. 

 

Results 
Head model implementation 

Various tests were undertaken to 

check the accuracy of the head model. The 

first step was to generate scalp voltage at any 

point in the scalp of the head. This was done 

by implementing the formula into a 

MATLAB file that calculated the voltage at 

a point given the azimuth and latitude angles. 

To check the linear property of the voltage, a 

simple test was undertaken by doubling the 

magnitude of the dipole moment. The result 

was a voltage that was double the original 

result, which proved that the scalp voltage 

implementation was correct. 

The equation for the head model 

requires the dipole to be situated on the z-axis 

as shown in Fig. 2. This means that we must 

rotate a source position from any point with 

the brain to the z-axis in order to calculate the 

potential given off by the source at the scalp. 

To do this the rotation matrices were used. 

 𝑹𝒛 rotates the source to the 𝒛 − 𝒙 plane. 

 𝑹𝒚 rotates the source to the z-axis. 

 𝑹𝒛𝒙 rotates the sources orientation to the z𝒙 

plane. 

Fig. 6 a and b shows a dipole placed 

in the center of the brain with only a radial 

component, and the same dipole rotated to a 

different position in the brain, respectively. 

As the two source dipoles are directed 

perpendicular to the scalp, the contour map 

of the calculated voltage was identical as 

expected. The distorted image was due to the 

mapping of a 3-dimensional sphere on a 2- 

dimensional plane. 

Another test was to place a tangential 

dipole that was also centered. As shown in 

Fig. 6c, the expected positive voltages on one 

side of the head are mirrored by the negative 

voltages on the other side of the head, which 

symbolizes the negative voltages below the 

dipole. 

Neural network 

The Neural Network Toolbox 

provided by MATLAB was used to train a 

network to locate source positions given a set 

of potentials. The training was done on an 

Intel i7 2.8 GHz processor with 8GBs of 

memory. The algorithm used to train the 

network was the one-step secant, as the 

performance and error was comparable to 

that of Bayesian regularization for 

generalization, and was within acceptable 

limits. 

In this research, 30,000 random 

points within the brain were generated. These 

points were used as the target data for the 

neural network. The data was also fed 

through the head model algorithm to create 

30,000 sets of scalp potentials. Each set of 

scalp potentials contained 19 potentials 

situated at the electrode positions shown in 

Fig. 4. The set of potential data was then used 

as the input data of the neural network. 

An early stopping method was applied to the 

training phase in order to stop the 

localization from getting worse. An extra 200 

source locations and scalp potentials were 

also generated to be used as test data. This 

data was fed through the network at each 
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iteration and checked to see if the accuracy 

got better over time.   

Localization accuracy 

The accuracy of the created network 

was done by using a bipolarity test. The test 

was done by taking the measured potential at 

one point and comparing it with the 

calculated potential at the same point. The 

residual variable (RV) between the measured 

and calculated points is determined by 

  

                   𝑅𝑉 =
∑ (𝑣𝑚,𝑖−𝑣𝑐,𝑖)

2𝑁
𝑖=1

∑ (𝑣𝑚,𝑖)
2𝑁

𝑖=1

                 (4)   

 

where 𝑉𝑚,𝑖  is the measured potential at scalp 

electrode ‘i’, 𝑉𝑐,𝑖  is the calculated potential 

at scalp electrode ‘i’, and N is the number of 

electrodes available. The optimal value for 

the residual variable would be 0, indicating 

that the original signal was able to be recre-

ated with 100 percent accuracy. However, 

this is not possible in real world situations. 

The dipolarity is calculated from RV as 

  

             

Dipolarity (D) = √1 − 𝑅𝑉           (5) 

 

Table 1. The location accuracy of a set of 

sources. 

No. Dipolarity 

1 98.44% 

2 97.08% 

3 92.29% 

4 79.06% 

5 98.10% 

6 99.70% 

7 99.36% 

8 95.32% 

9 91.25% 

Average 94.51% 

 

Table 1 shows the location accuracy of a set 

of sources found within simulated EEG data, 

after training a network using 30,000 training 

points within the entire brain using an intel i7 

2.8GHz with 8GB of memory. It was shown 

that an average accuracy of 94.51% is 

achieved. 

 

Movement of dipole over time 

using GUI 

 

 

Fig. 7. Movement of diode over time. 

 

Fig. 7 shows the GUI created to 

show how a source moves within the brain 

over time. Here, 10 dipole locations were 

extracted from a set of simulated EEG data 

and displayed within the graph. The playback 

feature was implemented to allow the user to 

view the movement of the dipole at any given 

time. 

 
Discussion and Future Work 

As shown in the results, the head 

model was successfully implemented and 

evaluated. Voltages at electrodes based on 

the international 10-20 system could be 

calculated for any arbitrarily positioned and 

orientated dipole. 

Following the generation of scalp 

potentials, a neural network was successfully 

trained and tested to calculate source 

positions on a previously unseen set of 

potential data. The accuracy of the network 

was acceptable; however, with more training 

data, a more accurate solution could be 

created. 

As of now, this research only deals 

with simulated data, as EEG data is currently 

not available. Upon receiving real EEG data, 

it will then be possible to continue this 

research to process the EEG data and show, 

using images, how the eyes move over time,  
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as well as how the sources within the brain 

move over time. Graphical representation is 

crucial as it allows people to see the 

information without having to look at large 

volumes of EEG data. Another objective is to 

compare the localization accuracy with 

existing techniques. 

 

Conclusion 
It was shown that we were able to 

create a network which was able to 

accurately guess the position of sources from 

simulated EEG data. We found that using 

30,000 sets of training data to look for 1 

source within the brain resulted in 95% 

accuracy of the source, which can be further 

increased with more training data. 

Upon further research, being able to 

implement a more realistic head model which 

describes the relationship between the source 

and electrode sensors is recommended. 
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