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ABSTRACT 

            The Birnbaum-Sanders (BS) distribution was first introduced in 1969 by Birnbaum and 

Saunders as a combination of inverse Gaussian distributions with a length-biased inverse 

Gaussian distribution. Later, in 2008, Ahmed et al. introduced a new parametrization of the BS 

distribution based on Birnbaum-Sanders, and they also proposed a parameter estimation using 

the method of moments and regression-quantile estimation. In this paper, we emphasize the 

Birnbaum-Sanders distribution presented by Ahmed et al., and we develop an EM-algorithm to 

estimate two unknown parameters of this distribution. The EM-algorithm is a general method 

used to estimate the parameters when the probability density function is complicated and it is 

the best alternative for the estimation of a mixture distribution. We assumed that this problem 

has a missing value, and maximized complete data log-likelihood function instead log-

likelihood function because it is analytically easier. Moreover, some simulation experiments 

were conducted in order to examine the performance of the proposed parameter estimation, and 

it was observed that the performances were quite satisfactory. Specifically, the MSE, variance 

and bias tend to decrease as n increases. 

 

Keywords: Inverse Gaussian distribution; Length biased inverse Gaussian distribution; 

Maximum likelihood methods; Lifetime distribution; Parametrization 

 

Introduction 
The Birnbaum-Sanders distribution 

is a positively-skewed model, which was 

originally proposed by Birnbaum and 

Saunders [1] as a failure time distribution for 

fatigue failure caused under cyclic loading. 

The model was also established under the 

assumption that failure is due to the 

development and growth of a dominant 

crack. This distribution is the so- called two-

parameter Birnbaum-Saunders distribution 

(herein after called the BS distribution). It is 

the mixture of the inverse Gaussian (IG) 

distribution and length-biased inverse 

Gaussian (LBIG) distribution with the 

weight parameter equal to 0.5.  Birnbaum 

and Saunders [2] presented a theoretical and 

practical review of applying this distribution 

with fatigue data. Desmond [3, 4] proposed a 

more general derivation based on a biological 

model and strengthened the physical 

justification for the use of this distribution. 

Ahmed et al. [9] introduced a new 

parametrization of BS distribution based on 

that originally provided in Birnbaum and 

Saunders [1]. Essentially, this re-

parametrization fits the physics of studying 

phenomena since the proposed parameters 

characterize the thickness of the sample and 
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the nominal treatment loading on the sample, 

respectively. The usual shape and scale 

parameters of the distribution do not allow 

this physical interpretation. Ahmed et al. [9] 

also presented the relationship between the 

usual parameters and the proposed 

parameters. For addition details concerning 

the BS distribution refer to Cordeiro and 

Lemonte [14], Kundu et al. [13], Lisawadi 

[11],  Balakrishnan et al. [10], Ng et al. [8]. 

The relevance of the probability 

density function (pdf.) of the distributions 

mentioned above is as follows. Suppose that  

𝑋1  and 𝑋2  are the independent random 

variables such that 1 ( , )X IG    i.e., 𝑋1 

has IG distribution with the parameter 

, 0    and it has pdf 
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Fig. 1. The Birnbaum-Sanders density 

functions for 1  and different values of 

 . 

 

The variable 𝑋2 is the so-called  

complementary reciprocal of 𝑋1.  For the BS 

distribution, we considered a new random 

variable 𝑋 such that: 

X = {
X1 with  probability  1 2⁄

X2 with  probability 1 2⁄
 

Obviously, 𝑋 is a mixture of 𝑋1 and 𝑋2 and 

the pdf of 𝑋 is given by  the following 

formula: 
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Fig. 2. The Birnbaum-Sanders density 

functions for 5  and different values of 

 . 

 

It was observed that the pdf of 𝑋 is 

complicated and intractable, so for this 

problem it is difficult to find the maximum-

likelihood estimate of the unknown 

parameters. Thus, more elaborate techniques 

have to be considered. As the pdf. of the BS 

distribution can be written in a mixed form, 

the EM algorithm seems to be a natural 

choice for obtaining the maximum-

likelihood estimate of its parameters. In this 

research, we proposed the use of an 

alternative technique to estimate the two 
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unknown parameters; that is, the EM 

algorithm in the case of complete samples. 

Extensive simulation experiments were 

conducted to examine the performance of the 

proposed EM algorithm by using the R 

program. 

 

EM Algorithm 
Complete sample 
Here we discuss how to investigate 

the MLEs of the two unknown parameters of 

the BS model using the EM algorithm based 

on a complete sample, i.e., 1 2, ,..., nx x x . 

The log-likelihood function based on the 

observed sample can be expressed as: 

     1

1

1 1
, | ,..., ln ; , ; , .
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n
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We assumed that this problem had a missing 

value  1 2, ,..., nz z z , and the complete 

data set was as follows: 𝑌 = (𝑋, 𝑍), where Z 

is an indicator variable with a value of 0 or 1. 

The random variable Z takes the value 0 or 1 

depending on whether the observation X 

comes from 𝑋1 or 𝑋2, respectively. Now, we 

suppose X is the incomplete data. The 

complete data log-likelihood function of 

 1 2, ,..., ny y y , where  ,i i iy x z  for 

1,2,...,i n , is  
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We simplified the above formula. Therefore, 

the complete data log-likelihood function 

without the additive constant can be written 

as: 
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where 
1
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z z
n 

  . We can set the 

derivative of completel  to zero, and solve 

directly for   so the MLEs of  based on 

the complete sample, denoted by ̂ , and it is 

as follows: 
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denoted as ̂ , can be obtained by 

maximizing ( )g  , where 
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At the E-step of the EM algorithm, the 

"pseudo" log-likelihood function was 

obtained be replacing the missing values by 

their expectation ( );iE Z  then the "pseudo" 

log-likelihood function at the kth replication 

becomes: 
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In the M-step of the EM algorithm, we 

maximized the "pseudo" log-likelihood 

function with respect to  and  to obtain 
( 1)k 

and 
( 1)k 

, where  
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by using a numerical procedure, here we use 

the Newton-Raphson method in the R 

program. Each iteration is guaranteed to 

increase the value of ̂ and ̂ , and the 

process stops when  convergence occurs. The 

algorithm is guaranteed to converge to a local 

maximum of the likelihood function. 

 Now we discuss how to choose the 

current parameter estimates for  and  . 

First we considered the MLEs of  and  , 

when  1 2, ,..., nx x x  is a random sample 

of 𝑋1 and they will be as follows: 

1

1

1 1 4
.

2

s

s






 
  

Here   can be obtained by maximizing 

( )A  with respect to   by using the 

Newton-Raphson method in the R program, 

where: 
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Similarly, if  1 2, ,..., nx x x  is a random 

sample of 𝑋2 the MLE of  is 

1
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and the MLE of  (denoted by  ) can be 

obtained by maximizing ( )B  with respect 

to   by using the Newton-Raphson method, 

where: 
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We suggest using the simple averages of the 

MLEs of IG and LBIG distribution as the 

current parameter estimates of  and  , 

i.e.: 

(0)
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The following algorithm was used to find the 

MLEs of the unknown parameters of the BS 

distribution. 

 

Algorithm: 

Step 1: Generate a random sample  

 1 2, ,..., nx x x  following the BS 

distribution.  

Step 2: Compute  
(0)  and (0) . 

Step 3: Compute  0

ia for 1,2,...,i n  and  
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n is the number of samples, and k is the 

number of iterations. 

Step 4: Obtain 
(1) by maximizing 
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Step 5: Repeat Step 3 and Step 4, until 

convergence is achieved. 

 

Monte Carlo Simulations 
In this section, a Monte Carlo 

simulation study was conducted in order to 

appraise the performance of the proposed 

strategies for given sample sizes. All of the 

computational parts were run on R program 

version 3.2.0. 

For the computer simulations we 

considered different sample sizes n; 10, 30, 

50, 80, and different models; Model 1: 

1  , 3  , Model 2: 1  , 4  , 

Model 3: 2  , 1  , Model 4: 2  , 
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4  , Model 5: 3  , 4  , and 

Model 6: 4  , 4  . The number of 

iterations is fixed at 1,000 for each 

model. 
Regarding the simulation results, it 

was observed that the proposed EM 

algorithm exhibited quite fast 

convergence. The results are summarized 

numerically in Tables 1-6. It is clear from 

these tables, that the performance of 

estimator of  and   was more accurate as 

n increased from 10n  to 80n 

except for 2   and 1  in which case 

the biases are all close to zero for 30n  . 

For example, in Table 1, for 1  , 3 

and 10n  ,  the simulated biases of   and 

 were 0.41878 and -0.56919 respectively, 

while for 80n  the simulated biases of  

 and  are 0.14964 and -0.43316 

respectively. Similarly, the performance of 

the estimator of  and   was less accurate 

for 30n  than for 50n . For instance, 

in Table 6, for 4  , 4  and 30n

the simulated biases of   and  were 

0.03547 and -0.00166 respectively, while for 

50n  the simulated biases of   and 
were 0.02019 and -0.00006 respectively. 

It was observed that for almost all 

models, as the sample size increased the 

biases decreased and tend to zero. This 

examines the consistency properties of the 

maximum likelihood estimates. Similarly, 

the MSE is decreasing function of n and it 

approaches to zero as n  .  

 

 

 

 

 

 

 

Table 1. The average estimates, bias, the 

mean squared errors, and variance of 1   

and 3  . 
n              1    3   

10 1.41878 (0.41878) 

(0.45150)(0.27612) 

2.43081 (-0.56919) 

(1.19713)(0.87316) 

30 1.20655 (0.20655) 

(0.10558)(0.06292) 

2.52831 (-0.47169) 

(0.59358)(0.37109) 

50 1.16171 (0.16171) 

(0.06443)(0.03827) 

2.56980 (-0.43020) 

(0.41988)(0.23480) 

80 1.14964 (0.14964) 

(0.04496)(0.02256) 

2.56684 (-0.43316) 

(0.33635)(0.14873) 

 

Table 2. The average estimates, bias, the 

mean squared errors, and variance of 1   

and 4  . 

n              1    4   

10 1.45804 (0.45804) 

(0.48383)(0.27403) 

2.94080 (-1.05920) 

(1.96811)(0.84620)  

30 1.23433 (0.23433) 

(0.11309)(0.05818) 

3.23806 (-0.76194) 

(0.97893)(0.39837)   

50 1.18158 (0.18158) 

(0.06625) (0.03328) 

3.31567 (-0.68433)  

(0.72573) (0.25742) 

80 1.15155 (0.15155) 

(0.04180)(0.01884) 

3.38430 (-0.61570) 

(0.57314)(0.19405)  

 

Table 3. The average estimates, bias, the 

mean squared errors, and variance of 2   

and 1  . 

n              2    1   

10 2.20920 (0.20920) 

(0.48144)(0.43768) 

1.03321 (0.03321) 

(0.14091)(0.13981)  

30 1.95373 (-0.04627) 

(0.11423)(0.11209) 

1.07941 (0.07941) 

(0.05320)(0.04690) 

50 1.91105 (-0.08895) 

(0.06825)(0.06033) 

1.08555 (0.08555) 

(0.03388)(0.02656) 

80 1.91058 (-0.08942) 

(0.05014)(0.04214) 

1.07755 (0.07755) 

(0.02301)(0.01700) 
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Table 4. The average estimates, bias, the 

mean squared errors, and variance of 2   

and 4  . 

n              2    4   

10 2.42616 (0.42616) 

(0.52562)(0.34400) 

3.47954 (-0.52046) 

(0.69914)(0.42827) 

30 2.13451 (0.13451) 

(0.08978)(0.07169) 

3.79258 (-0.20742) 

(0.16103)(0.11801) 

50 2.06988 (0.06988) 

(0.04344)(0.03855) 

3.89238 (-0.10762) 

(0.05728)(0.04569) 

80 2.04368 (0.04368) 

(0.02384)(0.02193) 

3.91308 (-0.08692) 

(0.04282)(0.03527)  

 
Table 5. The average estimates, bias, the 

mean squared errors, and variance of 3   

and 4  . 

n              3    4   

10 3.24674 (0.24674) 

(0.36350)(0.30262) 

3.81591 (-0.18409) 

(0.17415)(0.14026)  

30 3.04985 (0.04985) 

(0.08161)(0.07912) 

3.97267 (-0.02733) 

(0.01234)(0.01159)  

50 3.02376 (0.02376) 

(0.05094)(0.05038) 

3.99315 (-0.00685) 

(0.00271)(0.00266)  

80 3.00537 (0.00537) 

(0.02924)(0.02922) 

3.99887 (-0.00113) 

(0.00024)(0.00024)   

 
Table 6. The average estimates, bias, the 

mean squared errors, and variance of 4   

and 4  . 

n              4    4   

10 4.16851 (0.16851) 

(0.36431)(0.33592) 

3.95025(-0.04975) 

(0.04014)(0.03767) 

30 4.03547 (0.03547) 

(0.11091)(0.10965) 

3.99834(-0.00166) 

(0.00056)(0.00056)  

50 4.02019 (0.02019) 

(0.06485)(0.06445) 

3.99994(-0.00006) 

(0.00000)(0.00000)  

80 4.01286 (0.01286) 

(0.04367)(0.04351) 

3.99994(-0.00006) 

(0.00000)(0.00000) 

 

 

 

 

 

 

 

Conclusion 
In this paper we have considered the 

estimation procedure of a BS distribution 

given by Ahmed et al. [9]. We have proposed 

the use of the EM algorithm to estimate the 

two unknown BS parameters. If we want to 

find the MLEs of the BS distribution by 

solving the normal equations, we need to 

solve two non-linear equations 

simultaneously. However, in the proposed 

EM algorithm, the proposed estimators were 

analytically easier to compute estimates. 

Therefore, in this case, the process of the EM 

algorithm was quite simple. The study found 

that the performance of the presented EM 

algorithm was very satisfying. Specifically, 

the MSE, variance and bias tend to zero as 
n  .  
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