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Abstract  
 

We have discussed the partition function of the Bose-Einstein condensation in parabolic trap associated to the one-
dimensional Gross-Pitaevskii equation. The partition function itself is constructed by considering all the energy levels 
of the macroscopic quantum oscillator which is similar to statistical mechanics. The solutions of the energy levels for 
this case can be derived by pursuing the method that applies the time-independent perturbation theory. In this case, the 
one-dimensional Gross Pitaevskii equation can be treated as the one-dimensional macroscopic quantum oscillator on 
condition that the nonlinearity is very small. Moreover, the analytical expression for the ground state energy can be 
obtained by applying the method. However, the higher level states were not explicitly provided. In this research we 
followed up on the former work to derive explicitly the other states in order to formulate the partition function. 
However, we did not find the closed form of the partition function since the results of nonlinear term integral could not 
form the recursion relation. As a consequence, not only should the partition function but also the Helmholtz free energy 
and entropy should be reevaluated to check their convergences.  
 
 

Abstrak 
 
Fungsi Partisi dari Kondensasi Bose-Einstein di dalam Perangkap Parabola. Kami telah membahas fungsi partisi 
dari kondensasi Bose-Einstein di dalam perangkap parabola yang dinyatakan oleh persamaan Gross-Pitaevskii satu 
dimensi. Fungsi partisi itu sendiri dirumuskan hanya dengan meninjau semua tingkat-tingkat energi dari osilator 
kuantum makroskopik yang mirip seperti di dalam mekanika statistika. Solusi-solusi dari tingkat-tingkat energi untuk 
kasus ini dapat diturunkan dengan mengikuti metode yang menggunakan teori perturbasi bebas waktu. Pada kasus ini, 
persamaan Gross-Pitaevskii satu dimensi dapat diperlakukan sebagai osilator kuantum makroskopik dengan 
menerapkan kondisi bahwa faktor nonlinearnya sangat kecil. Selain itu, perumusan analitik untuk energi tingkat dasar 
dapat diperoleh dengan menggunakan metode tersebut. Namun demikian, tingkat-tingkat eksitasinya tidak diberikan 
secara eksplisit. Saat ini, kami melanjutkan pekerjaan sebelumnya untuk menurunkan tingkat-tingkat keadaan lainnya 
supaya dapat merumuskan fungsi partisi. Akan tetapi, kami tidak mendapatkan bentuk analitik dari fungsi partisi karena 
integral dari suku-suku nonlinear tidak dapat membentuk hubungan rekursif. Akibatnya, tidak hanya fungsi partisi 
tetapi juga energi bebas Helmholtz dan entropi harus dikaji ulang untuk memeriksa sifat konvergennya. 
 
Keywords: Gross-Pitaevskii equation, partition function, quantum oscillator, thermodynamic properties 
 
 
 
1.  Introduction 
 
It has been studied that the Gross-Pitaevskii equation 
(GPE) is used as a mathematical model to consider the 
realization of Bose-Einstein condensation (BEC) by the 
experiment series in recent years. The evidence of the 
existence of BEC was initially confirmed by Anderson 
et al. and Davis et al. through two separate experimental 
results [1]. Around 1995 to 2000 the three-dimensional 
GPE was introduced as a kind of nonlinear Schrödinger 
equation (NLSE) with the anisotropic trapping potential 

while the parameter in the nonlinear term depends on 
the scattering length s-wave, which is then reduced to 
one-dimensional GPE. The trapping potential was 
chosen as an anisotropic three-dimensional harmonic 
potential which can be used to discuss the case of the 
cigar-shaped trap model. By applying the model some 
papers were published that presented numerical or 
approximation results and compared them to the other 
experimental results. For detailed discussions one can 
see Ref. [2-5]. Meanwhile, authors have also considered 
that GPE has two properties since this is due to the 
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characteristics of GPE itself. Some of them have treated 
GPE as a macroscopic quantum oscillator on the basis 
that the nonlinear term is so small [6-7]. And others 
have treated GPE as a NLSE coupled by parabolic 
potential [4,8]. However, they both concluded that the 
characteristics of solitary wave solutions do exist. 
Fortunately, one can also see some reviews on BEC 
which explain the basics of BEC in Ref. [9-10].  
 
The published papers have triggered more and better 
theoretical explorations of GPE since the followed up 
experimental results need verification or are applied for 
application developments.  During the years 2000, GPE 
has been used in discussions, not only in applied physics 
[11-16] but also in cosmology [17-20]. In GPE, the 
wave function describes the macroscopic wave function 
of the condensate having a different definition than in 
ordinary quantum mechanics when the integration over 
all space between the wave function and its conjugate is 
executed. First of all, we are interested in the question: 
“how can we get information about the physical 
quantities in thermodynamics?” The key to answer this 
question lies in the partition function which although the 
function itself has no physical meaning, yet it brings 
together all the information about the physical quantities 
in thermodynamics, for example one can derive 
Helmholtz free energy, entropy, etc. However, the 
problem is that the calculation of the partition function 
is so difficult to execute since the expression is usually 
formulated in the functional integral that needs some 
assumptions and boundary conditions, interested readers 
are welcome to see [21-26]. In this paper we introduce a 
simple way to formulate the appropriate partition 
function. To construct it, we initially explore an 
interesting case of GPE. By considering that the 
nonlinear term is ignored, the one-dimensional of GPE 
will be reduced to the ordinary Schrödinger equation in 
the presence of the harmonic oscillator potential. By 
pursuing this fact, we prove that it is possible to 
construct the appropriate partition function by using the 
approach of the one-dimensional macroscopic quantum 
oscillator.  
 
The paper of Kivshar et al. [7] presents that by 
assuming that the nonlinear term is very small, the 
ground state energy can be analytically obtained by 
applying the time-independent perturbation theory. By 
observing this fact, in order to explicitly formulate the 
other energy levels we pursue the procedures of the 
recent work in [7]. After deriving some formulations on 
the energy level of the one-dimensional GPE, we 
attempt to construct the appropriate partition function as 
in statistical mechanics. In fact, although we followed 
their procedure, we obtained different results in the 
formulation of ground state energy. This difference will 
be considered in Sec. 3 with comments and comparisons 
of the obtained result in [7]. Furthermore, we also 
provide the calculations of the Helmholtz free energy 

and entropy, and compare the results with the ordinary 
quantum oscillator. We structure the rest of the paper as 
follows: in sec 2 we review the important procedure 
based on the concepts of Kivshar et al. [7]. In this 
section we also comment on Rodriguez’s formula used 
in their procedure since the formula can result in a 
different meaning when it is used in quantum mechanics. 
We initially formulated some energy level states and 
attached the figure of their modes so that the reader can 
compare our results with theirs. Then we wrote the 
partition function based on the previous results and also 
explored some values of the integration in the nonlinear 
potential term.  
 
2. Methods 
 
In order to seek the higher modes of the macroscopic 
quantum oscillator in the case of the one-dimensional 
GPE, our concern in this section is to review and rewrite 
the method proposed by Kivshar et al. [7]. Moreover we 
used some different notations without influencing the 
essential results. The standard formulation of the three-
dimensional GPE equation is given as [4,7] 
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where 22 / ⊥≡ ωωλ zz  is the very small parameter 
obtained by dividing between the angular frequency in 
the z direction and the transverse one, and 

)/(4 2
0 maU hπ= is the parameter depending on the 

length scattering of s-wave, a . The length scattering 
can be positive or negative depending on whether the 
interaction of the particles is repulsive or attractive. In 
order to reduce the above three-dimensional GPE in Eq. 
(1), by following [7] we firstly used the following 
transformations for the coordinates and the wave 
function to become dimensionless equation as follows: 
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where zma λω⊥= /0 h defines the length of 
harmonic oscillator. After substituting Eq. (3-5) into Eq. 
(1), the dimensionless of the GPE equation becomes [7] 
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where σ only depends on the sign of the scattering 
length a. 
 
Secondly, to get the final result of the reduced GPE in 
one dimension, it is convenient that the wave function in 
Eq. (6) should be transformed once again by the 
following transformation [7] 
              tietztzr ′−′′ΨΦ=′′′′ γρψ 2),()(),,( .              (7) 

 
Note that the transformation in Eq. (7) is written in 
cylindrical coordinates. Thus, by writing the “del” 
operator written in Eq. (6) in cylindrical coordinates and 
substituting Eq. (7) into Eq. (6), we obtain the final one-
dimensional GPE equation given by [7] 
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The above equation can directly be observed as the 
nonlinear Schrödinger equation with another potential 
that is described as a parabolic trapping potential or the 
ordinary Schrödinger equation for the harmonic 
oscillator potential if σ is ignored. Therefore the 
provided solution can numerically be achieved by two 
approaches considering whether we treat the equation as 
NLSE or the Schrödinger equation for harmonic 
oscillator as in quantum mechanics. In light of this, we 
choose the second solution by assuming that σ  is very 
small [7].  
 
Thirdly, to follow their choice that the one-dimensional 
GPE can be treated as a macroscopic quantum oscillator, 
[7] we went on to record some useful expressions that 
can be used to solve Eq. (8) as follows: The 
eigenfunctions of the harmonic oscillator satisfying the 
eigenvalue equation  
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can be written as 
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Note that all the variables are dimensionless. In Eq. (9) 
and (10) nE  denotes the discrete values of quantum 
harmonic oscillator 

                                 12 += nEn ,                            (11) 
n  are the sets of non negative integer while )(zH n ′  
associate as the set of Hermite Polynomials [27] 
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Here we would like to give our first comment. In their 
paper, Kivshar et al. [7] included the factor ½ in the 
Rodriguez formula in Eq. (12). If it is executed, the 
eigenfunctions for harmonic oscillator in Eq. (10) 
should not normalize although they are still orthogonal. 

Note that the eigenfunctions in quantum mechanics 
have always been chosen as the normalized functions. 
By following these expressions, we suggest that the 
solutions for Eq. (9) can be written as the superposition 
of the normalized eigenfunctions, as one uses in the case 
of time-independent perturbation theory [7]. 
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3. Results and Discussion 
 
Now, by following the same procedure suggested by 
Kivshar et al. [7], we will present our final result in the 
expression of the ground state energy that differs as in 
the result in [7]. Then we continue to explicitly derive 
the excitation states and attach the figures of some 
modes both for the case positive σ  and negative one. 
After obtaining some energy levels we construct the 
partition function based on the previous results. First of 
all, we substitute Eq. (13) into Eq. (8) by also 
considering the relation in Eq. (9). By multiplying the 
achieved equation on both sides by the conjugate φm

*, 
then after integrating both sides over all space, we 
obtain the relation 
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Here we have written φm = φm
* since the function itself 

is real. The result we obtain in Eq. (14) has the positive 
sign while Kivshar et al. obtained the negative sign [7]. 
Our second comment is that although the obtained result 
differs only in the sign, it influences both the 
formulations and probability density for all modes. 
Moreover, it also effects the formulation of the partition 
function since the function should be written in terms of 
energy levels. 
 
Following Eq. (14-15), we construct the first three modes 
by pursuing the following assumptions  
(a) Ground state level. To get energy in the ground state 
level, we take m=0 in Eq. (14) and assume that B0>>Bm 
should be maintained for all m>0 [7]. By imposing this 
condition, we directly obtain ground state energy from 
Eq. (14)  
                       0000

2
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and the corresponding probability amplitude 
                         2

0
2
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Note that Kivshar et al. have obtained the opposite sign 
result [7]. 
 
For achieving excitation levels, we assume that the 
calculation should be started in the appropriate 
excitation state by ignoring the ground state and the 
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lower excitation states and also following up on the 
previous assumption that the next expansion coefficients 
are smaller than its state. 
(b) First excitation state level. Following the above 
procedure, by ignoring the ground state level, taking 
m=1 and assuming that B1>>Bm should be maintained 
for all 1>m , we obtain the first excitation energy 

                     1111
2

11 VBEE σ−= ,                       (18) 
and the appropriate probability amplitude 
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1
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(c) Second excitation state level. By ignoring the ground 
state and first excitation level, taking m = 2 and also 
assuming that B2>>Bm should be maintained for all m>2, 
we obtain the second excitation energy and the 
corresponding probability amplitudes 
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(1a)   (1b)  

   

                        
 (2a)  (2b) 

   

                          
(3a)  (3b) 

Figure 1.  (1a) and (1b) State the Probability Amplitudes of the Ground State for 1=σ  and 1−=σ , Respectively; (2a) and 
(2b) Describe the Probability Amplitudes of the First Excitation State for 1=σ  and 1−=σ , Respectively; and 
(3a) and (3b) Address the Probability Amplitudes of the Second Excitation State for 1=σ  and 1−=σ , 
Respectively 
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Here we have used Mathematica to produce our figures 
for the appropriate values. 
 
Since we have used the approach of macroscopic 
quantum oscillator for the GPE with energy levels given 
by Eq. (16), (18), and (20), we directly conclude that the 
partition function can be formulated as the classical 
partition function in statistical mechanics. However, this 
statement leads to another question: “is it possible to get 
the partition function in the closed form?” In fact, to 
answer this we initially need to know whether all the 
values of Eq. (15) have the recursion relation or not. 
The values of Eq. (15) for the first three modes are 
given in the following Table 1.  
 
In statistical mechanics the partition function for 
quantum oscillator can be defined as 
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Since the kTEn /  in the exponent should be 
dimensionless, we have to transform back some 
appropriate physical quantities used here 
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Therefore we formulate the explicit partition function as 
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By observing that there is no recursion relation in the 
values of the nonlinear term integral provided in Table 1, 
we state that the closed form of the partition function 
cannot be formulated.  
 
Table 1. The Nonlinear Term Integral Values of the First 

Three Modes in Dimensionless Unit 
 

nonlinear term integral Values 
0000V  0.398942 

1111V  0.299207 

2222V  0.255572 

This fact is sufficient since the nonlinear term integral 
contributes to determine the closed form of the partition 
function as stated in Eq. (25). Consequently, we have to 
examine the convergence of the partition function 
formulation. To prove it, one can refer to some 
previously noted testing series.  
 
For closing this section, we wish to derive two 
thermodynamic properties, namely the Helmholtz free 
energy and entropy. In statistical mechanics the 
Helmholtz free energy and entropy are given 
respectively by 
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Meanwhile, the closed forms of Helmholtz free energy 
and entropy in the quantum oscillator are given 
respectively by  
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After substituting Eq. (25) into Eq. (26), we obtain 
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Finally, the entropy can be achieved by substituting Eq. 
(30) into Eq. (27) 
 
Once more, we are dealing with the convergence 
problem stated by Eq. (30) and (31). It is clear that the 
Helmholtz free energy in Eq. (30) and entropy in Eq. 
(31) need evaluation to decide their convergences.  
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4. Conclusions 
 
We have followed up the former work of Kivshar et al. 
and found that our final results differ in not only the 
opposite sign in Eq. (14) but also in the peak of the 
figures, a detailed discussion can be found in Kivshar et 
al. [7]. The localized probability amplitudes as stated in 
all figures are not surprising since the wave function is 
expanded by the Hermite-Gauss functions. Furthermore, 
all the above figures are similar to the probability 
amplitudes in the quantum oscillator, but the differences 
lie in the peak and width. This is caused by the 
nonlinear term which contributes to the amplitudes. By 
assuming that the nonlinear term is small, the use of the 
time-independent perturbation theory for finding the 
solutions of the level states by imposing the appropriate 
conditions is literally accepted. In addition, we can 
calculate some physical quantities in each mode, such as 
the probability, the energy expectation, etc. because of 
the localized probability amplitudes.  
 
We have also proven that the method can be used to 
derive the partition function only from considering the 
relation of energy levels. By adding another assumption, 
one can see that the excitation levels also need a 
correction which is similar to the ground state. However, 
we can not obtain the closed form of the partition 
function since the values of the integral in the 
nonlinearity have no recursion relations as one can see 
in Table 1. If one continues the calculation, one can see 
that the values are monotonically decreasing. This result 
leads us to serious problems. As we mentioned before, 
we have found that the convergences of partition 
function, Helmholtz free energy, and entropy should be 
checked. 
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