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Abstract 
 

This paper studies the effect of higher order derivative tensor in the Einstein field equations for vacuum condition on 
the planet perihelion precession. This tensor was initially proposed as the space-time curvature tensor by Deser and 
Tekin on discussions about the energy effects caused by this tensor. However, they include this tensor to Einstein field 
equations as a new model in general relativity theory. This is very interesting since there are some questions in 
cosmology and astrophysics that have no answers. Thus, they hoped this model could solve those problems by finding 
analytical or perturbative solution and interpreting it. In this case, the perturbative solution was used to find the 
Schwarzschild solution and it was also applied to consider the planetary motion in the solar gravitational field. 
Furthermore, it was proven that the tensor is divergence-free in order to keep the Einstein field equations remain valid. 
 
Keywords: astrophysical model, higher order derivative tensor, perihelion precession, perturbative solution of 

Schwarzschild metric 
 
 
 
1. Introduction 
 
Until today, there remain some problems in astrophysics 
with unsatisfactory answers. One of them is the issue of 
determining a general theory to connect theory 
calculations with observation results of planet perihelion 
precession, for those located far from the sun. The 
general theory of relativity is considered, until now, as 
the strongest candidate to explain the natural 
phenomenon; however, the calculations of the 
perihelion precession work for observation results for 
planets located near the sun only, e.g the planet 
Mercury. There have been a lot of assumptions 
suggested by physicists to explain the condition. One of 
the assumptions suggests that because Mercury is the 
closest planet to the sun, ‘one-body problem’ approach 
can be used to study the movement of the planet. One of 
the ways to solve the problem is by modifying Einstein 
field equations. The first person to modify it was de 
Sitter, by adding a cosmological constant.  
 
The cosmological constant was first suggested by 
Einstein, who initially intended to connect general 
theory of relativity and Mach’s principle of inertia. At 
the time, Einstein rejected it as it contradicted Mach’s 
principle which requires no solution for vacuum 
condition. However, de Sitter found that by adding a 
cosmological constant in Einstein field equations for 
vacuum condition, it shows the possibility of curved 

space time, which means that Einstein equations has a 
solution [1].  
 
This later opened the possibilities of modifying Einstein 
field equations to solve the aforementioned problems in 
astrophysics. In 2003, Deser and Tekin suggested higher 
order derivatives which were first intended as materials 
for new studies in cosmology and astrophysics [2-5] 
(other models have been proposed in other ways too, see 
also [6-8]. This additional term initially introduced by 
Deser and Tekin as a curvature tensor and applying it to 
discuss the definition of its energy-momentum tensor 
[9]. This paper studies the Schwarzschild solution for 
Einstein field equations in vacuum condition with 
higher order derivatives tensor using Frobenius method, 
and later applies it to analyze planet perihelion 
precession. It is interesting as perihelion precession of a 
planet orbiting the sun is almost identical with that of 
planets located very close to the sun; therefore, by 
having the term as an addition opens up the possibilities 
of inferring precession corrections for planets that orbit 
far from the sun. 
 
2.  Methods 
 
Convention used for metric tensor in this paper is 
( −−−+ ). Einstein field equations, non-de Sitter, with 
higher order derivatives in vacuum condition form: 
( 3,2,1,0, =κμ ) [2-5]. 
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and d’Alembertian operator is defined as τ
τ= ∇ ∇ . In 

equation (2), α  dan β constants are arbitrary, thus 
for 0== βα , the equation above becomes Einstein 
field equations in vacuum condition. Moreover, it can 
be shown that μκΦ  is divergence free. 
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Firstly, we consider Schwarzschild metric in static field 
and spherical symmetry in relativistic units of  
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Moreover, the obtained Ricci scalar: 
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The sign ( ′ ) in the five equations suggest derivatives of 
r . If the condition of equation (5) is substituted to 
equation (2), the following connection is satisfied  
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The non-zero terms in the equation above are [10] 
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Moreover, by applying condition (5) the following 
solution is obtained 
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with )(0 rν  and )(0 rλ  as “background” solution for 
vacuum condition without higher order derivatives. 
Perturbative solution is obtained by stating that the 
general solutions to )(rν  and )(rλ  are in forms of 
                             ),()()( 10 rrr ννν +=                     (18) 
                            ),()()( 10 rrr λλλ +=                      (19) 

suggesting )(1 rν  and )(1 rλ  as minor terms. The 
method of problem solving above is actually taken by 
considering the analogy in ref.[11]. This paper studies 
only the case of 0≠α  dan 0=β . 
 
Next, we expand the terms )(1 rν  and )(1 rλ into power 
series of [12, 13] 
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with s a determined constant, while na  and nb  are the 
coefficients sought. By adding all non-zero tensor 
components into equation (1), continued by including 
equations (18), (19), (20), and (21) the obtained value s 
= 0, and it can also be shown that the non-trivial 
solution is obtained by getting 00 ≠a , 0=na  (for n > 
0), and 0=nb (for all n). Therefore, we get the 
following relations 
                              00 )()( arr +=νν ,                        (22) 
                              )()( 0 rr λλ = .                               (23) 
Schwarzschild solution can be obtained by substituting 
equation (22) and (23) to equation (4) 
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with C constant. 
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3. Results and Discussion 
 
This step discusses planet perihelion precession with 
Schwarzschild solution which satisfies equation (24). 
For further discussion, we survey “timelike” geodesic 
obtained by differentiating (24) with “proper time” 
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The sign (.) in equation (25) suggests derivatives of 
“proper time”. Geodesic equation of planet movement is 
given using the following Euler-Lagrange equation 
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with τ  “proper time”. Next, by using 3,2,0=μ  in 
equation (26) three following equations of motions are 
obtained 
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The three equations above are without C constant terms 
printed on equation (24), so the influence of higher 
order tensor for the above solution does not work on 
planet perihelion precession. For further discussion, by 
having limitation of motion of 2πθ = , thus after the 
planet has fully evolved ( πφ 2= ) perihelion precession 
for the planet can be obtained from the above three 
equations by using perturbative method in relativistic 
unit of 
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with a and e of each major and eccentricity ellipse axis 
length. The solution of perihelion precession itself is 
considered more detail in many textbooks on general 
relativity, for example in ref. [14-17]. Complete 
derivatives of equation (30) are attached. 
 
4. Conclusion 
 
Einstein field of equations can be modified by adding 
any tensor term, requiring free-divergence for 
symmetrical metric tensor. This paper, mathematically, 
adds tensor term with free-divergence higher order 
derivatives in Einstein field equations initially 
introduced by Deser and Tekin as a curvature tensor. 
This tensor depends on two independent constants 
which can be chosen by considering some aspects. 
 

This paper also shows that the addition of higher order 
derivative tensor in Einstein field equations for vacuum 
condition does not result in planet perihelion precession 
through perturbative solution using Frobenius method. 
However, the addition of the mentioned tensor terms 
can start new studies in cosmology and astrophysics. 
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Appendix 
 
To calculate planet perihelion precession, we apply 
boundary condition of 2πθ =  and 0=θ& . Thus, 
equation (28) is satisfied in trivial with equation (27) 
and (29), each reduced into 
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with γ  and h as integrated constant. Next, we transform 

variable ur /1=  and substitute t&  and φ&  in equation 
(31) and (32) to equation (25) by stating in variable u  
and φ , which result in 
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To facilitate calculation, we differentiate equation (33) 
to φ  
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The perturbative solution is resulted by seeing first 
comparison of 23mu  with 2/ hm , which has minor 
value of 223 uh [14]. For this reason, we introduce 
small parameter of 22 /3 hm=ε  and assume general 
solution in the form of 
                                 10 uuu ε+= .                             (35) 
After substituting equation (35) to equation (34), we 
then obtain equation for correction term of 
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with solution )cos1(
20 φe

h
mu += . Next, we obtain 

trial solution to the left-hand side of equation (36) in the 
form of 
                      φφφ 2cossin1 CBAu ++= .              (37) 
Therefore, general solution is resulted in the form of 
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Continuous planet revolution causes the term 
φφ sin dominant, and by using trigonometry algebra 

and Taylor expansion for small parameter, they result in 
this solution 
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2

εφφ −+≈ e
h
mu .                  (39) 

Planet perihelion precession after evolution 
is πφ 2= defined by   
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with meah )1( 22 −= . 
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