STUDI BLOCKAGE EFFECT TERHADAP ALIRAN PADA KONFIGURASI WING-BODY FAIRING

Khoiri Rozi⁽¹⁾ dan Herman Sasongko⁽²⁾

Program Pascasarjana, ⁽²⁾Jurusan Teknik Mesin, Institut Teknologi Sepuluh Nopember Kampus ITS Sukolilo Surabaya 60111, Indonesia. Phone & Fax (031) 5938773 Email: k_rozi@me.its.ac.id; herman@me.its.ac.id

Ringkasan

Studi ini dibuat untuk memenuhi informasi kualitatif kondisi aliran dan efek dinamis blockage pada konfigurasi wing-body fairing. Kajian ini menggunakan computational fluid dynamics untuk memberikan pola pathlines dan distribusi total static pressure pada daerah dekat sambungan. Hasil-hasil kajian dalam penelitian ini menunjukkan bahwa pola aliran dipengaruhi perubahan angle of attack. Bertambahnya angle of attack menjadikan posisi saddle point bergerak menuju pressure side dan menjauhi permukaan wing. Sedangkan, separation line atau imprint horseshoe vortex karena membesarnya angle of attack menjadi terbuka lebih lebar. Hasil-hasil distribusi total static pressure menunjukkan area efek blockage semakin melebar pada lokasi menuju trailing edge. Demikian bertambahnya angle of attack menjadikan efek blockage pada pressure side dan suction side terhadap aliran fluida makin kuat.

Abstract

This study was performed to acquire information on the qualitative flow condition and dynamical blockage effect on wing-body fairing configuration. The study was used to computational fluid dynamics to provide the pathlines pattern and the total static pressure distribution in the vicinity junction region. Results of study in the research indicated that flow pattern influenced by variation of angle of attack. As increasing of angle of attack so that the saddle point position move in to pressure side and away from wing surface. Meanwhile, separation line or imprint horseshoe vortex due to increasing angle of attack became more than opened. Results of total static pressure distribution show that the blockage effect area seems deeply on incoming trailing edge location. Therefore, as increasing of angle of attack will be blockage effect to fluid flow on pressure side and suction side more stronger.

Keywords: blockage effect, angle of attack, saddle point, separation line, horseshoe vortex

1 PENDAHULUAN

Struktur dan geometri aliran ketika melewati obstacle sangat complicated. Perilaku aliran pada fenomena ini ditandai separasi aliran tiga-dimensi, tingginya intensitas turbulensi, meningkatnya fluktuasi tekanan, terciptanya resirkulasi dan munculnya beragam formasi vortex. Ciri spesifik aliran semacam ini terbentuk sistem vortex akibat interaksi gradien tekanan vertikal dengan gradien tekanan lateral. Munculnya gradien tekanan disebabakan defisit momentum aliran sebagai konsekuensi aliran viscous. Selain interaksi gradien tekanan, munculnya sistem vortex disebabkan adanya cross flow sesaat aliran datang menuju obstacle karena kontaminasi kurva leading edge. Mekanisme fisis selanjutnya menciptakan skewing boundary layer dalam aliran. Gabungan efek interaksi gradien tekanan dan skewing boundary layer membentuk horseshoe vortex system menyapu dan melingkupi obstacle. Aliran ini diidentifikasikan sebagai aliran sekunder (secondary flow). Keberadaan aliran ini menggangu aliran utama sehingga perlu dieliminasi dalam medan aliran. Kajian-kajian telah dilakuakan guna menguji implikasi secondary flow terhadap karakteristik aerodinamis geometri.

Dalam situasi aplikasi praktis, aliran sekunder ditemukan pada interaksi blade dengan hub mesin-mesin fluida famili turbomachinery, aliran melalui konfigurasi wing dengan body pesawat terbang, aliran pada interseksi sail dan hull kapal, aliran pada konstruksi dasar jembatan dan aliran-aliran melalui konfigurasi sejenisnya. Sejumlah implikasi muncul akibat formasi aliran ini. Terjadinya kenaikan laju perpindahan panas, shear stress dan fluktuasi tekanan pada blade dan hub mesin-mesin fluida turbomachinery karena adanya horseshoe vortex secara langsung akan mempengaruhi efisiensi mesin. Adanya multiple vortices dalam konfigurasi wing dan fuselage pesawat terbang menjadikan efek blockage yang dapat mempengaruhi karakteristik aerodinamis lift/drag. Adanya aliran sekunder pada interaksi sail dan hull kapal akan mempengaruhi karakteristik wake downstream yang menentukan performa propeller. Adanya local erosion karena scouring effect dan sediment transport phenomena pada dasar jembatan menjadikan tanah bebatuan fondasi terkikis meninggalkan dasar jembatan sehingga memperlemah konstruksi dan menyebabkan collapse-nya jembatan. Untuk mereduksi implikasiimplikasi tersebut maka diperlukan modifikasi geometri junction. Sampai sekarang, kajian-kajian telah banyak

dilakukan, namun belum ditemukan solusi dengan tepat untuk mendiagnosa dan mensintesa struktur aliran.

Kajian-kajian tentang aliran sekunder didasarkan pada pentingnya junction dalam rekayasa. Muculnya multiple vortices menjadikan kompleknya struktur aliran sehingga dapat menurunkan efisiensi geometri, Simpson [1]. Coon dan Tobak [2] dan Ballio dan Franzetti [3] membuat sintesa topologi bagian depan leading edge. Hasil kajian Coon dan Tobak ditunjukkan saddle point of attachment dan terbentuk evolusi singular point dalam medan aliran. Sedangkan, kajian oleh Ballio dan Franzetti ditemukan vortisitas boundary layer terkonsentrasi pada bottom surface karena reverse flow dengan terdifusi kedalam dua pasang vortex dipisahkan internal saddle point dan sebuah secondary vortex dalam posisi terseparasi dari bottom surface. Karakteristik kinematis dan dinamis vortex system dianalisa Ballio dkk [4]. Hasilnya didapat bahwa vortex system aliran turbulen, dimensinya hanya ditentukan geometri leading edge, sedangkan dalam aliran laminar dimensinya ditentukan Reynolds number dan boundary layer thickness.

Agui dan Andreopoulus [5] menguji separasi boundary layer pada interaksi circular cylinder dengan flat surface. Hasilnya dengan Reynolds number 105 dan 2,2 x 10⁵ ditemukan titik separasi oncoming boundary layer berjarak sekitar 0,76D dan 0,82D (D = diameter silinder) di depan silinder. Studi hubungan shear stress dengan formasi horseshoe vortex oleh Ballio et al [6] ditunjukkan distorsi distribusi tekanan karena sistem vortex didekati penyelesaian potensial dua-dimensi. Pierce dan Shin [7] mengamati pertumbuhan sistem vortex pada aliran turbulen daerah interaksi streamlined cylinder dengan flat surface ditemukan aliran didominasi single vortex dan ditemukan corner vortex sangat dekat corner region. Investigasi secara eksperimental turbulent shear layer pada interaksi appendage dengan flat plate oleh Merati et al [8] ditemukan dominasi horseshoe vortex berdampak terhadap redistribusi dan karakteristik lapisan geser turbulen. Abdulla et al [9] mengukur distribusi lapisan geser dan tekanan statis pada interseksi blade dengan plate surface didapat kenaikan maksimum shear stress pada corner antara leading edge dengan thickness maksimum.

Kajian-kajian aliran pada wing-body junction dilakukan oleh Kubendran dan McMahon [10], Devenport dan Simpson [11], Devenport dan Simpson [12], Fleming dkk [13], Ölçmen dan Simpson [14]. Kubendran dan McMahon [10] menginvestigasi daerah upstream ditunjukkan vortex strength dan separasi vortex dipengaruhi oleh kelengkungan leading edge. Kajian serupa Devenport dan Simpson [11] didapat kecepatan backflow cukup rendah pada daerah upstream dan resirkulasi mendominasi downstream. Studi lanjutan Devenporrt dan Simpson [12] didapat bahwa eddy viscosity dan persamaan transport k-e kurang mampu memprediksi aliran. Pengujian karakterisrik turbulen dalam wake dilakukan Fleming et al [13] diperoleh kuatnya gradien tekanan dan cross flow mempengaruhi distorsi dan distribusi vortisitas boundary layer. Kajian Ölçmen dan Simpson [14] ditunjukkan leading edge

menentukan intensitas fluktuasi tekanan dan primary separation.

Modifikasi wing-body junction dilakukan untuk merubah struktur vortices menjadi lebih teratur. Devenport et al [15] menguji pengaruh *fillet* radius konstan pada dasar sambungan wing dengan flat plate. Sayangnya, dengan penambahan fillet belum mampu merubah struktur aliran, masih ditemukan formasi vortices dan terbentuk separasi pada bagian upstream. Kondisi demikian malah menambah buruknya fungsi kerja geometri. Namun, kesimpulan ini tidak disepakati Green dan Whitesides [16], dimana kajiannya didapat indikasi terjadi eliminasi separasi di depan leading edge. Devenport et al [17] melakukan studi lanjut dengan penempatan fairing pada endwall region. Hasilnya diperoleh indikasi penurunan nonuniformity, unsteadness, dan intensitas turbulensi. Kajian serupa [17] dilakukan Steenaert dkk [18] dan Oudheusden et al [19]. Dari kajiannya pada sambungan fairing wing dengan flat plate ditemukan terbentuknya laminerisasi separasi vortex.

Uraian konsep topologi didasarkan kinematis aliran diberikan Tobak dan Peak [20], [21] dan Peak dan Tobak [22], [23]. Mereka menggabungkan dan menggunakan hasil-hasil kerja para peneliti dalam memberikan analisa aliran secara tiga-dimensi dengan membuat interpretasi dalam topologi berdasarkan rangkaian *singular point* yang terbentuk pada surface.

Tujuan kajian dalam paper ini adalah memberikan informasi gambaran kualitatif mengenai kondisi struktur aliran akibat efek *blockage* berupa pola *pathline* dan topologinya pada konfigurasi *wing-body fairing* beserta distribusi *total static pressure* pada empat bidang pengukuran di daerah dekat *trailing edge* dengan variasi *angle of attack.*

2 METODE PENELITIAN

2.1 Benda Uji

Gambar 1 Profil Wing - 9C732.5C50

Makna 9C7/32.5C50:

	[9] = 99	% maximum	thickness-che	ord ratio.
--	------------------	-----------	---------------	------------

[**C7**] = basic wing profile.

[32.5] = camber angle.

[C] = circular arc camber line.

[**50**] = 50% *maximum camber* pada posisi 0,5 panjang chord.

2.2 Teknis Pengujian

Perangkat *computational fluid dynamics* (CFD) dalam penelitian ini adalah software fluent 6.2. Pada saat memulai menjalankan software fluent 6.2 terdapat dua macam pilihan penyelesaian (solver), yaitu *single precision* dan *double precision solver*. Penggunaan kedua *solver* ini tergantung pada jenis dan karakteristik masalah yang akan diselesaikan. Bila masalah sederhana dan tidak membutuhkan keakuratan lebih, maka sebaiknya digunakan *single precision solver* karena mempercepat konvergensi. Apabila permasalahnya jauh lebih kompleks dan membutuhkan keakuratan sanagt tinggi, sebaiknya digunakan *double precision* meskipun proses iterasi lebih lama konvergensi dan dibutuhkan memori komputer lebih besar.

Gambar 2 Lokasi *pathlines* dan bidang pengamatan pada a. x/c = 10/12, b. x/c = 12/12, c. x/c = 13/12, d. x/c= 14/12

Urutan menjalankan program software fluent 6.2 untuk simulasi pada penelitian ini adalah sebagai berikut :

1. Dipilih model tiga dimensi (**3d,dp**).

Grid: Mengimpor grid yang telah dibuat dari 2 software gambit. Proses yang dilakukan dalam software gambit sebagai berikut: (i) Membuat model. Menggambar model wing dengan profil 9C7/32.5C50, dengan panjang *chord* = 120 mm, span = 300 mm. Posisi model uji $\alpha = 4^{\circ}$, 8° , 12° dan 16⁰. (ii) Menentukan solver: Fluent 6.2. (iii) Menentukan daerah analisis: Menentukan permukaan yang berhubungan (link face meshes) pada permukaan periodik, menentukan bentuk continuum (fluid-udara) dan kondisi batas (wall, velocity inlet, periodic, outflow). (iv) Membuat mesh: membagi model solid menjadi elemen kecilkecil sehingga kondisi batas dan beberapa parameter

dapat diaplikasikan pada elemen-elemen tersebut. Pada paket program ini bentuk *mesh/grid* sangat mempengaruhi hasil simulasi. Bentuk *mesh/grid* mendekati hasil eksperimen adalah *hexahedral* atau *quadrilateral* pada semua permukaan dinding.

- Models: Merupakan pemodelan viskositas aliran (karakteristik aliran), berupa jenis dan formula penyelesaian, penentuan model turbulen dan konstanta yang digunakan. Jenis penyelesaian yang digunakan adalah *simplec* dengan formula penyelesaiannya *segregated*. Ini dilakukan guna mendapat hasil yang akurat dalam kontur *pathlines* dan *isototal static pressure* sekitar *wing*, meskipun dibutuhkan waktu agak lama dan memori besar untuk mencapai konvergensi. Model turbulen menggunakan k-ε RNG dengan C1-Epsilon = 1,42 dan C2-Epsilon = 1,68 serta *swirl factor* = 0,07.
- Materials: Tahapan ini pemilihan material yang digunakan serta memasukkan data-data properties material tersebut. Material yang digunakan adalah udara, *density* 1,225 kg/m³ dan *viscosity* 1,7894x10⁻⁵ kg/m.s
- 5. **Operating conditions**: Merupakan perkiraan kondisi daerah operasi, biasanya diasumsikan tekanan daerah operasi 1 atm.
- 6. **Boundary conditions**: Merupakan penentuan parameter dan batasan pada aliran, dengan pemberian beban kecepatan, tekanan maupun kondisi batas turbulensi pada *inlet*, *outlet* serta kondisi pada *wall*. Kondisi batas *inlet* adalah kecepatan sebesar 15 m/s ($\text{Re}_c = 3.5 \times 10^5$) dengan arah kecepatan masuk sesuai besarnya *angle of attack* (α). Kondisi batas *outlet* adalah *outflow*. Kondisi batas dinding arah *span* simetris dan arah *pitch* periodik transversal.
- 7. **Solution**: Tahap penyelesaian masalah berupa proses iterasi hingga mencapai *convergence criterion* yang diinginkan, yaitu minimal 10⁻⁵.
- 8. **Postprocessing**: Merupakan tampilan hasil yang telah diperoleh, berupa *pathlines* dan kontur *isototal static pressure*.

3 HASIL-HASIL PENELITIAN

Secara kualitatif struktur aliran diwakili pathlines dan distribusi isototal static pressure. Gambar (3.a) merupakan pola *pathlines* permukaan *flat surface* pada α $= 4^{\circ}$. Posisi saddle point sangat dekat leading edge karena momentum aliran mampu membawa fluida mendekati wing. Kurva imprint horseshoe vortex atau separation line relatif sempit. Ini menandakan kecepatan arah longitudinal lebih besar daripada kecepatan arah lateral meskipun defisit momentum bertambah karena adverse pressure gradient. Akibatnya gradien kecepatan dan wall shear stress arah longitudinal lebih besar dan menghasilkan defleksi kecil. Pada $\alpha = 8^0$, Gambar (3.b), terlihat lokasi saddle point menjauhi leading edge dan imprint horseshoe vortex melebar. Ini karena aliran menghadapi naiknya adverse pressure gradient sehingga defisit momentum aliran bertambah besar. Dampaknya kecepatan arah longitudinal turun diikuti bertambahnya kecepatan arah lateral. Akibatnya terbentuk gradien kecepatan dan wall shear stress arah lateral bertambah

denagn menciptakan defleksi orientasi *boundary layer* bertambah besar.

Pada $\alpha = 12^{\circ}$, Gambar (3.c), kondisi aliran menghadapi naiknya *adverse pressure gradient* dan gaya viscous lebih kuat. Akibatnya defisit momentum bertambah besar dan diikuti turunya kecepatan longitudinal dan bertambah kecepatan lateral dengan menciptakan gradien kecepatan dan *wall shear stress* arah lateral semakin besar. Dampaknya *imprint horseshoe vortex* semakin lebar. Titik separasi bergerak maju merndekat *maximum thickness*. Pada $\alpha = 16^{\circ}$, Gambar (3.d), telihat rangkaian *singular point* lebih komplek dimana tercipta *saddle point*, dua *node*, *half-saddle* dan *backward saddle point*. Hal Ini menandakan aliran sangat komplek.

(a)a = 16

Gambar 3 Pola pathline pada flat surface

Topologi aliran permukaan plat datar pada $\alpha = 4^0$ sampai $\alpha = 16^0$ seperti Gambar (4). Pada $\alpha = 4^0$, Gambar (4.a) aliran didominasi horseshoe vortex, posisi saddle point sangat dekat leading edge dengan kaki horseshoe vortex menjauhi permukaan wing dan wall. Pada pressure side (PS) aliran total terseparasi, dengan diikuti half-saddle bergeser menuju maximum thickness trailing edge (TE). Topologi aliran pada $\alpha = 8^0$, Gambar (4.b), terjadi pergeseran saddle point menjauhi leading edge dan imprint horseshoe vortex bertambah lebar. Tercipta half node hasil dari transformasi half saddle pada posisi menuju thickness maksimum. Pada $\alpha = 12^0$, Gambar (4.c), daerah bagian downstream terbentuk spiral point, half node dan backward saddle. Ini menandakan tercipta struktur aliran jauh lebih komplek.

Gambar 4 Limiting streamline pada flat plate

Topologi aliran pada $\alpha = 16^{\circ}$, Gambar (4.d), terjadi perdahan posisi *saddle point* semakin menjauh dari *edge* dan *separation line* membuka lebih lebar. **Peda suction** side (SS), titik separasi bergerak menuju *thickness*. Menjauhnya *saddle point* karena peringkatan *adverse pressure gradient*, sedangkan melebarnya *separation line* karena defleksi orientasi peringkon boundary layer membesar. distribusi *isototal static pressure* melebar menjauh dari permukaan *wall* dan *wing*. Diduga efek *blockage* karena *stretching* dari *horseshoe vortex* bertambah besar, sehingga menciptakan distribusi *isototal static pressure* bertambah lebar. Pada $\alpha = 12^{\circ}$ dan $\alpha = 16^{\circ}$, Gambar (5.c), daerah distribusi *isototal static pressure* semakin membesar pada SS maupun PS. Ini menandakan *vortex stretching* bertambah besar.

Gambar 5 Isototal static pressure, x/c = 10/12

Gambar 6 Isototal static pressure, x/c = 12/12

Gambar (5) merupakan kontur *isototal static pressure* didasarkan kecepatan aksial karena perubahan α untuk lokasi x/c = 10/12, yaitu 10 cm di depan TE. Pada α = 4° . Gambar (5.a), distribusi *isototal static pressure* relatif sempit sekitar *corner region*. Ini menandakan daerah kecepatan aksial terpengaruh *blockage* relatif sempit. Pada α = 8° , Gambar (5.b), terjadi perubahan pola

melebar menajuhi-permukaan wall dan wing karena efek blockage bertambah besar. Pada $\alpha = 12^{0}$, Gambar (6.c), distribusi isototal static pressure semakin membesar baik pada SS maupun PS. Blockage semakin kuat, menandakan vortex stretching mebesar. Pada $\alpha = 16^{0}$, Gambar (6.d), distribusi isototal static pressure menjauh dari permukaan wall dan wing karena blockage akibat vortex stretching semakin besar. $\alpha = 12^{0}$, Gambar (7.c), distribusi kurva *isototal static* pressure semakin melebar baik pada SS maupun PS. Pada $\alpha = 16^{0}$, Gambar (7.d), pola distribusi *isototal static* pressure semakin lebar menajuh dari permukaan wall dan wing. Diduga kondisi ini karena efek *blockage* akibat vortex stretching semakin besar. Ini bisa diartikan inti vortex mebesar sehingga menciptakan *blockage* lebih kuat dan sangat menggangu aliran utam (main flow)

Gambar 7 Isototal static pressure, x/c = 13/12

Gambar 8 Isototal static pressure, x/c = 16/12

Gambar (7) merupakan kontur *isototal static pressure* pada x/c = 10/12. Pada $\alpha = 4^0$, Gambar (7.a), distribusi *isototal static pressure* relatif sempit sekitar *corner* baik pada SS maupun PS. Pada $\alpha = 8^0$ Gambar (7.b) terjadi perubahan distribusi *isototal static pressure* lebih melebar menajuhi permukaan *wall* dan *wing*. Efek *blockage* akibat *vortex stretching* bertambah besar. Pada Gambar (8) merupakan kontur *isototal static pressure* untuk x/c = 16/12. Pada $\alpha = 4^{0}$, Gambar (8.a), distribusi kontur *isototal static pressure* sekitar *corner* baik pada SS maupun pada PS, ini akibat kecepatan aksial yang terpengaruh efek *blockage* pada daerah sangat dekat *corner region*. Kondisi ini sebagai indikasi *stretching* dari *horsesohe vortex* relatif kecil pada daerah sangat dekat corner region. Pada $\alpha = 8^{\circ}$, Gambar (8.b) terjadi perubahan pola distribusi *isototal static pressure* lebih melebar menajuhi permukaan *wall* dan *wing*. Diduga etck blockage akibat stretching dari horseshoe vortex bertambah besar. Pada $\alpha = 12^{\circ}$, Gambar (8.c), daerah estribusi kurva *isototal static pressure* semakin membesar baik pada SS maupun PS, ini karena daerah escepatan aksial terpengaruh efek blockage bertambah bebar. Hal ini menunjukkan stretching dari horsesohe porter bertambah besar sehingga blockage semakin kuat. Pada $\alpha = 16^{\circ}$, Gambar (8.d), distribusi *isototal static* pressure melebar menajuhi permukaan *wall* dan *wing*.

Secara eksperimen apa yang telah ditemukan dalam[1, 5-[4] dan kajian numerik [2-4, 16, 18-19] menghasilkan pemahaman bahwa aliran melalui obstacle adalah penelitian ini complicated. Sebagaiman kajian ditunjukkan pola pathline dan isototal static pressure berubah karena perubahan angle of attack. Penjelasan analisa pola pathline dan interpretasi topologi struktur aliran telah menunjukkan bahwa membesarnya angle of ettack menyebabkan terjadi perubahan struktur aliran secara significan denagn ditandai menjauhnya posisi saddle point dan semakin membuka lebarnya separation line. Selain itu dapat dilihat adanya proses evolusi dan transformasi singular point karena membesarnya angle of attack dari half-node menjadi saddle atau sebaliknya dan terbentuk rangkaian singular point sangat komplek.

Distribusi *isototal static pressure* merepresentasikan kondisi aliran bisa dilihat secara kulitatif bahwa struktur aliran saat menghadapi *obstacle* akan membentuk *horseshoe vortex* system dengan kaki-kaki pada daerah *downstream* akan meinggalkan permukaan *wall* dan *wing*. Ini telah terlihat dari perubahan distribusi dimana pada empat lokasi peninjauan terlihat semakin menuju *downstram* distribusi bertambah lebar. Pada lokasi sama, dengan bertambahnya *angle of attack* maka menciptakan *vortex stretching* makin besar, ditandai semakin lebarnya daerah distribusi *isototal static pressure*

4 KESIMPULAN

Pola pathlines dan topologi pada flat surface telah diketahui bahwa membesarnya angle of attack menjadikan pola aliran lebih komplak. Hal ini ditandai terbentuknya rangkaian singular point dan tranformasi critical point yang menentukan stabilitas aliran. Adanya perubahan singular point berarti terjadi tranformasi dan evolusi titik-titik singular dengan adanya perubahan angle of attack. Kajian menggunakan computational fluid dynamics menunjukkan pola aliran yang hampir sama dengan hasil eksperimen. Bertambahnya angle of attack menjadikan posisi saddle point bergerak menjauhi leading edge dan imprint horseshoe vortex terbuka lebih lebar. Distribusi isototal static pressure berubah seiring bertambahnya α . Hasil simulasi dengan computational fluid dynamics diperoleh memerbesa α menjadikan pergeseran distribusi isototal static pressure semakin lebar dan blockage makin besar. Jika blockage sangat kuat maka mengganggu aliran utama dan akan membuat turunnya efesiensi kerja geometri.

DAFTAR PUSTAKA

- 1. R. L. Simpson. *Junction Flows*, Annual Review Fluid Mechanics, 33, 415-443, 2001.
- M. D. Coon dan M. Tobak. Experimental Study of Saddle Point of Attachment in Laminar Juncture Flow, AIAA Journal 33 (12), 2288-2292, 1995.
- F. Ballio dan S. Franzetti. Topological Analysis of a Junction Vortex Flow, *Proceedings of Advances in Fluid Mechanics 2000*, Montreal, Canada, 24-26 May, 255-264, ISBN 1-85312-813-9, WIT Press, Southampton, 2000.
- F. Ballio, C. Bettoni dan S. Franzetti. A Survey of Time-Averaged Characteristics of Laminar and Turbulent Horseshoe Vortices, ASME Journal of Fluids Engineering, 120, 2, 233-242, New York, USA, 1998.
- J. H. Agui dan J. Andreopoulos. Experimental Investigation of Three-Dimensional Boundary Layer Flow in the Vicinity of an Upright Wall Mounted Cylinder, AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, 1-12. 1990.
- F. Ballio, A. Guadagnini dan S. Malavasi. Stresses Due to a Horseshoe Vortex at a Surface-Cylinder Intersection, *Proceedings 3rd International Conference on Hydroscience and Engineering ICHE '98*, Cottbus 31 August-3 September 1998.
- 7. F. J. Pierce dan J. Shin. The Development of Turbulent Junction Vortex System, *Journal of Fluid Engineering*, 114, 559-566, 1992.
- 8. P. Merati, H. M. McMahon dan K. M. Yoo. Experimental Investigation of a Turbulent Flow in The Vicinity of an Appendage Mounted on a Flat Plate, *Journal of Fluid Engineering*, 113, 635-642, 1991.
- A. K. Abdulla, R. K. Bhargava dan R. Raj. An Experimental Study of Local Wall Shear Stress, Surface Static, and Flow Visualization Upstream, Alongside, and Downstream of a Blade Endwall Corner, ASME 87 GT-181, 1991.
- L. R. Kubendran, dan H. M. McMahon. Turbulent Flow Around a Wing/Fuselage-Type Juncture, AIAA 24, 1447-1452, 1986.
- W. J. Devenport dan R. L. Simpson. Time Dependent and Time Averaged Turbulent Structure Near the Nose of a Wing-Body Junction, *Journal of Fluid Mechanics*, 210, 23-55, 1990.
- W. J. Devenport dan R. L. Simpson. Flow Past a Wing-Body Junction-Experimental Evaluation of Turbulence Models, AIAA 4 (30), 873-881, 1992.
- J. L. Fleming, R. L. Simpson, J. E. Cowling dan W. J. Devenport, An Experimental Study of a Turbulent Wing-Body Junction and Wake Flow, *Experiment in Fluid* (14), 366-378, 1992.
- B. E. Ölçmen dan R. L. Simpson. Influence of Wing Shapes on Surface Pressure Fluctuation at Wing-Body Junction, AIAA, 32, 1, 6-15, 1994.
- W. J. Devenport, N. K. Agarwal, M. B. Dewitz, R. L. Simpson dan K. Poddar. Effects of a Fillet on The Flow Past a Wing-Body Junction, *AIAA Journal*, 28, 2017-2024, 1990.

- S. M. Green dan J. L. Whitesides. A Method for Designing Leading Edge Fillets to Eliminate Flow Separation, AIAA 2000-4527, 2000.
- W. J. Devenport, R. L. Simpson, M. B. Dewitz dan N. K. Agarwal, Effects of a Strake on The Flow Past a Wing-Body Junction, *AIAA*, paper 91,0252, 1991.
- C. B. Steenaert, B. W. Oudheusden dan L. M. Boermans. Simplified Design Method for a Symmetrical Wing-Body Fairing, ICAS2002 Congress, 2002.
- B. W. Oudheusden, C. B. Steenaert dan L. M. Boermans. A Simple Approach for the Design of a Wing-Body Fairing, *CEAS Aerospace Aerodynamics Research Cambridge*, UK 2002.

- Tobak. M., dan Peak, D. J., "Topology of Two-Dimensional and Three-Dimensional Separated Flow", AIAA Paper 79 – 1480, 1991.
- M. Tobak dan D. J. Peak. Topology of Three-Dimensional Separated Flows, NASA Technical Reports, April, 1981.
- 22. D. J. Peak dan M. Tobak. Three-Dimensional Separation and Reattachmen, *NASA Technical Reports*, March, 1982.
- 23. D. J. Peak dan M. Tobak. Three-Dimensional Flows About Simple Components at Angle of Attack, AGARD Lecture Series 121 on High Angle of Attack Aerodynamics, Hampton, Va, 10-11 Mar. 1982.

MESIN Vol. 23 No. 2