Simulation of Call Options Premiums Using the Black-Scholes Model in Estimating Returns on Covered Call & Dividend Hedge Capture As Alternative Strategies Applied to Cash Management

CONSULTATION PAPER

Prepared as a requirement to obtain the Magister Management degree

Fitzgerald Stevan Purba 0606160543

T 25521

UNIVERSITY OF INDONESIA FACULTY OF ECONOMICS MAGISTER MANAGEMENT JAKARTA AUGUST 2008

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Fitzgerald Stevan Purba

NPM : 0606160543

Tanda Tangan :

FITZGERALD STEVAN PURBA

Tanggal: 27 Aquotus 2008

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI

TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

ebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

ama

: Fitzgerald Stevan Purba

PM

: 0606160543

rogram Studi : Magister Manajemen

epartemen

: Ekonomi

enis Karya

akultas

: Tesis

emi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada

niversitas Indonesia Hak Bebas Royalti Noneksklusif (Non-Exclusive Royalty-Free

ight) atas karya ilmiah saya yang berjudul:

Simulation of Call Options Premiums Using the Black-Scholes Model in

Estimating Returns on Covered Call & Dividend Hedge Capture

As Alternative Strategies Applied to Cash Management

eserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif

ni Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola

alam bentuk pangkalan data (datahase), merawat, dan mempublikasi tugas akhir saya

anpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai

enulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di: Jakarta

Pada tanggal: 27 Agustus 2008

Yang menyatakan,

FITZGERALD STEVAN PURBA

HALAMAN PENGESAHAN

Karya Akhir ini diajukan oleh

Nama

: FITZGERALD STEVAN PURBA

NPM : **0606160543**

Program Studi : MAGISTER MANAJEMEN

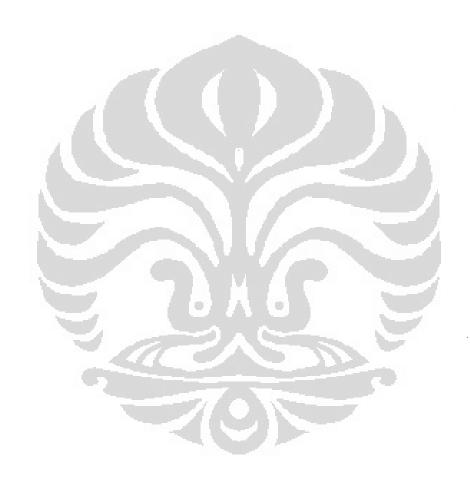
Judul Karya Akhir : SIMULATION OF CALL OPTIONS

PREMIUMS USING THE BLACK SCHOLES MODEL IN ESTIMATING RETURNS ON COVERED CALL & DIVIDEND HEDGE CAPTURE AS ALTERNATIVE STRATEGIES APPLIED TO CASH

MANAGEMENT.

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Manajemen pada Program Studi Magister Manajemen, Fakultas Ekonomi, Universitas Indonesia

DEWAN PENGUJI


Pembimbing : Dr. Adler H. Manurung

Penguji : Dr. Sylvia Veronica

Penguji : Dr. Ruslan Prijadi

Ditetapkan di : Jakarta

Tanggal: 22 Agustus 2008

"Be strong and courageous. Do not be afraid or terrified because of them, for the LORD your God goes with you; He will never leave you nor forsake you."

(Deuteronomy 31:6)

University of Indonesia

ACKNOWLEDGEMENT

It has been an exhilarating experience in completing this thesis. One enriched with experience and knowledge. Nothing left to say but to praise and thank God Almighty as my source of inspiration, strength, and purpose in life. This thesis provides a media to reach out and serve His purpose for the good of millions of people.

By completing this thesis I would like to dedicate this thesis especially for my father who is in heaven, Prof. Dr. Victor Purba, S.H., LLM., M.Sc., who parted during my first quarter in MMUI (August 2, 2007). His spirit and lifework lives on today.

My studies in MMUI besides the completion of this thesis would not possible without the following, and I would like to express my deepest gratitude to these persons:

- Dr. Adler Haymans Manurung, M.Com, as my adviser who endlessly and tirelessly dedicated his time and effort for guidance and source of knowledge and insights.
- 2. My family, My Beloved Mother, Eto, and Ande who have supported me in achieving the best in my studies.
- 3. My former employer, Alvin Lim, CFP, Chief Executive Officer of BIPtrade, for giving me a direction in life by employing me and giving me numerous training, insights and experience in relation to stocks and investments in the US markets.
- 4. My classmates in A064 MMUI for struggling together: Pa Andi, Alfian, Andini, Andry Rihardika, Andry Yusuf, Arjo, Aulia, Ayu, Bogi, Begin, Dian, Ucok, Emmanuel, Erny, Fanny, Ferry, Fajar H, Pa Fikra, Siska, Irwan, Hadean, Hasis, Mas Haris, Jusep, and Jerry.

Also my classmates in KP064 MMUI: Mas Mifta, Russel, Romy, Tinur, Eko, Maulina, Nadine, Yona, Kania, Rahmadhani, Rizal, and Yudha

5. KGB-ers Kantin FEUI after just celebrating eight years of friendship and togetherness: Lambok, Gepenk, Abank, Atenk, Ucok, Aseng, Jendril, Guswandi, Helman, Jamal, Bejo, Ferry, Celeng, Johnsen, Yunada, Mokmok, Giri, Max, Mille, Denny, Stephen, eMPe, Alex, Timo, Onto, Ce-Monk, Barkah, Aldi, Dewa, Adhiet, Batara, Rinto, Dodi, Ayam, Jibenk, Rusag, Isso, dan Muky.

Not to forget all the people whose name can not be mentioned one-by-one in MMUI for making it happen.

Thank You! God Bless You All!

August 2008

ABSTRACT

With the dawn of options trading in Indonesia, firms, as well as investors, in Indonesia can enjoy a broadening of their investment horizons and possibilities. This thesis intends to explore some of the possibilities that investors can expect to have at their disposal. The alternative strategies: covered calls and dividend hedge capture strategies should provide the investor an alternative vehicle of investment in facing problem of optimizing returns in any given market situation. But, the strategy must be understood in all aspects pertaining to returns as well as their risks. This strategy is not one that guarantees returns but one that provides possibilities and should be also be used with patience and perseverance. The firm as the main initiator of the alternative strategies, highlighted in this thesis must consider the choices available to them as well as their constraints in choosing the alternative strategies. But the results obtained should enlighten the firms returns on their excess corporate cash holdings.

TABLE OF CONTENTS

Acknowledgement	V
Abstract	. vii
Table of Contents	viii
List of Figures	X
List of Tables	xi
Chapter 1 Introduction	
1.1. Background	
1.2. Statement of Problem	
	د م
1.5. Method of Analysis	4
1.6. Organization of Thesis And Content	
Chapter 2 Options and Corporate Cash Management	
2.1. Options and Options Trading	7
2.1.1. Brief History of Options	7
2.1.2. The Role of Chicago Board of Trade In Development of Options.	8
2.1.3. Establishment of Chicago Board Options Exchange (CBOE)	8
2.1.4. Options Clearing Corporation	9
2.1.5. Mechanism of An Options Trade	. 10
2.2. Fair Price of An Option2.3. Binomial Options Pricing Model	. 14
2.3. Binomial Options Pricing Model	. 18
2.4. Black-Scholes Options Pricing Model	. 20
2.5. Theory of Corporate Cash Management	. 22
2.5.1. Cash Conversion Cycle	. 23
2.5.2. Analysis of Traditional Cash Management	. 24
2.6. Alternative Strategies To Today's Corporate Cash Management	. 25
2.6.1. Covered Call Strategy	. 25
2.6.2. Dividend Hedge Capture Strategy	. 27
Chapter 3 Pricing of Options Premiums	. 30
3.1. Deriving The Price of Options on 10 Stocks Of The LQ-45	. 30
3.1.1. Price of Call Option on TLKM	
3.1.2. Price of Call Option on ANTM	
3.1.3. Price of Call Option on ASII	
3.1.4. Price of Call Option on BBNI	
3.1.5. Price of Call Option on INDF	
3.1.6. Price of Call Option on ISAT	
3.1.7. Price of Call Option on AALI	
3.1.8. Price of Call Option on BBRI	
3.1.9. Price of Call Option on UNSP	
3.1.10. Price of Call Option on PGAS	
3.2 Covered Call Simulation Results	

3.3. Simulation of Dividend Hedge Capture Strategy Using Theoretical Premium of Calls	54
Chapter 4 Evaluation of Covered Call & Dividend Hedge Capture Strategy	56
4.1. Evaluation of Alternative Cash Management Strategy	56
4.1.1. Sharpe Ratios of The Covered Call Strategy	56
4.1.2. Sharpe Ratios of The Dividend Hedge Capture Strategy	57
4.2. Statistical Evaluation of Covered Call & Dividend Hedge Capture	
Strategy	58
4.2.1. Covered Call Strategy	
4.2.1.1. Results of Covered Calls on AALI	59
4.2.1.3. Results of Covered Calls on ASII	61
4.2.1.4. Results of Covered Calls on BBNI	
4.2.1.5. Results of Covered Calls on BBRI	63
4.2.1.6. Results of Covered Calls on INDF	64
4.2.1.7. Results of Covered Calls on ISAT	
4.2.1.8. Results of Covered Calls on PGAS	66
4.2.1.9. Results of Covered Calls on TLKM	67
4.2.1.10. Results of Covered Calls on UNSP	68
4.2.2. Dividend Hedge Capture Strategy	69
Chapter 5 Conclusion and Recommendations	
5.1. Conclusion	7
5.2. Recommendations	
Bibliography	A
Appendix	

List of Figures

Figure 2.1. Diagram OCC as a clearinghouse	17
Figure 2.2. Payoff Diagram to Call Buyer	21
Figure 2.3. Payoff Diagram to Call Writer	20
Figure 2.4. Payoff Diagram to Put Buyer	21
Figure 2.5. Payoff Diagram to Put Writer	21
Figure 2.6. Distribution with no uncertainty	23
Figure 2.7. Distribution with 2 possibilities	24
Figure 2.8. Distribution with 5 possibilities	24
Figure 2.8a. Distribution with payoffs of 5 possibilities	25
Figure 2.9. Distribution with numerous possibilities-	
The Normal Distribution	26
Figure 2.10. Diagram of Binomial Options Pricing Model	26
Figure 2.11. Payoff Diagram to Covered Call Strategy	34
Figure 2.12. Dividend dates	36
Figure 3.1. The Indonesian Exchange 2004-2008	38

List of Tables

Table 2.1. Example of AAPL options quote	10
Table 2.2. A Number of Previous Related Studies	29
Table 3.1. Comparison of 10 stocks of LQ-45	31
Table 3.2. Comparison of Returns of Covered Calls on	
10 stocks of LQ-45	53
Table. 4.1.a. Statistical Results for AALI	59
Table. 4.1.b. Statistical Testing of Results for AALI.	59
Table. 4.2.a. Statistical Results for ANTM	60
Table. 4.2.b. Statistical Testing of Results for ANTM	60
Table. 4.3.a. Statistical Results for ASII	61
Table. 4.3.b. Statistical Testing of Results for ASII	61
Table. 4.4.a. Statistical Results for BBNI	62
Table. 4.4.b. Statistical Testing of Results for ASII	62
Table. 4.5.a. Statistical Results for BBRI	63
Table. 4.5.b. Statistical Testing of Results for BBRI	63
Table. 4.6.a. Statistical Results for INDF	64
Table. 4.6.b. Statistical Testing of Results for INDF	64
Table. 4.7.a. Statistical Results for ISAT.	65
Table. 4.7.b. Statistical Testing of Results for ISAT	65
Table. 4.8.a. Statistical Results for PGAS.	66
Table. 4.8.b. Statistical Testing of Results for PGAS	66
Table. 4.9.a. Statistical Results for TLKM	67
Table. 4.9.b. Statistical Testing of Results for TLKM	67
Table. 4.10.a. Statistical Results for UNSP	68
Table. 4.10.b. Statistical Testing of Results for UNSP	68
Table. 4.11.a. Statistical Results for Div. Hedge	69
Table. 4.11.b. Statistical Testing of Results for Div. Hedge	69
Table. 4.12.a. Statistical Results of Wilcoxon Signed Ranks Test	
for Div. Hedge	69
Table. 4.12.b. Statistical Testing of Results for Div. Hedge	70

CHAPTER 1 INTRODUCTION

1.1. Background

The options market has existed for some time in numerous countries around the world. As regulations and mechanisms surrounding options trading today have become more simplified, fast, and efficient, this condition has allowed options products to evolve and expand to meet a growing number of investment scenarios. Besides that options have provided numerous types of investors, especially those with low risk tolerance, access to the higher returns yielding stock markets. One specific type of investors are firms that are looking for alternative investment strategies that will provide them optimal returns on their excess cash holdings.

This scenario was not thought of until recently in the 1980s where a growing number of companies have employed options based hedge strategies on their cash holding investments. This is made possible due to options and its features where it provides a source of price movement protection giving flexibility to investors in terms of the structure and payouts.

For Indonesia particularly in 2003, regulations of the options market had just been finalized by the Jakarta Stock Exchange, now known as the Indonesian Stock Exchange (Sembiring, 2003). But the mechanisms carrying out options trading itself is still very limited in terms of the availability, which makes options available through joint broker ventures, at relatively affordable prices in comparison with foreign options markets counterparts. The future for options trading in Indonesia remains bright and promising as long as the options market is established and developed to better suit the needs and circumstances of all types of investors.

As for the corporate investor, options based hedge strategies is a unique investment strategy which can be applied in Indonesian firms. But the treatment

and nature of these strategies functions differently for corporate investors compared to individual (non-corporate) investors there are constraints that must be taken into consideration when planning to employ these alternative strategies. These considerations must weigh the risks as well as the returns compared to other relatively (risk-free) investments, and the time constraints that a typical corporate investor has.

1.2. Statement of Problem

For a typical firm, a part of short-term finance and planning is determining how much and where to put idle cash to work for the company, i.e. optimizing cash holdings. When the firm does set the amount which it can use to seek other relatively higher returns, often the question of how much and where to put its money for short-term investments in real-life is difficult to figure out. Difficult because of numerous possibilities of investments, from risk-free to high-risk, which may yield attractive returns for the company. But for the cash management end, the possibilities are limited to relatively low to no risk, which implies also low to no returns.

For a company it is out of common sense that the cash it has should not sit idle, obtaining no returns. Therefore constrained by low to no risk choices, traditionally a company takes up positions in risk free securities such as certificate of deposits (CDs), commercial paper, or SBIs as a source of returns.

In times of economic recessions or even in the face of a depression, bonds tend to outperform stocks because of their risk-free nature. During these times investments in companies tend to lag and be diverted away because of the high degree of instability and uncertainty provided by the economic condition. But when economic conditions bounce back, return to normal, and expand, stocks tend to outperform bonds for reasons of the investments that made its way back to companies and the economy as a whole.

This does not imply totally that marketable securities, certificate of deposits (CDs), commercial paper, or Treasury bills, are at all not worth the wait. But there is a time when the company must take into account other investments to obtain maximum gains when bonds and the like are outperformed by stocks by a high margin.

1.3. Objective of Study and Writing

The traditional cash conversion cycle analysis had been an analysis where firms can optimize its working capital (current assets-current liabilities) by way of: better collection policies for accounts receivables, better management of inventories for inventory, and better management of payment for accounts payables. But another way in which firms can make available higher levels of working capital would be to optimize better returns on its cash holdings, which would be a component of the current accounts part in working capital.

This is where the overall purpose of this study is to provide for an alternative investment strategy which is safe enough and can yield relatively more higher returns on corporate cash holdings. The alternative strategies should be:

- 1. The covered call strategy, which is a strategy employing the purchase of a number of stocks and simultaneously selling (writing) a number of call options contracts covering the position.
- 2. The dividend hedge capture strategy, which is a strategy used to obtain dividends on stock holdings, which pays out dividends, through hedging against ex dividend date price declines by writing a call option on the stock holdings.

Therefore the objective of this study overall is to explain and analyze how would alternative strategies: the covered call and dividend hedge capture strategies yield better returns on coporate cash holdings. This should be done by way of analyzing the pricing of premiums as well as estimating the thoretical premiums on options, which makes up the returns on these types of investments.

Second, this study explores the essence of deriving the price (premiums) of call options and analyzes the Binomial Pricing and Black-Scholes pricing models to determine the theoretical price of options, which provides the hypothetical returns if those options on 10 stocks of the LQ-45 were to exist and be traded.

Third, this study is expected to provide a comparison study of the options market in the US and give a sense of what is needed to further develop the options markets in Indonesia.

1.4. Scope and Context of Study and Writing

The analysis of deriving the price (premiums) on options mainly uses the Black-Scholes pricing model to arrive at the theoretical price of options. The Binomial Pricing model will provide a benchmark and a comparison of the derivation of call options premiums. The reason for the main usage of the Black-Scholes Pricing model is that the Binomial Pricing model tends to converge into the Black-Scholes as the strike price and the stock price difference tends to be in-the-money and nearing expiration. Thus the Black-Scholes Pricing model should provide for the lower-level of premiums on call options.

1.5. Method of Analysis

The method of analysis used in this thesis combines theory and research to provide a simulation of premiums required to compare the alternative strategy to the traditional strategy of investments.

Theory pertains to the pricing of options derived using the Binomial Pricing and Black-Scholes Pricing model. While reasearch is based on estimating the historic volatility of options using the daily closing prices of 10 stocks on the LQ-45. This historic volatility then is inputted into the Black Scholes Pricing model to derive the theoretical price of options.

Simulations of returns is used by generating a historical situation where hypothetically a firm invests in covered call and dividend hedge capture strategies

and then compared to the risk-free rate to determine the favorability of the alternative investment strategies.

1.6. Organization of Thesis and Content

This thesis is arranged in the following order:

CHAPTER 1 Introduction

This chapter introduces the background, problem, and objectives as well as the scope of study and writing governing the structure and analysis of this thesis.

CHAPTER 2 Options and Corporate Cash Management

This chapter provides for the history of the development of options which explains the evolution and establishment of how the options market trades today. The chapter continues with the determination of call premiums beginning with the essence and underlying factors in its pricing. Options pricing is further explained by the Binomial Pricing and Black-Scholes Pricing Models which provides the underlying analysis in deriving the price of premiums of 10 (ten) LQ-45 stocks. Besides that, this chapter also explains the mechanisms of an options trade which provides the strategies which are essential to alternative corporate cash management strategies.

CHAPTER 3 Theoretical Pricing of Options


This chapter provides the methodology of obtaining the theoretical pricing of call options premiums employing the Binomial Pricing and Black-Scholes model quantified. The theoretical pricing of call options premiums is also employed in obtaining a simulation of a hypothetical condition as if firms had employed the alternative strategies in numerous cases.

CHAPTER 4 Evaluation of Covered Call & Dividend Hedge Capture Strategy
This chapter evaluates the returns on the alternative strategies compared to the
traditional strategies of corporate cash holding optimizing. In evaluating the

results the Sharpe ratio as well as statistical tests, t-test and Wilcoxon signed ranked test, are used.

CHAPTER 5. Conclusion & Recommendation

This chapter provides the conclusion and recommendations pertaining to the alternative strategies which can be implemented by firms and the future of the options markets in Indonesia.

CHAPTER 2

OPTIONS AND CORPORATE CASH MANAGEMENT

2.1. Options and Options Trading

In order to understand the full extent of options and how it pertains to the further growth of its trading in the Indonesian stock market for the forthcoming future, we should examine the history, the structure of the options market as well as the mechanism that shape options trading in America. This should be important in adopting both structure and mechanism of options trading for Indonesia.

2.1.1. Brief History of Options

Options actually have been around for quite a long time. It is not know precisely where and when the first option contract was traded. History had dated options as far as ancient times when the Romans and even the Phoenicians used similar contracts in shipping. Historical evidence also points out that Thales (G. E. R. Lloyd, 1971) a mathematician and philosopher in ancient Greece, employed options in order to secure a low price for olive presses in advance of the harvest. Thales had a method of predicting a typical olive harvest would be particularly strong in one season and weak in another season. With this information at his disposal then Thales when it was the off-season and demand for olive presses was critically low, would acquire rights, at a very low cost, to use the presses the following spring. Later on, when the olive harvest on again for the season, Thales exercised his option and proceeded to rent the equipment to others at a much higher price.

In America, options first became known around at the time stocks also began trading. In the beginning of the 19th century, call and put options contracts, at that time was known as privileges, were not traded on formal exchange. Because of the differing terms of each contract held by each investor, it was difficult and painstaking for buyers and sellers to find each other and reach an agreement. For the coming several decades, growth of option trading remain growing at a slow

pace. This was due to the cumbersome and illiquid early over-the-counter options failing to attract investors. Without a formal exchange, all trades were executed via phone. In addition, investors had no way of knowing what the real market price of a given options contract was.

2.1.2. The role of Chicago Board of Trade in development of options

Near the end of the 1960s, Joseph W. Sullivan, Vice President of Planning for the CBOT, studied the over-the-counter option market and concluded that two key features for success were missing (www.optionsxpress.com).

First, Sullivan believed that existing options had too many variables. To correct this, he proposed standardizing the strike price, expiration, size, and other relevant contract terms.

Second, Sullivan recommended the creation of an intermediary to issue contracts and guarantee settlement and performance. This intermediary is now known as the Options Clearing Corporation¹.

To standardize and replace the put-call dealers, who served only as intermediaries, the CBOT created a system in which market makers were required to provide two-sided markets both for puts and calls. At the same time, the presence of these multiple market makers made for a competitive atmosphere in which buyers and sellers both could be assured of receiving the best possible price.

2.1.3. Establishment of Chicago Board Options Exchange (CBOE)

To further carry out improvements in the options markets, the Chicago Board of Trade established the Chicago Board Options Exchange (CBOE). At that time the CBOE began trading listed call options on 16 stocks on April 26, 1973. The first-day of trading for the CBOE generated a volume of merely 911 contracts, but this number gradually increased and the average daily volume skyrocketed to over 20,000 the following year.

¹ Later explained in 2.1.4

The number of underlying stocks with listed options had doubled to 32, while the exchange membership doubled from 284 to 567. In addition at that time, new laws opened the door for banks and insurance companies to include options in their portfolios. Because of that, option volume continued to grow rapidly. By the end of 1974, average daily volume exceeded 200,000 contracts.

2.1.4. Options Clearing Corporation

Exchange-traded options are not issued by the companies themselves. Instead, they are issued by the Options Clearing Corporation (OCC). By centralizing and standardizing options trading, the OCC has created a more liquid market. The OCC was founded in 1973 as directed by the CBOT Vice President of Planning in order to make options trading much more liquid and practicable for investors. The OCC functions as a intermediary for buyers and sellers of call and put options. This would mean that the OCC act as a guarantor, ensuring that the obligations of the contracts clears are fulfilled (www.theocc.com).

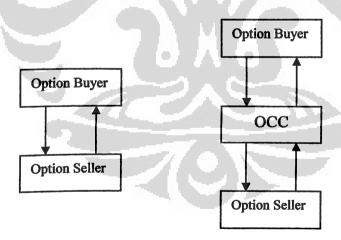


Figure 2.1. Diagram OCC as a clearinghouse

Overseeing OCC is a clearing member dominated by board of directors. OCC operates as an industry utility and receives most of its revenue from clearing fees charged to its members. OCC offers volume discounts on fees and, as applicable, refund excess fees to its clearing members.

OCC's participant exchanges include: international and national exchanges e.g. NASDAQ Options Market, American Stock Exchange, Chicago Board Options Exchange, International Securities Exchange, NYSE Arca, and regional exchanges e.g. Philadelphia Stock Exchange, and the Boston Stock Exchange. Its clearing members serve both professional traders and public customers and comprise approximately 130 of the largest U.S. broker-dealers, futures commission merchants and non-U.S. securities firms. OCC's goal is to service clearing members and the exchanges through an operating plan that emphasizes timely, reliable and cost-efficient clearing operations.

OCC also serves other markets, including those trading commodity futures, commodity options, and security futures. OCC clears commodity contracts traded on CBOE Futures Exchange and Philadelphia Board of Trade, respectively, as well as security futures contracts traded on OneChicago.

2.1.5. Mechanism of An Options Trade

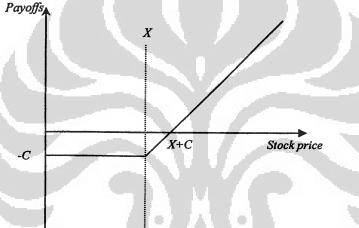
Unless otherwise specified for, a typical options contract controls 100 shares of stock. Its strike price has also been pre-specified according to the particular stock price. In general, the strike price is determined at a \$5 fold. A Call options for Apple Computer shares (AAPL) would be quoted with the following strike price.

Symbol Last Chg Bid Ask Vol Strike Open Int 75.20 0.00 90.00 **QAAHR.X** 72.05 72.35 21 91 **QAAHS.X** 69.95 0.00 67.05 67.35 95.00 10 51 60.80 62.35 100.00 QAAHT.X 3.10 62.10 2 73 56.40 3.60 57.10 57.40 105.00 QAAHA.X 2 96

Table 2.1. Example of AAPL options quote

Source: finance.yahoo.com

In its simplest terms, an option holder has the right, but not the obligation, to buy (for calls) or sell (for puts) a particular stock at a set price (strike) on or before the day of expiration. The expiration date set by the OCC for all options is the third Friday for which month the option trades. For the example of Apple Computer

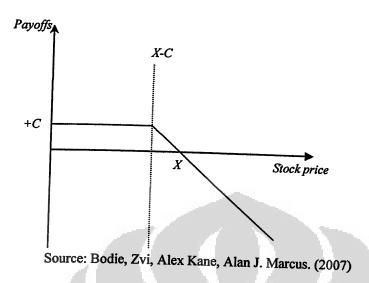

shares options above, the August call options expires on Friday, August 15, 2008, which is the third Friday for that month.

For options (Chance, 2004), a typical investor can either buy or sell (write) an option (call or put).

1. When that investor chooses to buy a call option, she chooses to hold the right by buying a call options contract for C, of buying a particular stock at a specific price, let say X. We can draw up her payoff in the following diagram with no transaction costs:

Figure 2.2. Payoff Diagram to Call Buyer

Payoffs



Source: Bodie, Zvi, Alex Kane, Alan J. Marcus. (2007)

As long as the stock price trades at below the strike price, X, then the investor has not gained but still endures a loss from the option price of C. The investor's payoff starts to rise as the stock price surpasses the strike price reaching a breakeven payoffs at X+C, or the point where the stock price exceeds the strike price and just about covers the premium paid for the contract. From then on then the investor gains as the stock price continues to rise adding to her payoff.

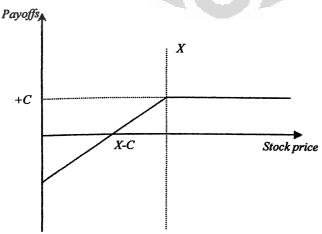
2. In contrast, when an investor chooses to write (sell) a call option, she chooses to forgo the right to buy a particular stock at a specific price, X, and is awarded a premium of C. We can draw up her payoff in the following diagram with no transaction costs:

Figure 2.3 Payoff Diagram to Call Writer

As long as the stock price trades at below the strike price, X, then the investor has gained the premium of C. The investor's payoff starts to decline as the stock price surpasses the point where X-C and breaks even at X, or the point where the stock price starts to exceed the strike price and the premium received for the contract disappears and would have to be closed out (bought back) at higher prices. From then on then the investor continues to suffer losses as the stock price continues to rise.

3. When an investor chooses to buy a put option, she chooses to hold the right to sell a particular stock at a specific price, X, and pays the premium of C. We can draw up her payoff in the following diagram with no transaction costs:

Figure 2.4. Payoff Diagram to Put Buyer



Source: Bodie, Zvi, Alex Raile, Alaii J. Marcus. (2007)

When the stock price trades at below the strike price, X, then the investor gains from premium larger than C. The investor's payoff starts to decline as the stock price increases and breaks even at X. By reaching X+C, the investor suffers a maximum loss of the premium paid, C.

4. When an investor chooses to write a put option, she chooses to forgo the right to sell a particular stock at a specific price, X, and is compensated a premium of C. We can draw up her payoff in the following diagram with no transaction costs:

Figure 2.5. Payoff Diagram to Put Writer

Source: Bodie, Zvi, Alex Kane, Alan J. Marcus. (2007)

When the stock price trades at below the strike price, X, the investor suffers losses larger than C, as the investor would have to close out (buy back) at a higher premium. The investor's payoff starts to rise as the stock price increases and breaks even at X-C, at X the investor fully collects premiums of C.

2.2. Fair Price of An Option

Determining the value of an option is related to determining the possibilities of future outcomes prices (of an underlying) can have. In other words if we could add up all the possible individual pay-offs and weight them according to their individual probabilities, then that sum would be the price of an option at expiration. Then the price of the option at today would then be the present value of that sum at expiration (Ward, 2004).

Determining the possibilities would be to list all the possible outcomes pertinent to an underlying stock's price movement, in this case it is *up* or *down*. But the problem persists that not only the direction (up or down), but by how much within the given period it is valid. In listing all possibilities of the direction and amount to which the underlying will move we should obtain a distribution of the possibilities in consistent with the normal distribution, which is the key to understanding the Black-Scholes Pricing Model.

To further explain (Ward, 2004), we should consider a definite possibility of one outcome of a certain stock, say ABC. Shares of ABC trade at \$100 at the opening and there is no uncertainty that the shares will close at \$110 at the end of the day. Then the options of ABC with a strike price of \$100 should be priced at \$10 (\$110-100), strike price of 90 priced at \$20, strike price of \$80 at \$30, and so on. The reason for the pricing, of \$10 at strike price \$100, is that because everyone knows that the shares of ABC will close at \$110. Then no one would be willing to pay for more than \$10 or sell for below \$10. The distribution of this no uncertainty scenario of shares of ABC would then be:

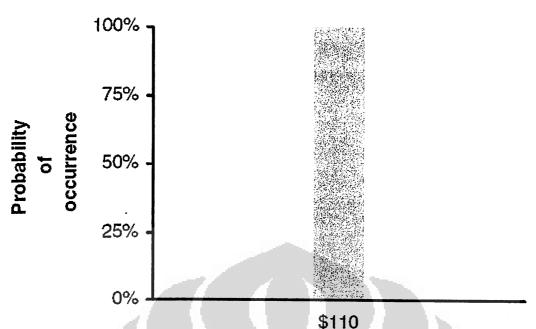


Figure 2.6. Distribution with no uncertainty Source: Ward (2004), Options and Options Trading

The next scenario calls for two possibilities of the closing price of ABC shares: the price remains unchanged at \$100 or the price goes up to \$110. Then the fair price of a call option strike price of \$100 is the sum of: 50% chance of ABC remaining at \$100 and 50% chance of ABC closing at \$110, or rewritten as: $\{50\% \times (\$100-100)\} + \{50\% \times (\$110-100)\} = \{50\% \times (\$100-100)\} = \{50\% \times (\$$

The distribution of the two possible outcomes scenario would then be:

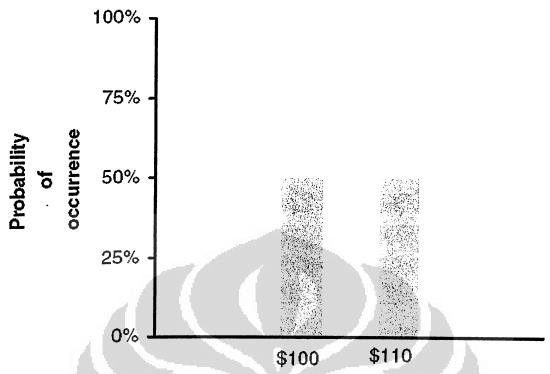


Figure 2.7. Distribution with 2 possibilities Source: Ward (2004), Options and Options Trading

The scenarios continue for numerous possibilities where the price of ABC share would close at therefore generating the normally distributed form with 5 possibilities where the price of ABC shares would be expected to close.

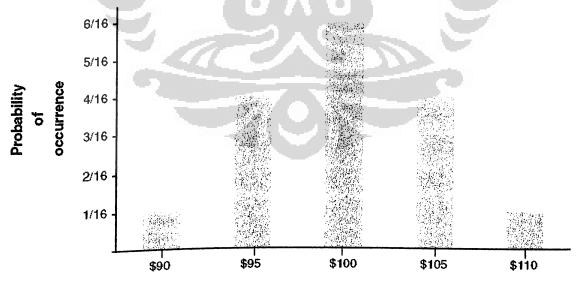


Figure 2.8. Distribution with 5 possibilities Source: Ward (2004), Options and Options Trading

The possibilities of ABC closing at \$90, \$95, \$100, \$105, and \$110 will generate the fair price of our call option strike price of \$100 amounting to:

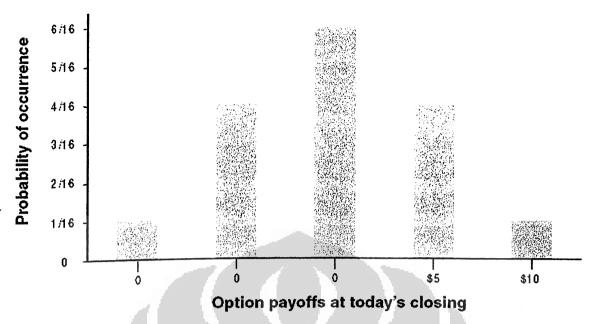


Figure 2.8a. Distribution with payoffs of 5 possibilities Source: Ward (2004), Options and Options Trading

$$\left(\frac{1}{16} \times \$0\right) + \left(\frac{4}{16} \times \$0\right) + \left(\frac{6}{16} \times \$0\right) + \left(\frac{4}{16} \times \$5\right) + \left(\frac{1}{16} \$10\right) = \frac{\$30}{16} = \$1.875$$

At this fair price, it would mean if we had bought this call option 16 times we would get a break-even of \$30. This \$30 is simply: \$5 payoff received 4 times, and \$10 payoff received once.

As the number of scenarios continue holding greater numbers of possibilities of where the price of ABC shares will close. Then the distribution becomes one of the *smooth* normal distribution curve below. This smooth curve holds all the possibilities of where the stock price will close given the amount of time available for the investor.

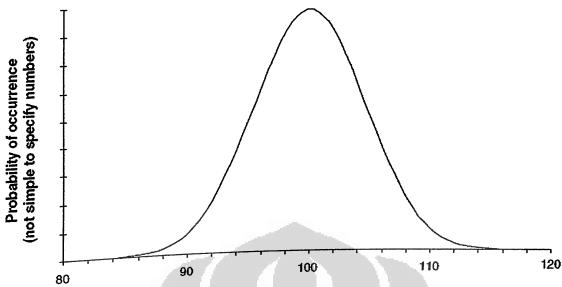


Figure 2.9. Distribution with numerous possibilities- The Normal Distribution Source: Ward (2004), Options and Options Trading

2.3. Binomial Options Pricing Model

The binomial model (Hull, 1998) breaks down the time to expiration into potentially a very large number of time intervals, or steps. A tree of stock prices is initially produced working forward from the present to expiration. The tree represents all the possible paths that the stock price could take during the life of the option.

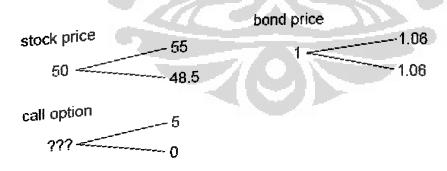


Figure 2.10. Diagram of Binomial Options Pricing Model Source: Ward (2004), Options and Options Trading

At each step it is assumed that the stock price will move up or down by an amount calculated using volatility and time to expiration. This produces a binomial distribution, or recombining tree, of underlying stock prices.

On the expiration of the option, which would be the end of the tree, all the terminal option prices for each of the final possible stock prices are simply equaling their intrinsic values. Next the option prices at each step of the tree are calculated working back from expiration to the present. The option prices at each step are used to derive the option prices at the next step of the tree using risk neutral valuation based on the probabilities of the stock prices moving up or down, the risk free rate and the time interval of each step. Any adjustments to stock prices (at an ex-dividend date) or option prices (as a result of early exercise of American options) are worked into the calculations at the required point in time. The end result of the top of the tree would be the one option price.

The method for deriving the price of the call option will be simplified employing the following equations:

The stock price movement of either, Su or Sd, is in alignment with the options price of either, Cu or Cd.

With the binomial up parameter:

$$u = e^{\sigma \sqrt{T/n}}$$

Equation 2.1.

and a binomial down parameter:

$$d=\frac{1}{u}$$

Equation 2.2.

and risk free rate component in binomial model:

$$r = (1+R)^{T/n}$$

Equation 2.3.

Both d and u as well as r will be input for determining p:

$$p = \frac{r - d}{u - d}$$

Equation 2.4.

Thus, the notation for this tree would be:

Cu = Max (0, Su-X)

Cd = Max (0, Sd-X)

Which then we can obtain for the price of the call from the following equation:

$$C = \frac{pCu + (1-p)Cd}{1+r}$$

Equation 2.5.

2.4. Black-Scholes Options Pricing Model

A breakthrough in option price determination in 1973 was the Black-Scholes Model (Black & Scholes, 1973), the Black-Scholes model states that the value of a call option depends on the price of its underlying stock, time to expiration, and the variables taken as known constants.

$$C = SN(d_1) - Ee^{-Rt} N(d_2)$$

Equation 2.6.

where

$$d_I = \left[\ln(S/E) + (R + \sigma^2/2)t\right] / \sqrt{(\sigma^2 t)}$$

Equation 2.7.

$$d_2 = d_1 - \sqrt{(\sigma^2 t)}$$

Equation 2.8.

invloving five parameters:

1. S = current stock price

2. E = exercise price of call

3. R = annual risk-free rate of return, continously compounded

4. σ^2 = variance (per year) of the continuous return on the stock

5. t = time (in years) to expiration date

with a statistical concept that:

N(d) = probability that a standardized, normally distributed, random variable will be less than or equal to d

The first part, N(d1), derives the expected benefit from acquiring a stock outright. This is found by multiplying stock price, S, by the change in the call premium with respect to a change in the underlying stock price, which is N(d1). The second part of the model, Ee^{-rt}N(d2), gives the present value of paying the exercise price on the expiration day. The fair market value of the call option is then calculated by taking the difference between these two parts.

Assumptions of the Black-Scholes Model:

1. The stock pays no dividends during the option's life

Dividend payments seem as a serious limitation to the model considering the observation that higher dividend yields elicit lower call premiums. A common

way of adjusting the model for this situation is to use an adjusted stock price which dividends are subtracted from.

2. Exercise terms are those of European Options

European exercise terms stipulates that the option can only be exercised on the expiration date, while its counterpart's, American options, exercise term allows the option to be exercised at any time during the life of the option, making American options more valuable due to their greater flexibility. This assumption which gives rise to limitations is not a major concern because in reality very few calls are ever exercised before the last few days of their life. Because when a call is exercised early, we forfeit the remaining time value on the call and collect the intrinsic value. Towards the end of the life of a call, the remaining time value is very small, but the intrinsic value is the same.

3. Markets are efficient

This assumption relates to the fact which it states that people cannot consistently predict the direction of the market or an individual stock and in the process obtain abnormal returns.

4. No transaction costs, e.g. taxes, commissions and fees, are charged

In reality, market participants do have to pay a commission to buy or sell options. Even floor traders pay some kind of fee, but it is usually very small. What should be considered here are the fees that an individual investor pays is more substantial and can often distort the output of the model.

5. Interest rates remain constant and known

The Black-Scholes model uses the risk-free rate to the extent that it is a constant and a known rate. In reality there is no such thing as the risk-free rate, but the discount rate on U.S. Government Treasury Bills with 30 days left until maturity can be used as a proxy. During periods of rapidly changing interest rates, these 30 day rates are often subject to change, thereby violating one of the assumptions of

way of adjusting the model for this situation is to use an adjusted stock price which dividends are subtracted from.

2. Exercise terms are those of European Options

European exercise terms stipulates that the option can only be exercised on the expiration date, while its counterpart's, American options, exercise term allows the option to be exercised at any time during the life of the option, making American options more valuable due to their greater flexibility. This assumption which gives rise to limitations is not a major concern because in reality very few calls are ever exercised before the last few days of their life. Because when a call is exercised early, we forfeit the remaining time value on the call and collect the intrinsic value. Towards the end of the life of a call, the remaining time value is very small, but the intrinsic value is the same.

3. Markets are efficient

This assumption relates to the fact which it states that people cannot consistently predict the direction of the market or an individual stock and in the process obtain abnormal returns.

4. No transaction costs, e.g. taxes, commissions and fees, are charged

In reality, market participants do have to pay a commission to buy or sell options. Even floor traders pay some kind of fee, but it is usually very small. What should be considered here are the fees that an individual investor pays is more substantial and can often distort the output of the model.

5. Interest rates remain constant and known

The Black-Scholes model uses the risk-free rate to the extent that it is a constant and a known rate. In reality there is no such thing as the risk-free rate, but the discount rate on U.S. Government Treasury Bills with 30 days left until maturity can be used as a proxy. During periods of rapidly changing interest rates, these 30 day rates are often subject to change, thereby violating one of the assumptions of

the model. For our study purpose we will employ the one-month SBI rate for the month of July as a proxy for the risk-free rate.

6. Stock returns are lognormally distributed

This assumption suggests, returns on the underlying stock are normally distributed, which is reasonable for most assets that offer options. Further explanation of this assumption had been addressed in the previous part (2.2).

2.5. Theory of Corporate Cash Management

Companies face a major issue in determining the optimal amounts of cash to hold. Myers & Majluf (1984) determined that costly external finance and potential constraints make it important for firms to maintain a liquid cash reserve so positive NPV projects can continue to be funded, or in a strategic view, the firm thus can exploit or respond to sudden changes in its external environment as well as competition.

The covered call strategy is an alternative strategy that will be available to Indonesian firms facing problem with better returns on idle cash holdings or problem with undertaking negative NPV projects. The strategy should prove beneficial for firms, but employing it, firms will have to meet several requirements and stipulations in order for the strategy to yield optimal returns in the face of firm specific and market risk. This would then lead to the determination of how much and for how long should firms allocate cash holding in order to obtain perceived higher returns

It is deemed favorable for a firm to have excess cash holding in order to dedicated an amount to the covered call strategy. But overall the company must take into consideration risks that relates to excess cash holding, we can identify the most related risks (Beltz & Frank, 1996) are:

1. Risks due to fluctuations of operating cash flows, in that availability is most crucial but in the other hand this resource must not be underutilized

- 2. Risk of interest rates, as seen in the standard deviation of interest rates, where in times where interest rates are high then excess cash holding is undesirable, whereas when interest rates are low then excess cash holdings will be desirable. This excess cash holding will give way to other high-yielding returns on those excess cash.
- 3. Agency risks, relating to the amount of cash available to a firm as well as the number of investment opportunities also available. When firms hold excess cash and very little investment opportunities are available to them, or even negative NPV yielding investments are only available, them the agency motive holds that managers will most likely invest in those negative NPV investments or increase payouts to shareholders. Both of which should affect the value of the firm detrimentally.

2.5.1. Cash Conversion Cycle

In determining this limited investment period, we must examine closely a firm's cash conversion cycle (operating cycle). The cash conversion cycle, indicates how cash is moving through a company in terms of duration. This ratio is vital because the cycle represents the number of days a firm's cash remains tied up within the operations of the business. In examining the cash conversion cycle we must examine closely: a firm's inventory, receivables and payables in the form of its respective turnovers.

$$\frac{COGS}{Inventory/360} = \text{Average Inventory Collection Period} + \text{Equation 2.9.}$$

$$\frac{Sales}{AR/360} = \text{Average Receivables Processing Period} - \text{Equation 2.10.}$$

$$\frac{COGS}{AP/360} = \text{Average Payables Period}$$
 Equation 2.11.

Cash Conversion Cycle

The cash conversion cycle indicates the duration of time it takes the firm to convert its activities that are requiring cash into cash returns. The faster, meaning less days required, a firm can generate cash within its cash conversion cycle the more beneficial it becomes for the firm. In other words, a downward trend in this cycle is a positive signal while an upward trend is a negative signal.

When the cash conversion cycle shortens, cash becomes free for other uses such as investing in new capital, spending on equipment and infrastructure, as well as preparing for possible share buybacks down the road. On the other hand, when the cash conversion cycle lengthens, cash remains tied up in the firm's core operations, leaving smaller range of choices available for other uses of its cash flow. Each business seeks to obtain a proper mix between the amount of resources deployed to working capital and those to capital investments. Thus, an ongoing trade-off between operational decisions to lengthen the cash conversion cycle (which increases the liquidity required) and financial decisions to shorten the cycle (which decreases the liquidity required).

2.5.2. Analysis of Traditional Cash Management

For a company, traditionally, it is deemed important for them to have sufficient working capital- that is current assets minus current liabilities- in order to support its day to day operations as well as pursue opportunities in terms of growth and competition stipulated by the company's external environment. For a typical working capital management scheme, the viewpoint has always been to maintain or increase working capital by three general ways (Buchamann, 2008):

- 1. Inventory, by reducing inventory firm will free tied up cash in the form of excess inventory
- 2. Receivables, by speeding up receivables collection firms will have ready cash. This can be achieved through incurring down payments from customers and setting up a series of payments to ensure the collectivity of receivables.

Payables, firms should benchmark terms and conditions against industry best practices and eliminate early payments, except when attractive discounts are offered.

The three viewpoints mentioned above are both from a current asset and current liabilities standpoint. In that another component of current assets is often forgotten and that is cash and cash equivalents as well as marketable securities. These components of current assets is also important and when optimized and used to generate an even higher return can prove beneficial of the firm combined with inventory, receivables, and payables in generating sufficient and even higher levels of working capital for the firm.

In optimizing company cash holdings the typical strategy that a company employs involves instruments with high liquidity: money-markets, deposits, bank savings with lower levels of risk. In some cases firms also employ the use of mutual fund in optimizing their cash holdings and generating yields. The question then are these instruments currently employed optimal for firms, in that they generate the highest returns possible at lower levels of risk adequate for corporate cash holdings.

2.6. Alternative Strategies to Today's Corporate Cash Management

The mechanism of an option trade makes it possible for investors to derive numerous hedge strategies that generate returns in any market condition for a lower level of risk. Two of the strategies that is related to this thesis is the covered call strategy and the dividend hedge capture strategy which is seen fit to be employed on corporate cash management.

2.6.1. Covered Call Strategy

The covered call strategy is a short-term hedge strategy employing the writing (sale) of call options of an underlying stock for the number of that stock's holdings. The idea here is that an investor can gain premiums while having the stock holdings to ensure the premiums received (Bodie, Kane & Marcus, 2002).

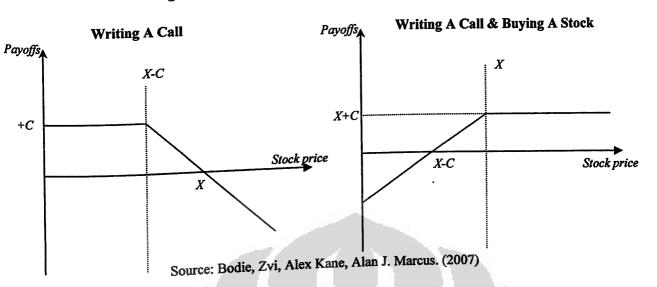


Figure 2.11. Payoff Diagram to Covered Call Strategy

The payoffs received by an investor would be the premiums at an initial sale of call options as much as C. As the stock prices increases, the investor if had not held the stock then would have to cover her trade at a much higher premium resulting in a total negative payoff. But because of the covered call strategy the investor simply delivers her stock holding and retains the premiums from her selling the call options.

As we can see from Figure 2.6. the investor employing the covered call strategy by writing call options enjoys downside protection up to X-C. When the stock is trading at prices lower than its exercise

This strategy is one that can be used for yielding higher returns on corporate cash holdings because of the short-term length and its risk protection property. When employing a covered call strategy for corporate cash uses, it is recommended that the option written for is one that is *in-the-money* or even *deep-in-the-money*. The reason for this is for a more guaranteed exercise of the option, rather than it be attended to out-of-the-money which is much more riskier, especially for the-money or out-of-the-money which is not exercised and the company's corporate cash management, in that the option is not exercised and the company's cash is exposed to additional unwanted risk as it continues to hold the stocks unexercised at a lower price.

In the case of when the stock price declines to a point where the options remain unexercised, a typical exit scenario would be to hold on to the stocks and options as it is unexercised an expires but still generating an income from the premiums obtained. Then for the next trading options month sell call options again but for a lower exercise price, one that would guarantee an exercise at an even lower price.

2.6.2. Dividend Hedge Capture Strategy

This strategy is employed in order to capture the dividends paid out from a typical stock while being protected from price declines as a result. When a stock pays out dividends, either quarterly, annually or even one time, the stock price will be corrected to the amount of the dividends the stock will pay out. This is done to reflect the value of the shares of a company with cash flowing out from the company, thus producing the lower price. When this happens, an investor can not just buy the stock just before it pays out the dividends, expect to receive the dividends and sells the stock afterward. She will suffer a price decrease on her holdings. To resolve this situation, options are then employed creating a hedge that will protect the stock holdings while she receives dividends.

The dividend hedge capture strategy employs a put option in order to maintain a selling price for the holder that is higher than the market price after the price correction. When a company wants to pay out dividends on its shares, the company usually makes an announcement of this matter. In the announcement, the company specifies (Bodie, Kane & Marcus, 2007):

- 1. Ex-date or Ex-dividend date— on this date henceforth shares of a company paying dividends is corrected to a lower price of the amount of dividends paid out.
- 2. **Date of record** at this date the company will look at its records to see who the shareholders of the company are. For an investor wanting to receive dividends, she must be listed as a holder of record.
- 3. Date of payment (payable date) at this date the company actually pays out the dividend to the holder of record. This date is generally a week or more

after the date of record so that the company has sufficient time to ensure that it accurately pays all those who are entitled.

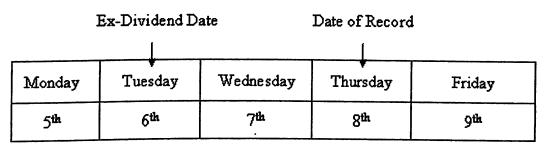


Figure 2.12. Dividend dates

To put all these dates together, we can see from the above diagram that the date of record falls on Thursday the 8th. To benefit from the dividend hedge capture strategy, an investor must be recognized as a holder or record at that date. This would mean the investor must purchase the stock on Monday 5th and simultaneously establish a hedge with writing a call for the number of stock holding, thus receiving premiums for the call. The investor on the ex-dividend date then can buy back her call options at an obviously lower price and sell of her stock position at the decreased price. In the process overall the investor obtains the dividend paid out on her stock holding as is also hedged against a price depreciation as a result of ex-dividend date.

2.6.3. Previous Related Studies

The covered call strategy as well as the dividend hedge capture strategy have been applied to cash management for some time in the U.S. Their application have been renowned since the 1970s and a number of research and studies have followed the development of both strategies throughout the years and have shown favorable results pertaining to both strategies applied to cash management. The studies are listed below and identified in which topic they relate and provide empirical support and application, as well as the conclusion obtained from each individual study.

Table 2.2. A Number of Previous Related Studies

1 able 2.2. A Number of Frevious Related Studies								
Studies	Related Topic	Conclusion						
st of the Applicability of The Black	Validation of the	The research concludes that the B-						
les Call Option Pricing Model:	Application of the	S model accurately estimates the						
ing S&P 100 Index Call Options	Black-Scholes Model	S&P 100 index call options.						
n Robertson Burckel, 1989)								
ication of Option-Pricing Theory:	Validation of the	The study concludes that the						
ty-Five Years Later (Merton, 1998)	Application of the	Black-Scholes as a mathematical						
	Black-Scholes Model	model have become mainstream to						
	, (1)	practitioners in financial						
		institutions and markets around the						
.//		world.						
ned Benefit Pension Plan: Covered	Empirical test of	The study concludes that the						
Option Accounting (Griffith, 1982)	applying the covered	recognition of the covered call						
Priori Mocouning (call to corporate use	may signal the future acceptability						
	- / 1/ -	of other types of options						
		instruments investments.						
Management Implications of a	Empirical test of	The study concludes that the						
Red Dividend Capture Strategy	applying the dividend	annualized returns pertaining to						
wn & Lummer, 1984)	hedge capture strategy	dividend hedge capture strategy						
o Daminoi, 1901)	to corporate use	yields impressive returns for						
		corporate investors.						
examination of the Covered Call	Empirical test and	The study concludes that the						
on Strategy for Corporate Cash	reevaluation of the	dividend hedge capture as well as						
Pagement (Brown & Lummer, 1984)	covered call option	the covered call strategy is still a						
	strategy for corporate	valuable tool for the short-term						
	use	corporate investor.						
ancing Stock Returns Using Hedged	Empirical test of the	This paper concludes that the						
dend Capture (Zivny, Ledbetter &	dividend hedge capture	slight incentive received by						
an, 2006)	strategy to corporate use	investors can be enhanced through						
~ ~000)		a form of dividend hedge capture.						

Source: compiled by the author

CHAPTER 3

PRICING OF OPTIONS PREMIUMS

3.1. Deriving the Price of Options on 10 Stocks of the LQ-45

In applying the covered call strategy as well as the dividend hedge capture we must know how much we will receive as premiums in order to validate the strategy as one that generates returns.

In order to estimate all parameters needed to obtain the theoretical premiums of a call option, data used was available data of a number of issues' stock prices from 2004-2008. This period was chosen due to the appreciation of the Indonesian Stock Exchange to new highs followed by a correction of more than 8%, which should provide volatility in conditions of positive and negative returns of stocks.

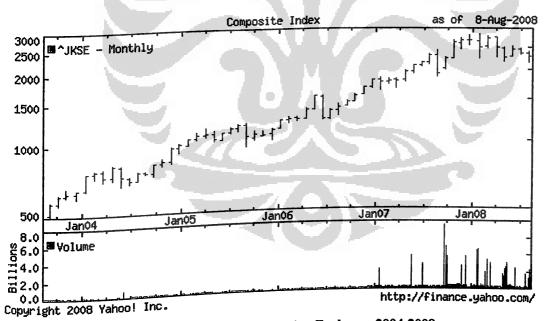


Figure 3.1. The Indonesian Exchange 2004-2008

Further assumptions used as inputs for the models used are:

- 1. Trading days in 1 year equals to 250 days
- 2. Call options trading for one particular month, in this case for July only, has 31 day, and on average 21 trading days until its expiration
- 3. Strike prices are given and set at the same price of each stocks as of July 4, 2008

These issues was also used as input for simulating the dividend hedge capture strategy, where a number of the chosen issues paid out regular dividends.

The premiums estimated are for issues or company stocks in Indonesia listed at the Indonesian Stock Exchange meeting the following criteria stipulated by the exchange:

- 1. The recent year minimum average monthly transaction of 2000 shares traded
- 2. The market price of the underlying stock must be above Rp 500,-
- 3. The minimum monthly price volatility of 10%
- 4. The stock should have a large market capitalization

In order to conduct the study of generating premiums on covered calls then the following issues have been selected in conformance with the criteria set.

Table 3.1. Comparison of 10 stocks of LQ-45

Issue	Market Price	Monthly Price Volatility	Average Monthly Transaction
TLKM	7,350	11.22%	22,956,600
ANTM	3,100	23.24%	40,606,800
ASII	19,300	13.73%	6,752,970
BBNI	1,230	14.21%	21,557,800
INDF	2,300	15.14%	15,550,800
ISAT	6,500	13.71%	19,681,500
AALI	28,000	14.41%	2,395,760
	5,400	13.87%	19,983,400
BBRI	1,730	17.69%	60,197,100
UNSP	12,500	17.31%	10.892.000
PGAS			

Source: finance.yahoo.com

These issues from Table 3.1. are selected due to their heavy volume and high monthly volatility which provides a better calculation of premiums compared to issues non-conforming with the requirements mentioned above. We can relate that the criteria stipulated implies that in order for stocks to have options it should be heavily traded which in turn generates high volatility, and in the end have high (worthwhile) premiums. From Table 3.1. for stocks of ANTM, which is heavily traded at more than 40 million shares exchanged monthly, the volatility is high at

around 23%. The same goes for UNSP, with heavy volume at around 60 millions shares traded monthly, having volatility of 17.31%.

But not all the issues have heavy volumes in relation to high volatility, some like TLKM do have heavy volumes but come at relatively low volatility. This is because TLKM has a float (shares availably traded) that is limited, being that TLKM share are in majority owned by the Indonesian government.

3.1.1. Price of Call Option of TLKM

From the previous explanation pertaining to estimations of premiums (price of call options) we can determine the premiums using the Black-Scholes options pricing model for all 10 chosen stocks of the LQ-45, beginning with TLKM:

$$\sigma = \sqrt{\frac{0.381603 - \frac{(-0.57763)^2}{939}}{938}}$$

$$\sigma = 0.02016$$

Annualized Volatility = 0.318597

The σ we have estimated can be used as input into the Black-Scholes Model involving five parameters:

1. S = current stock price of TLKM = 7350

2. E = exercise price of call of TLKM-O = 7350

3. R = risk-free rate of return = 8.75%

4. σ = volatility of the continuous return on the stock = 0.318597

5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(7350/7350) + \left\{ (0.0875) + \frac{(0.318597)^2}{2} \right\} \frac{1}{12}}{0.318597 \sqrt{\frac{1}{12}}} = 0.1252677$$

$$N(0.1252677) = 0.549844$$

$$d2 = 0.1252677 - 0.318597\sqrt{\frac{1}{12}} = 0.033297$$

N(0.217239) = 0.513281

$$C = (7350 \times 0.549844) - 7350(e^{-0.0875/12}) \times 0.513281$$

C = 4041.3534 - 3745.207

C = 296.15

From the Black-Scholes options pricing model, a premium of 296.15 is estimated, meaning that an *at-the-money* call options would be worth that much. This price given that the exercise price (strike price) equal to the stock price would mean that 296.15 is actually the time value of the call options, being that TLKM-O has one month's time to expire. The price of 296.15 is approximately 4% of TLKM market price of 7350, which would be a valid percentage compared in terms of stock price.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration = 31/365 = 0.0849

$$\checkmark$$
 n = 1

$$\checkmark$$
 r (risk-free rate) = $(1 + 0.0875)^{0.0849/1}$ -1 = 0.715%

$$\checkmark \quad u = e^{0.318597\sqrt{0.0849/1}} = 1.0973$$

$$\checkmark d = \frac{1}{1.0973} = 0.91135$$

$$\checkmark$$
 Su= 7350 x 1.0973 = 8065.155

$$\checkmark$$
 Sd= 7350 x 0.91135 = 6698.40

$$\checkmark$$
 Cu = Max (0, 8065.155 - 7350) = 715.155

$$\checkmark$$
 Cd = Max (0,6698.40 -7350) = 0

$$\checkmark \quad p = \frac{1.00715 - 0.91135}{1.0973 - 0.91135} = 0.5152$$

$$\checkmark$$
 1 – $p = 0.4848$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.5152^{j} \times (0.4848)^{(1-j)} Max [0,7350 \times 1.0973^{j} \times 0.9^{1-j} - 7350]}{1.00715^{1}}$$

$$C = \frac{715.155(0.5152) + 0.00(0.4848)}{1.00715} = 365.83$$

The Binomial options pricing model would confirm that an *at-the-money* call options for TLKM would be around 365.83. This price is 23.52% larger than the price estimated with the Black-Scholes options pricing model, and that the price is approximately 5% of the market price of TLKM.

3.1.2. Price of Call Option on ANTM

The observation continues with the simulation of the theoretical premiums of call options using the Black-Scholes options pricing model to estimate the premiums for ANTM as the following:

$$\sigma = \sqrt{\frac{0.413127 - \frac{(-1.5684)^2}{231}}{231}}$$

$$\sigma = 0.042376$$

Annualized volatility = 0.67

The σ we have estimated can be used as input into the Black-Scholes Model involving five parameters:

- 1. S = current stock price of ANTM = 3100
- 2. E = exercise price of call of ANTM-O = 3100
- 3. R = risk-free rate of return = 8.75%
- 4. σ = volatility of the continuous return on the stock = 0.67
- 5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(3100/3100) + \left\{ (0.0875) + \frac{(0.67)^2}{2} \right\} \frac{1}{12}}{0.67\sqrt{\frac{1}{12}}} =$$

$$N(0.090053) = 0.535877$$

$$d2 = 0.090053 - 0.67\sqrt{\frac{1}{12}} = -0.100336$$

$$N(-0.100336) = 0.460039$$

$$C = (3100 \times 0.535877) - 3100(e^{-0.0875/12}) \times 0.460039$$

$$C = 1661.2187 - 1415.76$$

$$C = 245.459$$

The premiums estimated of 245.459 makes up approximately 8% of the market price of ANTM shares. This price also the same with TLKM, in that being at-the-money, is also the time value for one month prior to expiration.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration = 31/365 = 0.0849

$$\checkmark$$
 n = 1

$$r \text{ (risk-free rate)} = (1 + 0.0875)^{0.0849/1} - 1 = 0.715\%$$

$$\checkmark u = e^{0.67\sqrt{0.0849/1}} = 1.2156$$

$$\checkmark \quad d = \frac{1}{1.2156} = 0.8227$$

$$\checkmark$$
 Su= 3100 x 1.2156 = 3768.36

$$\checkmark$$
 Sd= 3100 x 0.8227 = 2550.37

$$\checkmark$$
 Cu = Max (0, 3768.36 – 3100) = 668.36

$$\checkmark$$
 Cd = Max (0,2550.37 -3100) = 0

$$\checkmark \quad p = \frac{1.00715 - 0.8227}{1.2156 - 0.8227} = 0.4695$$

$$\checkmark 1-p=0.5305$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.4695^{j} \times (0.5305)^{(1-j)} Max [0,3100 \times 1.2156^{j} \times 0.9^{1-j} - 3100]}{1.00715^{1}}$$

$$C = \frac{668.36(0.4695) + 0.00(0.5305)}{1.00715} = 311.567$$

The Binomial options pricing model estimates that the theoretical premiums of one moth call options prior to expiration is 311.567, which is around 10% of the market price of ANTM. This price is also 27% greater than the price estimated using the Black-Scholes options pricing model.

3.1.3. Price of Call Option on ASII

Using the Black-Scholes options pricing model, we can estimate the theoretical premiums of ASII-O as the following:

$$\sigma = \sqrt{\frac{0.571157 - \frac{(-1.05056)^2}{939}}{938}}$$

$$\sigma = 0.024664$$
Annualized Volatility = 0.39

The σ we have estimated can be input into the Black-Scholes Model:

involving five parameters:

3. R = risk-nee rate of the continuous return on the stock 4.
$$\sigma$$
 = volatility of the continuous return on the stock = 0.39

5. t = time (in years) to expiration date = 31/365 = 0.0849315Where:

$$d1 = \frac{\ln(19300/19300) + \left\{ (0.0875) + \frac{(0.39)^2}{2} \right\} \frac{1}{12}}{0.39\sqrt{\frac{1}{12}}} = 0.121069$$

N(0.121069) = 0.548182

$$d2 = 0.121069 - 0.39\sqrt{\frac{1}{12}} = 0.00849$$

N(0.00849) = 0.503387

$$C = (19300 \times 0.548182) - 19300(e^{-0.0875/12}) \times 0.503387$$

$$C = 10579.9126 - 9644.7855$$

$$C = 935.127$$

The premiums of 935.127 makes up 4.84% of the market price for ASII shares. This price is the time value of the call options being that ASII-O has one month prior to expiration, being that the option is *at-the-money*.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration = 31/365 = 0.0849

$$\checkmark$$
 n = 1

$$r \text{ (risk-free rate)} = (1 + 0.0875)^{0.0849/1} - 1 = 0.715\%$$

$$\checkmark \quad u = e^{0.39\sqrt{0.0849/1}} = 1.1203$$

$$\checkmark \quad d = \frac{1}{1.1203} = 0.8926$$

$$\checkmark$$
 Sd= 19300 x 0.8926 = 17227.18

Cu = Max (0, 21621.79 - 19300) = 2321.79
Cd = Max (0, 17227.18 - 19300) = 0
$$p = \frac{1.00715 - 0.8926}{1.1203 - 0.8926} = 0.50307$$

$$\sqrt{1 - p} = 0.4969$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.50307^{j} \times (0.4969)^{(1-j)} Max[0,19300 \times 1.1203^{j} \times 0.9^{1-j} - 19300]}{1.00715^{1}}$$

$$C = \frac{2321.79(0.50307) + 0.00(0.4969)}{1.00715} = 1159.73$$

The Binomial options pricing model has established premiums amounting to 1159.73 which makes up 6% of the market price of ASII shares. This amount is also 24% greater than the premiums estimated with the Black-Scholes options pricing model.

3.1.4. Price of Call Option on BBNI

The next step for the simulation is to estimate the price (premiums) of call options using the Black-Scholes options pricing model for BBNI-O:

$$\sigma = \sqrt{\frac{0.606333 - \frac{(0.035932)^2}{939}}{938}}$$

$$\sigma = 0.02552$$
Annualized Volatility = 0.4035

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

- 1. S = current stock price of BBNI = 1230
- 2. E = exercise price of call of BBNI-O = 1230
- 3. R = risk-free rate of return = 8.75%
- 4. σ = volatility of the continuous return on the stock = 0.4035

5. t = time (in years) to expiration date = 31/365 = 0.0849315Where:

$$d1 = \frac{\ln(1230/1230) + \left\{ (0.0875) + \frac{(0.4035)^2}{2} \right\} \frac{1}{12}}{0.4035\sqrt{\frac{1}{12}}} = 0.12084$$

N(0.12084) = 0.548091

$$d2 = 0.12084 - 0.4035\sqrt{\frac{1}{12}} = 0.0043596$$

N(0.0043596) = 0.501739

$$C = (1230 \times 0.548091) - 1230(e^{-0.0875/12}) \times 0.501739$$

$$C = 674.152 - 612.655$$

$$C = 61.497$$

The premium of 61.497 is approximately 5% of the market price of BBNI shares. With BBNI-O having one month's time prior to expiration, the at-the-money call options would be priced to be comprised of the time value.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration = 31/365 = 0.0849

$$\checkmark$$
 n = 1

✓ n = 1
✓ r (risk-free rate) =
$$(1 + 0.0875)^{0.0849/1}$$
 -1 = 0.715%

$$\sqrt{u} = e^{0.4035\sqrt{0.0849/1}} = 1.12477$$

$$\checkmark \quad d = \frac{1}{1.12477} = 0.889$$

$$\checkmark$$
 Sd= 1230 x 0.889 = 1093.47

$$\checkmark$$
 Cu = Max (0, 1383.47 – 1230) = 153.47

$$\checkmark$$
 Cd = Max (0, 1093.47 - 1230) = 0

$$\checkmark \quad p = \frac{1.00715 - 0.889}{1.12477 - 0.889} = 0.5011$$

$$\checkmark 1-p=0.49888$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.5011^{j} \times (0.49888)^{(1-j)} Max [0,1230 \times 1.12477^{j} \times 0.9^{1-j} - 1230]}{1.00715^{1}}$$

$$C = \frac{153.47(0.5011) + 0.00(0.49888)}{1.00715} = 76.358$$

The Binomial options pricing model estimates that a call option with one month prior to expiration is priced at 76.358. This price makes up 6.2% of the market price of BBNI, and that the price is approximately 24% greater than the call options premium estimated using the Black-Scholes options pricing model.

3.1.5. Price of Call Option on INDF

The next observation is to simulate the premiums for options of INDF using the Black-Scholes options pricing model, as the following:

$$\sigma = \sqrt{\frac{0.693551 - \frac{(-1.15449)^2}{939}}{938}}$$

$$\sigma = 0.027193$$
Annualized Volatility = 0.43

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

4. σ = volatility of the continuous return on the stock = 0.43

5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(2300/2300) + \left\{ (0.0875) + \frac{(0.43)^2}{2} \right\} \frac{1}{12}}{0.43\sqrt{\frac{1}{12}}} = 0.120809$$

N(0.120809) = 0.548079

$$d2 = 0.120809 - 0.43\sqrt{\frac{1}{12}} = -0.0033213$$

$$N(-0.033213) = 0.498675$$

$$C = (2300 \times 0.548079) - 2300(e^{-0.0875/12}) \times 0.498675$$

$$C = 1260.5817 - 1138.62$$

$$C = 121.962$$

The call options premiums estimated equals to 121.962, which is approximately 5.3% of the market price of INDF. This price represents the time value of INDF-O options, being that INDF-O having one month prior to expiration.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration = 31/365 = 0.0849

$$\checkmark$$
 n = 1

$$r$$
 (risk-free rate) = $(1 + 0.0875)^{0.0849/1}$ -1 = 0.715%

$$\sqrt{u} = e^{0.43\sqrt{0.0849/1}} = 1.1335$$

$$\checkmark \quad d = \frac{1}{1.1335} = 0.8822$$

$$\checkmark$$
 Su= 2300 x 1.1335 = 2607.05

$$\checkmark$$
 Sd= 2300 x 0.8822 = 2029.06

$$\checkmark$$
 Cu = Max (0, 2607.05 – 2300) = 307.05

$$\checkmark$$
 Cd = Max (0, 2029.06 - 2300) = 0

$$\checkmark p = \frac{1.00715 - 0.8822}{1.1335 - 0.8822} = 0.4972$$

$$\sqrt{1-p} = 0.5028$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.4972^{j} \times (0.5028)^{(1-j)} Max [0,2300 \times 1.1335^{j} \times 0.9^{1-j} - 2300]}{1.00715^{1}}$$

$$C = \frac{307.05(0.4972) + 0.00(0.5028)}{1.00715} = 151.58$$

The Binomial options pricing model estimates premiums for INDF-O around 151.58 which is 6.59% of the market price of INDF shares. This premium generated by the Binomial options pricing model is 24.28% larger than premiums generated by the Black-Scholes options pricing model.

3.1.6. Price of Call Option on ISAT

Next is to simulate the theoretical premiums of ISAT-O with one month's time prior to expiration employing the Black-Scholes options pricing model:

$$\sigma = \sqrt{\frac{0.568722 - \frac{(-0.50534)^2}{939}}{938}}$$

$$\sigma = 0.024631$$
Annualized volatility = 0.39

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

4. σ = volatility of the continuous return on the stock = 0.39

5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(6500/6500) + \left\{ (0.0875) + \frac{(0.39)^2}{2} \right\} \frac{1}{12}}{0.39\sqrt{\frac{1}{12}}} = 0.121057$$

$$N(0.121057) = 0.548177$$

$$d2 = 0.121057 - 0.39\sqrt{\frac{1}{12}} = 0.008474$$

$$N(0.008474) = 0.503381$$

$$C = (6500 \times 0.548177) - 6500(e^{-0.0875/12}) \times 0.503381$$

$$C = 3563.15 - 3248.205$$

$$C = 314.945$$

The call options premiums estimated by the Black-Scholes model amounts to 314.945 which is 4.84% of the market price of ISAT shares. This premium represents the time value of the options due to the at-the-money properties this option has.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration =
$$31/365 = 0.0849$$

$$\checkmark$$
 n = 1

✓ n = 1
✓ r (risk-free rate) =
$$(1 + 0.0875)^{0.0849/1}$$
 -1 = 0.715%

$$\checkmark \quad u = e^{0.39\sqrt{0.0849/1}} = 1.120344$$

$$\checkmark \quad d = \frac{1}{1.120344} = 0.8926$$

$$\checkmark$$
 Su = 6500 x 1.120344 = 7282.236

$$\checkmark$$
 Sd = 6500 x 0.8926 = 5801.90

$$\checkmark$$
 Cu = Max (0, 7282.236 - 6500) = 782.236

$$\checkmark$$
 Cd = Max (0, 5801.90 – 6500) = 0

$$\checkmark p = \frac{1.00715 - 0.8926}{1.120344 - 0.8926} = 0.50298$$

✓
$$1 - p = 0.497$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.50298^{j} \times (0.497)^{(1-j)} Max [0,6500 \times 1.120344^{j} \times 0.9^{1-j} - 6500]}{1.00715^{1}}$$

$$C = \frac{782.236(0.50298) + 0.00(0.497)}{1.00715} = 390.66$$

The Binomial options pricing model generates premiums of 390.66 for ISAT-O which is approximately 6% of the market price for ISAT shares. The premiums generated is 24% larger than the premiums obtained from the Black-Scholes options pricing model estimation.

3.1.7. Price of Call Option on AALI

For AALI-O the call options premiums can be estimated using the Black-Scholes options pricing model as the following:

$$\sigma = \sqrt{\frac{0.634533 - \frac{(-2.55338)^2}{939}}{938}}$$

$$\sigma = 0.02588$$
Annualized Volatility = 0.4092

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

1. S = current stock price of AALI = 28000

2. E = exercise price of call of AALI-O = 28000

3. R = risk-free rate of return = 8.75%

4. σ = volatility of the continuous return on the stock = 0.4092

5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(28000/28000) + \left\{ (0.0875) + \frac{(0.4092)^2}{2} \right\} \frac{1}{12}}{0.4092\sqrt{\frac{1}{12}}} = 0.120791$$

$$N(0.120791) = 0.548072$$

$$d2 = 0.120791 - 0.4092\sqrt{\frac{1}{12}} = 0.002665$$

$$N(0.002665) = 0.501063$$

$$C = (28000 \times 0.548072) - 28000(e^{-0.0875/12}) \times 0.501063$$

$$C = 15346.016 - 13927.8357$$

$$C = 1418.18$$

The call options premiums estimated amounts to 1418.18 which is about 5% of the market price for AALI shares. This amount also is the time value of AALI-O being that the call option having one month's time prior to expiration.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration =
$$31/365 = 0.0849$$

$$\checkmark$$
 n = 1

✓ n = 1
✓ r (risk-free rate) =
$$(1 + 0.0875)^{0.0849/1}$$
 -1 = 0.715%

$$\checkmark u = e^{0.4092\sqrt{0.0849/1}} = 1.1266$$

$$\checkmark \quad d = \frac{1}{1.1266} = 0.8876$$

$$\checkmark$$
 Su= 28000 x 1.1266 = 31544.8

$$\checkmark$$
 Sd= 28000 x 0.8876 = 24852.8

$$\checkmark$$
 Cu = Max (0, 31544.8 – 28000) = 3544.8

$$\checkmark$$
 Cd = Max (0, 24852.8 - 28000) = 0

$$\checkmark p = \frac{1.00715 - 0.8876}{1.1266 - 0.8876} = 0.5$$

$$\sqrt{1-p} = 0.5$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.5^{j} \times (0.5)^{(1-j)} Max [0,28000 \times 1.1266^{j} \times 0.9^{1-j} - 28000]}{1.00715^{1}}$$

$$C = \frac{3544.8(0.5) + 0.00(0.5)}{1.00715} = 1759.82$$

The Binomial options pricing model estimates that call options having one month's time prior to expirations is priced at 1759.82. This amount is 6.29% of the market price of AALI shares. The premiums generated by the Binomial options pricing model is 24.09% higher than the premiums generated by the Black Scholes options pricing model.

3.1.8. Price of Call Option on BBRI

The next stock on the list is BBRI which we can obtain the premiums of BBRI-O using the Black-Scholes options pricing model as the following:

$$\sigma = \sqrt{\frac{0.583137 - \frac{(-1.12928)^2}{939}}{938}}$$

$$\sigma = 0.024918$$

Annualized Volatility = 0.394

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

- 1. S = current stock price of BBRI = 5400
- 2. E = exercise price of call of BBRI-O = 5400
- 3. R = risk-free rate of return = 8.75%
- 4. σ = volatility of the continuous return on the stock = 0.394
- 5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(5400/5400) + \left\{ (0.0875) + \frac{(0.394)^2}{2} \right\} \frac{1}{12}}{0.394\sqrt{\frac{1}{12}}} = 0.120978$$

$$N(0.120978) = 0.548146$$

$$d2 = 0.120978 - 0.394\sqrt{\frac{1}{12}} = 0.007234$$

$$N(0.007234) = 0.502886$$

$$C = (5400 \times 0.548146) - 5400(e^{-0.0875/12}) \times 0.502886$$

$$C = 2959.99 - 2695.86$$

$$C = 264.135$$

The options premiums generated by the Black-Scholes options pricing model amounts to 264.135 which is 4.89% of the market price of BBRI shares. This premium is actually the time value of BBRI-O being that the option still has one moth prior to expiration.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

T = time to expiration =
$$31/365 = 0.0849$$

$$\checkmark$$
 n = 1

$$\checkmark$$
 r (risk-free rate) = $(1 + 0.0875)^{0.0849/1}$ -1 = 0.715%

$$\checkmark u = e^{0.394\sqrt{0.0849/1}} = 1.12165$$

$$\checkmark \quad d = \frac{1}{1.12165} = 0.8915$$

$$\checkmark$$
 Su= 5400 x 1.12165 = 6056.91

$$\checkmark$$
 Sd= 5400 x 0.8915 = 4814.10

$$\checkmark$$
 Cu = Max (0, 6056.91 – 5400) = 656.91

$$\checkmark$$
 Cd = Max (0, 4814.10 -5400) = 0

$$\checkmark \quad p = \frac{1.00715 - 0.8915}{1.12165 - 0.8915} = 0.5025$$

$$\sqrt{1-p} = 0.4975$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.5025^{j} \times (0.4975)^{(1-j)} Max [0,5400 \times 1.12165^{j} \times 0.9^{1-j} - 5400]}{1.00715^{1}}$$

$$C = \frac{656.91(0.5025) + 0.00(0.4975)}{1.00715} = 327.75$$

The Binomial options pricing model estimates for premium of BBRI-O amounting to 327.75 which is approximately 6% of the market price for BBRI shares. This amount is also 24.08% greater than the premiums estimated using the Black-Scholes options pricing model.

3.1.9. Price of Call Option on UNSP

The premiums for UNSP-O can be estimated using the Black-Scholes options pricing model as the following:

$$\sigma = \sqrt{\frac{0.92208 - \frac{(-1.42707)^2}{939}}{938}}$$

$$\sigma = 0.031776$$
Annualized volatility = 0.5024

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

- 1. S = current stock price of UNSP = 1730
- 2. E = exercise price of call of UNSP-O = 1730
- 3. R = risk-free rate of return = 8.75%
- 4. σ = volatility of the continuous return on the stock = 0.5024
- 5. t = time (in years) to expiration date = 31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(1730/1730) + \left\{ (0.0875) + \frac{(0.5024)^2}{2} \right\} \frac{1}{12}}{0.5024 \sqrt{\frac{1}{12}}} = 0.122795$$

$$N(0.122795) = 0.548865$$

$$d2 = 0.122795 - 0.5024\sqrt{\frac{1}{12}} = -0.022235$$

$$N(-0.022235) = 0.49113$$

$$C = (1730 \times 0.548865) - 1730(e^{-0.0875/12}) \times 0.49113$$

$$C = 949.536 - 843.48$$

$$C = 106.054$$

The premiums obtained from the Black-Scholes options pricing model amounts to 106.054 which is 6.13% of the market price for UNSP shares. This amount also represents the time value of the options in that expiration is still in one month's time.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

$$T = time to expiration = 31/365 = 0.0849$$

$$\sqrt{n} = 1$$

$$r \text{ (risk-free rate)} = (1 + 0.0875)^{0.0849/1} -1 = 0.715\%$$

$$\sqrt{u} = e^{0.5024\sqrt{0.0849/1}} = 1.157$$

$$\checkmark \quad d = \frac{1}{1.0973} = 0.864$$

$$\checkmark$$
 Su= 1730 x 1.157 = 2001.61

$$\checkmark$$
 Sd= 1730 x 0.864 = 1494.72

$$\checkmark$$
 Cu = Max (0, 2001.61 – 1730) = 271.61

$$\checkmark$$
 Cd = Max (0, 1494.72 - 1730) = 0

$$\checkmark \quad p = \frac{1.00715 - 0.864}{1.157 - 0.864} = 0.4886$$

$$\checkmark 1-p=0.511$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.4886^{j} \times (0.511)^{(1-j)} Max [0,1730 \times 1.157^{j} \times 0.9^{1-j} - 1730]}{1.00715^{1}}$$

$$C = \frac{271.61(0.4886) + 0.00(0.511)}{1.00715} = 132.71$$

The call options premiums obtained from the Binomial options pricing model amounts to 132.71 which is 7.67% of the market price of UNSP. This premium is approximately 25% higher than the premiums obtained from the Black-Scholes options pricing model.

3.1.10. Price of Call Option on PGAS

The last step in our simulation is to estimate the premiums using the Black-Scholes options pricing model as the following:

$$\sigma = \sqrt{\frac{0.909936 - \frac{(-2.43445)^2}{936}}{935}}$$
$$\sigma = 0.031087$$

Annualized volatility = 0.4915

The σ we have estimated can be input into the Black-Scholes Model involving five parameters:

 \mathbb{I} . S = current stock price of PGAS = 12500

2. E = exercise price of call of PGAS-O = 12500

3. R = risk-free rate of return = 8.75%

4. σ = volatility of the continuous return on the stock = 0.4915

5. t = time (in years) to expiration date = <math>31/365 = 0.0849315

Where:

$$d1 = \frac{\ln(12500/12500) + \left\{ (0.0875) + \frac{(0.4915)^2}{2} \right\} \frac{1}{12}}{0.4915\sqrt{\frac{1}{12}}} = 0.12234$$

$$N(0.12234) = 0.548685$$

$$d2 = 0.12234 - 0.4915\sqrt{\frac{1}{12}} = -0.019544$$

$$N(-0.019544) = 0.4922$$

$$C = (12500 \times 0.548685) - 12500(e^{-0.0875/12}) \times 0.4922$$

$$C = 6858.56 - 6107.80$$

$$C = 750.76$$

The 750.76 amount of premiums is actually the time value of PGAS-O being that the option is *at-the-money* and still has one month's time until expiration. This amount is also 6% of the market price of PGAS shares.

Using the same input used in the Black-Scholes Model the we can count for the Call premium using the Binomial Pricing Model with:

$$T = \text{time to expiration} = 31/365 = 0.0849$$

$$\checkmark$$
 n = 1

$$\checkmark$$
 r (risk-free rate) = $(1 + 0.0875)^{0.0849/1} - 1 = 0.715\%$

$$\checkmark u = e^{0.4915\sqrt{0.0849/1}} = 1.154$$

$$\checkmark \quad d = \frac{1}{1.154} = 0.8666$$

$$\checkmark$$
 Su= 12500 x 1.154 = 14425

$$\checkmark$$
 Sd= 12500 x 0.8666 = 10832.14

$$\checkmark$$
 Cu = Max (0, 14425 – 12500) = 1925

$$\checkmark$$
 Cd = Max (0, 10832.14 - 12500) = 0

$$\checkmark p = \frac{1.00715 - 0.8666}{1.154 - 0.8666} = 0.489$$

$$\sqrt{1-p} = 0.511$$

$$C = \frac{\sum_{j=0}^{1} \frac{1!}{(1-j)!} 0.489^{j} \times (0.511)^{(1-j)} Max [0,12500 \times 1.154^{j} \times x_{0.9}^{1-j} - 12500]}{1.00715^{1}}$$

$$C = \frac{1925(0.489) + 0.00(0.511)}{1.00715} = 934.64$$

The premiums obtained from the Binomial options pricing model amounts to 934.64 which is approximately 7.5% of the market price of PGAS shares. This amount also is 24.5% higher than the premiums obtained from the Black-Scholes options pricing model.

Overall results of simulating the theoretical price (premiums) of call options obtained from both the Black-Scholes and Binomial options pricing models are:

The premiums in percentage of the market price of each issue comes in at 4-

The Binomial options pricing model yields a much higher premium than the Black-Scholes options pricing model, in that the premiums were about 24% slightly higher than the premiums. But the price then will tend to converge as the option nears expiration, making the Black-Scholes options pricing model.

2. Covered Call Simulation Results

he mechanism of the covered call options strategy involves a simultaneous solding of stock and writing call options covering all of the holdings of stock. To simplify in order to obtain the returns and annualized returns we will assume:

- 1. Purchase 100 shares of an individual issue
- 2. Writing one July Call options contract representing 100 shares
- 3. No transactions costs for both the purchase of stock holdings and call write
- 4. No taxes of capital gains

Table 3.2. Comparison of Returns of Covered Calls on 10 stocks of LQ-45

-	July Call Option Premiu (in Rupiah)		Retur	ns	Annualized Returns			
			A-3	A				
	BS Model	Binomial	BS Model	Binomial	BS Model	Binomial		
-0	296.15	365.83	4.03%	4.97%	47.44%	58.60%		
-0	245.46	311.57	7.92%	10.05%	93.25%	118.33%		
	935.13	1159.73	4.85%	6.01%	57.05%	70.75%		
0	61.50	76.36	5.00%	6.03%	86.9%	73.09%		
O	121.96	151.58	5.3%	6.59%	62.43%	77.60%		
5	314.95	390.66	4.85%	6.01%	57.05%	70.76%		
0	1418.18	1759.82	5.07%	6.29%	59.64%	74.00%		
<u> </u>	264.135	327.75	4.89%	6.07%	57.59%	71.46%		
0	106.05	132.71	6.13%	7.67%	72.18%	90.31%		
0	750.76	934.64	6.01%	7.48%	70.71%	88.04%		

Source: calculated by the author

The analysis of the implementation of the covered call strategy will continue with generating a simulation of returns of the covered call on corporate cash holding using the theoretical premiums on call options with the following steps:

- 1. Estimating one month's volatility based on the preceding month's volatility of stock prices. This step is done for every month from data of stock prices 2004-2008 giving us 46 data sample of the return of covered calls, unless the issue has just recently went public or data of preceding years cease to exist.
- 2. Each month call options premium is estimated using the Black-Scholes model with assumption that there are on average 21 days prior to expiration, which is the third Friday of every month, and there are 250 trading days in one year.
- 3. The covered call strategy is executed, by establishing (buy) stock holdings and simultaneously writing (sell) call options contracts, at every beginning contract month where premiums of in-the-money strike prices are still high at the given stock price.
- 4. Because of the usage of in-the-money strike prices, the covered call position is assumed to be liquidated by way of exercise thus leaving the firm with just premiums and no stock holdings.
- 5. It is assumed that there are no transaction costs and capital gains tax.

Results of the calculations of the covered call on each 10 stocks of the LQ-45 using simulated theoretical premiums of call option can be seen in the Appendix.

3.3. Simulation of Dividend Hedge Capture Strategy Using Theoretical Premium of Calls

The dividend hedge capture strategy will also employ the theoretical premiums of options. In that the strategy which can be employed by firms is one that allows firms to obtain dividends paid out by a certain issue while in the process is hedge from price depreciation as a result of the ex-dividend date. In obtaining the results of the dividend hedge capture strategy we will pertain to the following steps:

- 1. Estimation of volatility is done on one day before as well as on the exdividend date, which would be the cum-date with 21 days of stock price data prior to that one day and the ex-dividend day.
- 2. The cum date premium is estimated using the Black-Scholes model with on average 21 days prior to expiration and 250 trading days in one year.
 - The dividend hedge capture strategy is executed one day before the exdividend date, in order for the firm to be qualified as a record stockholder, by buying the stock, which will pay out dividends, and simultaneously writing an in-the-money call options contract covering the stock position.
- The positions are the liquidated on the ex-dividend date, by selling the stock position at a lower price, buying back the call options contract at a lower premium giving a profit, difference in higher premiums sold and lower premiums bought.
- 5. The firm employing this strategy will have qualified to receive dividends.
- 6. It is assumed that there are no transaction costs, dividends tax and capital gains tax.

Results of the calculations of the dividend hedge capture strategy on each 10 stocks of the LQ-45 using simulated theoretical premiums of call option can be seen in the Appendix.

CHAPTER 4

EVALUATION OF COVERED CALL & DIVIDEND HEDGE CAPTURE STRATEGY

4.1. Evaluation of Alternative Cash Management Strategy

In order to analyze and get and understanding of how both the covered call strategy and the dividend hedge capture strategy is more effective in optimizing corporate cash holdings for obtaining relatively higher returns, we should then employ the Sharpe ratio to give us a clearer Figure. The Sharpe ratio is a ratio of a measure of return that is risk-adjusted. This ratio is often used to evaluate the performance of a portfolio by making the performance of one portfolio comparable to that of another portfolio with an adjustment for risk. For some insight of this ratio the given portfolio must generate a positive number being 1 or better to be considered good and the higher the number then the better.

The Sharpe ratio is considered to be quite simple with three main components: the returns, risk-free return and standard deviation of return.

$$S(x) = \frac{(r_{(x)} - r_f)}{Std.dev(x)}$$

Equation 4.1.

From the equation above after calculating the excess return (how much more returns is the portfolio generating compare to the risk free rate), then the excess return is divided by the standard deviation of the risky asset to get its Sharpe ratio.

4.1.1. Sharpe Ratios of the Covered Call Strategy

The Sharpe ratios obtained for all samples of the covered call strategy on 10 different issues on the LQ-45 have shown a rather favorable result in that the strategy is beneficial for corporate cash holdings for the most part. The excess returns compared to the volatility (standard deviation) have shown a positive as well as a large number, in some exceeding 1.

In some cases although the returns have not shown a favorable result where the Sharpe ratios have resulted in a negative number, meaning that the returns on premiums have not exceeded the risk free returns. This would mean that the covered call strategy is unfavorable given the pertaining conditions at those times in the different cases. The reason for this unfavorable result must be seen on a case-by-case basis which relates to the properties of each underlying issue which the premiums are derived. Overall, we can see identify some conditions in those cases as the following:

- For issues INDF, UNSP, and BBNI for the most part of 2004-2008 had traded in a narrow range making the availability of strike prices limited as well as the size of premiums smaller due to investors knowing the likelihood of the underlying price movement, in that premiums should be priced definitely lower.
- 2. In those cases which are unfavorable, for deep in-the-money covered calls, which is done to ensure the exercise of the options, have generated very little returns due to loss on deep in-the-money strike prices which is not compensated enough with premiums from the underlying issues.
- 3. Interest rates are in a relatively high point making it unfavorable for returns in some cases with respect to the Sharpe ratio, which in turn yields a negative number.

4.1.2. Sharpe Ratios of the Dividend Hedge Capture Strategy

The Sharpe ratios for the dividend hedge capture strategy have shown a favorable result in that the company implementing this strategy can hope for excess returns for a reasonable amount of risk for the most part.

For this strategy to be worthwhile for the investor from the cases obtained from past data 2004-2008 and data on amounts of dividends and ex-dates the conditions met must meet the following requirements:

- Liquidity of the equity being bought and sold as well as the options of the underlying provides large differences of premiums as a result of the stock's price depreciation on the ex-dividend date.
- 2. The amount of dividends must be large enough, in terms of its dividend yield, to cover interest lost on capital required for the dividend hedge capture strategy that should have been invested at the risk-free rate.
- 3. Availability of in the money strike prices as well as premiums to produce the hedge at the current stock price in anticipation of a price depreciation on exdividend date.

4.2. Statistical Evaluation of Covered Call & Dividend Hedge Capture Strategy

For the purpose of evaluating the statistical aspects of comparing the before and after effects of implementing the alternative strategies for corporate cash management we will employ the t-test and the Wilcoxon signed rank test to obtain a statistical justification of the results.

The reason behind using the t-test and Wilcoxon signed rank test are the following:

- 1. Limited availability of data which in turn had generated a limited number of cases. This circumstance provides a condition stipulating both tests.
- 2. We assume that the firm *hypothetically* employs one of the alternative strategies which would be the 'after' scenario being compared to the 'before' scenario of just employing risk-free strategies.
- 3. The before and after effects are best shown in the outputs of both tests.

4.2.1. Covered Call Strategy

The excerpts of output of the t-test generated using SPSS 12.0 can be seen as the following:

4.2.1.1. Results of covered calls on AALI

The output for AALI in Table 4.1.a shows an increase in returns from 'before' with risk free returns amounting from 0.79% to 3.79% with the use of covered calls on AALI.

Table. 4.1.a. Statistical Results for AALI **Paired Samples Statistics**

	Mean	N	Std. Deviation	Std. Error Mean
Pair Risk-free returns	.0079091	44	.00158194	.00023849
1 AALI	.0379902	44	.02072209	.00312397

From Table 4.1.b below the mean difference of 3% is said to be located, with 95% confidence, within the intervals of 3.65% and 2.37%, with the absence of 0 (zero) within the interval provides strong evidence that the means are different.

With further analysis pertaining to the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCAALI}$

Hi $: \mu_{rf} < \mu_{CCAALI}$

The t-count of -9.483, also from Table 4.1.b, combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands indicating that the returns of covered calls on AALI are higher than the risk-free returns.

Table. 4.1.b. Statistical Testing of Results for AALI

Paired Differences 95% Confidence Interval of the Difference Lower Upper t df Sig. (2-tailed) Pair 20104058 .00317199036478023684 -9.483 43 .000		I anic.	P.	11100 0					T
Mean Std. Deviation Std. Error Mean Lower Upper t df Sig. (2-tailed) -03104058 .00317199 036478 023684 -9.483 43 .000			Pain	ed Difference	95% Col	of the			
Mean Std. Deviation036478023084 -9.403 45 .000						Upper	<u>t</u>		
	Pair 1 Risk-free returns - AALI	MICH	Std. Deviation 02104058	17400	036478	023684	-9.483	43	.000

4.2.1.2. Results of covered calls on ANTM

Output from Table 4.2.a.are the results for ANTM which shows an increase in returns from 0.68% to 4.5% with employing the covered call strategy on ANTM.

Table. 4.2.a. Statistical Results for ANTM Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free	.0068030	11	.00018553	.00005594
1 .	ANTM	.0450000	11	.02376826	.00716640

From the mean difference of 3.82% which is located within the intervals 5.41% and 2.22% with the absence of 0 (zero) provides strong evidence that the means are different.

With the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCANTM}$

Hi : $\mu_{rf} < \mu_{CCANTM}$

The t-count of -5.334 combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands indicating that the returns of covered calls on ANTM are higher than the risk-free returns.

Table. 4.2.b. Statistical Testing of Results for ANTM
Paired Samples Test

		Paire	ed Differences					
		, div	Std. Error	95% Confidence Interval of the			i	
		Std. Deviation		Lower	Upper	t	df	Sig. (2-tailed)
Rick from ANTM	Mean - 038197	.02374948	.00716074	054152	022242	-5.334	10	.000

4.2.1.3. Results of covered calls on ASII

The returns of covered calls on ASII indicated in Table 4.3.a shows an increase from 'before' of 0.78% to an 'after' of 3.6%.

Table. 4.3.a. Statistical Results for ASII Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free returns	.0078857	45	.00157238	.00023440
1 ASII		.0360842	45	.00804511	.00119929

From Table 4.3.b the mean difference of 2.82% compared to the mean difference intervals 3.06% and 2.58%, with an absence of 0 (zero) shows that the mean difference provides strong evidence that the means are different.

Further analysis of the output with the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCASII}$

Hi : $\mu_{rf} < \mu_{CCASII}$

Also from Table 4.3.b, the t-count of -23.975 combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands indicating that the returns of covered calls on ASII are higher than the risk-free returns.

Table. 4.3.b. Statistical Testing of Results for ASII
Paired Samples Test

			ed Difference	s				
		Pain	Std. Error	95% Co Interva	nfidence If of the rence			
	i			Lower	Upper	t l	df	Sig. (2-tailed)
_	Mean	Std. Deviation	.00117614		025828	-23.975	44	.000
ir 1 Risk-free returns - ASII	028198	.00788981	.00117011	1				

4.2.1.4. Results of covered calls on BBNI

For BBNI the output from Table 4.4.a shows a slight increase of 0.765% from 0.79091% to 1.55%.

Table. 4.4.a. Statistical Results for BBNI Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean	
Pair	Risk-free	.0079091	44	.00158194	.00023849	
1	BBNI	.0155595	44	.01342174	.00202340	

From Table 4.4.b the mean difference of 0.765% compared to the intervals of 1.18% and 0.35% and in the absence of 0 (zero) within the intervals shows that the mean difference provides strong evidence that the means are different.

With the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCBBNI}$

Hi : $\mu_{rf} < \mu_{CCBBNI}$

The t-count of -3.72, obtained from the output from Table 4.4.b, combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on BBNI are higher than the risk-free returns.

Table. 4.4.b. Statistical Testing of Results for BBNI
Paired Samples Test

								-
		Paire	ed Difference:	95% Co	nfidence			
			Std. Error	Interva	l of the ence			
				Lower	Upper	t	df	Sig. (2-tailed)
-	Mean	Std. Deviation	Mean .00205631	1.4507	003504	-3.720	43	.001
Risk-free - BBNI	007650	.01364000	.00200					

4.2.1.5. Results of covered calls on BBRI

Covered calls on BBRI, which can be seen from Table 4.5.a shows an increase in returns from 0.79% to 2.92%

Table. 4.5.a. Statistical Results for BBRI Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free returns	.0079091	44	.00158194	.00023849
1	BBRI	.0291675	44	.01731335	.00261009

From Table 4.5.b the mean difference of 2.13% compared to the mean difference intervals of 2.65% and 1.59% and with the absence of 0 (zero) shows that the mean difference provides strong evidence that the means are different.

With the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCBBRI}$

Hi : $\mu_{rf} < \mu_{CCBBRI}$

The t-count of -8.128, also from Table 4.5.b, combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on BBRI are higher than the risk-free returns.

Table. 4.5.b. Statistical Testing of Results for BBRI
Paired Samples Test

	Paire	ed Difference:	s				
		Std. Error	Interva	nfidence I of the rence			
	Std. Deviation		Lower	Upper	·t	df	Sig. (2-tailed)
Mean BBRI - 021258	.01734797	.00261530	026533	015984	-8.128	43	.000

4.2.1.6. Results of covered calls on INDF

For INDF as seen in Table 4.6.a the increase was as much as 1.8% from 0.79% to 2.63%.

Table. 4.6.a. Statistical Results for INDF Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free rate	.0079091	44	.00158194	.00023849
1	1 INDF	.0262686	44	.03190620	.00481004

From Table 4.6.b the mean difference of 1.84% which is located within the difference intervals of 2.8% and 0.87% with the absence of 0 (zero) within the interval provides strong evidence that the means are different.

Further analysis with the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCINDF}$

Hi : $\mu_{rf} < \mu_{CCINDF}$

From Table 4.6.b shows the t-count of -3.822 combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on BBRI are higher than the risk-free returns.

Table. 4.6.b. Statistical Testing of Results for INDF
Paired Samples Test

X		Paire	ed Difference					
				95% Confidence Interval of the				
	1	a Davietion	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
	Wiccin	Std. Deviation .03186217	.00480340	028047	008673	-3.822	43	.000
Risk-free rate - INDF	018360	.00.00						

4.2.1.7. Results of covered calls on ISAT

Table 4.7.a shows that ISAT sought an increase of 3.7% on its covered calls as it increased from 0.79% to 4.48%.

Table. 4.7.a. Statistical Results for ISAT
Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free returns	.0079091	44	.00158194	.00023849
1	ISAT	.0448434	· 44	.03445704	.00519459

From Table 4.7.b, the mean difference of 3.69% which would be located within the intervals of 4.75% and 2.63%, and in the absence of 0 (zero) within the interval shows that the mean difference provides strong evidence that the means are different.

As we can see with the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCISAT}$

Hi : $\mu_{rf} < \mu_{CCISAT}$

The t-count of -7.038, obtained from Table 4.7.b, combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on BBRI are higher than the risk-free returns.

Table. 4.7.b. Statistical Testing of Results for ISAT
Paired Samples Test

		Pain	ed Difference	,				
			Std. Error	95% Confidence Interval of the Difference				
	Mean	Std. Deviation		Lower	Upper	t	df	Sig. (2-tailed)
Risk-free returns - ISAT	17.00	.03481033	.00524785	047518	026351	-7.038	43	.000

4.2.1.8. Results of covered calls on PGAS

From the output shown in Table 4.8.a. the increase in returns of the covered call strategy on PGAS was as much as 3.43%.

Table. 4.8.a. Statistical Results for PGAS
Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free returns	.0079091	44	.00158194	.00023849
1	PGAS	`.0422048	44	.02425586	.00365671

From Table 4.8.a the mean difference of 3.43% which is located within the intervals of 4.16% and 2.69% with the absence of 0 (zero) within the intervals shows that the mean difference provides strong evidence that the means are completely different.

With further analysis pertaining to the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCPGAS}$

Hi : $\mu_{rf} < \mu_{CCPGAS}$

Table 4.8.b shows that the t-count of -9.464 combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on PGAS are higher than the risk-free returns.

Table. 4.8.b. Statistical Testing of Results for PGAS

Paired Samples Test

<u> </u>								
		Pain	ed Difference	\$				
			Std. Error	95% Co Interva Differ	l of the			
	Mean	Std. Deviation		Lower	Upper	t	df	Sig. (2-tailed)
Dick from seturns - PGAS		.02403757	.00362380	041604	026988	-9.464	43	.000

4.2.1.9. Results of covered calls on TLKM

The returns on covered calls on TLKM, are shown in the output of Table 4.9.a, had increase by 2.13%.

Table. 4.9.a. Statistical Results for TLKM
Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free returns	.0079091	44	.00158194	.00023849
1	TLKM	.0292195	44	.01180888	.00178026

From Table 4.9.b the mean difference of 2.13% which is located within the intervals of 2.48% and 1.77% and with the absence of 0 (zero) shows that the mean difference provides strong evidence that the means are different.

As we can see from the statistical hypothesis:

Ho : $\mu_{rf} = \mu_{CCTLKM}$

Hi : $\mu_{rf} < \mu_{CCTLKM}$

Given the output from Table 4.9.b the t-count of -12.117 combined with the significance of 0.000 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on TLKM are higher than the risk-free returns.

Table. 4.9.b. Statistical Testing of Results for TLKM
Paired Samples Test

		Paire	d Differences	3				
			Std. Error	95% Cor Interva Differ	l of the			
		Std. Deviation		Lower	Upper	t	df	Sig. (2-tailed)
D'I C TI KM	10.00	.01166593	.00175870	024857	017764	-12.117	43	.000
Risk-free returns - TLKM	02.10.13							

2.1.10. Results of covered calls on UNSP

he results of returns on the covered call on UNSP increased by 0.956%, from 808% to 1.765%, as seen in Table4.10.a.

Table. 4.10.a. Statistical Results for UNSP Paired Samples Statistics

	Mean	N	Std. Deviation	Std. Error Mean
Pair Risk-free returns	.0080828	29	.00149494	.00027760
Pair Risk-free returns UNSP	.0176499	29	.01590482	.00295345

rom the mean difference of 0.96% which is located within the intervals of .58% and 0.33% and in the absence of 0 (zero) shows that the mean difference rovides strong evidence that the means are different.

urther analysis shows that with the statistical hypothesis:

 $: \mu_{rf} = \mu_{CCUNSP}$

Io

: $\mu_{rf} < \mu_{CCUNSP}$

The t-count of -3.152, from Table 4.10.b, combined with the significance of 0.004 which comes below the 0.05 significance level provides the basis of Ho rejection. This means that Hi stands, indicating that the returns of covered calls on UNSP are higher than the risk-free returns.

Table. 4.10.b. Statistical Testing of Results for UNSP
Paired Samples Test

		Paire	d Differences	3	100			
			Std. Error	95% Coi Interva Differ	of the			
		out Deviation		Lower	Upper	t	df	Sig. (2-tailed)
	1010011	Std. Deviation .01634284	.00303479	015784	003351	-3.152	28	.004
isk-free returns - UNSP	009567	.5.36.22						

From a statistical standpoint, we can see generally there has been an increase in average returns from before with risk free returns to an even larger average returns with the covered call strategy from premiums on each issue.

4.2.2. Dividend Hedge Capture Strategy

For all 31 cases of the dividend hedge capture strategy we can statistically test its significance using both the t-test and Wilcoxon signed ranked test.

The output of the T-test generated using SPSS 12.0 can be seen as the following:

Table. 4.11.a. Statistical Results for Div. Hedge

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	Risk-free Rate	.0948903	31	.01802183	.00323682
1	Dividend Hedge	.2457447	31	.20452030	.03673293

Table 4.11.a shows that the dividend hedge capture strategy yields additional returns above the risk-free returns amounting to an increase of 15.08%

Table. 4.11.b. Statistical Testing of Results for Div. Hedge

Paired Samples Test

		Pain	ed Differences	67 6				
		Std. Deviation	Std. Error	95% Cor Interval Diffen	of the			
	Mean		Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair Risk-free Rate -	150854	.20403378	.03664555	225695	076014	-4.117	30	.000

The mean difference of 15.09% comes within the interval of 22.57% and 7.6% and with in the absence of 0 (zero) shows that the returns for the dividend hedge capture strategy are completely different than the risk free returns.

Table. 4.12.a. Statistical Results of Wilcoxon Signed Ranks Test for Div. Hedge

Ranks

		N	Mean Rank	Sum of Ranks
- Illedge	Negative Ranks	9 ^a	8.78	79.00
Dividend Hedge - Risk-free Rate	Positive Ranks	22 ^b	18.95	417.00
- 1/13/1-1166 1/016	Ties	0c		
	Total	31		
İ				

- a. Dividend Hedge < Risk-free Rate
- b. Dividend Hedge > Risk-free Rate
- c. Dividend Hedge = Risk-free Rate

University of Indonesia

The statistical results of the Wilcoxon signed rank test indicates that approximately 71% of the cases came with results of the dividend hedge capture strategy exceeding the risk free rate, while 39% of the cases in favor of higher risk-free returns than the returns of the dividend hedge capture strategy.

Table. 4.12.b. Statistical Testing of Results for Div. Hedge

Test Statisticsb Dividend Hedge -Risk-free Rate -3.312a Asymp. Sig. (2-tailed) .001

- a. Based on negative ranks.
- b. Wilcoxon Signed Ranks Test

The hypothesis for all 31 cases are:

: $\mu_{rf} = \mu_{Div.Hedge}$ Ho

Hi : $\mu_{rf} < \mu_{Div,Hedge}$

Due to the alternative hypothesis being that the returns on the dividend hedge are greater than the risk free returns then we should employ a one-tailed test.

Therefore from the output obtained above shows that:

- 1. The t obtained amounting to -4.117 as well as the z equaling to -3.312 is located outside of the Ho reception area in that Ho is rejected.
- 2. The probabilities (Sig. (2-tailed)) of both t-tests and Wilcoxon shows a number smaller than the significance level $\alpha = 0.05$ meaning that Ho is

The rejection of Ho at the significance level of 95% concludes that the dividend hedge capture strategy yields returns much greater than the risk-free returns.

Analysis of Overall Results

As we can see from all cases in both strategies, covered call and dividend hedge capture, above both yield a surprising increase in returns. This would mean that both strategies are indeed favorable for firms that are looking for alternative strategies replacing or even diversifying from the risk-free nature of current conventional investment strategies.

The overall results of both the covered call strategy and the dividend hedge capture strategy have both shown an increase in returns coupled with a proportionate increase in risk. To put in at another angle, for the firm implementing one or both strategies on their corporate cash holdings their increased return on investments is met by an increasing but tolerable degree of risk. This implies that in order for the firm to implement the strategies they must be willing or even have to adapt their current risk profiles pertaining to their operational and growth needs.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

The simulation of both the covered call and dividend hedge capture strategies have been applied in this study thus creating a hypothetical situation in which the alternative strategy had been applied to historical situations pertaining to corporate cash management generating an 'after' scenario compared to a 'before' scenario which pertains to traditional cash management involving risk free investments.

A majority of the cases, comparing 'after' and 'before' scenarios, relating to the alternative strategies have shown returns that are favorable measured in terms of the Sharpe ratio and statistically comparable cases of traditional ('before') compared to alternative investment strategies ('after'). The favorability is greatly due to premiums which provide the necessary returns making the alternative strategies being worthwhile compared to interest returns on traditional strategies such as money markets, certificates of deposits, commercial papers and other tend-to-be-safe investments.

In estimating the premiums for the covered call strategy as well as the dividend hedge capture strategy, a number of variables directly affect the premiums of call options:

- Volatility, which is estimated using the historical volatility based on the individual stock prices for 2004-2008. This variable affects the premiums in a way that as the volatility of the underlying tends to increase then the premium will also increase.
- b. Position of the strike price relative to the stock price. Which in this matter both at-the-money and in-the-money provides for a higher amount of premiums relative to out-of-the-money. As the covered call position tends to be deeper in-the-money the investor must consider between the higher

possibility of the stock holding being exercised as well as the amount of premiums received to cover the losses from an exercise price that is much deeper.

c. Risk-free rate, in that as it becomes larger then the premium on call options also becomes larger. But in respect to the Sharpe ratio, at a high rate this variable tends to offset returns of the covered call making the Sharpe ratio negative in extreme cases.

In obtaining greater returns of the alternative strategies, external market conditions are important considerations and give constraints to the real world application of the strategies. The current condition the stock markets, as well as the options market in Indonesia is still viewed as *illiquid* compared to the markets in the U.S. This is seen in terms of the market participant and the regulations relating to trading in the Indonesian Stock Exchange.

From the market participant standpoint, the Indonesian Exchange had only just recently experienced a height in volume and market participants. As for regulations that relates to the Indonesian Exchange, constraints such as transaction costs and taxes levied on capital gains and dividends is still relatively higher than its counterparts in the U.S. These conditions should hamper the returns of the alternative strategies, thus reducing its returns or even worse eliminate them all completely.

5.2. Recommendations

In optimizing corporate cash holdings by way of the alternative strategies provided, the firm needs to take into account factors that form constraints as well as individual firm risk profiles. Factors that affect the firm in implementing the alternative strategies are:

a. Risk free rate, which provides firms a traditional source of returns on cash holdings and will set the benchmark for returns comparing to alternative strategies, which are covered call and dividend hedge strategy.

- b. Cash conversion cycle, which provides the basic constraint for a typical firms in which its operations must be prioritized. The cash conversion cycle then should provide us a clue to begin with in determining whether a company is seen fit in employing the alternative strategies. As the cash conversion cycle is improved meaning that it trends downward for a firm from period to period and relatively more idle cash is generated.
- c. Risk profiles of firms, being important in that the covered call and dividend hedge capture strategy must suit the risk preferences of a typical firm. Here it is deemed important that as the alternative strategies, seen by its respective positive Sharpe ratio, yield worthwhile returns on investments other circumstances must be taken into consideration such as subjective and rigid management policy and bureaucracy that judges the alternative strategy not fit with the firm's strategy.
- d. The firm should thoroughly train its cash management division or even form a specialized team, which must cover all aspects pertaining to both strategies in order to deploy the covered call and dividend hedge capture strategy successfully and efficiently.
- e. The firm *still* needs to diversify funds and not allocate all in one investment strategy.

With favorable results yielded in alternative strategies it shows that the strategy overall is fit and should be beneficial in broadening the firm's investment horizon. In a wider view, options provides flexibility and possibilities not explored further in this thesis. The possibilities continue to add up for investors as well as for firms in optimizing returns on corporate cash. For firms in Indonesia with the advent of options into the Indonesian Stock Exchange, the further growth and development of options in the future should broaden investment choices for investors and firms. But before this to happen other conditions must be met first, they are:

The market mechanisms coordinating and regulating options trading similar to options trading in other countries e.g. the US, must be designed and well established. In that a clearing institution similar to the Options Clearing Corporation (OCC) should be present to regulate the flow of call and put

options to and from buyers and writers. Besides that also the institution should be the one regulating exercise and delivery of options. With this requirement met then the full extent of benefits that options have to offer is benefited by investors alike.

b. All forms of costs on transactions of options, as well as stocks, in the future for the Indonesian stock market should be minimized in order to achieve a larger growing number of market participants and to make returns from all market related investments even greater for investors.

Bibliography

Beltz & Frank. (1996) Risk and Corporate Holdings of Highly Liquid Assets. Hong Kong University of Science & Technology

Black, Fischer and Scholes, Myron S. (1973) *The Pricing of Options and Corporate Liabilities*. Journal of Political Economy. May-June 1973

Bodie, Zvi, Alex Kane, Alan J. Marcus. (2007) Investments. McGraw-Hill

Brown, Keith C., Lummer. (1984) The Cash Management Implications of a Hedged Dividend Capture Strategy. Financial Management (pre-1986); Winter; 13, 4; ABI/INFORM Global

(1986) A Reexamination of the Covered Call
Options strategy for Corporate Cash Management Financial Management 15, 2;
ABI/INFORM Global

Buchamann, Patrick. (2008) Cash for Growth: The Neglected Power of Working-Capital Management. The Boston Consulting Group

Chance, Don M, (2004) An Introduction to Derivatives & Risk Management 6th Edition. Southwestern

Fleuriet, Michel. (2003) Finance A Fine Art. John Wiley & Sons

Griffith, Timothy. (1982) Defined benefit pension plan: covered call option accounting. Journal of Accountancy 154, 000004; ABI/INFORM Global

Hull, John C. (2005) Options, Futures and Other Derivatives, 6th Edition.

Prentice Hall: New Jersey

Lloyd, G.E.R. (1971) Early Greek Science: Thales to Aristotles. Norton Press

MacMillan, Lawrence G. (1996) MacMillan on Options: A Marketplace Book. John Wiley & Sons

Merton, Robert C. (1988) Applications of Options Pricing Theory: Twenty-five years later The American Economic Review 88, 3; ABI/INFORM Research

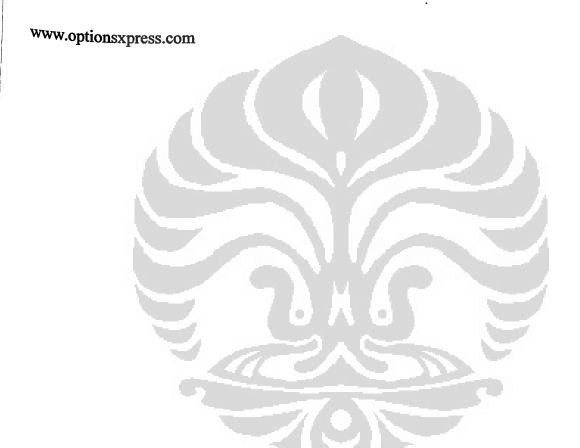
M.S. Sembiring. (2003) Trade and Membership Director of JSX: , Business Indonesia Online, September

Myers, S., Majluf, N.(1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics 13, 187–221.

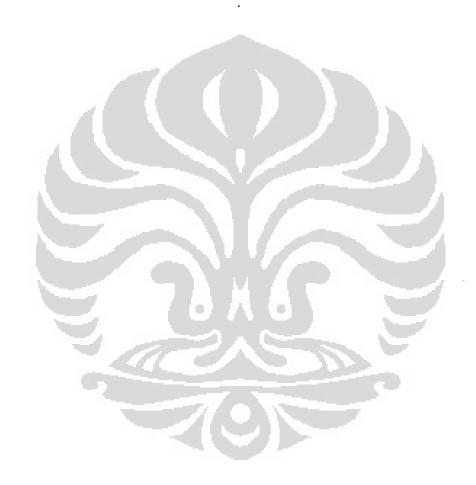
Patin, Ray P., Paul Robertson & Daryl V. Burckel. A Test of the Applicability of The Black Scholes Model: Valuing the S&P 100 Index Call Options. Akron Business and Economic Review 20, 3: ABI/INFORM Global

Ross, Westerfield, Jaffee. (2007) Modern Financial Management, 8th Edition. McGraw-Hill Irwin, New York

Santoso, Singgih. (2006). Menguasai Statistik di Era Informasi dengan SPSS 14. Elex Media Komputindo


Shen Pu.(2005). How Long is a Long-Term Investment, Federal Reserve Bank of Kansas City – Economic Review, First Quarter 2005

Ward, Robert W. (2004) Options and Options Trading. McGraw-Hill


Zivny, Terry L., John H. Ledbetter & James P. Hoban Jr. (2006) *Enchancing stock* returns using hedge dividend capture. Managerial Finance 32, 1; ABI/INFORM Global

www.investopedia.com

www.optionsnerd.com

Appendix

Covered Calls on AALI

																														-
3/20/2006	5/22/2006	6/19/2006	7/24/2006	8/22/2006	9/18/2006	0/46/2006	10/20/2006	12/18/2006	10/12/2007	2/20/2007	3/20/2007	4/23/2007	7002/12/6	6/15/2007	7/23/2007	7/20/2007	9/20/2007	7002/22/01	10/22/2007	11/19/2007	12/26/2007	1/21/2008	3/18/2000	3/25/2008	4/21/2009	6/10/2000	8/23/2009		Date	
0.0767	0.0277	0.0408	0.0203	0.0282	0.0265	0.0798	0.0204	0.0252	0.0306	0.0241	0.0174	0.0221	0.0313	0.0211	0.0184	0.0424	0.0200	0.0244	0.0040	0.0040	0.0450	0.0422	0.040	0.0437	6770.0	0.000	2500	2	Annu	
0.0632 <i> </i> 0.0632 <i> </i>	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0032	0.0032	0.0032	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0032	00000	(1050)	Annualized Volatility	
0.2543	0.4383	0.6446	0.3211	0.4463	0.4185	0.3133	0.3230	0.3986	0.4844	0.3813	0.2749	0.3492	0.4953	0.3336	0.2906	0.6707	0.4038	0.5854	0.544/	0.5423	0./118	0.6677	0.6352	0.6903	0.3614	0.4299	(002y 0)	(mine)		
6350 6100	6200	6450	7500	8300	8800	9400	10250	11100	14000	13050	11850	14300	14300	13700	14950	13000	16950	1/800	22600	25050	29100	30500	25950	25100	26000	29300		FILE	Stock	
6000/	6000	6000	7500	8000	8500	9000	10000	11000	14000	13000	11500	14000	14000	13500	14500	13000	16500	17500	22500	25000	29000	30500	25500	25000	26000	29000	2	Frice	Strike	
457.23 <i> </i> 360.41 <i> </i>	454.84	759.73	315.63	632.49	631.65	624.49	566.03	605.08	833.76	647.49	626.37	791.86	1020.26	681.35	813.75	1044.33	1088.52	1008.09	1539.04	1666.59	2518.52	2435.98	2198.22	2117.19	1169.18	1706.06	u	Premiums		
635000 610000	620000	645000	750000	830000	880000		_	1110000	1400000			1430000	1430000	1370000	1495000	1300000	1695000	1780000	2260000	2505000	2910000	3050000	2595000	2510000	2600000	2930000	4	Outrows		
10722.51 <i>26040.89</i>	25484.12	30973.04	31563.20	33248.90	33165.31	22448.90	31602.62	50508.37	83375.68	59749.22			72025.94	48134.57		104432.93	63851.64	70809.24	143904.34	161659.34	241852.33	243597.83	174821.89	201719.45	116917.95	140606.09	()n	Inflows	1	
0.0169 0.0427	0.0411	0.0480	_			0.0239	0.0308	0.0455	0.0596			0.0344	0.0504	0.0351	0.0243	0.0803	0.0377	0.0398	0.0637	0.0645	0.0831	0.0799	0.0674	0.0804	0.0450	0.0480	6	Returns		
0.1988 <i> </i> 0.5026 <i> </i>	0.4840	_	_				8 0.3630								0.2865	0.9459	0.4435	0.4684	0.7497	0.7598	0.9786	0.9404	0.7932	0.9462	0.5295	0.5650	7	6)	Annualized	
0.1274 0.1274	0.125		_							0.								0.0825	0.0825	0.08	0.08	0.0795	0.0794	0.0798	0.000	0 0880	00	3 0	SBI Rate 1	
0.2808 / 0.9594 /	<i>'</i>		_													1 28736			1.2249	1 25361	1 2824 urb	1 2804 a, F	1 1228 E,	1 2552	4 2274 8	A A A A A		Tatio C	Sharpe	
			_	_			J.	، حس	ا حسي	·																				

	11/22/2004	12/20/2004	1/24/2005	2/21/2005	3/21/2005	4/18/2005	5/23/2005	6/20/2005	7/18/2005	8/22/2005	9/19/2005	10/24/2005	11/21/2005	12/19/2005	1/23/2006	2/20/2006
	0.0150	0.0188	0.0144	0.0187	0.0324	0.0275	0.0187	0.0143	0.0154	0.0147	0.0239	0.0275	0.0108	0.0217	0.0166	0.0232
	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632
	0.2364	0.2968	0.2282	0.2955	0.5122	0.4349	0.2953	0.2267	0.2430	0.2321	0.3772	0.4351	0.1715	0.3434	0.2631	0.3668
	3025	3150	3000	3000	3975	3900	3475	3750	3950	3750	4575	5400	5250	5450	4900	6000
	3000	3000	3000	3000	3500	3500	3000	3500	3500	3500	4500	5000	5000	5000	4500	6000
	105.33	209.81	88.17	111.27	551.48	467.07	498.51	287.79	478.02	290.68	257.44	540.61	315.17	547.65	465.07	284.99
	302500	315000	300000	300000	397500	390000	347500	375000	395000	375000	457500	540000	525000	545000	490000	600000
4	8032.93	5981.06	8817.21	11127.46	7647.95	6706.84	2351.49	3778.70	2801.60	4068.24	18244.18	14061.49	6517.47	9764.62	6507.48	28498.51
	0.0266	0.0190	0.0294	0.0371	0.0192	0.0172	0.0068	0.0101	0.0071	0.0108	0.0399	0.0260	0.0124	0.0179	0.0133	0.0475
	0.3127	0.2236	0.3461	0.4367	0.2265	0.2025	0.0797	0.1186	0.0835	0.1277	0.4695	0.3066	0.1462	0.2110	0.1564	0.5592
	0.0741	0.0741	0.0742	0.0742	0.0743	0.0744	0.0787	0.0802	0.0844	0.0871	0.1	0.11	0.1225	0.1275	0.1275	0.1275
atic	1.0090	0.5036	1.191萬	1.226g	0.2972	0.2945	0.0033eve	0.1696 1	-0.0037 ±	0.1751 a, F	0.9798	0.4518	0.1380	0.2430	0.1097	1.1770

Covered Calls on ANTM

8 9 0 1 1 1 1 1 N () N () N () N ()	Τ
6/23/2008 5/19/2008 4/21/2008 3/25/2008 2/18/2008 1/21/2008 1/21/2007 11/19/2007 10/22/2007 9/24/2007 8/20/2007	Date
0.0301 0.0192 0.0435 0.0276 0.0276 0.0752 0.0447 0.0364 0.0471 0.0471 0.0402 0.0426	Annu
(\250) 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632	Annualized Volatility
(σ√250) 0.4753 0.3043 0.6880 0.4360 1.1883 0.7063 0.5748 0.5748 0.7440 0.6360 0.6350 0.8272	atility
1 3100 3750 3450 3250 3950 3950 4050 4175 2975 2725	Price
N	Strike
500 000 000 000 000 000 000 000 000 000	
3 234.17 308.21 555.06 326.83 1104.82 392.99 305.29 458.84 534.80 345.30	Pramiuma
13417.43 5820.51 10506.08 7682.91 15481.84 16799.39 25528.54 28384.39 5979.88 12030.01	
310000 375000 345000 325000 395000 395000 405000 417500 297500 272500) S
0.0433 0.0155 0.0305 0.0236 0.0392 0.0521 0.063 0.063 0.063	
7 0.5096 0.1828 0.3586 0.2783 0.4615 0.6133 0.7422 0.8005 0.2367 0.5198	Annualized
0.0869 0.0824 0.0798 0.0794 0.0795 0.08 0.0825 0.0825	SBI Rate 1
5 5 5 6 a a c	Sharpe

Covered Calls on ASII

	-		_																											
and the second supplied to the second	5/19/2006	6/16/2006	7/21/2006	8/16/2006	9/15/2006	10/20/2006	11/17/2006	12/15/2006	7002/61/1	2/10/2007	3/16/2007	4/20/2007	7/00/2/07	5/14/2007	6/14/2007	7002/01/0	9/26/2007	0/04/0007	10/19/2007	11/16/2007	12/19/2007	1/18/2008	2/15/2008	3/19/2008	4/18/2008	5/16/2008	6/20/2008		Date	
	0.0329	0.0311	0.0208	0.0198	0.0226	0.0174	0.0213	0.0218	0.0216	0.0179	0.0201	0.0237	0.0215	0.0194	0.0230	0.0289	0.0185	0.0209	0.04.00	0 0405	0.0332	0.0332	0.0475	0.0276	0.0413	0.0246	0.0220	q	Annu	>
	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.000	0 0630	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	(√250)	Annualized Volatility	
	0.5201 /	0.4923	0.3285	0.3133	0.3569	0.2749	0.3363	0.3453	0.3418	0.2833	0.3177	0.3746	0.3399	0.3065	0.3642	0.4562	0.2928	0.4707	0.6397	0 6307	0.5244	0.5254	0.7505	0.4362	0.6535	0.3884	0.3486	(σ√250)	atility	
	10650	9500	9500	/ 11900	11900	13500	14700	15950	16100	15000	13450	14000	15900	16400	19250	15450	19300	22500	23550	200	36400	26900	27250	22750	20150	21450	19700	1	Price	Stock
	10500							i0 15500	16000	15000	13000	14000	0 15500	16000	19000	15000	0 19000	0 22500										2	Strike Price	
	767.40	_	`		_	_			1							_		00 1137.19	1832.30	1						_		3	Premiums	
	6	2 / 58599 43 2 / 58599 43	_	70 / 33/60 67	_		_	_	٠,	547.06 54706.19		655.10 65510.5	902.27 50227.12	862.44 46244.18			_	.19 113718.8	.30 178229.7	Ť	1		_	_	-	-	72	+	B Outflows	
	1065000 /	000000		_	. `														9.7 2355000	.7 2610000	.9 2690000	Н							s inflows	
	0.0580			_	_		_							_						0.0616	0 0.0562		0.0480			_	a	Siling.	Deturno	
The same of the sa	0.6826	/ 0.5053 0.7763 /	\	/																6 0.7247	0.6623	0.9949	0.5654			0.4577	7	Allinalized (p)		
	0.125	0.1225		_	_					-		 :							 -		0.08		0.0794	0.0798	0.0824	0.0869	œ	mo.	SBI Rate 1	
	1.0720	1.1655/	/ 0.6503 /	\	5 / 1.1581 /	_			•													1.2197 tev	1.1141 en	1.2183 Pui	0.9496 ba,	1.0637 FE	, 20	Ratio	Ф	

4

1.0926	0.0741	0.3661	0.0311	855000	26581.28	315.81	8500	8550	0.2672	0.0632	0.0169	11/19/2004
0.9991	0.0741	0.4219	0.0358	965000	34580.19	495.80	9500	9650	0.3481	0.0632	0.0220	12/17/2004
0.4126日	0.0742	0.1696	0.0144	1045000	15055.11	O	10000	10450	0.2313	0.0632	0.0146	1/21/2005
0.9657년	0.0742	0.4111	0.0349	1120000	39101.55		11000	11200	0.3488	0.0632	0.0221	2/18/2005
0.6537 ∯	0.0743	0.2973	0.0253	1095000	27651.53		10500	10950	0.3412	0.0632	0.0216	3/18/2005
1.1958 [.	0.0744	0.3561	0.0302	1100000	33272.34		11000	11000	0.2356	0.0632	0.0149	4/15/2005
1.0743	0.0787	0.3246	0.0276	1105000	30460.42	354.60	11000	11050	0.2289	0.0632	0.0145	5/20/2005
1.0644 era	0.0802	0.4670	0.0397	1315000	52159.58		13000	13150	0.3634	0.0632	0.0230	6/17/2005
0.9135 ld S	0.0844	0.3528	0.0300	1220000	36557.14		12000	12200	0.2938	0.0632	0.0186	7/15/2005
0.7180 tev	0.0871	0.2993	0.0254	1030000	26181.64		10000	10300	0.2955	0.0632	0.0187	8/19/2005
1 0836 en	0.1	0.6529	0.0555	1015000	56287.13		10000	10150	0.5103	0.0632	0.0323	9/16/2005
0.7254 Pur	0.11	0.4264	0.0362	940000	34044.67		9000	9400	0.4362	0.0632	0.0276	10/21/2005
1 0809 ba,	0.1225	0.4899	0.0416	905000	37655.5		9000	9050	0.3399	0.0632	0.0215	11/18/2005
1.0917 FE	0.1275	0.5126	0.0435	1005000	43756.1		10000	10050	0.3528	0.0632	0.0223	12/16/2005
0.5053	0.1275	0.2742	0.0233	1095000	25496.51		10500	10950	0.2902	0.0632	0.0184	1/20/2005
0.6078 008	0.1275	0.3674	0.0312	945000	29490.49		9000	9450	0.3948	0.0032	0.0200	2/1//2000
1.1704	0.1274	0.5396	0.0458	1100000	50414.05		0001	11000	0.3040	0.000	0.000	0000
0.8023	0.1274	0.5131	0.0436	1195000	52075.19		11500	11950	0.4000	0.0032	0.000	3/17/2006
			-						2 4000	0 0000	2020	1 4/21/2006

Covered Calls on BBNI

	•	•		4884	Stock						Annualized	SBI Rate 1	Sharpe
	Date		Calabo A Olaminy	(Chippo)	11100	Offine Line	Figilialia	Cathons	MOMS	Vermina	0		Katio
_	7 17 17 17 17 17 17 17 17 17 17 17 17 17	c	(100)	(002/0)	_	7	c	4	O	σ	7	œ	
	6/23/2008	0.0306	0.0632	0.4842	1210	1000	222.63	1263.28	121000	0.0104	0.1229	0.0869	0.0744
	5/16/2008	0.0153	0.0632	0.2412	1220	1000	226.88	687.74	122000	0.0056	0.0664	0.0824	-0.0665
	4/18/2008	0.0293	0.0632	0.4629	1250	1000	259.22	922.03	125000	0.0074	0.0868	0.0798	0.0152
	3/19/2008	0.0151	0.0632	0.2385	1370	1000	376.59	659.48	137000	0.0048	0.0567	0.0794	-0.0953
	2/15/2008	0.0372	0.0632	0.5881	1710	1500	251.79	4179.17	171000	0.0244	0.2878	0.0795	0.3541
	1/18/2008	0.0221	0.0632	0.3493	1750	1500	263.80	1379.58	175000	0.0079	0.0928	0.08	0.0367
	12/19/2007	0.0223	0.0632	0.3534	1920	1500	430.33	1032.83	192000	0.0054	0.0633	0.08	-0.0472
	11/16/2007	0.0253	0.0632	0.4001	1890	1500	401.67	1167.15	189000	0.0062	0.0727	0.0825	-0.0245
	10/19/2007	0.0194	0.0632	0.3073	2025	2000	91.97	6697.22	202500	0.0331	0.3894	0.0825	0.9988
	9/21/2007	0.0263	0.0632	0.4155	2000	2000	102.33	10233.37	200000	0.0512	0.6024	0.0825	1.2513
	8/16/2007	0.0436	0.0632	0.6901	1680	1500	243.01	6300.77	168000	0.0375	0.4416	0.0825	0.5203
	7/20/2007	0.0184	0.0632	0.2913	2650	2500	194.21	4421.34	265000	0.0167	0.1964	0.0825	0.3912
	6/14/2007	0.0180	0.0632	0.2842	2375	2000	390.04	1503.50	237500	0.0063	0.0745	0.085	-0.0368
	5/16/2007	0.0360	0.0632	0.5689	2450	2000	481.69	3168.92	245000	0.0129	0.1523	0.0875	0.1139
	4/17/2007	0.0289	0.0632	0.4570	2100	2000		7/	210000	0.0355	0.4177	0.09	0.7172
	3/16/2007	0.0298	0.0632	0.4711	1770	1500	291.85	2185.14	177000	0.0123	0.1454	0.09	0.1175
	2/16/2007	0.0108	0.0632	0.1703	1780	1500	291.52	1152.07	178000	0.0065	0.0762	0.0925	-0.0957
	1/19/2007	0.0233	0.0632	0.3690	1850	1500	363.16	1316.16	185000	0.0071	0.0838	0.095	-0.0304
	12/15/2006	0.0263	0.0632	0.4153	1960		0 472.89	1288.87	196000	0.0066	-		
	11/17/2006	0.0319	0.0632	0.5036	2200	2000	0 259.29	5928.61	220000	0.0269			
	10/20/2006	0.0630	0.0632	0.9959	2450	2000	0 552.30	10230.25	5 245000	0.0418			
	9/15/2006	0.0375	0.0632	0.5935	1460	1000	0 470.17	À,	3 146000	0.0070			
	8/16/2006	0.0150	0.0632	0.2371	1150		0 160.12			0.0088		0.1175	
	7/21/2006	0.0286	0.0632	0.4517	1090	1000	0 118.24			0.0259		0.1225	_
	6/16/2006	0.0268	0.0632	0.4238	1150	1000	0 167.27		115000	0.0150	0.1769	0.125	0.1224
_	5/19/2006	0.0187	0.0632	0.2952	1220	1000) 230.58	1057.76		0.0087	0.1021	0.125	0.0776
	4/21/2006	0.0157	0.0632	0.2488	1420	1000		1056.05	142000	0.0074	0.0876	0.72/4	-0.7607
_	3/17/2006	0.0131	0.0632	0.2076	1300	1000	310.56	1056.05	130000 /	0.0081/	0.0956/	0.72/4	-0.1569/
	2/17/2006	0.0109	0.0632	0.1722	1260	1000	/ 270.57 /	1056.88	126000 /	0.0084/	0.0900/	0.1275	-0.1190
_	1/20/2006	0.0176	0.0632	0.2790 /	1320	7000	330.57	105/.2/	132000	annes /	0.0004	0.1276	-0.0789

Simulation of.., Fitzgerald Steven Purba, FE, 2008

جا	-						_				. =	
1/19/2004	2/17/2004	1/21/2005	2/18/2005	3/18/2005	4/15/2005	5/20/2005	5/17/2005	7/15/2005	8/19/2005	9/16/2005	0/21/2005	1/18/2005
0.0191	0.0192	0.0235	0.0098	0.0154	0.0128	0.0140	0.0180	0.0208	0.0090	0.03/9	0.014/	0.0346
0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632
0.3027	0.3037	0.3721	0.1543	0.2435	0.2019	0.2214	0.2846	0.3285	0.1427	0.5992	0.2317	0.5474
1550	1500	1620	1710	1820	1710	1670	1810	1640	1580	1550	1270	1200
1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1000	1000
			2	w	2	<u>.</u>	ယ	=		-	2	21
87.78	57.02	50.23	219.27	29.34	19.56	81.31	20.40	82.50	92.98	38.83	9.13	9.44
3777.70	5702.41	3022.83	926.67	933.58	956.11	1130.98	1039.59	2250.37	1297.66	8883.07	912.66	1943.82
155000	150000	162000	171000	182000	171000	167000	181000	164000	158000	155000	127000	120000
0.0244	0.0380	0.0187	0.0054	0.0051	0.0056	0.0068	0.0057	0.0137	0.0082	0.0573	0.0072	0.0162
0.2870	0.4476	0.2197	0.0638	0.0604	0.0658	0.0797	0.0676	0.1616	0.0967	0.6748	0.0846	0.1907
0.0741	0.0741	0.0742	0.0742	0.0743	0.0744	0.0787	0.0802	0.0844	0.0871	0.1	0.11	0.1225
0.703	1.2300	0.3910	-0.0674	-0.0571	-0.0424	0.0047	-0.0442	0.2349	0.0673	0.9593	-0.1096	0.1246

Covered Calls on BBRI

Date Annualizad Voisellity Prices Strike Prices Premiume Cutifows Inflows Returns Annualizad Signates Sinarpe 62320008 0.0323 0.0632 0.0537 4725 400 354.66 1296.56 47500 0.0886 0.088		T																											
	Date		6/23/2008	5/19/2008	4/21/2008	3/25/2008	2/18/2008	1/21/2008	12/26/2007	11/19/2007	10/22/2007	9/24/2007	8/20/2007	7/23/2007	6/15/2007	5/21/2007	4/23/2007	3/20/2007	2/20/2007	1/22/2007	12/18/2006	11/20/2006	10/30/2006	9/18/2006	8/22/2006	7/24/2006	6/19/2006	5/22/2006	4/24/2006
Styll 4 725 Strike Price Premiums Outflows Inflows Returns Annualized mass SBI Rate 1 Sharte 1 Sharte 1 Sharte 2 Sharte 3 4 5 6 7 8 Ratio 57784 47250 6500 627.68 472500 0.3231 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0869 0.0824 1.88 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.0798 0.08 0.0799 0.0799 0.0799 0.0799	Annua	q	0.0239	0.0415	0.0368	0.0393	0.0312	0.0248	0.0221	0.0291	0.0324	0.0198	0.0322	0.0173	0.0234	0.0244	0.0227	0.0168	0.0172	0.0212	0.0193	0.0195	0.0132	0.0146	0.0238	0.0285	0.0360	0.0319	0.0235
Price Price Primiums Outflows Inflows Returns Colorer SEI Rate SEI Rat	lized Vol	(√250)	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632
Price Strike Price Premiums Outflows Inflows Returns Amusilized SBI Rate 1 Sharp 4725 4500 334.66 12965.96 472500 0.3231 0.0869 0.0869 Ratio 6350 6500 627.68 4275.77 67000 0.7514 0.0869 0.0869 0.0869 0.5869 6050 6500 447.96 42495.87 605000 0.8270 0.0794 0.0794 0.0794 1.17 7500 6500 447.96 2449.5.87 705000 0.2870 0.0795 0.0795 0.98 0.0794 1.17 7550 6500 447.96 22970.7.8 785000 0.2870 0.0795 0.08 0.08 0.08 0.0795 0.98 0.09	atility	(σ√250)	0.3784	0.6557	0.5815	0.6207	0.4932	0.3927	0.3487	0.4604	0.5123	0.3134	0.5099	0.2732	0.3701	0.3860	0.3597	0.2663									0.5695	0.5049	0.3713
Strike Price Premiums Outflows Returns Annualized Mode SBI Rate 1 Mode Sharps 4500 354.66 12965.96 4775.00 0.3231 0.0868 0.0824 1.0824 0.0798 0.0824 1.0825 0.0825 0.0798 0.08 0.4494 1.1248 1.2824 1.1258 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 </th <th>Price</th> <th></th> <th>4725</th> <th>6700</th> <th>6350</th> <th>6050</th> <th>7000</th> <th>6750</th> <th>7350</th> <th>7850</th> <th>6750</th> <th>6800</th> <th>5550</th> <th>6500</th> <th>5800</th> <th>6300</th> <th></th> <th>3900</th> <th>4775</th>	Price		4725	6700	6350	6050	7000	6750	7350	7850	6750	6800	5550	6500	5800	6300												3900	4775
Premiums Outflows Inflows Returns Annualized SBI Rate 1 Shappe mo. Ratio Ratio Returns 334.66 12965.96 472500 0.3231 0.0869 0.0869 0.548 637.68 42767.7 670000 0.7516 0.0824 0.0824 0.0824 4295.87 635000 0.3294 0.0798 0.0824 419.52 700000 0.7596 0.0795 0.0798 637.08 21768.38 675000 0.3797 0.08 0.0825	Strike Price	2	450	650	600	600	700	650	700	750	650	65	55	65	55	60	OT OT	45	50	50	50			4	4	40	40	35	45
Outflows Inflows Returns Annualized (s) SBI Rate 1 (s) Sharpe mo. 4 5 6 7 8 12965.96 472500 0.3231 0.0869 0.54 28550.27 635000 0.5294 0.0798 0.0824 1.88 4495.152 700000 0.7056 0.0794 0.0794 1.1 4495.152 700000 0.3797 0.08 0.08 0.08 27766.33 735000 0.2848 0.0794 0.1 0.0825 0.0 28707.8 755000 0.3397 0.08 0.08 0.0 0.0 28707.8 755000 0.5302 0.0825 0.0825 0.0 0.2 14881.52 680000 0.2594 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 1 14981.52 680000 0.2971 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 0.0825 <th>Pre</th> <th></th> <th>0</th> <th>ŏ</th> <th>ŏ</th> <th>ŏ</th> <th>6</th> <th>8</th> <th>8</th> <th>8</th> <th>8</th> <th>8</th> <th>00</th> <th>00</th> <th>9</th> <th>00</th> <th>00</th> <th>00</th> <th>00</th> <th>000</th> <th>000</th> <th>000</th> <th>500</th> <th>500</th> <th>500</th> <th>000</th> <th>000</th> <th>00</th> <th>8 8</th>	Pre		0	ŏ	ŏ	ŏ	6	8	8	8	8	8	00	00	9	00	00	00	00	000	000	000	500	500	500	000	000	00	8 8
Outflows Inflows Returns Annualized (s) SEI Rate 1 Sharpe (s) 4 5 6 7 8 12965.96 472500 0.3231 0.0869 0.54 42767.7 670000 0.7516 0.0824 0.0824 1.85 42495.87 605000 0.8270 0.0798 0.0798 0.08 42495.87 605000 0.2524 0.0798 0.08 0.44 17776.63 735000 0.2848 0.08 0.08 0.08 17776.63 735000 0.4306 0.0825 0.0825 0.08 14981.52 680000 0.4306 0.0825 0.0825 0.0825 1.14981.52 680000 0.4408 0.0825 0.0825 1.14981.52 680000 0.4408 0.0825 0.0825 1.14981.52 0.0825 0.0825 1.14981.52 0.0825 0.0825 1.14981.52 0.0825 0.0825 1.14981.52 0.0825 0.0825 1.14981.52 0.0825 0.0825 1.149	miums	ဒ	354.66	627.68	635.50	474.96	419.52	467.68	527.77	637.08	553.97	449.82	368.75	226.79	446.35	477.82	248.02	476.04	175.48	533.34	360.59	526.64	447.34	319.7	276.26	227.57	340.66	499.00	398.93
Inflows Returns 6 Colored Sei Rate 1 Sharpe 472500 0.3231 0.0869 0.0824 650000 0.7516 0.0824 0.0798 0.5294 0.0798 0.0798 0.5294 0.0798 0.0798 0.525000 0.2270 0.0795 0.082	Outflows	4	12965.96	42767.7	28550.27	42495.87	41951.52	21768.36	17776.63	28707.8	30397.31	14981.52	31875.23	22678.8	14634.95	17782.33	24801.69						-	ത		_			12392.83
Returns (6) SBI Rate 1 Sharpe mo. 6 7 8 C.5416 C.0869 C.546 C.5416 C.0824 C.0869 C.544 C.0869 C.54 C.541 C.5424 C.0869 C.5424 C.5424 C.0869 C.5424 C.	Inflowe	On C	472500	670000	635000	605000	700000	675000	735000	785000	675000	680000	555000	650000	580000	630000	550000												
(6) mo. Rate 1 Sharpe 7 8 0.0869 0.54 0.0824 0.0824 0.0824 1.85 0.0798 0.0798 0.0798 0.00825 0.0795 0.9 0.00825 0.0825 0.0825 0.00825 0.0825 0.0825 0.00825 0.0825 0.0825 0.0825 0.00825 0.0825 0.0825 0.0825 0.0825 0.00825 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.1025 0.1025 0.1025 0.1225 0.1225 0.1224 0.1224 0.1224 0.85	Datarno	o	0.3231	0.7516	0.5294	0.8270	0.7056	0.3797	0.2848	0.4306	0.5302	0.2594	0.6762	0.4108	0.2971	0.3323	0.530	0.122	0.413									0.298	0.305
8 Rate 1 Sharpe mo. Ratio 8 0.0869 0.54 0.0869 0.68 0.0798 0.68 0.0795 0.9 0.0825 0.9 0.0825 0.0925 0.0925 0.0925 0.0925 0.0925 0.1025 0.1125 0.1125 0.1226 0.1226 0.1226 0.1224 0.8	Annualized	7	0.0889	0.0824	0.0798	0.0794	0.0795	80.0	0.0	0.082	0.082	0.082	8008	A														_	6
Sharpe Ratio Ratio Ratio Ratio Ratio Ratio Ratio 0.54 98 0.69 0.54 98 0.69 98 0.69 9.0825 0.6 9825 0.	SBI Rat	mo.		-					00	01	On .	Si -	25	25	85	375	0.09	0.09	925	.095)975	1025	1075	1125	175	225			
0.54 1.4:10 0.54 1.4:10 0.9:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			+		0798	0794	0.0795	0.08	0.08	0.0825	0.0825	0.0825	0.0825	0.0825	0.085	0.0875	0.09	0.09	0.0925	0.096	0.097	0.102	0.107	0.112	0.1175	0.1225		_	_
Simulation of, Fitzgerald Steven Purba, FE, 2008	larpe	ALIO	0 5494	1 8517	0.6513	1.1770	0.9378	0.4211	0.3776	0.6390	1.1618	0.4381	0.8852	1.129	0.635				-										0.7007
					• • •	C.C.	• • •)		tore	d S	 eral	tzg	, Fi	of.	ion	යි alat	S im	75	56	776	953	199	143	176	44	93/	00	1

11/22/2004	12/20/2004	1/24/2005	2/21/2005	3/21/2005	4/18/2005	5/23/2005	6/20/2005	7/18/2005	8/22/2005	9/19/2005	10/24/2005	11/21/2005	12/19/2005	1/23/2006	2/20/2006
0.0192	0.0219	0.0206	0.0193	0.0237	0.0241	0.0214	0.0177	0.0164	0.0223	0.0376	0.0279	0.0205	0.0206	0.0246	0.0144
0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632
0.3033	0.3459	0.3256	0.3048	0.3740	0.3807	0.3378	0.2805	0.2597	0.3523	0.5950	0.4417	0.3239	0.3254	0.3887	0.2280
2125	2475	2725	3175	3100	2675	2775	2825	2950	2675	2625	2475	2725	3025	3200	3375
													1		
2000	20	25	30	300	25	250	250	250	250	250	200	250	300	300	3000
8	8	8	8	8	8	8	8	8	8	8	8	<u>ŏ</u>	<u> </u>	5	3
160.37	488.41	261.46	231.20	198.60	232.85	307.63	346.73	468.26	228.23	257.08	497.89	269.44	142.89	283.63	408.72
3537.244	1340.631	3646.046	5620.049	9859.914	5784.866	3263.028	2173.28	1826.131	5323.223	13208.25	2288.882	4444.374	11788.56	8363.343	3372.324
212500	247500	272500	317500	310000	267500	277500	282500	295000	267500	262500	247500	272500	302500	320000	337500
0.1960	0.0638	0.1575	0.2084	0.3745	0.2546	0.1384	0.0906	0.0729	0.2343	0.5924	0.1089	0.1920	0.4588	0.3077	0.1176
	_	0	0.0	0.0	0.0	0.07	0.08	0.0844	0.087	0	0.1	0.122	0.127	0.127	0.127
0.0741	0.0741	0742)742	743	744	87	<u>৪</u>	<u> </u>	<u>`</u>	<u>`</u>		Ö	Oi	σi	

Covered Calls on INDF

																				_									
		6/23/2008	5/19/2008	4/21/2008	3/25/2008	2/18/2008	1/21/2008	12/26/2007	11/19/2007	10/22/2007	9/24/2007	8/20/2007	7/23/2007	6/18/2007	5/21/2007	4/23/2007	3/20/2007	2/20/2007	1/22/2007	12/18/2006	11/20/2006	10/30/2006	9/18/2006	8/22/2006	6/19/2006	6/22/2006	4/24/2006	3/20/2006	2/20/2006
Annu	q	0.0214	0.0234	0.0353	0.0346	0.0478	0.0369	0.0288	0.0385	0.0177	0.0174	0.0393	0.0233	0.0357	0.0173	0.0219	0.0169	0.0265	0.0319	0.0118	0.0140	0.0126	0.0250	0.0187	0.019	0.0537	0 0174	0.0150	0.0147
Annualized Volatility	(√250)	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.000	0.0632	0.0632	0.0632	0.0632	0.0632
tility	(σ√250)	0.3391	0.3704	0.5575	0.5468	0.7561	0.5841	0.4561	0.6094	0.2803	0.2756	0.6221	0.3686	0.5648	0.2739	0.3464	0.2670	0.4190	0.5048	0.1870	0.2206	0.1993	0.3950	0.01.0	0.6625	0.8492	0.2751	0.2367	0.2318
Price	-	2375	2675	2300	2300	2775	2900	2575	2575	1900	1980	1770	2175	1975	1680	1660	1390		1550				1250					860	840
Price	2	2000	2500	2000	2000	2500	2500	2500	2500		2000	1500	1500								1								
Premiums	w									8		_			8	8	1500	1000	1500	1000	1000	1000	1000	1000	500	1000	1000	500	500
Smn		392.24	231.64	347.12	345.36	403.01	460.35	183.54	227.11	28.77	59.83	306.42	685,29	123.31	194.36	182.23	11.32	687.68	122.56	368.09	398.51	318.92	24.50	47.60	425.20	58.18	14.93	365.28	345.28 365.28
Outflows	4	1724.28	5664.269	4712.344	4535.572	12801.02	6034.672	10854.33	15210.63	12877.22	7982.672	3641.903	1028.604	14831.19	1435.551				_		850.5291			-				528.0254	528.4377 528.4406
Inflows	S1	237500	267500	230000	230000	277500	290000	257500	257500	190000	198000	177000		,,		7				8.			125000				5 95000	1 86000	84000
Returns	o	0.007260127	0.021174838	0.020488452	0.019719876	0.046129791	0.020809213	0.042152734	0.059070393	0.067774834	0.040316526	0.020575724		_				_	0	_		_	0.0082395/1		_	_	0 0.068348945	_)
<u>ි</u>	7	0.0855	0.2493	0.2412	0.2322	0.5431																					45 0.8048		5 0.0741 8 0.0723
mo de	60	0	0					<u>ω</u>		0	7	23	57	42	8	77	76	03 03	212	701	0.0720	0.0802	0.09/0	0.6850	0.0666	1.9173)48	23	3 47
		0.0869	0.0824	0.0798	0.0794	0.0795	0.08	0.08	0.0825	0.0825	0.0825	0.0825	0.0825	0.085	0.0875	0.09	0.09	0.0925	0.095	0.0975	0.1025	0.1075	0.1125	0.1225	0.125	0.125	0.1274	0.1274	0.12/5
-		99	-Jean						-															13	10	10	1	1	/ .
To action		-0.0042		0.2896	0.2794	0.6132	0.2825	0.9128	1.0059	2.5526	1.4231	0.2568	-0.0728	7.4749			3.5121 or		0.903/sim				75 0.0392					42	-0.1332

	12/19/2005 11/21/2005 10/24/2005 9/19/2005 8/18/2005 6/20/2005 5/23/2005 4/18/2005 3/21/2005 2/21/2005 1/24/2005 12/20/2004
	0.0250 0.0196 0.0269 0.0490 0.0108 0.0190 0.0209 0.0220 0.0263 0.0215 0.0236
	0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632
	0.3953 0.3092 0.4261 0.7747 0.1712 0.3006 0.3049 0.3308 0.4166 0.5086 0.2761 0.3456 0.3739
-11	950 840 770 760 950 1100 1190 1040 1080 1280 940 820 750
	500 500 500 500 1000 1000 1000 500 500
	455.28 5 345.08 5 274.57 4 265.62 1 112.31 197.37 66.35 104.22 289.03 11.02 323.08 253.08
	528.4377 507.8203 456.5536 562.2452 361.6028 1231.045 736.5943 2635.04 2 2422.329 902.5005 902.5005 308.2131 307.904 310.5574
	95000 84000 77000 76000 95000 110000 104000 128000 94000 82000 7500
	0.005562502 0.006045479 0.005929268 0.007397964 0.003806345 0.011191319 0.006189868 0.022428975 0.007050785 0.0075555301 0.003758696 0.004105387 00 0.004436535
	0.0655 0.0712 0.0698 0.0871 0.0448 0.1318 0.1318 0.2641 0.0830 0.8896 0.0830 0.0843 0.0443 0.0483
	0.1275 0.1225 0.11 0.11 0.0871 0.0844 0.0862 0.0787 0.0744 0.07742 0.0742 0.0742 0.0742 0.0742 0.0741
Simulation of.	-0.1569 -0.1660 -0.0943 -0.0166 -0.2470 0.1576 0.6639 -0.0867 -0.0867 -0.0867 -0.0867

Covered Calls on ISAT

_																													Т	Т		\neg	
1/30/2006	3/27/2006 2/27/2006	5/1/2006	5/29/2006	6/26/2006	7/31/2006	8/29/2006	9/25/2006	11/1/2006	11/22/2006	12/20/2006	1/24/2007	2/22/2007	3/22/2007	4/20/2007	5/23/2007	6/19/2007	7/25/2007	8/16/2007	9/21/2007	10/19/2007	10/2007	12/19/2007	2005/01/1	2/19/2009	3/19/2000	3/10/2009	4/18/2008	5/16/2008	8/23/2008		Date		(0.00
0.0208	0.0201	0.0194	0.0311	0.0314	0.0169	0.0232		0.0199		0.0230	0.0322	0.0175	0.0176	0.0179	0.0171	0.07/4	0.0231	0.020	0.0220	0.040		0.0435	0.0295		0.0517	0.01	00011	0.0192	0.0442	q	Annua	·	
0.0632	0.0632 0.0632	•										_				0.0632	0.0032	0.0000	0.0032	0.000	0.000	0.0002	0.0032	0.000	0.000	0.0632	0.0632	0.0632	0.0632	(√250)	Annualized Volatility		
0.3291	0.3182														0.2700	0.2/40	0.303	0.4104	0.3012	0.0010	0.6343	0.6871	0.4499	0.0732	0.8177	0.5237	0.3341	0.3029	0.6992	(σ√250)	tility		
/ 5800														7	2						7850	8800	8500	7100	7350	6800	6500	6000	6000	-	Price	Stock	
00	5150	5300	5750	4250	42/5	4/25	48/5	0000	0700	00/00	9160	2920	5000	5400		2000	6950	7350	9550	7100	50							1	1	2	Price	Strike	
/ 0000	5000	2000	7000	4000	4000	4000	3000	5000	5000	5500	6600	6000	n 000	6000	0000	8500	7000	7000	7000	8000	8500	8500	8500	7000	6500	6500	6500	5000	6500				
400.	292.13	254.47	_	_				1					82 VC3	344 25	194 75	587.57	171.52	540.41	180.03	55.97	344.35	875.04	467.48	460.30	1189.69	593.97	271.32	1036.80	306.05	cu	Premiums		
`	\ <u>\</u>	47 17947.12						-	_	_	_			ر ب ب	_		_	_			6 99434.61		46748.28	36029.89	33968.7	29397.22	27132.04	3680.03	80604.71	4	Outriows		
	e 2. 2.	•									٠,	d							A		31 785000	000088 0				680000	650000	600000	600000	C)	SMOITUI		
•	<i>,</i>	507500 /	530000 /	515000	425000	427500	472500	487500	535000	575000	575000	610000	595000	600000	840000	700000	685000		_	_		_	_	_	_			_	0.1343	6	Keturns	,	
	0.0276/ 0.0238/	0.0354	0.0207	0.0195	0.0372	0.0158	0.0279	0.0604	0.0181	0.0220	0.1382	0.0543	0.0125	0.0357	0.0445	0.0125	0.0469	0.0259	0.0962	0.1346	0.1267	0.0653	0.0550	0.0507	0.0462	0.0432	0.0417	0.0061	343	-	The series		
	0.3250 0.2805 /	(0.1473	0.5527	0.3050	1.1325	1.5853	1.4914	0.7694	0.6476	0.5975	0.5442	0.5090	0.4915	0.0722	1.5818	7	9	Annualized	
	50	164 /	0.2434 /	0.2298	0.4385	0.1859	0.3288	0.7113	0.2133	0.2585	1.6268	0.6397	0.1475	0.4204	0.5239 \	473	27	50	25	ω —	4			<u> </u>								SBI Rate 1	
	0.1275/	0.1274	0.1.	0	0	0.	0	0	0	0	<u>o</u> .	0	0.0	_	0	0.0875	0.085	0.0825	0.0825	0.0825	0.0825	0.0825	0.08	0.08	0.0795	0.0794	0.0798	0.0824	0.0869	a la			4
	,	4	0.1274		0.125 /	0.1225	0.1175	0.1125	0.1075	0.1025	0.0975	0.095	0.0925 \	0.09	0.09									1.0937	0.5683	0.8203	7.2327	-0.0336	2.1380		0.00010	Sharpe	VD
\ .		0.9083/	0.3778/	0.2133 /	0.6317 /	0.2368	0.5767	1.6417	0.3353	0.5224	4.2106	1.07	0.1993	1.190m	1.5324	0.2209	.7032	0.6095	2.3684 ald	4.1612 Ste	2.2214 ever	0.9997 Pt	urba	37 , F		200		Š	, č	<u>'</u>			_

	1 1	_																														_	
	12/14/2005	1/18/2006	3/15/2006	3/15/2006	4/19/2006	5/17/2000	6/14/2000	7/19/2006	8/14/2006	9/13/2006	10/18/2006	11/15/2006	12/13/2006	1/19/2007	2/16/2007	3/16/2007	4/20/2007	5/16/2007	6/15/2007	7/20/2007	8/16/2007	9/21/2007	10/19/2007	11/16/2007	12/19/2007	1/18/2008	2/15/2008	3/19/200a	4/18/2008	5/16/2008	6/23/200a		Date
	0.0326 0.0431	0.0390	0.0014	0.0002	0.0345	0.0435	0.0323	0.0249	0.0225	0.0159	0.0176	0.0265	0.0687	0.0221	0.0229	0.0205	0.0142	0.0230	0.0274	0.0329	0.0292	0.0214	0.0328	0.0237	0.0333	0.0672	0.0335	0.032/	0.000	0.0783			A 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0.0002/	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	(√250)	Aminalized volatility	-1111
0.0007	0.5149	0.6167	0.0226	0.0027	0.5457	0.6877	0.5110	0.3941	0.3552	0.2510	0.2777	0.4184	1.0863	0.3502	0.3627	0.3244	0.2240	0.3629	0.4329	0.5205	0.4622	0.3385	0.5192	0.3739	0.5258	1.0623	0.5294	0.5171	0.4036	0.2900	(σ√250)	זנווונץ	
1000	8150	9700	9500	10450	12800	10300	10400	12650	12550	11000	11350	11300	8200	8750	9100	10700	10500	9450	9100	9000	10700	13550	15850	15000	12850	12750	13450	12700	14250	14000	_	Price	Stock
10001	8000	9500 /	9500	10000	12500	10000	10000	12500	12500	11000	11000	11000	8000	8500	9000	10500	10500	9000	9000	9000	10500	13500	15500	15000	12500	12500	13000	12500	14000	14000	2	Price	_
582.760	10	838-075	101.682	555,605	1023.364	1016.371	880.644	713.851	597.413	367.962	620.612	751.656	1142.229	526.588	465.967	549.164	309.681	694.123	534.822	568.497	708.308	599.552	1178.900	694.579	1000.213	1705.368	1098.950	897.040	841.263	518.049	3	Premiums	
582/6.01	45229.24	9	_	_	_	1 71637.11	14 48064.38	51 56385.13	13 54741.27		1 2 27061.21	36 45165.56			-	4 34916.44	픾	3 24412.31	_	56849.69	50830.82	54955.19	82890.03	69457.86	65021.34	145536.8	64895.04	69703.96	59126.34	51804.91	4	Outflows	
1000000/	815000	0700076			_	1 1030000	38 1040000	13 1265000	27 1255000	22 1100000	21 1135000	6 1130000			4 910000	4 1070000		945000		900000	1070000	1355000	1585000	1500000	1285000	1275000	1345000	1270000	1425000	1400000	O1	Inflows	
0.0833 /	0.0555	0.0658		_	_	_	0.0462	0.0446	0.0436	0.0335	0.0238	0.0400	0 0.1149			0.0326		Ī	0.0478	0.0632	0.0475	0.0406	0.0523	0.0463	0.0506	0.1141	0.0482	0.0549	0.0415	0.0370	o	Returns	
0.9802/	0.6534	0.7745			_	0.8189	52 0.5442	46 0.5248	36 0.5136	35 0.3939	38 0.2807	0.4706	19 1.3529							0.7437	0.5593	0.4775	0.6157	0.5452	0.5958	1.3440	0.5681	0.6462	0.4885	0.4357	7	6	Annualized
0.1275	0.1275		,	0										0									0.0825	0.08	80.0	0.0795	0.0794	0.0798	0.0824	0.0869	50	mo.	SBI Rate 1
1.2527	.1	1					0.1225 0.8	0.1175 1.0	0.1125	0.1075	0.1025 0.6	0.0975 0.8							-						0.980	1 1903	0.9231	1 0955	1.0064	1 2026		Taxio T	Sharpe
1		2	77	51	902 /	1.0090	0.8251	1.0336	1.1291	1.1408	0.6419	0.8917	1.15	0.798st	ion	of.	9 .,Fi	g Ezg	eral	d S	න Stev		Pur		FE,		008				applicated.		entrace to a 10 per

11/16/2005 10/19/2005 9/14/2005 8/17/2005 6/14/2005 6/14/2005 5/18/2005 4/13/2005 3/16/2005 2/16/2005 1/19/2004 11/19/2004
0.0179 0.0475 0.0350 0.0247 0.0247 0.0231 0.0231 0.0295 0.0178 0.0331 0.0241 0.0263 0.0242
0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632 0.0632
0.2829 0.7517 0.5542 0.3903 0.6117 0.3282 0.3658 0.4670 0.2813 0.5238 0.5238 0.4161 0.3803
5350 5200 3700 3450 3150 3050 2700 2625 2625 2650 1980 1625
5000 5000 3500 3000 3000 2500 2500 1500 1500
438.972 572.278 361.054 487.951 311.768 152.304 249.723 218.762 190.743 324.602 489.535 160.130
8897.234 37227.8 16105.37 3795.105 16176.81 10230.37 4972.263 9376.179 4074.316 7460.166 953.5443 3512.978 621.6392
535000 520000 370000 345000 315000 270000 262500 265000 275000 198000 137500
0.0166 0.0716 0.0435 0.0110 0.0514 0.0335 0.0184 0.0357 0.0154 0.0271 0.0271 0.0048
0.1958 0.8429 0.5125 0.1295 0.6047 0.3949 0.2168 0.4206 0.1810 0.3194 0.0567 0.2545
0.1225 0.11 0.11 0.0871 0.0871 0.0802 0.0787 0.07744 0.07742 0.0742 0.0742 0.0741
0.2592 0.7444 0.9751 0.9590 0.3776 0.3776 0.4336 0.4336 0.4581 0.4581 0.4581 0.4581 0.4581 0.4581

	T					A >			_ <u>_</u>		<u> </u>	~														~	~ ~	`	(1) N (7) (2)	AN CO A CO
Date		6/23/2008	5/19/2008	4/21/2008	3/25/2008	2/18/2008	1/21/2008	2/26/2007	11/19/2007	10/22/2007	9/24/2007	8/20/2007	7/23/2007	6/15/2007	1002/12/07	4/20/2007	3/20/2007	7/20/2007	1/22/2007	2/18/2006	10/20/2006	0/30/2000	8/22/2006	7/24/2006	6/19/2006	5/22/2006	4/24/2006	3/20/2006	2/20/2006	
Annu	q	0.0192	0.0143	0.0140	0.0227	0.0287	0.0239	0.0221	0.0233	0.0257	0.0204	0.0353	0.0180	0.0122	0.0147	0.0100	0.0204	0.00	0.0139	0.0221	20002	0.0097	0.0174	0.0203	0.0359	0.0251	0.0148	0.0195	0.0185	0.0209
Annualized Volatility	(√250)	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0032	0.0032	0.000	0.0032	0.0032	0.0632	0.0032	0.0032	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632	0.0632
atility	(σ√250)	0.3039	0.2266	0.2220	0.3591	0.4539	0.3786	0.3498	0.3691	0.4060	0.3233	0.5581	0.2849	0.1928	0.2310	0.2077	0.000	0.200	0.2204	0.3497	0.0041	0.1000	0.2759	0.3203	0.5670	0.3965	0.2345	0.3091	0.2918	0.3478
Price	_	7750	8600	9000	9800	9950	8900	10050	10450	11300	10950	10500	11050	9750	9500	0000	Doce	9650	10150	0000	9350	8300	8000	7400	7450	7200	7450	7000	6250	6000
Price	2	7500	8500	9000	9500	9500	8500	10000	10000	11000	10500	10500	11000	9500	9500	10500	9500	9500	10000	10000	9500	8000	8000	2002	7000	7000	7000	7000	6000	6000
	ယ	445.05	310 30	260 34	604 95	802.34	000.01	463.10	740.20	739 29	742 02	709 40	A26.78	407.91	288.60	378.99	387.90	388.35				399.60			775 50		1,0.7.	286.50	398.40	320.34
}	4	19504 72	21020 63	26034 18	30405 3	35333 73	34044.06	-				_	37658 41					-	3 23532.88	_	w		_			7 27677 25	_	_		22033.71
)	ON CONTRACT	775000	860000	00000	080000	90000	90000	000000	100000	143000	100000	109000	1105000	975000	950000	1055000	950000		_			830000			745000			70000	625000	610000
	S CELETIS	0 0050	0.000	0.0240	0.0244	0.00	0.000	0.000	0.04	0.0270	0.0079	0.025	0.0073	0.0162	0.0304	0.0312			0.0232			0.0120			0.0437	_		0.0409	0.0237	0.0361
Annualized	(6)	7	0.2963	0.2879	0.3406	0.3664	0.4181	0.3296	0.4842	0.3275	0.4464	0.2817	0.7944	0.4073										0.4323				0.1720	0.2796	0.4253
SBI Rate 1	mo.	60	0.0869	0.0824	0.0798	0.0794	0.0795	0.08	0.08	0.0825	4 0.0825	7 0.0825	0.0825	0							0.325				307 0.1225		93)	0.1275	0.1275
Sharme	Ratio		0.4871	0.5687	0.3778	0.4518	0.5072		8 0.7453	5 0.4497	5 0.9442		25 1.0613		000				0.020			0.1023		0.1175 0.7054		_		0.7/22	0	1.1320
with the state of	part and the same of		- Chicago and	market and	3	008	Ξ, 2	, FE	rba	Pu	ven			zgei	Fit	of,	on c	lati	mu	Si	2 0	79	34	54	3	3	3			1

itz			ŀ				AAAL	OCC+	0.0100	•	•	11/22/2004	
0.202	0.0741	0.1361	0.0116	495000	5723.47	507.2	4500	4050	2 3 4 0 0				
er.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	h	102000	12.00.21	431.3	4000	4925	0.3546		_	12/20/2004	
0.3328	0.0741	0 1729	0 0147	103500	7020 34	407 3					_	11777.000	
d .	0.0146	0.1109	6600.0	485000	4813.66	398.74	4500	4850	0.2443			1/24/2005	
0 1870g	0 07A3 /	0 1 1 60					7000	1010	0.1000			2/2/1/2005	
C. 10/0	0.0/42	0.1237	0.0105	462500	4859.7	173.60	4500	4695	0 4 3 0 0		_		
o Citien	0.0740	0.3334	0.0300	452500	13580.86	160.81	4500	4525	0.2563			3/21/2005	
Pu Pu	0.0743	0.000	0.020	10000	12070.49	120.70	4000	4500	0.2272			4/18/2005	
0.6032 rl	0 0744	0 3368	0 000	A 70000	10070 40	450 70						0.1000	
c. 0	0.0/0/	0.3785	0.0270	460000	12442.73	224.43	4500	4600	0.2892			5/23/2005	
o i	2000	0.100	0.00	00000	0/40.100	407.40	9000	5350	0.2350			6/20/2005	
0 2043	0 0800	つれいの方一	0 0407	E 3 E 0 0 0	740 400	107 10					_	17 101 1000	
20 20	0.0844	0.3564	0.0303	515000	5590.33	305.90	5000	5150	0.3434			7/18/2005	
08	0.0871	0.4910	0.0417	510000	1267.24	312.67 2	5000	5100	0.4117	0.0632	0.0260	8/22/2005	
4 7406	000	0.44.20	0.0070	00000	9090.00	498.90	0000	5300	0.5044			9/19/2005	
0 0088	2	0 2 2 0 0	0 0075	E30000									
0.6043	0.11	0.3729	0.0317	515000	16312.7	313.13	5000	5150	0.3444			10/24/2005	
	0.1223	0.1004	2010.0	020000	301.828	268.62	5000	5200	0.1624			11/21/2005	
0 1017	0 4335 /		2000	E00000 1	200							-	

Date	Annu	Annualized Volatility	atility	Stock Price	Strike Price	Premiums	Outflows	inflowe		Annualized	<u></u>	Sharpe
	Q	(√250)	(σ√250)		2	ယ	4	57 070	Similar	7	110 .	Katio
6/23/2008	0.0304	0.0632	0.4804	1960	1500	472 94	1293 67	108000	2000	22200	0000	
5/16/2008	0.0213	0.0632	0.3363	1760	1500	273.02	1301.67	176000	0.0000	0.077	0.000	-0.0274
4/18/2008	0.0624	0.0632	0.9866	1670	1500	282.92	11292 24	167000	0.0676	0.007	0.0024	4 0270
3/19/2008	0.0446	0.0632	0.7051	1640	1500	215.56	7556.00	164000	0.0070	0.790	0.0790	7.03/8
2/15/2008	0.0623	0.0632	0.9847	2500	2500	289.96	28996.42	250000	0.010	1 2876	0.0795	4 0262
1/18/2008	0.0440	0.0632	0.6957	2575	2500	251.38	17637.53	257500	0.685	0 8085	0.07.90	1.9203
12/19/2007	0.0326	0.0632	0.5162	2050	2000	154.15	10415.10	205000	0.0508	0.5987	0 0	0 0555
11/16/2007	0.0391	0.0632	0.6189	2175	2000	261.10	8609.57	217500	0.0396	0.4661	0 0825	0.3033
10/19/2007	0.0268	0.0632	0.4245	1750	1500	269.01	1901.01	175000	0.0109	0.1279	0.0825	0.1072
9/21/2007	0.0489	0.0632	0.7738	1540	1500	161.33	12133.22	154000	0.0788	0.9277	0.0825	2.0929
8/16/2007	0.0469	0.0632	0.7423	1330	1000	346.61	1660.52	133000	0.0125	0.1470	0.0825	0.0962
7/20/2007	0.0161	0.0632	0.2549	1730	1500	241.20	1119.73	173000	0.0065	0.0762	0.0825	-0.0217
6/14/2007	0.0182	0.0632	0.2885	1540	1500	79.59	3959.21		0.0257	0.3027	0.085	0.6526
5/16/2007	0.0202	0.0632	0.3186	1400	1000	407.27	726.75		0.0052	0.0611	0.0875	-0.0533
4/20/2007	0.0246	0.0632	0.3883	1410	1000	417.50	750.34		0.0053	0.0627	0.09	
3/16/2007	0.0310	0.0632	0.4908	1040	1000	84.22	4422.15		0.0425	0.5006	0.09	
2/16/2007	0.0220	0.0632	0.3475	1090	1000	107.48			0.0160	0.1888	0.0925	
1/19/2007	0.0253	0.0632	0.4001	1030	1000	67.93	-				0.095	
12/15/2006	0.0286	0.0632	0.4523	980	500	484.05			-		0.0975	-0.1226 1
11/17/2006	0.0158	0.0632	0.2505	900	500	404.25	7	90000			0.1025	
10/20/2006	0.0124	0.0632	0.1965		1				0.0053			5 -0.1436
9/15/2006	0.0255	0.0632	0.4036			374.67		87000	0.0054	4 0.0631		5 -0.1179
8/16/2006	0.0172	0.0632	0.2724	1040	1000	62.70	ξ.	1 104000	0 0.0218			
7/21/2006	0.0268	0.0632	0.4235	1060	1000	92.66	6 3265.59	9 106000				
6/16/2006	0.0488	0.0632	0.7709	850	0 500	0 355.54						
5/19/2006	0.0508	0.0632	0.8039	1030	1000	0 114.84	4 8483.73	_		_	8 0.125	
4/21/2006	0.0288	0.0632	0.4549	770	0 500	0 275.29				9 0.0809		
3/17/2006	0.0268	0 0632	- > \ > \				_		_		9 0.12/4	1.9277 4 -0.1830
	は、アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア	0.000-	0.4232		500	7 700.30		00000	0.00/8			

Dividend Hedge Capture Strategy

W007/611/19	6/23/2008 6/20/2008 6/19/2008 6/18/2008	7/22/2008 7/21/2008 7/18/2008 7/17/2008	6/9/2005 6/8/2005 6/7/2005 6/6/2005	5/17/2006 5/16/2006 5/15/2008 5/12/2006	6/14/2007 0.020127 6/13/2007 0.017302 6/12/2007 0.017359 6/11//2007 0.017/135	6/19/2008 6/18/2008 6/17/2008 6/16/2008	Date
8/19/2007 0:01/8864 0:063246 0:298265	0.022104 0.022085 0.022867 0.022908	0.033853 0.033121 0.020773	6/9/2005 0.012121 6/8/2005 0.013766 6/7/2005 0.014021 6/6/2005 0.014546	0.022525 0.022922 0.022522 0.023781		0.025667 0.02353 0.023812 0.022714	Annua
0.063246	0.063246 0.063246 0.063246 0.063246	0.063246 0.063246 0.063246 0.063246	0.063246 0.063246 0.063246 0.063246	0.063246 0.063246 0.063246 0.063246	0.063246 0.063246 0.063246 0.063246	0.063246 0.063246 0.063246 0.063246	Annualized Volatility
0.298265	0.349489 0.349188 0.361564 0.362208	0.535265 0.523683 0.328449 0.282889	0.19165 0.217661 0.221686 0.229992	0.356148 0.362433 0.362433 0.344389	0.318244 0.273576 0.27447/ 0.270929	0.405838 0.372039 0.37650] 0.359139	lity
16450	19450 19700 19650 20000	2475 2500 2450 2775	3475 3475 3500 3575	6500 6500 6500 7000	14100 14800 14900 15300	28050 26350 26600 27450	Stock Price
1.6000_	20000 20000 20000 20000	2700 2700 2700 2700 2700	3500 3500 3500 3500	7000 7000 7000 7000	15000 15000 15000	27000 27000 27,000 27,000 27,000	Strike Price
881.4364335	0 603.6419819 0 718.8457414 0 722.6345783 904.1900871	76.79388705 82.25919282 3 22.3936752 144.3452784	76.89803556 87.30204821 102.3075936 152.0206964	112.6400697 117.009762 117.009762 314.5830358	225.7434777 422.0967912 475/2292459 703/3303929	1997.046761 924.097126 1054.124697 1468.901467	Call Premiums
AS	Q 4 W F		3/400/2.500	>	2	Ě	
×	ASI	ANTN	AALI	AE.	AALI	É	
	ASII 181.55550 -3 315.555508	121.951 12.1816	49.71310		230 228.101147 -400 58.10114698	414.77677 -850 189.77677	Cash Flows
M / 630	484 181.5555089 -350 315.5555089	215.23 121.9516042 -325 12.18160418	150 49.71310276 -75 124.7131028	325 197.5732738 -500 22.57327382	230 228.101147 -400 58.10114698	625 414.77677 -850 189.77677	Cash Flows Outflows
	484 181.5555089 -350 315.5555089 20000	215.23 121.9516042 -325 12.18160418 2775	150 49.71310276 -75 124.7131028 3575	325 197.5732738 -500 22.57327382 7000	230 228.101147 -400 58.10114698 15300	625 414.77677 -850 189.77677 27450	Outflows
	484 181.5555089 -350 315.5555089	215.23 121.9516042 -325 12.18160418	150 49.71310276 -75 124.7131028	325 197.5732738 -500 22.57327382 7000 0.0032	228.101147 -400 58.10114698 15300 0.0038	625 414.77677 -850 189.77677 27450 0.0069	Outflows Returns
	484 181.5555089 -350 315.5555089 20000	121.9516042 -325 12.18160418 2775 0.0044	150 49.71310276 -75 124.7131028 3575	325 197.5732738 -500 22.57327382 7000	230 228.101147 -400 58.10114698 15300 0.0038 0.0447	625 414.77677 -850 189.77677 27450 0.0069 0.0814	Outflows Returns Annualized
	484 181.5555089 -350 315.5555089 20000 0.0158	215.23 121.9516042 -325 12.18160418 2775	150 49.71310276 -75 124.7131028 3575 0.0349	325 197.5732738 -500 22.57327382 7000 0.0032	228.101147 -400 58.10114698 15300 0.0038	625 414.77677 -850 189.77677 27450 0.0069	Outflows Returns

20

6/20/2008 6/19/2008 6/18/2008 6/17/2008	6/21/2005 6/20/2005 6/17/2005 6/16/2005	6/19/2006 6/16/2008 6/15/2006	6/20/2006	6/18/2007 6/15/2007 6/13/2007
2008 2008 2008	0005 0005	2020215-202		007 007
0.032789 0.032735 0.032789 0.031978	6/21/2005 0.023451 6/20/2005 0.022733 6/17/2005 0.0220835 6/16/2005 0.021802	0.03082 0.02968 0.029639	0.030364	0.019742 0.063246 0.019718 0.063246 0.019772 0.063246
0.063246 0.063246 0.063246 0.063246	0.063246 0.063246 0.063246 0.063246	0.063246 0.4873 0.063246 0.469279 0.063246 0.468631	0.063246	6/18/2007 0.019742 0.063246 0.31215 6/15/2007 0:0197/18 0:063246 0:31777 6/14/2007 0:019772 0:063246 0:312617
0.518441 0.517584 0.518441 0.50561	0.370797 0.359447 0.329434 0.329434 0.344718	0.4873 0.469279 0.468631	0.480102	0.31216 0.31/7/7 0.31/261/7
1210 1220 1220 1220	13000 12850 13150 13600	9400 9500 9000	9550	16400 16500 16400
1200 1200 1200 1200	13500 13500 13500 13500	9000	9000	16000 16000 16000
81.28396377 86.9813856 87.09846168 110.6049021	382.1176498 308.4791571 384.2384928 636.2200127	797.0463597 848 ⁸ 801124 530.9029028	894.5419634	872.2818817 9383257474 873.0984435
	ASII	(6)	ASII	
29.4 23.5064404 -40 12.9064404	270 251.9815199 -450 71.9815199	317.8982213 500 522.1017787	340	65.22730393 100 664.77 26 961
1260	13600	9000		16400
0.0102	0.0053	0.0580		0.0405
0.1206	0.0623	0.6830		0.4773
0.0835	0.0802	0.125		0.085
O Simulati	o g of, Fitzgera	.7 1d 95 teven Pur	ba, FE	.1 9 9 9 9 9 9 9

6/20/2006 0.027467 0.063246 0.434299 6/19/2006 0.027078 0.063246 0.428143

1120

1000 | 141.1652749 |

11140

1000

158.9908552

BBNI

36.55010734

53.26

6/21/2007 0.022107 0.063246 6/20/2007 0.022107 0.063246 6/19/2007 0.020616 0.063246

0.349538 0.349538 0.325966

2475 2475 2475 2475 2575

2500 2500 2500

96.10156178 96.10156178 148.3124042

-100 24.7108424 52.2108424

2575

0.0096

0.1130

0.085

0.136

2500

95.52282376

BBNI

72.5

6/22/2007

0.021978

0.063246

0.347507

21

21/2006	6/26/2006 6/23/2006 6/22/2006	6/18/2007 6/15/2007 6/14/2007 6/13/2007	6/23/2008 6/20/2008 6/19/2008 6/18/2008	//28/2005 0.025654 //27/2005 0.025681 //24/2005 0.024363 //23/2005 0.018831
6/21/2006 0.034030	0.034849 0.034777 0.034571	6/18/2007 0.026014 6/15/2007 0.02548 6/14/2007 0.02545 6/13/2007 0.024179	0.024225 0.063246 0.024016 0.063246 0.02441 0.063246 0.027039 0.063246	STEEL ST
377.5	200 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	0.063246 0.063246 0.063246 0.063246	经有效的证明	0.063246 0.063246 0.063246 0.063246
10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.063246 0.551007 0.063246 0.549878 0.063246 0.546621 0.063246 0.550808	0.411317 0.402881 0.402478 0.382296	0.383036 0.379728 0.385962 0.427519	0.405629 0.406048 0.385207 0.297739
	3950 4000 4075 8 4200	5950 5800 5850 6050	4725 4900 4900 5100	1700 1700 1760 1880
4	4000 4000 4000 4000	6000 6000 6000	5000 5000 5000	1500 1500 1500
	246.4091838 272.9956226 315.0669921 396.8885573	278.0546239 200.9915546 223.0275256 312.9302147	114.8854354 184.9367304 188.44736 321.3105608	222.1651304 222.2058294 275.3381167 390.1909429
	3 4 0	M	BBRI	BBN
=				
152.93	81.82156526 -125 112.4615653	89.90268905 -200 62.94268905	196.34 132.8632008 -200 129.2032008	118.07 114.8528262 -120 112.9228262
152.93		89.90268905 -200 62.94268905 6050	196.34 132.8632008 -200 129.2032008 5100	1880
152.93	81.82156526 -125 112.4615653 4200 0.0268	40		
152.93	4200 0.0268	6050	5100	1880
152.93	4200	6050 0.0104	5100 0.0253	1880 0.0601

Simulation of.., Fitzgerald Stevengurba, FE, 2008

6/23/2005 6/24/2005

6/27/2005 6/28/2005

6/15/2007 6/14/2007

6/16/2005

0.013971 0.063246

0.220907 0.232855

7/1/2008

0.046836 0.063246

0.740535

6700

6000

989.4099642

ISAT

187.9

6750

6000

1026.048487

304.7894765

400

一 かつじか つ

0.0869

2.12

6/17/2005 6/20/2005

0.014727 0.017426 0.017671

0.063246 0.063246

6/21/2005

0.063246

0.275533 0.279395

2875 2825 2700 2775

2500

2500

294.4181042

146.78934

2775

0.0529

0.6228

0.0802

2.6

2500 2500

346.3136691 225.5587642

394.60779

BBRI

68.85934 152.93

7/8 7/7	7/1, 6/30, 6/29 6/28	7/25/2006 7/24/2006 7/2/1/2006 7/20/2006	6/29/2007 6/28/2007 6/27/2007 6/26/2007		
7/8/2008 7/7/2008	7/1/2005 //30/2005 //28/2005	2006 2006 2006 2006	2007 C 2007 C 2007 C 2007 C		
0.021858 0.02224	0.018268 0.018139 0.017/404 0.017/583	7/25/2006 0.01738 7/24/2006 0.017416 7/21/2006 0.017349 7/20/2006 0.017377	0.016575 0.016909 0.016852 0.016967		
7/8/2008 0.021858 0.063246 7/7/2008 0.02224 0.063246	0.063246 0.063246 0.063246 0.063246	7/25/2006 0.01738 0.063246 0.274801 7/24/2006 0.017416 0.063246 0.275367 7/21/2006 0.017349 0.063246 0.274309 7/20/2006 0.017/3/7 0.063246 0.274752	6/29/2007 0.016575 0.063246 0.262077 6/28/2007 0.016909 0.063246 0.267359 6/27/2007 0.016852 0.063246 0.266458 6/26/2007 0.016967 0.063246 0.268275		
0.345608 0.351649	7/1/2005 0.018268 0.063246 0.288839 6/30/2005 0.018139 0.063246 0.286805 6/29/2005 0.01/7404 0.063246 0.27/51/5 6/28/2005 0.01/7583 0.063246 0.27/8012	0.274801 0.275367 0.274309 0.274752	6/29/2007 0.016575 0.063246 0.262077 6/28/2007 0.016909 0.063246 0.267359 6/27/2007 0.016852 0.063246 0.266458 6/26/2007 0.016967 0.063246 0.268275		
11900	5650 5500 5600	4225 4200 4225 4375			
12500 12500	5500 5500 5500	4000 4000 4000 4000	24 (2004) 037 fc		
270.9013869 471.9954365	293.3548461 200.2901088 262.418363 253.8056848	4000 303.3514909 4000 283.701293 4000 303.1860287 4000 432.0198929	219.2390301 282.2217287 383:9095351 385:0754056		
PGAS	ISAT	X 6	ISAT		
171.175 127.8271388	154.23 1.389301836 0 155.6193018	128.8338642 -150 128.1538642	129.75 1.165870511 0 130.9158705		
	5600	4375	6750		
	0.0278	0.0293	0.0194		
	0.3272	0.3449	0.2284	-	
	0.0806	0.1225	0.085	-	
Simula	tion 3 f, Fitzge		0.70 urba, F 5 , 2008		

7/3/2008 0.021599 0.063246 0.341516 0.02224 0.063246 0.351649 | ||0.022453 0.063246 0.355008 | 0.021858 0.063

7/7/2008 7/4/2008

7/8/2008 7/7/2008	6/30/2005 0.018139 0.063246 6/29/2005 0.01/7404 0.063246 6/28/2005 0.01/7583 0.063246
0.021858 0.02224	0.018139 0.017404 0.017583
0.063246 0.063246	0.063246 0.063246 0.063246
0.345608 0.351649	0.286805 0.275175 0.278012
,	

471.9954365 555.564402 683.3915408

49.00213883

12750

0.0038

0.0453

0.0873

-0.2056

-250

6/26/2007 | 0.027795 | 0.063246 | 0.439475 6/25/2007 | 0.021945 | 0.063246 | 0.346984 6(22/2007 | 0.021961 | 0.083246 | 0.34707 6/27/2007 0.02791 0.063246 0.441298

10100 9950

9000 0000

1270.730016 1081.879295 679,6798236

306.2505283

9450

0.0324

0.3816

0.085

1.450

402.1994717

9650

9000

911.879723

PGAS

208.45

44280 41000 1 1020.062766 PGAS

104.43

6/27/2005	0.025788	0.063246	0.407742	3000	3000	150.5896022	PGAS	љ 1					
				,				, i	<u></u>				
	0.025848	0.063246	0.408698	3325	3000	380.4172562		40.17337775					08
5/22/2005 © 025533	22.0	0.063246	0.403713	3250 3250	3000	358:2386523 318:0652745		61.02662225	3250	0.0188	0.2211	0.0806	0. 686 9200
7/25/2007 7/24/2007	0.01907 0.019087	0.063246 0.063246	0.301517 0.301793	10950 11000	11000 11000	392.4877354 419.7517916	TLKM	245.755 164.4243188					Purba, F
7/23/2007 0.019104 7/20/2007 0.017787	0.019104 0.017787	10-10-12-09	0.302064 0.281232	11050 11350	11000 11000	448.0427755 612.4670943	6	-300 110.1793188	11350	0.0097	0.1143	0.0825	0.1 55 S æ ven I
7/26/2006 7/25/2006	0.020441	0.063246 0.063246	0.323207 0.326246	7300 7350	7000 7000	490.5664837 529.5962805	TLKM	104.43 14.12874184					Fitzgerald
7/24/2006 7/21/2006	0.020564	0.063246 0.063246	0.325153 0.346746	7400 7400	7000 7000	586,9391503 581.0678921	7	118.5587418	7400	0.0160	0.1886	0.1225	0.323 n 42 ., Fi
7/20/2005 7/19/2005	0.018807 0.021172	0.063246 0.063246	0.297366 0.334764	5250 5150	5000 5000	353.2196064 301.2222456	TLKM	51.2 90.03 396 639					Simulation
7/15/2005	0.02473	0.063246 0.063246	0.39101	5150 5250	5000	399,9072781		41.23396639	5250	0.0079	0.0925	0.0844	0.0395
6/26/2008	0.02952	0.063246	0.466747	1880	1900	97.89542534	UNSP	17 -11 7926442					
6/24/2008	11.00	0.063246	0.505786	1980	1900	165.3121567	20.5	-11./920442					
6/23/2008	0.032311	0,063246	0.51088	1960	1900	153.5195125	94 (I	25.2073558	1960	0.0129	0.1514	0.085	0.3248
6/14/2007	0.020058	0.063246	0.317151	1540	1500	84.23556898	UNSP	15					
6/13/2007 6/12/2007	6/13/2007 0:020271 - 0.063246 6/12/2007 0:020631 - 0:065246	0.063246	0.32052 -0.326196	1540 1510	1500 1500	84.78527211 67.37594129		/ 29.69195445 -50	_				
The state of the s								-	/		/	/	

