JOB SATISFACTION AMONG MANAGERS OF PT. CAHAYA SAKTI MULTI INTRACO (CASMI)

THESIS

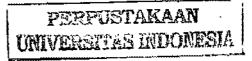
ž.

TENGKU MOHAMAD MEIDI AKBAR 0706170551

UNIVERSITAY OF INDONESIA FACULTY OF ECONOMICS MAGISTER OF MANAGEMENT MAGISTER OF BUSINESS ADMINISTRATION JAKARTA FEBRUARY 2009

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

JOB SATISFACTION AMONG MANAGERS OF PT. CAHAYA SAKTI MULTI INTRACO (CASMI)


THESIS

Submitted to fulfill one of the requirements to obtain degree of Magister Management

> TENGKU MOHAMAD MEIDI AKBAR 9706170551

UNIVERSITAY OF INDONESIA FACULTY OF ECONOMICS MAGISTER OF MANAGEMENT MAGISTER OF BUSINESS ADMINISTRATION JAKARTA FEBRUARY 2009

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

FEBRUARY 2009 STATEMENT OF ORIGINALITY

This final paper represents my own effort,

any idea or excerpt from other writers in this final paper, either in form of publication or in other form of publication, if any, have been acknowledged in this paper in accordance to the academic standard or reference procedures

N	ame	: Tengku Mohamad Meidi Akbar
St	udent Number	: 0706170551
Si	goature	AftiA
Da	ate 77	: February 13, 2009

HALAMAN PENGESAHAN

Tesis ini diajukan	oleh
Nama	
NPM	
Program Studi	
Judul Tesis	

Tengku Mohamad Meidi Akbar
Tengku Mohamad Meidi Akbar
0706170551
MM-MBA
Job Satisfaction Among Managers of PT. Cahaya Sakti Multi Intraco (CASMI)

Telah berhasil dipertahankan di badapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Manajemen pada Program Studi Magister Manajemen – Master of Business Administration, Fakultas Ekonomi, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing

: Dr. Yanki Hartijasti, MBA (

Ketua

: Dr. Avanti Fontana

(ava í

Penguji

: Jimmy Sadeli, MM

Ditetapkan di : Jakarta

Tanggal : 13 Februari 2009

Universitas Indonesia

PREFACE

Thank to God and praise for His gift, mercy and blessing to me to have the ability to finish my final report. This writing process finally can be finished because of receiving help from some parties in giving me information, input, experience, knowledge and motivation which are all very valuable to me. I thank with my greatness thanks to:

- Mr. Rhenald Khasali, Ph.D. as Head of MM Program of University of Indonesia.
- 2. Dr. Avanti Fontana as Coordinator of MBA Program, Faculty of Economy, University of Indonesia for the time to review this thesis
- Dr. Yanki Hartijasti, MBA, as my counselor in writing this final report who allocated much of her time, attention and energy to guide me to finish my final paper.
- 4. My beloved big family, especially my family and my dearest girlfriend for their material and immaterial supports, which are very important to me.
- 5. All my lecturers in MM-MBA class from Indonesia and French who give me a lot of knowledge, share experience and guidance.
- 6. Ms. Devi Purba and the whole staff from Administration and Education Department, Master of Management Program of the University of Indonesia.
- 7. The whole staff from the library of MM UI.
- 8. My colleagues in MM-MBA batch 2007.

Finally, the writer is always expecting that this paper can be useful to all readers

Jakarta, February 13, 2009

Author

iv

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	:	Tengku Mohamad Meidi	Akbar
NPM	*	0706170551	
Program Studi		MM – MBA	

Fakultas : Ekonomi

Jenis karya : Tesis

Demi pengembangkan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Rolayty-Free Right) atas karya ilmiah saya yang berjudul:

Job Satisfaction Among Managers of PT. Cahaya Sakti Multi Intraco

(CASMI)

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia / formatkan, mengelola dalam bentuk pangkalan data (*datahase*), merawat, dan memublikasikan tugas akhir saya tanpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemiliki Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Jakarta Pada Tanggal : 13 Februari 2009

Yang menyatakan

(Tengku Mohamad Meidi Akbar)

ABSTRACT

Nama : Tengku Mohamad Meidi Akbar Program Studi : MM-MBA Judul : Job Satisfaction Among Managers of PT. Cahaya Sakti Multi Intraco (CASMI)

This study discuss about job satisfaction of managerial employee of PT. Cahaya Sakti Multi Intraco (CASMI). The reason is the current condition at CASMI shows high turnover of managerial level employee, low performance of managerial employee, and high absence level of managerial employee, that are related to job satisfaction. Author also gets information from the books, journal, and internet, which discuss about job satisfaction, the phenomena related to job satisfaction and how to measure job satisfaction. Job satisfaction has relationship to turnover, absence level, and performance, so if the company can measure and increase job satisfaction level, it can be increase the productivity.

Job satisfaction is strategic issue in company related to their human resources as one of the important asset. Because of job satisfaction level related to productivity, so the company always try to increase the job satisfaction level of their employee. If the company can increase job satisfaction level, the employee will have spirit to do the job. One concept that famous to study about job satisfaction in job descriptive index, it consist of five facet of job satisfaction, that are work itself (job), pay, supervision, promotion, working relations (co-workers). Beside those five facets, it can be combined with job in general to get information about satisfaction in general.

The conclusion from this study is five facets of job descriptive index significantly influence job satisfaction in general. For managers CASMI, job dimension and supervision dimension influence significantly to job satisfaction in general, that's about 58,4 %. From this study, the author want to give information to top management about job satisfaction level of managers of CASMI, and what factors that influence job satisfaction of them, is there any difference in job satisfaction related to gender, age, education, working period, and status of managers in CASMI, so the company can do the right way to increase job satisfaction in the future to increase the productivity of company.

Keywords: Job Satisfaction, Job Descriptive Index, Employee Satisfaction

vi

TABLE OF CONTENTS

Title	ì
Statement of Originality	i
Validation Statement	iii
Preface	iv
Publication Agreement Statement	۷
Abstract	vi
Table of Contents	vii
Lists of Tables	х
Lists of Figures	xii
Lists of Appendixes	xiii
	28
Chapter 1: Introduction	
1.1. Background	1
1.2. Research Problems	4
1.3. Problem Scope	4
1.4. Objectives	4
1.5. Benefits	4
1.6. Methodology	5
1.7. The Systematic of Writing	6
Chapter 2: Literature Review	
2.1. Job Satisfaction	7
2.2. Factors Influencing Job Satisfaction	8
2.2.1. Extrinsic sources of job	8
2.2.2. Intrinsic factors of job satisfaction	12
2.2.3. Impact of demographic variables on job satisfaction	14
2.3. Theories of Job Satisfaction	18
2.3.1. Discrepancy theories	18
2.3.2. Value-percept theory	22
2.3.3. Equity theory	23

.

:

2.3.4. Job Characteristics Models	23
2.4. Consequences of Job Satisfaction	24
2.4.1. Productivity	24
2.4.2. Life satisfaction	25
2.4.3. Organizational commitment and	
organizational citizenship behavior	25
2.4.4. Withdrawal behaviors	26
2.4.5. Turnover	26
2.4.6. Absenteeism	26
2.4.7. Counterproductive behaviors	27
Chapter 3: Organization Overview	
3.1. Company Background	28
3.2. Philosophy, Vision and Mission	30
3.3. Organization Structure	31
3.4. Company Product	32
3.5. Production Flow Process	35
3.6. Distribution Channel	39
Chapter 4: Research Method	-/-
4.1. Introduction	40
4.2. Research Design	40
4.2.1. Population	40
4.2.2. Sampling	40
4.3. Question Response Format	42
4.4. Questionnaire Model	43
4.4.1. Biographical questionnaire	43
4.4.2. Job Satisfaction Questionnaire	43
4.5. Procedure	51
4.5.1. Person-administered survey	51
4.5.2. Self-administered surveys	51
4.6. Validity & Reliability	52

Universitas Indonesia

4.7. Statistical Techniques	60
4.7.1. Descriptive statistics	60
4.7.2. Inferential statistics	61

Chapter 5: Presentation of Results

•	
5.1. Introduction	63
5.2. Results	63
5.2.1. Respondents	63
5.2.2. Descriptive statistics	65
5.2.3. Compare means analysis	70
5.2.4. Regression analysis	83
Chapter 6: Conclusion & Suggestion	- 23
6.1. Conclusion	86
6.2. Suggestion	91
References	93

LIST OF TABLES

Table 4-1 Advantages and disadvantages person-administered survey	51
Table 4-2 Cronbach's Alpha Scale	53
Table 4-3 Validity test of job	54
Table 4-4 Validity test of pay	55
Table 4-5 Validity test of promotion	56
Table 4-6 Validity test of supervision	57
Table 4-7 Validity test of working relations	58
Table 4-8 Validity test of general job satisfaction	59
Table 4-9 Hypotheses test with $\alpha = 0.05$	62
Table 5-1 Gender	63
Table 5-2 Education	64
Table 5-3 Age	64
Table 5-4 Working Period	64
Table 5-5 Status	65
Table 5-6 The option for the answer	65
Table 5-7 The category from the answer	66
Table 5-8 Descriptive (Job)	66
Table 5-9 Descriptive (Pay)	67
Table 5-10 Descriptive (Promotion)	67
Table 5-11 Descriptive (Supervision)	68
Table 5-12 Descriptive (Working Relations)	68
Table 5-13 Descriptive (General Job Satisfaction)	69
Table 5-14 Descriptive Group Statistic (Gender)	70
Table 5-15 Levene-Test (Gender)	71
Table 5-16 Test of Homogeneity of Variances (Age)	72
Table 5-17 Value of Mean Test (Age)	73
Table 5-18 Post Hoc Test (Age)	74
Table 5-19 Test of Homogeneity of Variances (Education)	75
Table 5-20 Value of Mean Test (Education)	76
Table 5-21 Post Hoc Test (Education)	77

Universitas Indonesia

» I I

Table 5-22 Test of Homogeneity of Variances (Working Period)	77
Table 5-23 Value of Mean Test (Working Period)	78
Table 5-24 Post Hoc Test (Working Period)	7 9
Table 5-25 Test of Homogeneity of Variances (Status)	80
Table 5-26 Value of Mean Test (Status)	80
Table 5-27 Post Hoc Test (Status)	81
Table 5-28 Variables Entered/Removed(b)	83
Table 5-29 Model Summary	83
Table 5-30 ANOVA(b)	83
Table 5-31 Coefficients(a)	84
Table 5-32 Hypotheses test result with $\alpha = 0.05$	84

xi Universitas Indonesia

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

LIST OF FIGURES

Figure 3-1 Organization Structure of CASMI 2008	
Figure 3-2 Brand Albatros product	34
Figure 3-3 Brand Olympic & Solid Product	35
Figure 3-4 Production Flow Process	36
Figure 3-5 Laminating process	37
Figure 3-6 Shaping Process	38
Figure 3-7 Edge banding Process	38
Figure 3-8 Packing Process	39

LIST OF APPENDIXES

Appendix -1 Questionnaire Appendix -2 Reliability Appendix -3 Compare Means Analysis Appendix -4 Multiple Regressions

Appendix -5 Crosstab

CHAPTER I INTRODUCTION

1.1 BACKGROUND

Job satisfaction is generally regarded as an employee's attitude toward the job and job situation. Spector (1997) defines job satisfaction simply as "the degree to which people like their jobs." Some people therefore enjoy work and consider it a central part of their lives while others do so only because they have to.

Locke (1976) as cited by Cooper and Locke (2000) offers a further definition of job satisfaction as a "pleasurable or positive emotional state resulting from the appraisal of one's job or job experiences." Job satisfaction is defined as positive affect of employees toward their jobs or job situations.

Job satisfaction is also defined in terms of equity. Robbins (2003) defines job satisfaction as "the difference between the rewards employees receive and the reward they believe they should receive." As a result, the higher this discrepancy, the lower job satisfaction will be. Empirical findings also suggest job satisfaction is related to employee work performance and workplace accidents (Vroom, 1964)

Many studies have researched stability of job satisfaction (Schneider and Dachler, 1978; Staw and Ross, 1985), significance with other factors, such as absenteeism (Hackett and Guion, 1985; Hulin, 1991), turnover (Carsten and Spector, 1987) and performance (Iaffaldano and Muchinsky, 1985; Ostroff, 1992; Podsakoff and Williams, 1986). Job Satisfaction can be an important indicator of how employees feel about their jobs and a predictor of work behaviors such as absenteeism (Wegge, J., Schmidt, K., Parkes, C., & van Dick, K., 2007).

Theories of absence hypothesize that job satisfaction plays a critical role in an employee's decision to be absent (Spector, 1997). Most research indicates a consistent negative relationship between satisfaction and absenteeism, even though the correlation is not very high (Robbins, 1989; Spector, 1997). Owing to the large amount of research conducted on absenteeism there are a plethora of definitions of absenteeism. Absenteeism is defined as "an unplanned, disruptive incident and can be seen as non-attendance when an employee is scheduled for work" (Van der Merwe & Miller, 1988). Milkovich and Boudreau (1994) further

.

define absenteeism as "the frequency and/or duration of work time lost when employees do not come to work. Van der Merwe and Miller (1988) classify absenteeism into three broad categories that help to understand the nature of this phenomenon. They are: sickness absence, authorized absence/absence with permission and unexcused absence or absence without leave. Absence is a phenomenon that can reduce an organization's effectiveness.

The other factor that has significant correlation with job satisfaction is turnover. Turnover is important to managers as it disrupts organizational continuity and it can be very costly. The different costs associated with turnover include separation costs (exit interviews, separation pay), replacement costs of new employee and training costs of the new employee (Saal & Knight, 1988). According to Spector (1997), studies have been reasonably consistent in showing a correlation between job satisfaction and turnover. Employees with low satisfaction are therefore more likely to quit their jobs. According to Luthans (1995), "high job satisfaction will not, in and of itself, keep turnover low, but it does seem to help. On the other hand, if there is considerable job dissatisfaction, there is likely to be high turnover." It is therefore important to manage satisfaction levels as it might trigger decisions by employees to leave the organization.

Job satisfaction also has correlation with job performance. Traditional theory suggests that job performance is affected by job satisfaction; increase job satisfaction and you will increase job performance. Job satisfaction and job performance are too closely linked to one another, and that they affect each other. Here are cases in point: If a person is highly satisfied with his/her job, this would lead the person to want to do a good job and to perform well. On the other side is the person's ability level. If the person is struggling with performing the job, it may give the appearance that the person is a poor performer even though he/she may be exhausting a great deal of effort in trying to perform the job. This person's frustration then in turn leads to poor job satisfaction (Caudron, 1995).

One of the most popular and extensively researched measures of job satisfaction is the Job Descriptive Index (JDI) (Smith, Kendall, & Hullin, 1969). This measure identifies five facets of job satisfaction, that are the work itself, supervision, coworker, pay, and promotion. Researchers of job satisfaction have widely adopted Job Descriptive index (JDI) as the instrument to measure five organizational and individual outcomes related to job satisfaction: work, pay, supervision, co-worker, and supervision. The past literature agreed upon its solid construct validity (Kinicki et al., 2002) and validity (Bowling Green State University, 1997; Spector, 2002). In general, job satisfaction is more highly correlated to performance in complex jobs, in relevance to the relationship in less complex jobs.

Talking about the relationship between job satisfaction and absenteeism, turnover, and job performance, at this time, CASMI has very high level of managerial resignation and absenteeism, and low level of achievement. The current condition, CASMI has 51 branch managers, 25 managers at head office, so, the company has 76 managers. During 2008, 3 managers resigned because they got better job and 12 managers fired by the company because they have low performance. They were warned by top management to improve their performance but they failed. From 51 branches around Indonesia, 27 branches had performances less than 90 % achievement (until October 2008). The situation was totally different compare to 2005, 2006, and 2007. In 2005, 2006 and 2007 there were no turnovers. In 2005, CASMI had the best performance. In 2006 and 2007, CASMI had lower performance than 2005 but still above average and growing.

In 2007 and 2008, the discipline level of managers were low, they usually came late to the office, asked for permission, and left the office for personal interest. Most of managers are come late to the office. They usually arrive at the office on 08.15 – 08.30 a.m. The office hour start from 08.10 a.m. everyday. Most of managers also asked for permission during office hour for their personal interest, for instance because of their family, children, etc. The absence level of manager on 2007 was 6 days per manager per year excluding annual leave (data until December 2007) and in 2008 was 6 days per manager per year excluding annual leave (data until October 2008). Because of the discipline problem, the company had loss financially because those managers were still paid by the company although they were absence. It was also difficult to do task coordination and productivity of company decreased.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

÷

Based on this condition, the study focus on job satisfaction among managers in CASML

1.2 RESEARCH PROBLEMS

Based on the above condition, writer formulates research problem as follows:

- How is the job satisfaction level of managers in CASMI?
- Is there any difference in job satisfaction related to gender, age, education, working period, and status of managers in CASMI?
- What factors that influence job satisfaction of managers in CASMI?

1.3 PROBLEM SCOPE

Job satisfaction is a complicated matter because it is related to someone's feeling to various aspects that existed in job. To narrow the discussion of job satisfaction aspects, the study only evaluates *the work itself*, *supervision*, *pay*, *promotion* and *coworker*.

In this thesis, analysis unit used for measuring job satisfaction is employees from managerial level.

1.4 OBJECTIVES

The objectives of this research are:

 Give information for top management of CASMI about level of job satisfaction among managers.

- Show the difference in job satisfaction related to gender, age, education, working period, and status of managers in CASMI
- Get information about factors influencing job satisfaction among managers.

1.5 BENEFITS

From this research, top management CASMI can get information about satisfaction of managers to make decision precisely for improvement, either in order to prevent or give solution to manager's problems. With this information, then top management of CASMI can use it as strong diagnosis instrument to know source of problem of dissatisfaction employee from managerial level.

1.6 METHODOLOGY

1.6.1 Data Collection

Data that required to analyze job satisfaction among managers in CASMI is obtained through primary data and also secondary data.

1.6.1.1 Primary datas

One of way for getting the primary data can be conducted from survey among 76 managers of CASMI as sample research for getting the information about job satisfaction among managers in CASMI. The questionnaire was given to respondents to be filled up directly, and was collected after they finished. The questionnaire uses likert scale, whereas respondents profile uses nominal scale.

The data collection was conducted in the head office of CASML

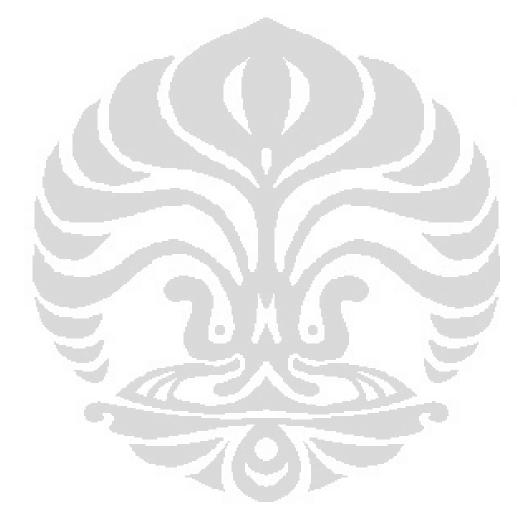
1.6.1.2 Secondary Data

Secondary data was obtained from literature study to get supporting data related to job satisfaction.

1.7 THE SYSTEMATIC OF WRITING

Chapter I contains introduction that describes organization of the report. It contains background, research problem, scope of problem, objectives, benefits, methodology, and the systematic of the writing.

Chapter 2 explain about overview theory that cover explanation about job satisfaction, factors that influence job satisfaction, and approach that conducted to measure job satisfaction. In this chapter also will be discussed about motivation, theory of motivation and comparison of some motivation theories.


Chapter 3 discusses about research object, that is will be discussed about CASMI, that cover history, main business, philosophy, vision and mission, and organization structure.

Chapter 4 discusses about research method that used for this research.

Universitas Indonesia

Chapter 5 describes about analysis and research result. How is the job satisfaction among managers of CASMI, is there any difference in job satisfaction related to gender, age, education, working period, and status for all managers, and what are the factors that influence job satisfaction of managers in CASMI.

Chapter 6 describes the conclusion of the study and the recommendation for top management as the basis for improving job satisfaction among managers in CASMI.

CHAPTER 2 LITERATURE REVIEW

2.1 JOB SATISFACTION

Job satisfaction is generally regarded as an employee's attitude toward the job and job situation. Spector (1997) defines job satisfaction simply as "the degree to which people like their jobs." Some people therefore enjoy work and consider it a central part of their lives while others do so only because they have to.

Robbins (2005) defines job satisfaction as "a collection of feelings that an individual holds toward his or her job." This implies that a person with a high level of job satisfaction will hold positive feelings towards the job and a person who is dissatisfied will hold negative feelings about the job.

Locke (1976) as cited by Cooper and Locke (2000) offers a further definition of job satisfaction as a "pleasurable or positive emotional state resulting from the appraisal of one's job or job experiences."

Hoole and Vermeulen (2003) maintain that the popularity of his field of study is also due to its relevance to the physical and mental well-being of employees. Furthermore, Robbins (2005), postulates that managers have a humanistic responsibility to provide employees with jobs that are challenging, rewarding and satisfying. According to Alavi and Askaripur (2003), there are at least three reasons why managers must focus on the job satisfaction of its employees:

- Evidence suggests that unsatisfied individuals leave organizations.
- Satisfied employees are in better health and have longer life expectancy. Connolly and Myers (2003) further maintain that a lack of job satisfaction has been associated with symptoms like anxiety, depression and poor physical and psychological health, which have concomitant consequences for absenteeism and commitment.
- Job satisfaction in the workplace also affects individuals' private lives which in turn has an effect on absenteeism and other important workrelated attitudes and behavior.

Job satisfaction is also defined in terms of equity. Robbins et al. (2003) define job satisfaction as "the difference between the rewards employees receive and the reward they believe they should receive." As a result, the higher this discrepancy, the lower job satisfaction will be.

2.2 FACTORS INFLUENCING JOB SATISFACTION

Job satisfaction is a complex variable and is influenced by factors of the job environment as well as dispositional characteristics of an individual. These factors have been arranged according to two dimensions, namely, extrinsic and intrinsic factors (Buitendach & De Witte, 2005).

The extrinsic factors include things like pay, promotion opportunities, coworkers, supervision and recognition. Intrinsic factors include personality, education, intelligence and abilities, age and marital status (Mullins, 1999).

2.2.1 Extrinsic sources of job

Extrinsic sources of job satisfaction are determined by conditions that are beyond the control of the employee (Atchison, 1999). The following factors will be discussed, namely, pay, the job itself, promotion opportunities, supervision, coworkers, working conditions and the issue of fairness.

2.2.1.1 Pay

Pay refers to the amount of compensation received for a specific job (Robbins et al., 2003). Luthans (1995) notes that "wages and salaries are recognized to be a significant, but complex, multidimensional predictor of job satisfaction."

According to Spector (1997) and Berkowitz (1987), the correlation between the level of pay and job satisfaction tends to be surprisingly small. This suggests that pay in itself is not a very strong factor influencing job satisfaction. Berkowitz (1987) notes that "there are other considerations, besides the absolute value of one's earnings that influences attitudes toward satisfaction with pay."

Spector (1996) postulates that "it is the fairness of pay that determines pay satisfaction rather than the actual level of pay itself." If an employee's

compensation is therefore perceived to be equitable, when compared to another person in a similar position, satisfaction might be the likely result.

2.21.2 Job or the work itself

According to Luthans (1995), the content of the work performed by employees is a major predictor of job satisfaction. Not surprisingly, "research is fairly clear that employees who find their work interesting, are more satisfied and motivated than employees who do not enjoy their jobs" (Gately, 1997 as cited by Aamodt, 2004). Employees tend to prefer jobs which afford them the opportunity to apply their skills and abilities, offer them variety and freedom as well as jobs where they get constant feedback on how well they are doing (Robbins, 2005). Hence, it is important for managers to take innovative steps to make work more interesting in order to increase the levels of job satisfaction of employees.

Furthermore, if a job is highly motivating, employees are likely to be satisfied with the job content and deliver higher quality work, which in turn could lead to lower rates of absenteeism (Friday & Friday, 2003). Fox (1994) as cited by Connolly and Myers (2003) however, advances a contradictory view and maintain that "as workers become more removed from the ability to make meaning through work, the opportunity to experience job satisfaction becomes more difficult." This stems from the fact that job satisfaction is related to a myriad of factors, including physical, psychological and demographic variables, which are unrelated to the workplace.

2.2.1.3 Promotion opportunities

According to Friday and Friday (2003), satisfaction with promotion assesses employees' attitudes toward the organization's promotion policies and practices. In addition to this, Bajpai and Srivastava (2004) postulate that promotion provides employees with opportunities for personal growth, more responsibilities and also increased social status.

Robbins (1989) maintains that employees seek promotion policies and practices that they perceive to be fair and unambiguous and in line with their expectations. Research indicates that employees who perceive that promotion ú,

decisions are made in a fair and just manner are most likely to experience job satisfaction.

2.2.1.4 Supervision

Research indicates that people who enjoy working with their supervisors will be more satisfied with their jobs (Aamodt, 2004). Furthermore, a study by Bishop and Scott (1997) as cited by Aamodt (2004) found that satisfaction with supervisors was related to organizational and team commitment, which in turn resulted in higher productivity, lower turnover and a greater willingness to help.

According to Luthans (1995), there seem to be three dimensions of supervision that affect job satisfaction. The first dimension has to do with the extent to which supervisors concern themselves with the welfare of their employees. Research indicates that employee satisfaction is increased if the immediate supervisor is emotionally supportive (Egan & Kadushin, 2004; Robbg, 1997, as cited by Connolly & Myers, 2003).

The second dimension has to do with the extent to which people participate in decisions that affect their jobs. Research by Grasso (1994) and Malka (1989) as cited by Egan and Kadushin (2004) found a positive relationship between managerial behavior that encourages participation in decision-making and job satisfaction. Robbins (1989) supports this view and maintains that satisfaction is increased if the immediate supervisor listens to employees' inputs.

A third dimension of supervision which is related to job satisfaction, according to Luthans (1995), is an employee's perception of whether they matter to their supervisor and their organization. Connolly and Myers (2003) maintain that this aspect of an employee's work setting may also be related to enhancing job satisfaction.

2.2.1.5 Co-Workers

Another dimension which influences job satisfaction is the extent to which co-workers are friendly, competent and supportive (Robbins et al., 2003). Research indicates that employees who have supportive co-workers will be more satisfied with their jobs (Aamodt, 2004; Robbins, 1989; 2005). This is mainly

Universitas Indonesia

÷

because "the work group normally serves as a source of support, comfort, advice and assistance to the individual worker" (Luthans, 1995).

Researchers further found that employees observe the levels of satisfaction of other employees and then model these behavior (Salancik & Pfeffer, 1997 as cited by Aamodt, 2004). Hence, if an organization's veteran employees work hard and talk positively about their jobs, new employees will model this behavior and be both productive and satisfied. The reverse can also be true.

2.2.1.6 Working conditions

Working conditions is an extrinsic factor that has a moderate impact on an employee's job satisfaction (Luthans, 1995). Working conditions refer to such aspects as temperature, lighting, noise and ventilation. Robbins (1989) states that employees are concerned with their work environment for both personal comfort and for facilitating good job performance. Studies have demonstrated that employees prefer physical surroundings that are safe, clean, comfortable and with a minimum degree of distractions (Robbins, 2005). According to Spector (1997), research has shown that employees who perceive high levels of constraints in terms of their work environment, tend to be dissatisfied with their jobs.

Contradictory literature, however, indicates that "most people do not give working conditions a great deal of thought unless they are extremely bad" (Luthans, 1995).

2.2.1.7 Fairness

One factor related to job satisfaction is the extent to which employees perceive that they are being treated fairly (Aamodt, 2004). According to Robbins (1989), employees seek for policies and systems that they perceive to be fair as this will likely result in an increase in job satisfaction.

Johns (1996) distinguishes between distributive fairness and procedural fairness. Distributive fairness is perceived fairness of the actual decisions made in an organization. If employees perceive that decisions are made in a fair manner, they are likely to express satisfaction with their jobs (Robbins, 2005).

Procedural fairness on the other hand, occurs when the processes to determine work outcomes/decisions are perceived to be reasonable. According to Johns (1996), "procedural fairness is particularly relevant to outcomes such as performance evaluations, pay raises, promotions, layoffs and work assignments. Hence, if the processes used to arrive at for example, promotion decisions, are perceived to be fair, it could lead to job satisfaction. Aamodt (2004) states that the relationship between perceptions of justice and job satisfaction is very strong, hence employers should be open about how decisions are made and provide feedback to employees who might not be happy with certain important decisions.

2.2.2 Intrinsic factors of job satisfaction

Intrinsic sources of job satisfaction primarily come from within the individual and are essentially longer lasting than the extrinsic sources (Atchison, 1999). These sources are generally intangible, such as employees feeling a sense of pride in their work as well as individual differences such as personality.

2.2.2.1 Person-Job fit

According to Spector (1997), some research has attempted to investigate the interaction between job and person factors to see if certain types of people respond differently to different types of jobs. This approach posits that "there will be job satisfaction when characteristics of the job are matched to the characteristics of the person" (Edwards, 1991 as cited by Spector, 1997).

One stream of research has examined this perspective in two ways: (1) in terms of the fit between what organizations require and what employees are seeking and (2) in terms of the fit between what employees are seeking and what they are actually receiving (Mumford, 1991 as cited by Mullins, 1999).

Johns (1996, p. 140) refers to this as the "discrepancy theory" of job satisfaction and maintains that "satisfaction is a function of the discrepancy between the job outcomes people want and the outcomes they perceive they obtain." Thus, the smaller the discrepancy, the higher the job satisfaction should be (Johns, 1996; Spector, 1997). For example, a person who desires a job that

entails interaction with the public but who is office bound, will be dissatisfied with this aspect of the job.

2.2.2.2 Disposition/Personal

Robbins (1989) defines um total of ways in which an individual reacts and interacts with others." Research indicates that some people are predisposed by virtue of their personality to be more or less satisfied despite the changes to their working environment and other factors (Aamodt, 2004; Johns, 1996).

This idea can apparently be traced back to the Hawthorne studies, which found that certain people were continually complaining about their jobs (Spector, 1996). No matter what the researchers did, the participants found a reason to complain. They concluded that their dissatisfaction is a product of their personality. Thus one way to increase the overall level of job satisfaction in an organization is to recruit applicants who show high levels of overall job and life satisfaction (Aamodt, 2004).

Schneider and Dachler (1978) as cited by Spector (1996) also found that job satisfaction seemed stable over time and that it might be the product of personality traits. This view holds some truth in that people with a negative tendency towards life would most likely respond negatively to their jobs even if their jobs changed (Atchison, 1999). The author further advances that many organizations spend much time trying to turn these "negative" people around. In these cases, the best organizations could do is to keep these individuals from affecting the rest of their employees. On the other hand, people with a positive inclination towards life, would most likely most positive attitude towards their job as well.

Aamodt (2004), however, notes that findings on the personality-job satisfaction relationship are controversial and have received some criticism, therefore more research is needed before firm conclusions can be drawn. Spector (1997) further indicates that most research on the personality-job satisfaction relationship has only demonstrated that a correlation exists, without offering much theoretical explanations.

ç

2.2.3 Impact of demographic variables on job satisfaction

Research on job satisfaction has further identified certain personal or demographic characteristics which influence satisfaction in one way or another. This typically involves comparing job satisfaction ratings based on demographic variables such as age, gender, marital status, job level, tenure and number of dependents.

2.2.3.1 Gender

More and more women are entering the workforce and it has become important to understand how men and women might differ in their job attitudes. There is a large body of research explaining the gender-job satisfaction relationship. However, research in this regard has been inconsistent. Some literature reports that males are more satisfied than females, others suggest females are more satisfied and some have found no differences in satisfaction levels based on gender

According to Spector (2000), most studies have found only a few differences in job satisfaction levels amongst males and females.

Studies conducted by Loscocco (1990) indicated that female employees demonstrated higher levels of job satisfaction than male employees across different settings. This author purports that most women value rewards that are readily available to them, such as relationships with co-workers. It therefore becomes easier for them to experience job satisfaction. Male employees on the other hand, most likely desire things like autonomy and financial rewards which are not as readily available. This might result in lower levels of job satisfaction.

A study by Alavi and Askaripur (2003) amongst 310 employees in government organizations, found no significant difference in job satisfaction among male and female employees. Carr and Human's (1988) research is consistent with this view. These authors investigated a sample of 224 employees at a textile plant in the Western Cape and found no significant relationship between gender and satisfaction. Furthermore, Pors (2003) conducted a study including 411 Danish library managers and 237 library managers from the United Kingdom and concluded that there is no overall difference in job satisfaction in į,

relation to gender. A possible explanation is offered by Tolbert and Moen (1998), who maintain that men and women attach value to different aspects of the job. This therefore makes it difficult to measure differences in job satisfaction based on gender.

On the other hand, a study conducted by Okpara (2004) which involved 360 Information Technology managers in Nigeria, indicated that female employees are less satisfied than their male counterparts – specifically with pay, promotion and supervision. According to Okpara (2004), this finding may educational levels of women in this sample. The author postulates that higher education levels raise expectations about status, pay and promotion and if these expectations are not met, they might experience lower levels of satisfaction.

2.2.3.2 Age

While research has yielded mixed evidence on the influence of age on job satisfaction, most studies suggest a positive correlation, that is, older workers tend to be more satisfied with their jobs than younger workers (Okpara, 2004; Rhodes, 1983 as quoted by Kacmar & Ferris, 1989; Saal & Knight, 1988).

Numerous explanations may be presented to explain the positive correlation between age and job satisfaction (Okpara, 2004); older employees have adjusted to their work over the years, which may lead to higher satisfaction; prestige and confidence are likely to increase with age and this could result in older employees being more satisfied; younger employees may consider themselves more mobile and seek greener pastures, which could lead to lower satisfaction levels.

However, in contrast to this, other studies found that age does not significantly explain the variance in job satisfaction levels (Alavi & Askaripur, 2003; Carr & Human, 1988; Kacmar & Ferris, 1989; Siu, 2002).

2.2.3.3 Tenure

According to Saal and Knight (1988), research suggests that tenure is likely to influence job satisfaction. Literature overwhelmingly indicates a positive correlation between tenure and job satisfaction, that is, employees with longer job F.

experience are more satisfied compared to those with fewer years of experience (Bilgic, 1998 as cited by Okpara, 2004; Jones-Johnson & Johnson, 2000; Staw, 1995). Okpara (2004) provides an explanation for this positive correlation and advances that employees settle into their jobs over time, which leads to an increase in organizational commitment and job satisfaction. Furthermore, Robbins (1989) maintains that the longer an employee holds a job, the more they tend to be satisfied with the status quo.

Lambert, Hogan, Barton and Lubbock (2001) on the other hand argue that there is an inverse relationship between tenure and job satisfaction. Hence, longer tenured employees are less satisfied than those who have been in the organization for shorter periods. A possible explanation could be that employees who hold the same jobs over a long period of time, may become bored and experience lower levels of satisfaction.

Another view is provided by Alavi and Askaripur (2003). The authors conducted a study amongst 310 employees in government organizations and found no significant difference in job satisfaction amongst employees based on their years of service. Research in this regard is thus contradictory.

2.2.3.4 Marital status

Research has consistently found that married employees are more satisfied with their jobs than their un-married co-workers (Chambers, 1999; Loscocco, 1990; Robbins et al., 2003). Chambers (1999) in particular, found that married employees experienced increased satisfaction with pay, work, supervision and coworker subscales of the JDI.

A possible explanation is provided by Robbins (1989). He purports that marriage imposes increased responsibilities which might make a steady job more valuable, hence increasing their satisfaction. However, Robbins et al. (2003) note that the available research only distinguishes between being single and married. Divorcees, couples who cohabit and the widowed have been excluded from research and these are in need of investigation.

Furthermore, a study by Alavi and Askaripur (2003) reported no significant difference in job satisfaction and its five dimensions among single and

ž.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

married personnel. Researchers are therefore in disagreement concerning the relationship between marital status and job satisfaction.

2.2.3.5 Number of dependents

Robbins (1989) purports that there is strong evidence suggesting a positive relationship between the number of dependents and job satisfaction. This implies that the higher the number of dependents an employee has, the higher the job satisfaction is likely to be. A possible explanation could be that employees with more children are probably older and longer in their jobs. They might therefore have adapted to their work situations, hence the increase in job satisfaction.

Studies by Alavi and Askaripur (2003) amongst employees in government organisations reported no statistically significant relationship between the number of dependents and job satisfaction. Research in this area is, however, limited.

2.2.3.6 Job Level

Oshagbemi (1997) highlights the fact that relatively few studies have attempted to investigate the relationship between employees' job level and corresponding levels of job satisfaction.

However, according to Mowday and Saal and Knight (1988), the limited research available suggests that people who hold higher level jobs are more satisfied than those who hold lower level positions. Several other researchers also found support for a positive correlation between job level and satisfaction. Smither (1998) states that job satisfaction tends to be lower among employees in jobs that characterized by hot or dangerous conditions, which is normally of a lower level nature. Furthermore, Miles, Patrick and King (1996) found that job levels moderates the communication-job satisfaction relationship.

It is possible that the more challenging, complex nature of higher-level jobs lead to higher job satisfaction. Also, employees in professional and managerial jobs are normally paid more, have better promotion prospects, autonomy and responsibility which might also increase the levels of job satisfaction (Saal & Knight, 1988). It seems therefore that job level is a reliable predictor of job satisfaction, more specifically employees in higher level jobs have greater satisfaction than lower level employee.

2.3 THEORIES OF JOB SATISFACTION

Over the years, researchers devised a number of theoretical approaches to explaining job satisfaction. The theories most frequently addressed in literature are presented below.

2.3.1 Discrepancy theories

According to Aamodt (2004), discrepancy theories postulate that job satisfaction is determined by the discrepancy between what employees want, value and expect and what the job actually provides. Employees will therefore experience dissatisfaction if there is a discrepancy between what they want and what the job offers. Theories that focus on employees' needs and values include Maslow's hierarchy of needs theory, ERG theory, Two-factor theory and McClelland's needs theory (Aamodt, 2004; Robbins et al., 2003).

Maslow's needs hierarchy

Maslow's (1954) theory, which is one of the best known theories, holds that employees would be motivated by and satisfied with their jobs only if certain needs are met (Aamodt, 2004). Maslow advances five major types of needs which are hierarchical. This implies that lower-level needs must be satisfied first before an individual will consider the next level of needs (Robbins, 1989). The five major needs are as follows:

- Basic biological needs. According to Maslow's theory, individuals are concerned first and foremost with satisfying their needs for food, water, shelter and other bodily needs. An unemployed individual, who is homeless will be satisfied with any job as long as it provides for these basic needs (Aamodt, 2004).
- Safety needs. These needs include security and protection from physical and

÷

÷

emotional harm (Robbins et al., 2003). After basic biological needs have been met, employees become concerned with meeting their safety needs. This implies that employees will remain satisfied with their jobs only if they believe the workplace to be safe to work in (Aamodt, 2004).

- Social needs. Once the first two levels of needs have been met, employees will remain satisfied with their jobs only when their social needs have been met (Aamodt, 2004). Social needs include the need for affection, belongingness, acceptance and friendship. In the work context this would typically involve working with others and feeling needed in the organization. Organizations attempt to satisfy their employees' social needs by providing things like cafeterias, organizing sport programs and family events (Aamodt, 2004).
- Esteem needs. Esteem or ego needs include the need for status, recognition and achievement (Robbins, 2005). Once an employee's social needs have been met, they start to focus on meeting their esteem needs. According to Aarnodt (2004), organizations can help to satisfy these needs through awards, promotions and salary increases.
- Self-actualization needs. These needs represent the fifth level of Maslow's needs hierarchy. According to Robbins et al. (2003), self-actualization needs include the need for growth, achieving one's potential and self-fulfillment. An employee striving for self-actualization wants to reach their full potential in every task. Therefore, employees who have been doing the same job for a long time might become dissatisfied and unmotivated in search of a new challenge.

Even though Maslow's theory has received wide recognition, there has been criticism of this theory. Robbins et al. (2003) state that certain reviews of this theory postulate that needs are not necessarily structured along these dimensions "as people simultaneously move through several levels in the hierarchy of needs." Furthermore, because satisfied needs activate movement to the next level, the employee will always have an active need, making long term job satisfaction unlikely in terms of this theory.

Universitas Indonesia

~

ł

ERG theory

Alderfer (1972) reworked Maslow's needs theory and classified needs into only three groups of core needs, namely, existence, relatedness and growth (Robbins et al., 2003). The existence group is concerned with providing basic needs and includes items that Maslow's theory considered as biological and safety needs (Robbins, 1989). The second group of needs relates to maintaining important relationships and the growth needs refers to the desire for personal development (Robbins, 1989; Robbins et al., 2003).

According to Aadmodt (2004), the major difference between Maslow's theory and the ERG theory is that the latter theory postulates that progression to the next level need not be fixed; a person can skip levels. People can therefore be simultaneously motivated by needs at different levels. A person can be concerned with satisfying growth needs even though existence and relatedness needs are not met. The ERG theory removes some of the problems associated with Maslow's theory and several studies supported the ERG theory (Robbins et al., 2003).

Two factor theory

One of the earliest theories of job satisfaction is Herzberg's two-factor theory, the factors being "intrinsic factors" and "motivators" (Cooper & Locke, 2000). Herzberg found that intrinsic factors (achievement, responsibilities and recognition) were more strongly correlated with satisfaction than extrinsic factors like policies, benefits and working conditions.

According to Atchison (1999), external satisfiers tend to be short -lived. The author provides an example of employees wanting faster computers to make them happy. They could be excited at first, but if those computers are no longer the status quo a few months down the line, these employees will begin to look to other external factors in their search for job satisfaction. As Randolph and Johnson (2005) surmise "if you want to motivate workers, don't put in another water fountain; provide a bigger share of the job itself." It becomes apparent that internal satisfaction is longer lasting and more motivating than external satisfiers. 1

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

However, according to Cooper and Locke (2000), this theory has been widely criticized in that some research has shown that both intrinsic and extrinsic factors contribute to both satisfaction and dissatisfaction.

McClelland's needs theory

David McClelland, a well known psychologist, has been studying the relationship between needs and behavior since the late 1940s. Although he is most recognized for his research on the need for achievement, he also investigated the needs for affiliation and power.

The need for achievement is defined by the following desires : To accomplish something difficult. To master, manipulate, or organize physical objects, human beings, or ideas. To do this as rapidly and as independently as possible. To overcome obstacles and attain a high standard. To excel one's self. To rival and surpass others. To increase self-regard by the successful exercise of talent. (H.A. Murray, 1938).

Achievement-motivated people share three common characteristics : (1) a preference for working on tasks of moderate difficulty; (2) a preference for situations in which performance is due to their efforts rather than other factors, such as luck; and (3) they desire more feedback on their successes and failures than do low achievers. A review of research on the "entrepreneurial" personality showed that entrepreneurs were found to have a higher need for achievement than nonentrepreneurs.(K.G. Shaver, 1995).

The need for affiliation reflects an individual's desire to spend more time maintaining social relationship, joining group, and waiting to be loved. Individuals high in this need are not the most effective managers or leaders because they a hard time making difficult decisions without worrying about being dislike. (HR Magazine, 2005).

The need for power reflects an individual's desire to influence, coach, teach, or encourage others to achieve. People with a high need for power like to work and are concerned with discipline and self-respect. There is a positive and negative side to this need. The negative face of power is characterized by an "if I win, you lose" mentality. In contrast, people with a positive orientation to power

2

focus on accomplishing group goals and helping employees obtain the feeling of competence. Because effective managers must positively influence others, McClelland proposes that top managers should have a high need for power coupled with low need for affiliation. He also believe that individuals with high achievement motivation are not best suited for top management positions. Several studies support these propositions. (A M Harrel and M J Stahl, 1981).

Employees who have a strong need for achievement would be satisfied with jobs that are challenging and over which they can exert some control (Aamodt, 2004). In contrast, employees with low achievement needs are satisfied with jobs involving little challenge.

Individuals with a high need for affiliation would be satisfied with jobs that involve working with people and establishing close interpersonal relationships (Robbins, 1989).

Finally, employees who have a need for power, have a desire to impact, influence and to control others (Robbins et al., 2003). Employees with strong power needs are most likely satisfied with jobs where they can direct and manage others.

2.3.2 Value-percept theory

Locke (1976) as quoted by Cooper and Locke (2000) argued that "individual's values would determine what satisfied them on the job." Employees in organizations hold different value systems, therefore based on this theory, their satisfaction levels will also differ. Furthermore, this theory predicts that "discrepancies between what is desired and received are dissatisfying only if the job facet is important to the individual" (Anderson, Ones, Sinangil & Viswesvaran, 2001).

According to Cooper and Locke (2000), the potential problem with this theory is that what people desire and what they consider important are likely to be highly correlated. In theory these concepts are separable; however, in practice many people will find it difficult to distinguish the two. Despite this limitation, research on this theory has been highly supportive (Cooper & Locke, 2000).

2.3.3 Equity theory

This theory proposes that job satisfaction is a function of what employees put into a job situation compared to what they get from it (Cooper & Locke, 2000; Robbins, 2005). Therefore, the more an employee receives relative to what they put into a job, the higher job satisfaction will be. Three components are involved in this perception of fairness, namely, inputs, outputs and input/output ratio (Aamodt, 2004): Inputs refer to those elements we put into our jobs and include things such as effort, experience, education and competence (Robbins, 2005). Outputs are elements that individuals receive from their jobs (Aamodt, 2004). These include things such as pay, benefits and challenge. Input/Output ratio. According to Aamodt (2004), employees subconsciously compute an input/output ratio by dividing output value by input value.

Employees may attempt to increase their outputs, for example, by asking for a salary increase. Conversely, they can reduce their inputs by not working as hard as they would normally do (Aamodt, 2004).

Furthermore, employees compare their input-outcome ratio with that of other employees and if they perceive it to be fair, employees will experience satisfaction (Robbins, 2005). Conversely, if employees perceive an inequity in their input- outcome ratio compared to other employees, they become dissatisfied and less motivated.

2.3.4 Job Characteristics Models

This model, introduced by Hackman and Oldham (1976), recognizes that "certain aspects of the job are inherently motivating for most people and individuals may perceive and respond to the same stimuli differently" (Anthony, Perrewe & Kacmar, 1999). Employees are thus motivated by the intrinsic satisfaction they derive from doing their job. The five core job characteristics are defined in the following terms (Spector, 1997): Task identity refers to the degree to which the job requires completion of a whole piece of work (Robbins, 2005). Employees can complete a task from beginning to end with an identifiable outcome.Task significance is the degree to which the job is important (Spector, 1997). This is determined by the impact the employee's work has on others within 1

or outside the organization. Skill variety refers to the degree to which employees are able to do a number of different tasks using many different skills, abilities and talents (Anthony et al., 1999). Autonomy is defined as "the freedom employees have to do their jobs as they see fit" (Spector, 1997). This freedom or discretion relates to things such as scheduling, prioritizing and determining procedures for task completion (Anthony et al., 1999). Feedback refers to the degree to which the job offers information to employees regarding performance and work outcomes (Specor, 1997).

According to Robbins (2005), the Job Characteristics Model has been well researched and evidence supports the general idea that certain job characteristics have an impact on behavioral outcomes.

2.4. CONSEQUENCES OF JOB SATISFACTION

Satisfaction on the job influences many other organizational variables. These include not only work variables such as performance or turnover, but also personal or non-work variables such as health and satisfaction with life. The next section briefly discusses the potential effect of job satisfaction on different variables.

2.4.1 Productivity

According to Robbins et al. (2003), managers' interest in job satisfaction tends to centre on its effect on employees performance and productivity. The natural assumption is that satisfied employees should be productive employees. A large body of research postulates that job satisfaction has a positive effect on productivity, however, this correlation is rather modest (Cranny, Cain-Smith & Stone, 1992; Kreitner & Kinicki, 2001; Robbins, 2005; Spector, 1997). Gibson, Ivancevich & Donnelly (1997) surmised that some employees who are satisfied with work are poor performers, conversely, there might be employees who are not satisfied, but who are excellent performers.

Robbins (2005) concluded that productivity is more likely to lead to satisfaction than the other way around. Hence, if employees do a good job (productivity), they intrinsically feel good about it. In addition, higher productivity could lead to an increase in rewards, pay level and promotion, which are all sources of job satisfaction.

2.4.2 Life satisfaction

Three hypotheses have been put forth about the relationship between job and life satisfaction (Cooper & Locke, 2000; Spector, 1996). The *spill* over hypothesis suggests that job experiences spill over into life and vice versa. Problems at home can affect satisfaction at work and problems at work can affect home life. In terms of the *segmentation* hypothesis, people compartmentalize their lives and satisfaction in one area of life has little to do with satisfaction in another area. The *compensation* hypothesis states that people will compensate for a dissatisfying job by seeking fulfillment in non-work life and vice versa. The relationship between life and job satisfaction is thus reciprocal- being satisfied with a job is postulated to affect life satisfaction and vice versa (Spector, 1997).

2.4.3 Organizational commitment and organizational citizenship behavior

According to Kreitner and Kinicki (2001), organizational commitment "reflects the extent to which an individual identifies with an organization and is committed to its goals." Armstrong (1996) advances that "organizational commitment has three components: an identification with the goals of the organization; a desire to belong to the organization and a willingness to display effort on behalf of the organization." There seems to be a strong correlation between job satisfaction and organizational commitment. Higher commitment can, in turn, facilitate higher productivity.

Closely linked to the concept of organizational commitment is the variable called organizational citizenship behavior (OCB). Spector (1997) defines OCB as a "behavior by an employee intended to help co-workers or the organization." It is thus voluntary things employees do to help their fellow workers and their employers. Robbins (2005) states that job satisfaction is a major determinant of OCB in that satisfied employees would more likely talk positively about the organization and go beyond their normal call of duty. According to Robbins et al. (2003), there is a modest overall relationship between these two variables.

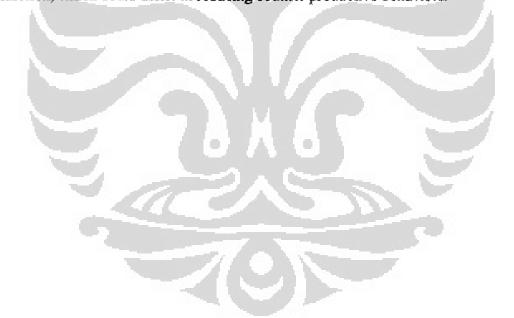
Universitas Indonesia

2.4.4 Withdrawal behaviors

Many theories purport that people who dislike their jobs will avoid them. This is commonly referred to as withdrawal, which refers to behaviors by which employees remove themselves from the workplace, either temporarily or permanently (Saal & Knight, 1988). Withdrawal behaviors have been widely considered in job satisfaction research. Three forms of withdrawal behavior which have been linked to satisfaction will be discussed, namely, turnover, absenteeism and sabotage.

2.4.5 Turnover

The first form of withdrawal is need as "any permanent departure beyond organisational boundariesCascio (2003). Turnover is important to managers as it disrupts organizational continuity and it is can be very costly. The different costs associated with turnover include separation costs (exit interviews, separation pay), replacement costs of new employee and training costs of the new employee (Saal & Knight, 1988).


According to Spector (1997), studies have been reasonably consistent in showing a correlation between job satisfaction and turnover. Employees with low satisfaction are therefore more likely to quit their jobs. According to Luthans (1995), "high job satisfaction will not, in and of itself, keep turnover low, but it does seem to help. On the other hand, if there is considerable job dissatisfaction, there is likely to be high turnover." It is therefore important to manage satisfaction levels as it might trigger decisions by employees to leave the organization.

2.4.6 Absenteeism

Absence is a phenomenon that can reduce an organization's effectiveness. Theories of absence hypothesize that job satisfaction plays a critical role in an employee's decision to be absent (Spector, 1997). Most research indicates a consistent negative relationship between satisfaction and absenteeism, even though the correlation is not very high (Robbins, 1989; Spector, 1997). Literature therefore suggests that a dissatisfied employee will most likely be absent. However, there appears to be disagreement concerning the strength of this relationship as absenteeism is influenced by a number of inter-related factors.

2.4.7 Counterproductive behaviors

Counterproductive behaviors are the opposite of organizational citizenship behavior. These behaviors include aggression against co-workers, aggression against the employer, sabotage and theft at work and they are associated with frustration and dissatisfaction at work (Spector, 1997). According to French (1998, p. 110), sabotage- which is "the deliberate damaging of equipment or products by employees represents one of the more costly possible consequences of organizational frustrations." Spector (1997) notes that a limited number of studies have investigated the causes of counter productive behaviors in organizations. It is, however, important for organizations to create workplaces that enhance job satisfaction, which could assist in reducing counter productive behaviors.

CHAPTER 3 ORGANIZATION OVERVIEW

3.1. COMPANY BACKGROUND

In the beginning, Olympic Group is home industry of loudspeaker box producer with materials particle board that founded by three brothers that are AU Bintoro, Eddy Mulianto and Simarba Atong in 1975. And up to 1979 this home industry still is small industry which borrowed a very simple warehouse in Bogor area.

In 1980, the three brothers formed a small private company by name as CV Cahaya Sakti Elektronics and develop its effort in area Kaum Sari RT 01/05 Kelurahan Cibuluh, north Bogor and build a factory by producing of loudspeaker box.

This factory has been growing fast, on 29 November 1983 the three brothers found PT Cabaya Sakti Furintraco (CSF). It's business channel that gone through manufacturer and marketing desk products that have the character of knockdown furniture by adoption of Olympic Furniture as it's brand name.

Product type that produced are very variated products, that consist of kinds of furniture panel with trademark Olympic. Olympic is the first producer knock down panel wood in Indonesia. And then in 1984, CSF have acquisitioned CV Cahaya Sakti Elektronik.

Because market is growing open and fast, so it's needed effort development and expansion of market, and also needed distribution company independently. In year 1986, PT Cahaya Sakti Multi Intraco (CASMI) was founded, as the company of marketing and distribution. And starting in 1986, company starts recruit roof professional for its effort management. Mr. Au Bintoro as Chairman Olympic Group thinks that the importance of marketing extension and distribution also must followed by the extension of product group and product type, starting with at Bed Room Set, Living Room Set, Children Set, Kitchen Set, and Office Set, as it's objective to cover the increasing of request to knockdown products for home furniture and also office. In 1990 is preparation era of take-off where all systems and procedures has started applied either in company management or the usage of equipments and newest machine for production process. Restructuring in organization conducted also where owner involvement in operational technique has started limited and delivered to professional.

The Successful of CSF as the pioneer of furniture knock down and creating demand of furniture and increase product quality, so in 1995, this company has achieved the ISO certificate 9002 and also this company can develop international market.

At this time Olympic Furniture has became one part of the life of consumer in domestic market and also foreign market. This condition are proven by with existence of more than 50 branches of Olympic in all around Indonesia that distribute to more than 3600 stores, either Traditional Retails Outlet or Modern Retails Outlet, and also distributed to more than 100 countries in the world.

Knowing the importance of consumer request accomplishment, CASMI distributes to the market the products of a kind with brand differences, matching with market demand, like: Albatross, Solid, Princess, Olympia, & Inovative. The Successful of Olympic Group in Indonesia society as Indonesia Best Knock Down Furniture is proved with accepted various of awards from Indonesia and also abroad.

Some awards which already achieved are : Indonesia Customer Satisfaction Award (2002-2008), 28th International Award For The Best Trade Name (2004), Super brand (2006/2007), Indonesia Good Design (2006), Solo Best Brand Index (2008), Marketing Award (2006), Indonesia Golden Brand (2006), The 7 Indonesia's Most Admired Companies (2007), Top Brand (2003-2008), ISO 9001 – 2000 (2005-2008), Primaniyarta Award (2006 & 2007), E-Company Award (2007), & 12 Achievements recorded in Museum Rekor Indonesia (MURI) (2004 – 2007). <u>{</u>-

29

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

3.2 PHILOSOPHY, VISION, AND MISSION

On November 2006, Olympic Furniture Group has launched new Philosophy, Vision and Mission. Our Philosophy is the best generation conducting for the best regeneration which has values as follows :

1. The Best Generation :

Values : Organization, Leadership, Yield of Business, Management, Infrastructure, Cooperation (OLYMPIC)

2. Conducting for :

Values : Flexible, Unilateral Benefit, Reasonable, National, Inspiration, Timing, Under Controlled, Realization, Effective & Efficient (FURNITURE)

 The Best Generation
 Values : Gentlemanly, Rational, Organizer, Universal Conduct, Proudness (GROUP)

The company Vision is become the world class integrated and comprehensive furniture company and the mission is to give performance excellence and cooperation harmony for business relations and benefit for all the take holders. To support the successful of this philosophy, the company has socialization 7 steps, as follows :

1. Awareness Step

The employee must know and aware that Olympic Furniture Group has A new philosophy, Vision and Mission, and they know the content

2. Perusal

The employee must read philosophy, Vision, and Mission together every day in the morning on "Sarapan Pagi" at Head Office and "Briefing Pagi" at Branch Office

3. Memorization

The employee must memorize the content of Philosophy, Vision, and Mission

¥

4. Comprehension

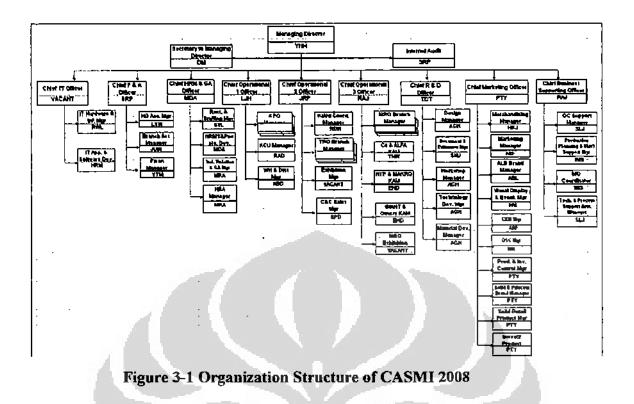
The employee must understand the meaning of Philosophy, Vision, and Mission

5. Full and Total Comprehension

The employee must understand the good impact if there is the values and if there is no value

6. Application

The employee must do action in their activity and do their job based on the values


7. Implementation

The values become second nature of the employee

3.3. ORGANIZATION STRUCTURE

CASMI implement non-bureaucratic organization structure as shown in figure 3-1. In this organization, managing director has a main role and supervises Chief Financial & Accounting Officer, Chief Operating Officer for Retail, Chief Operating Officer for Wholesaler, Chief Operating Officer for Modern Retail Outlet, Chief Marketing Officer, Chief Human Resources Management & General Affair Officer, Chief Information Technology Officer, Chief Business Supporting Officer and Chief Research & Development Officer.

Chief Operating Officer has a role to control the selling activities from head office until branches office. Chief Marketing Officer has role responsible in controlling of all marketing activities at CASMI. Chief Human Resources Management & General Affair Officer has role responsible for human resources administration, human resources development, and general affair activities. Chief Financial & Accounting Officer has role responsible in controlling finance, budget, cash flow report , cash, payment and financial statement reporting. Chief Research & Development Officer has responsibility to create new product from design until the guidance to produce the product. Chief Business Supporting Officer has responsibility to maintain relationship with supplier, domestic and international.

3.4. COMPANY PRODUCT

As a big distributor of furniture, CASMI distributes all product produced by CSF. The product was produced uses complete and modern machines. All production process are conducted effectively with system computerization and high and sophisticated technology, so that it produces kinds of product efficiently. Newest designs that fixed consistence and made product quality always make surprise and competitive price.

This company always concerned about its product by orientation at consumer, quality and quantity become an important attention for the company. That is why in supporting certifiable product, company in its business activity operate modern machine that bought from Germany and Italian.

Some kind of product can be categorized as follows:

- a. Office Furniture, like : computer desk, writing desk, study desk, book cabinet, cupboard of archives repository.
- Family room Furniture, like : TV rack, Video rack, accessories/decorative cupboard.
- c. Bed room set Furniture, like : wardrobe, decorative desk, study desk.

- d. Kitchen set Furniture, like : cupboard to keep kitchen flavors, cupboard for draining-board.
- e. And other furniture products.

As for raw material as used in supports its business activity shall be as follows :

- 1. Raw material that consist of :
- Particle Board .
- Medium Density Fiber Board
- Solid
- Foil
- Chemical Glue
- Sides edging
- 2. Accessories Material that consist of :
- Screw
- Door Hasp
- Cupboard key
- Door Hold (Handle)

Nowadays, this company has brand name as follows :

- 1. Brand Albatros
- :Middle up market
- 2. Brand Olympic
- : Middle market
- 3. Brand Solid-Inovatif : Low-middle market

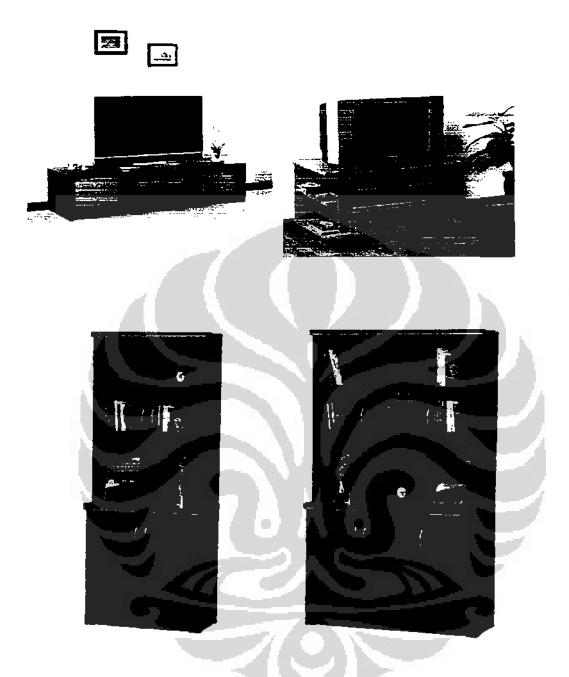


Figure 3-2 : Brand Albatros product

1.12.12.12.1

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

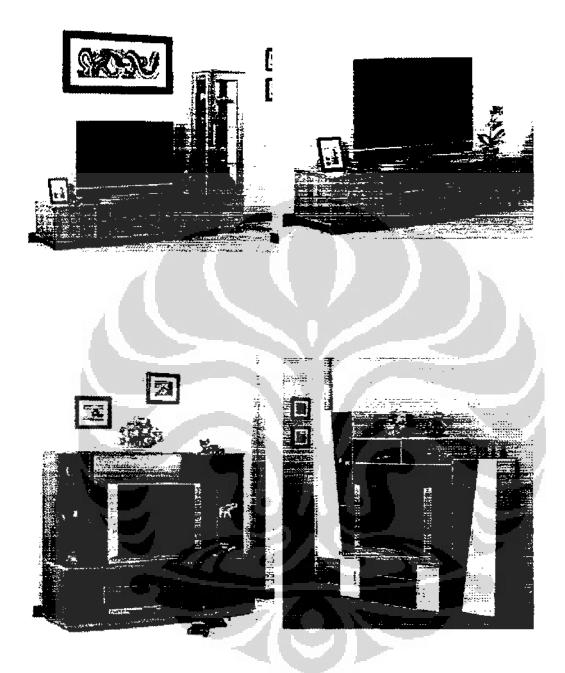
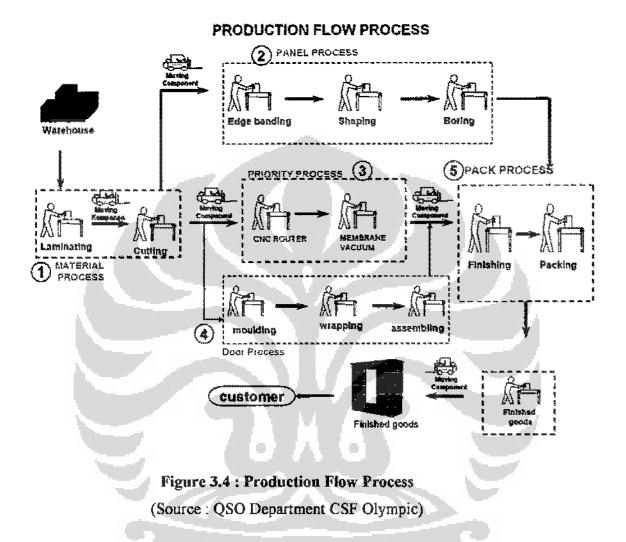
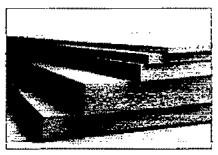
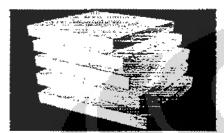



Figure 3-3 : Brand Olympic & Solid Product

3.4. PRODUCTION FLOW PROCESS


Production flow process starts from raw material (pure material) as particle board (PB) or material density fiber board (MDF) and go to next process like as laminating, cutting, shaping, edgebanding, boring, cnc router, finishing and


finally in packing process out put become as finished goods (as shown in figure 3.4)

Production flow process has 8 processes, as follows :

 Laminating process is a process to laminate foil on material like as Particle Board (PB) or Medium Density Fiber (MDF) by using hot press & cool press machine (as shown in figure 3-5). ì

PLAIN PARTICLE BOARD

MEDIUM DENSITY FIBRE BOARD

RAW MATERIAL

Foll PO & PVC (Paper Overlay)

Figure 3-5 : Laminating process

- 2. Cutting Process is a process to cut the material (PB/MDF) based on size determined by using the cutting machine which operated computerized and semi automatic.
- Shaping Process is a process to shape the component according to drawing/grooving by using router machine with high speed (as shown in fig.3-6)

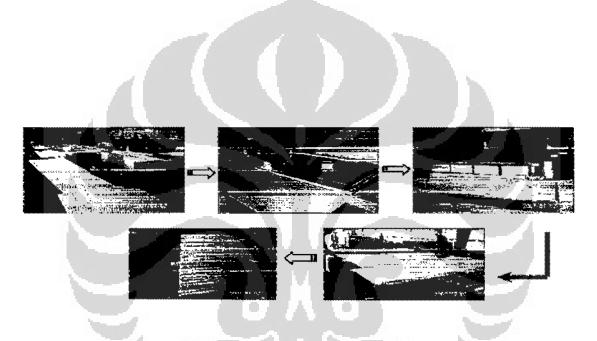

4. Edgebanding Process is a process to edge the side part (thick side) of the component by using straight line machine or brandt machine (as shown in figure 3-7).

Figure 3-7 : Edge banding Process

5. Boring Process is a process to drill holes on the component based on size and drawing determined in order every piece part of component can be assemble properly.

- CNC (Code Number Computerize) Router is a process to make profile, grooving, circle, motif, on the component by using router machine with multi spindles automatically.
- 7. Finishing Process is a process in finishing the component like as visual and function of the component in order to make better quality.
- 8. Packing process is a process to pack the components in to a package with a proper lay out based on quality standard (as shown in figure 3-8)

Figure 3-8 : Packing Process

3.5. DISTRIBUTION CHANNEL

CASMI has 51 branches around Indonesia from Sumatera until Sulawesi. The branches office lead by Branch Manager. CASMI also has 28 sub-branches which lead by Supervisor. Sub Branches are located at small area in province to support the branch to distribute the product.

The product delivered from Head Office to branch for retail product, but for wholesaler product directly delivered to the store from head office. Head office also deliver the product directly to sub branches. With many distribution channels, make CASMI can distribute the product around Indonesia to support sales activities to get revenue for company.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

CHAPTER 4 RESEARCH METHOD

4.1 INTRODUCTION

This chapter focuses on how the research problem was analyzed by discussing the sampling methods, data gathering instruments and the statistical techniques that were utilized to test the hypotheses for the present study. The sample for the present study was drawn from all managers in CASMI.

4.2 RESEARCH DESIGN

Research design provides the basic direction for carrying out a research project so as to obtain answers to research questions (Cooper & Schindler, 2003). According to Hair, Babin, Money and Samouel (2003, p. 57), "the researcher should choose a design that will (1) provide relevant information on the research questions and (2) will do the job most efficiently."

The present study used a cross-sectional study as it provides the user with a snapshot of business elements at a given point in time (Hair et al., 2003). This type of study seemed appropriate as it can be used within a short space of time and data can be summarized statistically. According to Hair et al. (2003), most surveys fall into this category.

4.2.1 Population

In statistics, a statistical population is a set of entities concerning which statistical inferences are to be drawn, often based on a random sample taken from the population (www.wikypedia.com., February 01, 2009).

The population for the present study consisted of managers of CASMI.

4.2.2 Sampling

According to Cooper and Schindler (2003 : 179), "the basic idea of sampling is by selecting some elements in a population, we may draw conclusions about the entire population." Furthermore, Bless and Higson-Smith (1995) highlight the main advantages of sampling: 2

• Gathering data on a sample is less time-consuming, especially when populations may be spread over large geographical areas.

• It is less costly.

 Sampling is a practical way of collecting data when the population is extremely large.

In statistics, a sample is a subset of a population. Typically, the population is very large, making a census or a complete enumeration of all the values in the population impractical or impossible. The sample represents a subset of manageable size. Samples are collected and statistics are calculated from the samples so that one can make inferences or extrapolations from the sample to the population. This process of collecting information from a sample is referred to as sampling (www.wikypedia.com., February 01, 2009).

The best way to avoid a biased or unrepresentative sample is to select a random sample, also known as a probability sample. A random sample is defined as a sample where the probability that any individual member from the population being selected as part of the sample is exactly the same as any other individual member of the population. Several types of random samples are simple random samples, systematic samples, stratified random samples, and cluster random samples.

A sample that is not random is called a nonrandom sample or a nonprobability sample. Some examples of nonrandom samples are convenience samples, judgment samples, purposive samples, quota samples, snowball samples, and quadrature nodes in quasi-Monte Carlo methods

4.2.2.1 Sampling Design

According to Hair et al. (2003, p. 211), "traditional sampling methods can be divided into two broad categories: probability and non-probability sampling." In probability sampling each participant has an equal chance of being selected (Cooper & Schindler, 2003). The simple random sample is the simplest form of probability sampling. On the other hand, "in non-probability sampling the selection of elements for the sample is not necessarily made with the aim of being statistically representative of the population" (Hair et al., 2003, p. 217). The probability of selecting elements within a population is therefore unknown.

The sampling design that was considered appropriate for the present study was non-probability sampling, as the researcher selected a specific section within the Field Service department of an Electricity Utility in the Western Cape.

4.2.2.2 Simple Random Sampling

The most elementary methodology is called simple random sampling. Most of the theory of statistics assumes this kind of sampling unless otherwise noted. In theory it ensures that all subsets of the population are given a balanced probability of selection. The researcher used simple random sampling for the present study because all managers have the same probability to become sample to fulfilled the questionnaire.

4.2.2.3 Sample Size

The ideal sample size of 30 % is considered acceptable for most research purposes as it provides the ability to generalize to a population (Cresswell, 2003; Sekaran, 2000). Sample of this research is the same with the population. The sample is all of managers in CASMI. Total sample is 76 managers, consist of 51 branch managers and 25 managers of head office.

4.3. QUESTION RESPONSE FORMAT

The question responses format in this thesis is scaled response question. The scaled response question utilizes scale developed to measure the attributes of some construct under study. There are many variation of psychological aspect of consumers such as their opinion, attitudes, evaluation, beliefs, impressions, perceptions, feelings and attentions. All these items create difficulty of measurement. The scaled response questions designed to measure unobservable construct. It is common practice to design scaled response questions in an assumed interval scale format. A scaled response used in this thesis is the modified Likert Scale, in which respondents are asked to indicate their degree of agreement or disagreement on a symmetric agree-disagree scale for each of series of statements.

The scale range from strongly disagree until strongly agree. For 1 is very disagree, 2 is disagree, 3 is agree, 4 is very agree.

4.4 QUESTIONNAIRE MODEL

4.4.1 Biographical questionnaire

The biographical questionnaire contained the following personal information to be completed by the participants:

a) Gender

b) Age

c) Education

d) Working Period/Tenure

e) Marital Status

4.4.2 Job Satisfaction Questionnaire

Job satisfaction is mostly assessed by asking people how they feel about their jobs, either through a questionnaire or an interview. There are a few measures of satisfaction that are widely used in research which will be briefly discussed. Specific attention will be given to the Job Satisfaction Survey as it was used for the present study.

Job Descriptive Index (JDI)

The most popular measure of job satisfaction is the Job Descriptive Index (JDI) and it measures five dimensions of job satisfaction: pay, work, promotion, supervision and co-workers. According to Cooper and Locke (2000, p. 172), "the JDI is reliable and has an impressive array of validation evidence behind it."

Job-In-General Scale (JIG)

The Job-In-General Scale has been designed to measure overall job satisfaction rather than facets. According to Ironson et al. (1989) as quoted by

Universitas Indonesia

Spector (1997, p. 18), "overall job satisfaction is not the sum of individual facets, it should rather be managed by using a general scale like the JIG." Cooper and Locke (2000, p. 172) also argue that "faceted and global measures do not measure the same construct."

The questionnaire models of job, pay, promotion, supervision, working relations (co-workers) and job in general taken from the journal and modified by author.

4.4.2.1.Job

According to Luthans (1995), the content of the work performed by employees is a major predictor of job satisfaction. Not surprisingly, "research is fairly clear that employees who find their work interesting, are more satisfied and motivated than employees who do not enjoy their jobs" (Gately, 1997 as cited by Aamodt, 2004, p. 326). Employees tend to prefer jobs which afford them the opportunity to apply their skills and abilities, offer them variety and freedom as well as jobs where they get constant feedback on how well they are doing (Robbins, 2005). Hence, it is important for managers to take innovative steps to make work more interesting in order to increase the levels of job satisfaction of employees.

Furthermore, if a job is highly motivating, employees are likely to be satisfied with the job content and deliver higher quality work, which in turn could lead to lower rates of absenteeism (Friday & Friday, 2003). Fox (1994) as cited by Connolly and Myers (2003, p. 152) however, advances a contradictory view and maintain that "as workers become more removed from the ability to make meaning through work, the opportunity to experience job satisfaction becomes more difficult." This stems from the fact that job satisfaction is related to a myriad of factors, including physical, psychological and demographic variables, which are unrelated to the workplace.

The questions related to job as follows:

My current job is :

- 1. Fascinating
- 2. Routine
- 3. Satisfying

á

1

4. Boring

- 5. Good
- 6. Gives sense of accomplishment
- 7. Respected
- 8. Uncomfortable
- 9. Pleasant
- 10. Useful
- 11. Challenging
- 12. Simple
- 13. Repetitive
- 14. Creative
- 15. Dull
- 16. Uninteresting
- 17. Can see results
- 18. Uses my abilities

4.4.2.2.Pay

Pay refers to the amount of compensation received for a specific job (Robbins et al., 2003). Luthans (1995 : 127) notes that "wages and salaries are recognized to be a significant, but complex, multidimensional predictor of job satisfaction."

According to Spector (1997) and Berkowitz (1987), the correlation between the level of pay and job satisfaction tends to be surprisingly small. This suggests that pay in itself is not a very strong factor influencing job satisfaction. Berkowitz (1987 : 545) notes that "there are other considerations, besides the absolute value of one's earnings that influences attitudes toward satisfaction with pay." Spector (1996 : 226) postulates that "it is the fairness of pay that determines pay satisfaction rather than the actual level of pay itself." If an employee's compensation is therefore perceived to be equitable, when compared to another person in a similar position, satisfaction might be the likely result. The questions related to pay dimension:

My current pay is:

- 1. Income adequate for normal expenses
- 2. Fair
- 3. Barely live on income
- 4, Bad
- 5. Income provides luxuries
- 6. Less than I deserve
- 7. Well paid
- 8. Insecure
- 9. Underpaid

4.4.2.3. Promotion

According to Friday and Friday (2003), satisfaction with promotion assesses employees' attitudes toward the organization's promotion policies and practices. In addition to this, Bajpai and Srivastava (2004) postulate that promotion provides employees with opportunities for personal growth, more responsibilities and also increased social status.

Robbins (1989) maintains that employees seek promotion policies and practices that they perceive to be fair and unambiguous and in line with their expectations. Research indicates that employees who perceive that promotion decisions are made in a fair and just manner are most likely to experience job satisfaction.

The questions are as follows:

My current opportunities for promotion are :

- 1. Good opportunities for promotion
- 2. Opportunities somewhat limited
- 3. Promotion on ability
- 4. Dead-end job
- 5. Good chance for promotion
- 6. Unfair promotion policy
- 7. Infrequent promotions

8. Regular promotions

9. Fairly good chances for promotion

4.4.2.4. Supervision

Research indicates that people who enjoy working with their supervisors will be more satisfied with their jobs (Aamodt, 2004). Furthermore, a study by Bishop and Scott (1997) as cited by Aamodt (2004) found that satisfaction with supervisors was related to organizational and team commitment, which in turn resulted in higher productivity, lower turnover and a greater willingness to help.

According to Luthans (1995), there seem to be three dimensions of supervision that affect job satisfaction. The first dimension has to do with the extent to which supervisors concern themselves with the welfare of their employees. Research indicates that employee satisfaction is increased if the immediate supervisor is emotionally supportive (Egan & Kadushin, 2004; Robbg, 1997, as cited by Connolly & Myers, 2003).

The second dimension has to do with the extent to which people participate in decisions that affect their jobs. Research by Grasso (1994) and Malka (1989) as cited by Egan and Kadushin (2004) found a positive relationship between managerial behavior that encourages participation in decision-making and job satisfaction. Robbins (1989) supports this view and maintains that satisfaction is increased if the immediate supervisor listens to employees' inputs.

A third dimension of supervision which is related to job satisfaction, according to Luthans (1995), is an employee's perception of whether they matter to their supervisor and their organization. Connolly and Myers (2003) maintain that this aspect of an employee's work setting may also be related to enhancing job satisfaction.

The questions related to supervision dimension:

My current kind of supervision is:

- 1. Ask my advice
- 2. Hard to please
- 3. Impolite
- 4. Praises good work

- 5. Tactful
- 6. Influential
- 7. Up-to-date
- 8. Doesn't supervise enough
- 9. Has favorites
- 10. Tells me where I stand
- 11. Annoying
- 12. Stubborn
- 13. Knows job well
- 14. Bad
- 15. Intelligent
- 16. Poor planner
- 17. Around when needed
- 18. Lazy

4.4.2.5. Working Relations/Co-Workers

Another dimension which influences job satisfaction is the extent to which co-workers are friendly, competent and supportive (Robbins et al., 2003). Research indicates that employees who have supportive co-workers will be more satisfied with their jobs (Aamodt, 2004; Robbins, 1989; 2005). This is mainly because "the work group normally serves as a source of support, comfort, advice and assistance to the individual worker" (Luthans, 1995, p. 127).

Researchers further found that employees observe the levels of satisfaction of other employees and then model these behavior (Salancik & Pfeffer, 1997 as cited by Aamodt, 2004). Hence, if an organization's veteran employees work hard and talk positively about their jobs, new employees will model this behavior and be both productive and satisfied. The reverse can also be true.

The questions related to working relations/co-workers:

My current Co-workers are:

- 1. Stimulating
- 2. Boring
- 3. Slow

- 4. Helpful
- 5. Stupid
- 6. Responsible
- 7. Fast
- 8. Intelligent
- 9. Easy to make enemies
- 10. Talk too much
- 11. Smart
- 12. Lazy
- 13. Unpleasant
- 14. Gossipy
- 15. Active
- 16. Narrow interests
- 17. Loyal
- 18. Stubborn

4.4.2.6. Job in General/General job satisfaction

General job satisfaction is an important part of a system of interrelated satisfactions. General job satisfaction involves component not caused by the immediate job situation. One is temperamental; it called happiness (Patricia Cain Smith 1959). Another is trust in management. Both can act as causes, effects, or quasi moderators, and each is likely to be related to cooperative and adaptive behavior. Since neither can be changed easily by management, both should be measured and the extent of their influences estimated. General job satisfaction to be a function of a variety of features of the work environment. Although such changes are likely to have a greater immediate impact on various facets of satisfaction than on general satisfaction, eventually their cumulative effects will be reflected in general satisfaction. Moreover, general satisfaction will influence the way in which workers subsequently evaluate specific aspects of their jobs or the work environment (for example, satisfaction with pay, working condition, and supervision) Ironson, G. H., Smith, P. C., Brannick, M. T., Gibson, W. M., & Paul, K. B. (1989). Construction of a job in general scale: A comparison of global, composite, and specific measures. *Journal of Applied Psychology*, 74, 193-200.

The questions related to job in general:

My current Job is:

- 1. Pleasant
- 2. Bad
- 3. Ideal
- 4. Waste of time
- 5. Good
- 6. Undesirable
- 7. Worthwhile
- 8. Worse than most
- 9. Acceptable
- 10. Superior
- 11. Better than most
- 12. Disagreeable
- 13. Makes me content
- 14. Inadequate
- 15. Excellent
- 16. Rotten
- 17. Enjoyable
- 18. Poor

For this research, all managers of CASMI become the sample. The total sample is 76 respondents.

4.5 PROCEDURE

There are three major ways to collect information from respondent

- 1. Have a person ask the question (person-administered survey)
- 2. Have a computer assist or direct the questioning (computer-administered survey)
- Allow respondent to fill out the questionnaire themselves (selfadministered survey).

This study uses self-administered survey.

4.5.1. Person-administered survey

A person-administered survey is one in which an interviewer reads questions to respondent and records his or her answers.

The advantages of person-administered surveys are (Stephen C. Jefferies);

Table 4-1

Advantages and disadvantages person-administered survey

Advantages	Disadvantages/Challenges
Greater confidentiality possible because of personal contact	Fewer subjects can be sampled
Flexibility to give follow-up questions	More expensive because of travel or phone
Opportunity to clarify questions	Need to be able to take notes quickly or get permission to tape
Can judge adequacy (honesty?) of replies	Need to be able to listen to one reply and be ready to follow-up immediately with the next question
Higher return rate	Requires skilled interviewer

4.5.2. Self-administered surveys

A self-administered surveys is one in which the respondent completes the survey on his or her own. The respondents are asked to fill the questionnaire and he/she may decide when questionnaire will be returned. The advantages of self-administered surveys are they are low in cost, they give respondents control and they avoid interviewer evaluation apprehension. The disadvantages of self-administered surveys are there is a possibility the

Universitas Indonesia

respondents will not complete the survey and will answer erroneously, will not respond in a timely manner and respondent misunderstood or do not follow directions.

4.6 VALIDITY AND RELIABILITY

Validity Test

Validity refers to whether the measuring instrument measures what it is supposed to (Bless & Higson-Smith, 1995), or whether the measure reflects the phenomenon the researcher claims to be investigating. Validity can be assessed in different ways: content validity, construct validity and criterion-related validity (Cresswell, 2003).

Content validity

Content validity of a measuring instrument reflects the extent to which the items measure the content they were intended to measure (Cooper & Schindler, 2003). It must therefore provide adequate coverage of the questions guiding the research.

Criterion -related validity

Criterion-related validity reflects the extent to which measures can successfully predict an outcome and how well they correlate with other instruments (Cooper & Schindler, 2003).

Reliability Test

Reliability is the consistency of a set of measurements or measuring instrument, often used to describe a test. In this study, it was impractical to conduct a test-retest measure of reliability as it likely would have produced unwanted resistance by respondents. Considering the complexity and subjectivity of the constructs for this study, the most appropriate method to asses' reliability was by using the Cronbach's Alpha internal- consistency methods. Because the Cronbach's Alpha coefficient gives an estimate of proportion of the total variance that is not due to error, it provides a corresponding measure of the reliability of

Universitas Indonesia

the scale (Oppenheim, 1992). The scale of Cronbach' Alpha base on Triton 2006 is below:

Cronbach's Alpha Scale	Definition
0.00-0.20	not reliable
0.21-0.40	slightly reliable
0.41-0.60	quite reliable
0.61-0.80	reliable
0.81-1.00	very reliable

Table 4-2			
Cronbach's	Alpha	Scale	

Reliability refers to the consistency of measures (Bless & Higson-Smith, 1995). An instrument which therefore produces different scores every time it is used, has low reliability. According to Spector (1997), there are two types of reliability estimates that are important when evaluating a scale, internal consistency and test-retest reliability.

Internal consistency reliability

Internal consistency refers to whether items are consistent across different constructs (Cresswell, 2003). It therefore looks at how well items of a scale relate to one another. According to Spector (1997), "the widely accepted minimum standard for internal consistency is .70."

Test-retest reliability

Test --retest reliability reflects "the stability of a scale over time" (Spector, 1997). This means that if the same test is being administered a second time to the same subjects over a period of time, and it yields the same results, it is considered to have test-retest reliability.

ł

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

Job

Table 4-3

Validity test of job

KMO and Bartlett's Test

Bartiett's T Sphericity	est of Ap Df Sig		403.689 91 .000
	Compo	nent Matrix(a)	
		Component	
	JOB1	.589	
	JOB3	,556	
	JOB4	.503	
	JOB5	.534	
	JOB6	.573	
	JOB7	.557	
	1089	.685	
	JOB10	.679	
	JOB11	.676	
	JOB14	.724	
	JOB15	.676	100 C
and the second	JOB16	.517	
	JOB17	.605	
	JOB18	.755	States

a 1 components extracted.

All of the questions above have a component matrix > 0.5, so the average perception of respondents about that questions are valid.

From KMO and Bartlett's Test, Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.793 > 0.6 with significance level 0.000 < 0.05, so the variable is valid to construct the correlation.

Universitas Indonesia

From reliability test, cronbach's alpha of job dimension is 0.8669. This result means the various test questions measure a unitary construct or the correlation of instruments already qualified because the alpha is greater than 0.6, so the reliability is reliable.

Pay

Table 4-4

Validity test of pay

iser-Meyer-O	kin Measure	or sempang woedor	эсу.	.774
rtlett's Test o	Appr	Approx. Chl-Square		120.481
hericity	df	di		15
	Sig.	Sig.		.000
F	component M		7	
	Comp	onent		
PAY	Comp 1	onent ,577		
PAY	Comp 1 2 3	onent		
PAY	Comp 2 3 4	onent .577 .639	1	
PAY PAY PAY	Comp - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	onent .577 .639 .764	6	

All of the questions above has a component matrix > 0.5, so the average perception of respondents about that questions are valid.

From KMO and Bartlett's Test, Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.774 > 0.6 with significance level 0.000 < 0.05, so the variable is valid to construct the correlation.

From reliability test, cronbach's alpha of pay dimension is 0.7915. This result means the various test questions measure a unitary construct or the correlation of instruments already qualified because the alpha is greater than 0.6, so the reliability is reliable.

Promotion

Table 4-5

Validity test of promotion

KMO and Bartlett's Test

Kalser-Meyer-Olkin	Measure of Sampling Adequacy.	.791
Bartlett's Test of	Approx. Chi-Square	175.801
Sphericity	đf	28
	Sig.	.000

Component Matrix

	Component	
L	1	
PRO	1 .76	5
PRO	2 .60:	э
PRO	3 ,56:	2
PRO	4 .61	7
PRO	5 .71:	2
PRO	6 .693	9
PRO	7 .60	€
PRO	9 .74	5

Extraction Method: Principal Component Analysis. a. 1 components extracted.

All of the questions above has a component matrix > 0.5, so the average perception of respondents about that questions are valid.

From KMO and Bartlett's Test, Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.791 > 0.6 with significance level 0.000 < 0.05, so the variable is valid to construct the correlation.

From reliability test, cronbach's alpha of promotion dimension is 0.8181. This result means the various test questions measure a unitary construct or the correlation of instruments already qualified because the alpha is greater than 0.6, so the reliability is reliable.

Supervision

Table 4-6

Validity test of supervision

KMO and Bartlett's Test

Kaiser-Meyer-Olkin I Adequacy.	Measure of Sampling	.786
Bartlett's Test of	Approx. Chi-Square	205.705
Sphericity	Df	15
	Sig.	.000

Component	Matrix(a)
-----------	-----------

		
		Component
		1
	SUP11	.759
100	SUP12	.794
	SUP13	.811
	SUP14	.901
	SUP15	.588
	SUP18	.563

Extraction Method: Principal Component Analysis. a 1 components extracted.

All of the questions above has a component matrix > 0.5, so the average perception of respondents about that questions are valid.

From KMO and Bartlett's Test, Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.786 > 0.6 with significance level 0.000 < 0.05, so the variable is valid to construct the correlation.

From reliability test, cronbach's alpha of supervision dimension is 0.8316. This result means the various test questions measure a unitary construct or the correlation of instruments already qualified because the alpha is greater than 0.6, so the reliability is reliable.

57

Working Relations

Table 4-7 Validity test of working relations

KMO and Bartlett's Test

Kalsar-Møyer-Olkin	Measure of Sampling Adaquacy.	.060
Bartlett's Test of	Approx. Chi-Square	485.089
Sphericity	df	105
	Sig.	.00D

		Component	
		N_1 Ø	
	WRE1	.506	
	WRE2	.767	
	WRED	.661	
	WRE5	.545	All the second s
	WRE6	.661	
1.000	WRE7	.529	
	WRE9	.699	
1000	WRE10	.564	
	WRE11	.504	
	WRE12	.842	
	WRE13	.656	
	WRE14	.658	
	WRE15	.566	
	WRE16	.769	
	WRE18	.571	

All of the questions above has a component matrix > 0.5, so the average perception of respondents about that questions are valid.

From KMO and Bartlett's Test, Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.860 > 0.6 with significance level 0.000 < 0.05, so the variable is valid to construct the correlation.

From reliability test, cronbach's alpha of working relations dimension is 0.8909. This result means the various test questions measure a unitary construct or the correlation of instruments already qualified because the alpha is greater than 0.6, so the reliability is reliable.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

Job in General/General Job Satisfaction

Table 4-8

Validity test of general job satisfaction

KMO and Bartlett's Test

Kaiser-Meyer-Olkin M Adequacy.	.858	
Bartiett's Test of	Approx. Chi-Square	465.357
Sphericity	Df	66
	Sig.	.000

	Component		
JG1	.687		
JG2	.664		
 JG4	.698		
JG6	.823		
JG7	.668		
JG8	.679		
JG9	.599		
JG12	.772		
JG14	.800		
JG16	.750		
JG17	.593	and the second	
JG18	.715		

All of the questions above has a component matrix > 0.5, so the average perception of respondents about that questions are valid.

From KMO and Bartlett's Test, Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.858 > 0.6 with significance level 0.000 < 0.05, so the variable is valid to construct the correlation

From reliability test, cronbach's alpha is 0.9070. This result means the various test questions measure a unitary construct or the correlation of instruments already qualified because the alpha is greater than 0.6, so the reliability is reliable.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

4.7 STATISTICAL TECHNIQUES

4.7.1. Descriptive statistics

Descriptive statistics provide a statistical summary of the data which has been collected. De Vos (1998, p. 203) states that "the purpose of descriptive statistics is to reduce data to an intelligible and interpretable form so that the relations of research problems can be studied, tested and conclusions drawn." The descriptive statistics considered appropriate for this research included frequencies, percentages, means, and standard deviations. Data analysts must begin with a visual inspection of data to ensure that assumptions are not flawed (Cooper & Schindler, 2003). The present study will provide a visual representation of data in graphical and tabular format.

Frequencies and percentages

Frequencies and percentages are useful for arranging data either in graphical and tabular format. The frequencies are used in the present study to display the total number of observations for all dimensions of job satisfaction and general job satisfaction.

Percentages provide information on the percentage of respondents within each of the biographical variables, for example, the percentage of males compared to females participating in the study.

Mean

The mean is one of the common measures of central tendency and reflects the arithmetic average of frequency distributions (Hussey & Hussey, 1997). Central tendency measures can be used to summarize information to better understand it.

Standard Deviation

The standard deviation is a common measure of dispersion, which describes the tendency for sample responses to depart from the average data values (Hair et al., 2003). The standard deviation gives a measure of the spread of the distribution of data.

€

4.7.2 Inferential statistics

Inferential statistics enable the researcher to draw conclusions about a population from a sample (Hair et al., 2003). The inferential statistics that were used for the present study included Independent sample t-test, Analysis of Variance (ANOVA) and Multiple Regression Analysis.

Independent Samples T Test

A *t*-test is any statistical hypothesis test in which the test statistic has a Student's *t* distribution if the null hypothesis is true. It is applied when the population is assumed to be normally distributed but the sample sizes are small enough that the statistic on which inference is based is not normally distributed because it relies on an uncertain estimate of standard deviation rather than on a precisely known value.

Analysis of Variance (ANOVA)

According to Tredoux and Durrheim (2002, p. 254), "ANOVA is used to test for differences between the means of more than two groups, and can be used in designs with more than one independent variable," In the present study, ANOVA was used to test for differences in job satisfaction related to five facets of job satisfaction based on the biographical characteristics of respondents.

Multiple Regression Analysis

Hair et al. (2003, p. 290) state that "regression analysis is perhaps the most widely applied data analysis technique for measuring linear relationships between two or more variables." The degree of confident of this regression is 95% or statistically significant at the 5% level. The data will be accurate if assymp sig is less than 0.05. It means significant difference is lower than 5% or contingency

ⁱ In terms of the present study, multiple regression analysis was used to predict whether the independent variables job, pay, promotion, supervision, and working relations contribute to predicting general job satisfaction.

Table 4-9

Hypotheses test with $\alpha = 0.05$

Hypotheses	Statement
ĦI	Job has a significant effect to general job satisfaction
H2	Pay has a significant effect to general job satisfaction
H3	Promotion has a significant effect to general job satisfaction
H4	Supervision has a significant effect to general job satisfaction
Н5	Working Relations have a significant effect to general job satisfaction

CHAPTER 5 RESULTS

5.1 INTRODUCTION

In this section the results of the empirical analysis are reported and presented. The presentation proceeds with an analysis of the descriptive statistics on the variables under consideration.

The statistical program used for the analyses and presentation of data in this research is the Statistical Package for the Social Sciences (SPSS) version 11.5. The current chapter outlines the results obtained in the study and provides a comprehensive discussion of these results. The descriptive statistics are presented for the characteristics of the sample. Multiple regressions will be used for the relationship between factors to general job satisfaction.

5.2 RESULTS

5.2.1 Respondents

This section shows the descriptive statistics on the basis of the demographic data, such as gender, age, education background, working period, and marital status.

Respondents of this research are all managers in CASMI consisting of 51 branch managers and 25 managers from head office.

Gender

TABLE 5-1 GENDER

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Male	68	89.5	89.5	89.5
	Female	8	10.5	10.5	100.0
	Total	76	100.0	100.0	

From total 76 employees completed the research, they consisted of 68 males (89.5 percent) and 8 females (10.5 percent).

ŧ,

Education

TABLE 5-2 EDUCATION

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Junior High School	2	2.6	2.6	2.6
]	Senior High School	17	22.4	22.4	25.0
	Diploma	11	14.5	14.5	39.5
1	Bachelor	42	55.3	55.3	94.7
4	Master	4	5,3	5.3	100.0
	Total	76	100.0	100.0	

About their educational background, 2 employees (2.6 percent) are from junior high school, 17 employees (22.4 percent) are from senior high school, 11 employees (14.5 percent) are from diploma, 42 employees (55.3 percent) are from bachelor, and 4 employees (5.3 percent) are from master degree.

TABLE 5-3 AGE

		Frequency	Percent	Valid Percent	Cumulative Percent
Vəlid	25 - 34 Years Old	22	28.9	28.9	28.9
	35 - 44 Years Old	44	57.9	57.9	86.8
	45 - 54 Years Old	10	13.2	13.2	100.0
	Total	76	100.0	100.0	

From all respondents, 22 employees between 25 - 34 years old (28.9 percent), 44 employees between 35 - 44 years old (57.9 percent), 10 employees between 45 - 54 years old (13.2 percent).

TABLE 5-4 WORKING PERIOD

		Frequency	Percent	Valid Percent	Cumulative Percent
Velid	1 - 3 Year(s)	1	1.3	1.3	1.3
	3 - 5 Years	5	6.6	6,6	7.9
	5 - 7 Years	14	18.4	18.4	26.3
	> 7 Years	56	73.7	73.7	100.0
	Total	76	100.0	100.0	

Universitas Indonesia

ļ.

From all respondents, about 56 employees (73.7 percent) have worked with the company for more than seven years, 14 employees (18.4 percent) have worked between 5 to 7 years, 5 employees (6.6 percent) have worked between 3 to 5 years, and only 1 employee (1.3 percent) have worked between 1 to 3 years.

TABLE 5-5
STATUS

		Frequency	Percent	Velid Percent	Cumulative Percent
Valid	Married	70	92.1	92.1	92.1
	Single	4	5.3	5.3	97.4
	Widower	2	2.6	2.6	100.0
	Total	76	100.0	100.0	

About their status, 70 employees (92.1 percent) are married, 4 employees (5.3 percent) are single, and 2 employees (2.6 percent) are widower.

5.2.2 Descriptive Analysis

Based on the option of the answer in the questionnaire, the author makes the category.

Table 5-6

The option for the answer

Code	Descriptive
1	Strongly Disagree
2	Disagree
3	Agree
4	Strongly Agree

Table 5-7

The category from the answer

Range	Descriptive
1 - 1.75	Very Dissatisfied
1.76 - 2,50	Dissatisfied
2.51 - 3.25	Satisfied
3.26 - 4.00	Very Satisfied

Table 5-8 Descriptive (Job)

	Descriptive S			
	N	Mean	Std. Deviation	
JOBI	76	3.08	.688	
JOB3	76	2.78	.506	
JOB4	76	3.12	.588	
J085	76	3.04	.255	
JOBE	76	3.03	.489	
JOB7	76	3.03	.461	
JOB9	76	3.01	,503	
JOB10	76	3,28	.532	See. All
JOB11	76	3.41	.546	
JOB14	76	3.29	.485	
JOB15	76	3.29	.585	
JOB16	76	3.24	.709	
JOB17	76	3.20	.401	
JOB18	76	3.25	.493	S
JOB_AVE	76	3.14	.320	
Valid N (listwise)	76			222.23

From descriptive statistic, the mean value of job is 3.14, it means that the satisfaction level related to job is "satisfied".

Table 5-9 Descriptive (Pay)

	N	Mean	Std. Deviation				
PAY2	76	2,33	.551				
PAY3	76	2.43	.618				
PAY4	76	2.80	.633				
PAY6	76	2.63	.690				
PAY8	76	2.47	.599				
PAY9	76	2.43	.680				
PAY_AVE	76	2.52	.441				
Velid N (listwise)	76						

Descriptive Statistics

From descriptive statistic, the mean value of pay is 2.52, it means that the

satisfaction level related to pay is "satisfied".

Table 5-10 Descriptive (Promotion)

Descriptive Statistics						
	N	Mean	Std. Deviation			
PR01	76	2.84	.612			
PRO2	76	2,67	.575			
PR03	76	2.96	.474			
PRO4	76	3,24	.513			
PR05	76	2.96	.445			
PRO6	76	2.75	.569			
PR07	76	2.63	.562			
PRO9	76	2.76	.513			
PRO_AVE	76	2.85	.355			
Valid N (listwise)	76					

From descriptive statistic, the mean value of promotion is 2.85, it means that the satisfaction level related to promotion is "satisfied".

Table 5-11 Descriptive (Supervision)

	N	Mean	Std. Deviation
SUP11	76	3.11	.531
SUP12	76	2.99	.447
SUP13	76	2.95	.514
SUP14	76	3,14	.559
SUP15	76	2.92	.425
SUP18	76	3.17	.575
SUP_AVE	76	3.02	.431
Valld N (fistwise)	76		

Descriptive Statistics

From descriptive statistic, the mean value of supervision is 3.02, it means that the satisfaction level related to supervision is "satisfied".

	N	Maan	Std. Deviation
WREI	76	3.14	.453
WRE2	76	3,08	.425
WRE3	76	2.86	.559
WRE5	76	3.25	.436
WRES	76	3.04	.344
WRE7	78	2.78	,506
WRE9	76	3.20	.\$17
WRE10	76	2.97	,461
WRE11	76	2.89	.473
WRE12	76	3.14	.453
WRE13	76	3.00	.365
WRE14	75	3,08	.483
WRE15	76	2.96	.361
WRE16	76	2.92	.455
WRE18	76	2.96	.445
WRE_AVE	75	3.01	265
Valid N (((stwise)	76		

Table 5-12 Descriptive (Working Relations)

From descriptive statistic, the mean value of working relations is 3.01, it means that the satisfaction level related to working relations is "satisfied".

Descriptive Statistics							
	N	Mean	Std. Deviation				
JG1	76	3,20	.433				
JG2	76	3.30	.462				
JG4	76	3.17	.444				
JG6	76	3.20	.482				
JG7	76	3.29	.457				
jga	76	3.49	.503				
JG9	76	3.08	.271				
JG12	76	3,14	.509				
JG14	76	3.21	.442				
JG16	76	3.30	.490				
JG17	76	3.12	,431				
JG18	76	3.18	.509				
JG_AVE	76	3.22	.320				
Valki N (lietwise)	76						

Table 5-13 Descriptive (General Job Satisfaction)

From descriptive statistic, the mean value of general job satisfaction is 3.22, it means that the satisfaction level related to general job satisfaction is "satisfied".

ī

5.2.3 Compare Means Analysis

5.2.3.1 Independent Samples T Test

In Independent T Test, the variables are Job, Pay, Promotion, Supervision, Working Relations, and General Job Satisfaction compare to gender. This analysis shows if there is difference between level of male and female managers.

Table 5-14 Descriptive Group Statistic (Gender)

Group Statistics

					and the second se
	GENDER	N	Mean	Std. Deviation	Std. Error Mean
JOB_AVE	Male	68	3.13	.320	.039
	Female	8	3.25	.315	.111
PAY_AVE	Male	68	2.50	.435	.053
	Female	8	2.65	.500	.177
PRO_AVE	Male	68	2.86	.366	.044
	Female	8	2.81	.259	.091

Group Statistics

		¢rodp.	orditation			
	GENDER	N	Mean	Std. Devlation	Std. Error Mean	
SUP_AVE	Male	68	2.99	.422	.051	
	Female	8	3.27	.454	.160	
WRE_AVE	Male	68	3.01	.288	.035	
	Female	8	3.03	.278	.098	
JG_AVE	Male	68	3.20	.307	.037	100
22	Female	8	3.39	.403	.143	-

From the table, we find the result :

For Male, values of mean are 3.13 (Job), 2.50 (Pay), 2.86 (Promotion), 2.99 (Supervision), 3.01 (Working Relations), 3.20 (Job in General). For Female, vales of mean are 3.25 (Job), 2.65 (Pay), 2.81 (Promotion), 3.27 (Supervision), 3.03 (Working Relations), 3.39 (General Job Satisfaction).

From the result, female managers have higher than male managers for all dimensions except for promotion dimension. For promotion, in current condition, the company focuses on male managers because it is easier to promote and move male managers than female managers. For female managers, little difficult to move to other city because they have to stay with their husband and family, it makes there are more promotion opportunities for male managers.

Table 5-15 Levene-Test (Gender)

		Inde	pendent Sa	mpius Test				
	#** ·····		JOE	AVE	PAY AVE		PRO_AVE	
			Equal Venerovi Alsuned	Equal yestances not assumed	Squei verlences exsumed	Equal starbarces rect espurated	Equal variancer avalancer	Equil valances noi assumed
LANNOR & TANK PUR	ř.		.167		_209		1.332	
Equality of Videocers	9g.		.684		,649		220	
New for Equality of	5		.954	993	.358	-,778	.330	
Mana	đ		74	1 0707	74	\$,300	74	10,632
N	Alg. (2-tailed)		.525		,385	.458	.742	.873
	High Difference		-,12	32	-,14	-,74	.04	الم
	500, Enar Difference		.120	ð14,	.165	.154	.134	.102
	95% Confidence Internal	Lower	- 395	-385	-,472	- 556	- 122	-,161
	of the Difference	Wegenet	.121	,150	.188	275	.319	.269

			<u>A</u> LB	AVE	WRE	AVE		AVE
			Equa) Valibricas Basulasco	Equal variances net assumed	Equal variances essumed	Equal variances mx assumed	Equal valighest assumed	Equal variances not accomad
Levens's Test for	F		.919		-000,		2.800	
Equality of Visiteinces	Sig.		.341		.994		.098	
test for Equality of	t		+1.783	~1.681	201	207	~1.824	-1.22
Aeana	đ	~ ₹ 7 <i>β</i>	74	8,485	74	6.862	74	7.98
	Sig. (2-miled)		.075	.129	.641	BAY	.132	.25
Std. Error Officence Std. Error Officence 93% Confidence Interval Lower of the Difference Upper	idean Délarance		-35	28	-,72	02	s.18	-,1
	Stil, Error Officiance	V 3 8	, 1 84	.158	.107	. 104	.119	.14
	95% Confidence Interval	LOWEI	359	687	-236	×	-,417	52
	Upper	ECO.	.101	.197	,215	.656	,B	

From F test, we get the result :

For Job variable, equals variances assumed 0.167 with significant value 0.684 > 0.05, so variance between male and female for job are same.

For Pay variable, equals variances assumed 0.209 with significant value 0.649 > 0.05, so variance between male and female for pay are same.

For Promotion variable, equals variances assumed 1.532 with significant value 0.220 > 0.05, so variance between male and female for promotion are same.

For Supervision variable, equals variances assumed 0.919 with significant value 0.341 > 0.05, so variance between male and female for supervision are same.

For Working Relations variable, equals variances assumed 0.000 with significant value 0.994 > 0.05, so variance between male and female for working relations are same.

Universitas Indonesia

For General Job Satisfaction variable, equals variances assumed 2.800 with significant value 0.098 > 0.05, so variance between male and female for general job satisfaction are same.

From the t test, the result shows there is no variance between male and female for all dimensions of job satisfaction.

5.2.3.2 Oneway ANOVA

The Analysis Of Variance (or ANOVA) is a powerful and common statistical procedure in the social sciences. It can handle a variety of situations

Age

Table 5-16 Test of Homogeneity of Variances (Age)

	Levene Statistic	df1	df2	Sig.
DB_AVE	1.076	2	73	.346
AY_AVE	1.004	2	73	.371
RO_AVE	.883	2	73	.418
UP_AVE	1.881	2	73	.160
VRE_AVE	1.521	2	73	.225
G_AVE	1.412	2	73	.250

From test of homogeneity of variance, we find that value of Levene Statistic is 1.076 with significant level 0.346 (Job), 1.004 with significant level 0.371 (Pay), 0.883 with significant level 0.418 (Promotion), 1.881 with significant level 0.160 (Supervision), 1.521 with significant level 0.225 (Working Relations), and 1.412 with significant level 0.250 (General Job Satisfaction).

From this test, all significant level is more than 0.05, it means that all variables have the same variance, so there is no significant impact of age to all variables.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

Table S-17 Value of Mean Test (Age)

		Sum of Squares	đť	Meen Square	F	Sig,
JOB_AVE	Between Groups	.019	2	.009	680.	.916
	Within Groups	7.654	73	.105		
	Total	7.673	75		ļ	
PAY_AVE	Between Groups	1.538	2	.769	4.302	.017
	Within Groups	13.050	73	.179	1	
	Total	14,588	75			
PRO_AVE	Between Groups	.248	2	.124	.984	.379
	Within Groups	9.211	73	.126		
	Total	9,460	75			
SUP_AVE	Between Groups	.159	Ž	.080	.423	.657
	Within Groups	13.762	73	.189		
	Total	13.921	75			
WRE_AVE	Between Groups	,137	2	.069	.837	.437
	Within Groups	5,972	73	.082		
	Total	6.109	75	1		
JG_AVE	Between Groups	.147	2	.074	.712	,494
	Within Groups	7.536	73	.103		
	Total	7.683	75		-65	

ANOVA

For value of mean, F = 0.089 with significant level 0.915 (Job), F = 4.302 with significant level 0.017 (Pay), F = 0.984 with significant level 0.379 (Promotion), F = 0.423 with significant level 0.657 (Supervision), F = 0.837 with significant level 0.437 (Working Relations), F = 0.712 with significant level 0.494 (General Job Satisfaction). From this result, we find that the value of mean for job, promotion, supervision, working relations, and job in general are the same, but for pay is different. It means that age influences pay, different group of age will have different impact of pay, different group of age will have different satisfaction level of pay. But for others variable, there is the same between them, they are no significant impact of age.

Universitas Indonesia

Table 5-18 Post Hoc Test (Age)

**	
Multiple	Comparisons

Dependent				Mean Difference	Std.		95% Confide	ince interval
Variable		(I) AGE	(J) AGE	(N)	Error	Sig.	Lower Bound	Upper Bound
JOB_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	,03	.085	.971	~ 18	.2
			45 - 54 Years Old	03	.123	.976	32	.2
		35 - 44 Years Old	25 - 34 Years Old	02	.085	.971	22	
			45 - 54 Years Old	05	.113	.915	32	.2:
		45 - 54 Years Old	25 - 34 Years Old	.03	.123	.978	27	.3
			35 - 44 Years Old	.05	.113	,915	- 23	, z ,
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	.02	.085	1.000	19	.2
			45 - 54 Years Old	03	.123	1,000	-,23	.20
		35 - 44 Years Old	25 - 34 Years Old	-,02	.085	1.000	23	.19
			45 - 54 Years Old	05		1.000	32	.23
		45 - 54 Years Old	25 - 34 Years Old	.0 <u>.</u>	.123	1.000	28	.33
			35 - 44 Years Old	.05	.113	1.000	23	.32
PAY_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	28	.110	,053	-,53	.00.
			45 - 54 Years Old	42*	.161	.028	81	04
		35 - 44 Years Old	25 - 34 Years Old	.28	,110	.053	.00	.53
		72 B	45 - 54 Years Old	16	.148	.524	52	.19
		45 - 54 Years Old	25-34 Years Old	.42	.161	.028	.04	.61
			35 - 44 Years Old	.18	.148	.524	- 19	.52
	Bonterroni	25 - 34 Years Old	35 - 44 Years Old	26	.110	.062	53	.01
			45 - 54 Years Old	.42	.161	.032	-,82	03
		35 - 44 Years Old	25-34 Years Old	.28	.110	.062	01	.53
	1 1 2.		45 - 54 Years Old	- 10	.148	.839	-,52	.20
		45 - 54 Years Old	25-34 Years Old	.42'	,161	.032	.03	.8.
2.01			35 - 44 Years Old	.16	.148	.839	20	.52

	<u> </u>	<u></u>	Multiple Con	npattions			-	
Dependent				Mean Difference	Strd.		95% Confidence Interval	
Verlable		(I) AGE	(J) AGE	(ы)	Error	Sig.	Lower Bound	Upper Bound
PRO_AVE	Tukey HSD	29 - 34 Years Old	35 - 44 Years Old	.07	.093	.725	15	.29
		<u></u>	45 - 54 Years Old	~.09	.135	.766	42	.23
		35 - 44 Years Old	25 - 34 Years Old	07	.093	.725	29	.15
			45 - 54 Years Old	17	.124	.384	46	.13
		45 - 54 Years Old	25 - 34 Years Old	.09	.135	.766	23	.42
		1000	35 - 44 Years Old	.17	.124	.384	13	.46
	Bonferroni	25 - 34 Years Old	35 - 44 Yeare Old	.07	.093	1.000	16	.30
		And the second second	45 - 54 Years Old	00	.135	1.000	-,43	.24
		35 - 44 Years Old	25 - 34 Years Old	07	.093	1.000	30	.16
			45 - 54 Years Old	-17	.124	.564	-,47	.14
		45 - 54 Years Old	25-34 Years Old	.09	.135	1,000	24	,43
			35 - 44 Years Old	.17	.124	.584	14	.47
SUP_AVE	Tukey HSD	25 - 34 Yeats Old	35 - 44 Years Old	.00	.113	.999	27	.28
			45 - 54 Years Old	.14	.165	.684	26	,53
		35 - 44 Years Old	25 - 34 Years Old	.00	.113	.899	28	.27
			45 - 54 Years Old	,13	,152	,654	-,23	.50
		45 - 54 Years Old	25 - 34 Years Old	-,14	.165	,684	-,53	.26
			35 - 44 Years Old	-13	.152	.654	- 50	.23
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	.00	.113	1.000	- 27	.28
			45 - 54 Years Old	.14	.158	1.000	- 27	.54
		35 - 44 Yeats Old	25 - 34 Years Old	.00	.113	1,000	-,28	27
			45 - 64 Years Old	.13	.152	1.000	24	.51
		45 - 54 Years Old	28 - 34 Years Old	14	.156	1,000	54	
			35 - 44 Years Old	13	.152	1.000	51	.24

ł

2

Oependers				Mean Difference	5td.		95% Contide	o ce interval
Variatia		(I) AGE	(J) AGE	()-))	Errox	Sig.	Lower Bound	Lipper Bound
WRE_AVE	Tuxey HSD	21 - 34 Years Old	38 - 44 Years Old	08	.576	.632	28	.10
			45 - 54 Years Old	.02	.109	.963	24	.24
		35 - 44 Years Old	23 - 34 Yoors Old	.08	£75	.532	-, tû	,26
			45 - 54 Years Old	čt.	.100	,801	.14	.34
		45- 54 Years Old	25 - 34 Years Old	02	.109	.946	28	.24
			35 - 44 Yans Old	10	.100	<i>.4</i> 491	-,54	.14
	Ronferroni	25-34 YHANE CHI	35 - 44 TAN'S OH	+.08	.075	36.8.	-,26	.10
			45 - 64 Years Old	.02	. 109	1.000	-25	.26
		35-44 Years Ok	25-34 TORY OK	.08	.075	.855	~ 10	.26
			45 - 54 Yeen Old	.10	.100	1.000	15	.34
		45-54 Years Old	25 - 34 Yeare Old	02	.103	1.000	~.28	.25
			35 - 44 Years Old	-, t0	.100	1.000	.34	. 10
X5_AVE	Tukey HSD	25 - 34 Years 010	35 - 44 Years Old	10	.084	.654	×27	.13
			45- 54 Years Old	t4	.120	.506	-,43	.15
		35 - 44 Years Old	25 - 34 Yaana Old	07	.084	.664	×13	27
			45 - 54 Years Old	06	. 113	.843	33	.21
		45 - 54 Years Old	25 - 34 Years Cit	.14	.123	.506	- 1 6	.43
			35 - 44 Years CR0	.05	. 113	.841	• 21	
	Bunferruni	25 - 34 Years Old	35 · 44 Years (Xd	07	.054	1.000	- 24	.13
			45 - 54 Years Old	14	.03	.500	44	,16
	1.1	35 - 44 Yanış Old	25+ 34 Years Ckd	.07	.084	1.000	×1)	.28
	- A -		48 - 54 Years Old	06	.113	1.000	34	.21
		45-54 Years GM	23 - 34 Years Old	.16	.123	008.		_44
			35 - 44 Years Old	.05	.113	1,000	4.21	1.34

Multiple Comparisons

From Post Hoc Tests, we find that age variable only has significant impact on pay variable. The significant different on pay is between group 25 - 34 years old and 45 - 54 years old, mean difference = - 0.42, significant level = -0.028 < 0.05.

Education

Table 5-19 Test of Homogeneity of Variances (Education)

	lest of Hon	nogeneity of	variances	
	Levene Statistic	dft	df2	Sig.
JOB_AVE	1.007	6 4	71	.410
PAY_AVE	.311	4	71	.869
PRO_AVE	1.667	4	71	.167
SUP_AVE	1.826	4	71	.133
WRE_AVE	.952	4	71	.439
JG_AVE	2.242	4	71	.073

From test of homogeneity of variance, we find that value of Levene Statistic is 1.007 with significant level 0.410 (Job), 0.311 with significant level 0.869 (Pay), 1.667 with significant level 0.167 (Promotion), 1.826 with significant level 0.133 (Supervision), 0.952 with significant level 0.439 (Working Relations),

and 2.242 with significant level 0.073 (General Job Satisfaction). From this test, all significant level is more than 0.05, it means that all variables have the same variance, there is no significant impact of education to all variables.

		Sum of Squares	đť	Mean Square	F	Sig.
JOB_AVE	Between Groups	.481	4	.120	1.188	.324
	Within Groups	7.192	71	.101		
	Total	7.673	75			
PAY_AVE	Between Groups	.791	4	.198	1.018	,404
	Within Groups	13.797	71	.194		
100	Total	14.588	75			
PRO_AVE	Between Groups	.562	4	.140	1.120	.354
	Within Groups	8.898	71.	.125		
	Total	9.460	75			
SUP_AVE	Between Groups	.776	4	.194	1.048	.389
	Within Groups	13.145	71	.185		
	Total	13.921	75			
WRE_AVE	Between Groups	.120	4	.030	.354	.840
	Within Groups	5,990	71	.084		
	Total	6,109	75			
JG_AVE	Between Groups	1.290	4	,322	3.581	.010
	Within Groups	6.394	71	.090		
	Total	7.683	75			9

ANOVA

Table 5-20 Value of Mean Test (Education)

For value of mean, F = 1.188 with significant level 0.324 (Job), F = 1.018 with significant level 0.404 (Pay), F = 1.120 with significant level 0.354 (Promotion), F = 1.048 with significant level 0.389 (Supervision), F = 0.354 with significant level 0.840 (Working Relations), F = 3.851 with significant level 0.010 (General Job Satisfaction). From this result, we find that the value of mean for job, pay, promotion, supervision, and working relations are the same, but for general job satisfaction is different. It means that education influences the general job satisfaction, different group of education will have different satisfaction level in general job satisfaction. But for other variables, there is the same between them, they are no significant impact of education.

Universitas Indonesia

			1844 342 #57			NA CANINA KARA		
	() Bil	<u>() 63 y</u>			<u></u>	Lord Edda		
urey HID	3265 BjB 43ust	Swith Bar Street	i.		<i>3</i> 40;	V#1	*	
		ányi-sina ș	-#	i	4 2		ر	
		107+13	1	ac j	366	-55	,	
		Cape: 44	er-		1 2	4.01		
	Certra dan Contra	Julia Ban Canal	~6		æ	-74		
		éspècata;	- 20	.10	270	-c		
		<u><u><u><u></u></u>(arren</u></u>	- 20		200			
		ENGLI M	-,41		242	ا التي ا	*	
	, Mart	AD'S TASS COM	3.	311				
		CANTERN HEAD CONTENT	مر	.194	100 İ	-20		
		3 azreka		.85	305			
		Kiloge a fes		es	10	- जर		
	Carfair.e	Lates Md. Solue	-07		376			
		COVERA AND STREET		2362	340	-		
		Not then		385	303			
						ar i		
	******	- MITCH STREET, COMM					ł	
		THERE BEATTERES			640	10 I		
	10000000				AIC .	-31		
		LANDAN		100	15	-01		
	June man Grans	Ser me dan's Suiters	3.		Lingo			
		Mail (He-S			1250	-51		
		5.4(3%)-PW		21	1000	1010 att		
		Record for		290	1200	4.31		
	SALES FRANCESSE	SALES MARCHINE			1000			
		HULDON A	***					
		i otrasa		.04	— r	-A		
		Ring: Wi	-41		1976			
	the sale	Annue Care	-#	.**	<u>\$78 (</u>	-3%		
	200 , 40 3		3.	a a	1000	-35		
		CAN'D IN TO COURSE	*	.135	X22			
		IFTER		.405	J. 1	-## 1		
		Maps W.	-5B	,es	1,000			
	123928-1	AND BUILDING	-04	335	1200	νĮ.		
		Dena Mari Dava	<u>۳</u>		1200	-20-	2 ·	
		Sigit salate	<u>ه</u> .	.83	- 5	-37		
		Wingers for	6	74I.	\$25	-67-1		
	Time: In	And Bab Soud	ĊĹ,	546.	LØGQ	æ.	È,	
		-24294 Web 04264	.66	36	104	-21		
		Mail catila			1.000	ائڻ.	· · · ·	
		Same H		35	576	-40		

Natipia Compadatoria

Table 5-21 Post Hoc Test (Education)

From Post Hoc Tests, we find that education variable only has significant impact on general job satisfaction. The significant different on general job satisfaction is between group Master Degree and Senior High School, mean difference = 0.48, significance level = -0.043 < 0.05.

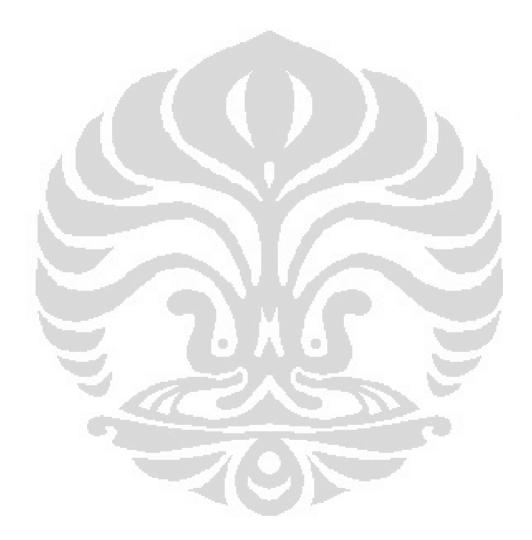

Working Period

Table 5-22 Test of Homogeneity of Variances (Working Period)

	Levene Statistic	df1	df2	Sig.
JOB_AVE	.324	2	73	.724
PAY_AVE	.315	2	73	.731
PRO_AVE	10.288	2	73	.000
SUP_AVE	4.243	2	73	.018
WRE_AVE	.697	2	73	.501
JG_AVE	1.170	2	73	.316

Test of Homogeneity of Variances

Universitas Indonesia

8 = 4. From test of homogeneity of variance, we find that value of Levene Statistic is 0.324 with significant level 0.724 (Job), 0.315 with significant level 0.731 (Pay), 10.228 with significant level 0.000 (Promotion), 4.243 with significant level 0.018 (Supervision), 0.697 with significant level 0.501 (Working Relations), and 1.170 with significant level 0.316 (General Job Satisfaction).

From this test, significant level of promotion and supervision is less than 0.05, it means that promotion and supervision have different variance, there are significant impact of working period to promotion and supervision. But, other variables have the same variance with significant level more than 0.05.

		Sum of Squares	đ	Mean Square	F	Sig.
JOB_AVE	Between Groups	.203	2	.102	.994	.375
	Within Groups	7.470	73	.102		6 - C
	Total	7.673	75			
PAY_AVE	Between Groups	.557	2	.278	1.448	.242
	Within Groups	14,031	73	.192		1
100.63	Total	14.589	75			
PRO_AVE	Setween Groups	.896	2	,448	3,817	.027
	Within Groups	8.564	73	.117		2
1000	Total	9.460	75	6		ł.
SUP_AVE	Between Groups	.864	2	.432	2.415	.096
1	Within Groups	13.057	73	.179		
Sec.	Total	13.921	75			
WRE_AVE	Between Groups	.149	2	.074	.912	.406
	Within Groups	5.961	73	.082		
	Total	6.109	75			
JG_AVE	Between Groups	.114	2	.057	.647	.581
	Within Groups	7.570	73	.104		
	Total	7.683	75			

ANOVA

Table 5-23 Value of Mean Test (Working Period)

For value of mean, F = 0.994 with significant level 0.375 (Job), F = 1.448 with significant level 0.242 (Pay), F = 3.817 with significant level 0.027 (Promotion), F = 2.415 with significant level 0.096 (Supervision), F = 0.912 with significant level 0.406 (Working Relations), F = 0.547 with significant level 0.581 (General Job Satisfaction). From this result, we find that the value of mean for job, pay, supervision, working relations and general job satisfaction are the same, but for promotion is different. It means that working period influences the promotion, different group of working period will have different impact of

Universitas Indonesia

ann 8 a an 18

promotion, different group of working period will have different satisfaction level of promotion. But for other variables, there is the same between them, they are no significant impact of working period.

				Mean Difference			DSW. Control	ence Intervol
Dependent Vollable		(I) WORKPER	(J) WORKPER		Std. Enter	Sig.	LowerBound	Upper Boun
PRO_AVE	Tukey HSD	0 ~ 5 years	5 - 7 years	,46*	.157	.020	.05	.8.
		1812	≫7 уеот	.31	.147	.093	×,04	.0
		5-7 years	Q-5 years	×46*	.167	.020	*,\$6	×,0
	1000		ə 7 y a ana 🔰	15	.101	.315	-39	
	1.1	» ž yabte	0+5 years	-,31	.347	£693.	68	۵.
		()	5-7 yeans	.15	.102	.315	~.10	.3
	Bantarroni	0 = 5 years	5 - I yeans	.46*	187	.022	.05	8 ,
			≥ 7 yaan	.31	.147	.113		.6
		5-7 years	0 - 5 yeana	~46*	.15"	<u> 1022</u>	87	×.D
			÷7.ystora	-,15	.102	.445	.40	.1
		> 7 years	ũ×õ years	-,3t	.147	.113	4.67	ő. I
			5-7 years	.15	.102	.845	~10	د, ا
SUP_AVE	Tuxey HSD	G = 5 years	5 - 7 years	-32	.206	.271	82	.1
			2 Z yskin	40	.182	.082	∵.8 ,-	۵,
		5 -7 years	0-5 years	.32	.206	.271	. IT	.0
			> 7 years	-07	.128	.627	38	.2
		> 7 years	0 - 6 years	.40	.182	.082	+.04	.4
		1994 V	5×7 years	.07	_126	.827	.23	.3
	Banteironi	0 - 5 years	3-7 years	32	.205	.371	Ca	1.
			≥ 7 years	40	.182	.098	84	<u>0.</u>
		5-7 years	G-3 years	.32	.206	.371	+, 1 8	8.
100 million			» ? years	07	.126	1.000	- 38	<u>۹</u>
		* 7 years	0-5 years	.40	.182	.09 8	05	.8
			5-7 years	.07	.126	1,000	24	.3

Table 5-24 Post Hoc Test (Working Period)

* The mean difference is significant at the .05 level.

From Post Hoc Tests, we find that working period only has significant impact on promotion. The significant different on promotion is between group 0 - 5 years and 5 - 7 years, mean difference = 0.46, significant level = -0.020 < 0.05. And between 5 - 7 years and 0 - 5 years, mean difference = -0.46, significant level = 0.022 < 0.05.

Status

	Levene Statistic	df1	df 2	Sig.
JOB_AVE	2.455	2	73	.093
PAY_AVE	.537	2	73	.587
PRO_AVE	6.274	2	73	.003
SUP_AVE	.678	2	73	.511
WRE_AVE	.744	2	73	.479
JG_AVE	.010	2	73	.990

Table 5-25 Test of Homogeneity of Variances (Status)

Test of Homogeneity of Variances

From test of homogeneity of variance, we find that value of Levene Statistic is 2.455 with significant level 0.093 (Job), 0.537 with significant level 0.587 (Pay), 6.274 with significant level 0.003 (Promotion), 0.678 with significant level 0.511 (Supervision), 0.744 with significant level 0.479 (Working Relations), and 0.010 with significant level 0.990 (General Job Satisfaction). From this test, significant level of promotion is less than 0.05, it means that promotion has different variance, there is significant impact of status to promotion. But, other variables have the same variance with significant level more than 0.05.

Table 5-26 Value of Mean Test (Status)

	S	\cup \cap	ANOVA		Sec	
		Sum of Squares	df	Mean Square	F	Sig.
JOB_AVE	Between Groups Within Groups Total	,053 7.621 7.673	2 73 75	.026 .104	.262	.778
PAY_AVE	Between Groups Within Groups Total	1.249 13.339 14.588	2 73 75	.625 .183	3.418	.038
PRO_AVE	Between Groups Within Groups Total	.405 9.054 9.460	2 73 75	.203 .124	1.634	.202
SUP_AVE	Between Groups Within Groups Total	.114 13.807 13.921	2 73 75	.057 .189	.302	.741
WRE_AVE	Batwaan Groups Within Groups Total	.028 6.082 6.109	2 73 75	.014 .083	.168	.846
JG_AVE	Between Groups Within Groups Total	.212 7.472 7.683	2 73 75	.106 .102	1.034	.361

Universitas Indonesia

For value of mean, F = 0.252 with significant level 0.778 (Job), F = 3.418 with significant level 0.038 (Pay), F = 1.634 with significant level 0.202 (Promotion), F = 0.303 with significant level 0.741 (Supervision), F = 0.168 with significant level 0.846 (Working Relations), F = 1.034 with significant level 0.361 (General Job Satisfaction). From this result, we find that the value of mean for job, promotion, supervision, working relations and general job satisfaction are the same, but for pay is different. It means that status influences the pay, different group of status will have different impact of pay, different group of status will have different satisfaction level of pay. But for other variables, there is the same between them, they are no significant impact of status.

Multiple Comparisons								
			<u></u>	Mean Difference			95% Control	ance Interval
Cependent Vailable		- III STATUS	(J) STATUS				Lower Bound	Upper Bound
JOB_AVE	Tukey HSD	Married	Single	05	.168	.950	.45	,
			Widower	.15	232	.804	-,41	.7
		Single	Mariled	.05	801_	,950	-,35	4
Sec. 1			¥¥#Sow#F	.20	280	.783	-,47	,e
		Widower	Mansied	15	.232	,604	-,70	.4
			Single	- 20	.250	.763	×.87	. A
	Bonferriont	Married	Single	- 05	,165	1,000	-, 4 8	,3
			Widowei	.15	.232	1,000	42	.,
		Single	Married	.05	.168	1,009	39	<u>م</u>
			Widower	.20	.250	1,900	49	E .5
		Widowe:	Mattied	- 15	.232	1.000	71	_4
			Single	20	.280	1.000	69	ه.
PAY_AVE	Tukey HSD	Mairied	Single	.51	.220	.057	.Dt	1.0
	1000		Widowar	.39	.307	.418	.35	1.1
	1 11 11	Single	Matried	51	.229	.057	-1.04).
1000000000			Widower	-,13	.370	.909		.7
	and the owner where the party of the party o	Widower	Married	. 39	.307	.419	-1.12	.3
10 million - 10 mi			Single	.13	.370	.939		1,0
	Bonfeironi	Matried	Single	.51	.220	.087	03	1.0
			V¥ldowar	.39	.307	.624	-,30	1,1
		Single	Married	51	.220	.097	-1.95	.0
	1.00		Widower	13	.370	1,000	-1,03	.7
		Widower	Mauried	39	.307	.629	-1.14	.3
			Single	.13	.370	1.000		1.0

Table 5-27 Post Hoc Test (Status)

d.

				Méan Difference			95% Confid	anca (nterva)
Dependent Verlishie		(I) STATUS	(J) STATUS	(17)	Sel Error	Sig.	Lawet Bound	Upper Bound
PRQ_AVE	Tukey HSD	Mairies	Single	.25	.181 }	.361		.64
			Widower	.31	.253	.439	- ,20	.9.
		Single	Married	25	.181	.381	66	.14
			Widower	.06	.305	.977	677	.71
		Widower	Married	-,31	253	.439	•.01	.2
			Single	-,06	305	.977	72	.8
	Bonfercont	Married	Single	.25	.181	.524	20	.85
			Widowar	.31	.253	396.	.91	, 9
		Single	Married	25	.181	.524	69	.2
			Widowa	.06	.305	1.000		.ë
		Wiktowal	Married	-,31	.253	,658	-,93	Ē,
			Siogle	06	.305	1.000	r8,	.a.
SUP_AVE	Tukey HSD	Mariled	Single	11	.224	.679	64	.4
			Widower	.18	.312	.827	~56	(.¢
	10000	Singia	Moried	.11	.224	.878	43	đ ,
			Wittower	.29	.377	.720	61	1.1
		Widower	Mariled	·.1B	.312	.627	93	,¢
\mathcal{A}			Single	29	.377	.720	-1.19	.\$
	Sonferrori	Married	Single	11	.224	1.000	66	
			Wiscower	.19	.312	1,000	58	. 9 4
		Single	Mariled	.11	.224	1.000	44	\$,
			Widower	.29	.377	1.000	~83	1.2
		Wittower	Married	18	.312	1.000	95	l .*
			Single	- 23	.377	1.000	-1.21	.6.

Multiple Comparisons

Multiple Compazisons								
				Mean Differênce			95% Confid	nce lobicy si
Dependent Vallable		II STATUS	(J) STATUS	(1-5)	Sid. Enor	Sig.	Lawer Bound	Upper Bound
WRE_AVE	Tukey HSD	Mariled	Single	.02	.148	.992	4.34	,07
			Witkowar	.12	.207	.836	38	.8
		Simple	bained	02	.145	.992	×.37	,34
			Widower	.10	.250	.916	50	.71
Sec. 2		Widowet	Satur riad	12	.207	.838	61	.3/
			Single	10	.250	.916	70	,50
	Bonterroal	Married	Single	.02	. 861.	1.000	~.35	.34
			Widower	.12	.207	1.000	•.39	.8
Sec. As		Single	Married	02	.148	1.000	38	, 3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Widowel	.10	.250	1.000		.7
1	8 11 1	Widower	Manled	12	.207	1.000	.83	.39
		÷	Single	10	.250	1,000	.71	.51
KG_AYE	Tukey HSD	Marned	Single	.07	.164	.B06	32	.4
- i			Widower	.32	.229	.351	.23	.8
		Single	Married	07	.164	.908	48	.3
	and second second		Widower	.25	.277	.841	-,47	.9
		Wittewet	Matried	32	.229	.351	·.57	.2
			Single	25	.277	.641	∞.91	.41
	Bonheironi	Maulad	Single	.07	.164	1.000	•.33	
			Widowe!	,32	.229	505	24	.8
		Single	Mauriet	<u>ب</u> .	.164	1.000	47	÷.
		-	Widowei	.25	.277	1.900	43	,¥,
		Widowar	Matried	32	.229	.508	+,\$8	.24
			Single	-,25	.277	1.000	- 93	.43

From Post Hoc Tests, we find that status variable has no significant impact on all dimensions of job satisfaction. ł

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

5.2.4 Regression Analysis

Table 5-28 Variables Entered/Removed(b)

Model	Variables Entered	1.	
1	FActor WRe, Factor Pay, FActor Job, FActor Pro, Factor Sup(a)		Enter

a All requested variables entered.

b Dependent Variable: FactorJG

Table 5-29 Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.782(a)	.612	.684	.64497248

a Predictors: (Constant), FActor WRe, Factor Pay, FActor Job, FActor Pro, Factor Sup

Table 5-30 ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	45.681	5	9,176	22.059	.000(a)
	Residual	29.119	70	.416		
1	Total	75.000	75			

a Predictors: (Constant), FActor WRe, Factor Pay, FActor Job, FActor Pro, Factor Sup

b Dependent Variable: Factor.JG

Based on anova table, the value of F is 22.059 and the significant level is 0.000. The significant level 0.000 is less than $\alpha = 0.05$, so this regression model can be used for prediction of general job satisfaction. In other words, it means job, pay, promotion, supervision, working relations give effect on general job satisfaction.

83

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

Model		Unstandardized Coefficients		Standardized Coefficients	T	Şig.
		в	Std. Error	Beta		
1	(Constant)	-2.886E- 16	.074		.000	1.000
	FActor Job	.689	.085	.689	8,132	.000
	Factor Pay	.057	.084	.057	.676	.501
	FActor Pro	147	.085	147	-1.724	.089
	Factor Sup	.258	.094	.258	2,751	.008
	FActor WRe	-,058	.091	-,058	635	.527

Table 5-31 Coefficients(a)

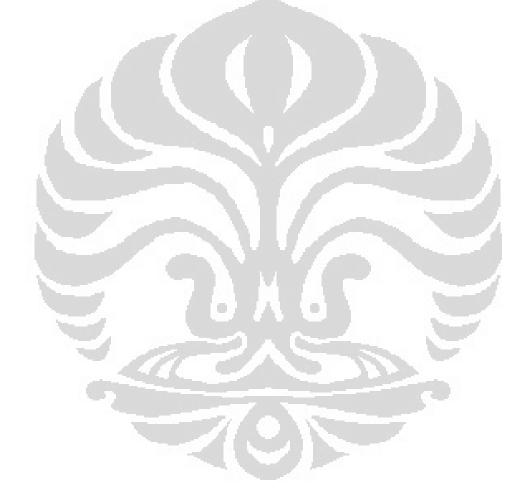
a Dependent Verlable: FactorJG

The job and supervision dimensions give effect significantly to job satisfaction in general. It is proven base on significant levels are 0.000 and 0.008 and less than 0.05 or 5%. But pay, promotion, and working relations dimensions have not significant effect on job satisfaction in general because the significant levels are more than 0.05 or 5%.

The B value of job is 0.689 which means if we increase 1 value then the total job satisfaction level in general will increase 0.689 point, and if we increase 1 value of supervision, the job satisfaction level in general will increase 0.258 point because it has B value 0.258.

As result, the equation of job satisfaction level in general is shown below:

Y = 0.689 Job + 0.258 Supervision + Error


The value of adjusted R^2 is 0.584. It means 58.4% of general job satisfaction level comes from job and supervision.

Hypotheses	Statement	Sig	Conclusion
y man	Job has a significant effect to job satisfaction level in general	0.000	Accepted
H2	Pay has a significant effect to job satisfaction level in general	0.501	Rejected
нз	Promotion has a significant effect to job satisfaction level in general	0.089	Rejected
H4	Supervision has a significant effect to job satisfaction level in general	0.008	Accepted
H5	Working Relations have a significant effect to job satisfaction level in general	0.527	Rejected

Table 5-32 Hypotheses test result with a =0.05

Universitas Indonesia

Pay dimension does not have significant effect on general job satisfaction but it has positive relationship with general job satisfaction. The B value of pay dimension is .057. Promotion dimension does not have significant effect on general job satisfaction but it has negative relationship with general job satisfaction. The B value of promotion dimension is -.147. Working Relations dimension does not have significant effect on general job satisfaction but it has negative relationship with general job satisfaction but it has negative relationship with general job satisfaction. The B value of working relations dimension is -.058.

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

CHAPTER 6

CONCLUSIONS & SUGGESTIONS

6.1 CONCLUSIONS

From the result of this research, we can make conclusion :

- a. Majority of respondents are satisfied with their job, salary, supervision from their leader, promotion opportunities, and working relations with their colleagues. Their general job satisfaction level is also high.
- b. From mean comparison, the results are :
 - Gender has no significant difference in all dimensions of job satisfaction, but female managers have higher job satisfaction level than male managers except in promotion.

This is related to Clark's (1997) seminal study of gender differences in levels of job satisfaction in Britain which found females have greater satisfaction levels of satisfaction compared to males, despite being in jobs with lower earnings and promotion opportunities compared to males. He posits that this is due to females having lower expectations at work due to "the poorer position in the labor market than women have held in the past" (Clark, 1997: 342).

Top management of CASMI tries to do the best to make their managers satisfied. In company's policies, male and female managers have the same standard title of position, salary level, and promotion opportunities. But in reality due to business characteristic, all managers must be willing to be transferred to every location of CASMI's representative. This condition is difficult for female managers to move to other location because they must stay with their husband and family. Therefore, it is easier for male managers to get promotion opportunities because male managers are willing to move to other location and bring their family with them. The company gives allowances related to transfer program, such as accommodation, education for heir children, etc. That is why the satisfaction level of male managers related to promotion is higher than female managers.

 Age has significant difference in pay dimension between managers with the age of 25 - 34 years old and 45 - 54 years old. Managers with the age of 45 - 54 years old are more satisfied.

Study in the United States with 1707 public employees showed that job satisfaction increased with age. Younger employees were less satisfied with their jobs, especially with the intrinsic characteristics of the work. Older employees were more satisfied with the extrinsic characteristics than were the two younger groups of employees. When the effects of salary, job tenure, and education were removed independently as well as simultaneously, the same differences were found. However, when the effect of job characteristics was added to the combination and partialled out, the intrinsic characteristics factor was no longer significant (Lee & Wilbur, 1985).

In CASMI, 18 managers from 22 managers with the age of 25 - 34 years old have bachelor degree and master degree, 8 managers from 10 managers with the age of 45 - 54 years old have educational background from junior high school (1 manager), senior high school (4 managers) and diploma (3 managers).

Managers with the age of 25 - 34 years old think they have better education background but their salary is lower than those managers with the age of 45 - 54 years old because the managers with the age of 45 - 54 years old have longer working period in CASMI so they get higher salary. In CASMI, working period influences increasing salary.

CASMI doesn't have salary structure which considers educational background. They only have very simple salary structure, which is based on subjectivity of top management.

 Education has significant difference in general job satisfaction between managers with senior high school and master degree.

87

Managers with master degree are more satisfied than managers with senior high school degree.

This is related to the study from Norvald and Weaver (1982), a principal motivation for attaining a high level of formal education in American society has presumably been able to do satisfying work, and there are reasons to believe that education does tend to enhance job satisfaction.

In CASMI, 17 managers graduated from senior high school and only 4 (four) managers graduated from master degree. Management of CASMI gives more attention to managers with master degree by giving them higher salary, more promotion opportunities, and more training opportunities. It makes them more satisfied. But for managers with senior high school, management only gives them standard attention by giving standard salary, less promotion opportunities, and less training opportunities, therefore they are less satisfied.

 Working period has significant difference in promotion dimension between managers with service years of 0 - 5 years and 5 - 7 years. Managers with service years of 0 - 5 years are more satisfied.

From 76 managers in CASMI, most of their working period (tenure) is more than 7 years (56 managers) and between 5 - 7 years (14 managers). It means that they have been working in CASMI for enough long time.

Top management focuses on young managers with tenure of 0-5 years because they have high spirit and they like to be challenged. Although managers with 5-7 years tenure have minimum education of bachelor degree, they are afraid to take challenge from management. For instance, top management always try to create promotion opportunities for all managers by opening new branch, developing the business, and doing the re-generation program based on one of the value from philosophy of Olympic Group. But, for managers with service years of 5-7 years, they are already satisfied and enjoy their current position, so they don't want to transfer to other location or be promoted to higher level.

c. Factors influencing general job satisfaction of managers in CASMI are job and supervision. The other dimensions (pay, promotion, and working relations) have no effect.

Job and supervision dimensions have significant impact on general job satisfaction. Job and supervision dimensions contribute 58,4% to general job satisfaction. If management can improve job dimension and supervision dimension, it will influence 58.4% of general job satisfaction. Managers in CASMI want challenging job, good title of position, and good supervisor or leader. The challenging job and good title of position can make them proud of their job and themselves. Effective supervisor or leader can give them clear direction to do their job and motivate them if they face problems.

In current condition, management of CASMI already gives good position title for their managers. Related to supervision dimension, in current condition, the relationship between managers and their leader are more like transactional relationship, formal relationship, and they get less supervision from their leader.

d. The relationship between general job satisfaction and promotion dimension is negative. It means that when we increase the promotion, the general job satisfaction will decrease.

From the real condition in the company, the promotion policy is not attractive. When somebody gets promotion, he or she will not automatically get the increasing compensation and benefit. They must do acting period for 6 months until 12 months. They will get increasing compensation and benefit after they pass the acting period. Sometime, managers don't get any increasing of their compensation although they have been promoted by the company. They will only get increasing compensation and benefit base on merit system on February or March every year. It is not clear for them, they get increasing salary because of their performance or their promotion.

89

In current condition, CASMI does not have good promotion system, compensation and benefit system and top management thinks that promotion is about position only, and they don't give salary increase or incentive scheme.

It makes the managers less motivated when they get promotion. They like promotion but they also want increasing salary as the logic consequences of the promotion.

The other thing that can describe the negative relationship between general job satisfaction and promotion dimension is because most of the managers in CASMI have been in the company for more than 7 years, with the age of more than 34 years old. They graduated from master degree (1 female manager), diploma (9 managers), senior high school (12 managers), and junior high school (2 managers). They already get their comfort zone, so they are less motivated to get promotion. They prefer to stay at their current position. For example, most branch managers prefer to stay at their current branch rather than move to bigger branch at the other area although by moving to bigger branch is promotion for them. They don't want to move to other area because they already enjoy being in their current branch, family or children reason, and CASMI's unattractive promotion policy.

e. Overall, we can say that in CASMI, the dissatisfaction of managers caused by the current human resources management system in CASMI such as compensation & benefit system, promotion policy, career path & career planning, people development program, and performance appraisal. Most of decision related to compensation & benefit, promotion, people development policy, and performance appraisal come from decision of top management.

6.2 SUGGESTIONS

The suggestions for management of CASMI:

a. Top management must make improvement program related to job and supervision dimensions to maintain general job satisfaction level. The company must create good relationship between all managers and between managers and their leaders by implementing good organization mechanism (information mechanism, instruction mechanism, consultation mechanism, and coordination mechanism), informal activities like sport activities, lunch together, family gathering, etc to increase their satisfaction related to supervision. Top management must give more challenging and qualified job, good position title to managers to increase their pride to their job.

Top management must create interesting offering for managers with senior high school by giving good title of position, challenging and qualified job to increase their proudness of their job, more competitive salary, and more training opportunities.

- b. Top management must create more competitive salary structure based on updated salary survey and combine it with promotion policy. Top management must give managers with the age of 25 - 34 years old the more competitive salary and allowance based on their performance, not year of service. Top management must increase their salary automatically when they get promotion, at least after they pass an acting period. Top management also can give them other benefit, for instance, give them opportunities to have the share of company, give them good life insurance, etc.
- c. Top management must make career path and career planning for all managers, especially for female managers and managers who have longer working period. Top management must give more promotion opportunities to female managers and managers who have service years of 5 7 years. For female managers, top management must give solution to their difficulty moving to other province in Indonesia related to promotion. For instance, making policy that CASMI's representatives in Jabodetabek and Jabar are for female managers or ask them where is the location they want

91

124.41

to move. It will help female managers to get promotion opportunities and therefore will increase their satisfaction level related to promotion.

For regeneration program, top management must make managers with service years of 5 - 7 years and managers with senior high school as priority to increase their satisfaction level related to promotion. They are already loyal to company, so the company must pay attention to the progress of their career in CASMI by creating their career path and career planning, development program, etc.

- d. Top management must create attractive promotion policy and communicate the system to all managers who get promotion.
- e. Top management must create integrative and comprehensive development program for all managers to increase and improve their knowledge, skill, and attitude.
- f. Top management must create objective performance appraisal system to make motivate all managers that they are reviewed objectively by top management and combine it with attractive reward system.

REFERENCES LIST

- Aamodt, M.G. (1996). Applied Industrial/Organizational Psychology (2nd ed.). USA: Brooks/Cole Publishing Company.
- Aamodt, M.G. (2004). Applied Industrial/Organizational Psychology (4th ed). USA: Thomson/Wadsworth.
- Alavi, H.R., & Askaripur, M.R. (2003). The relationship between self-esteem and job satisfaction of personnel in government organizations. *Public Personnel Management* 32 (4) : 591-599.
- Anderson, A.E. (2004). What's absent in absence management. Employee Benefits Journal 29 (1): 25-30.
- Anderson, N., Ones, D.S., Sinangil, H.K., & Viswesvaran, C. (2001). Handbook of Industrial, Work and Organizational Psychology- Volume 2 London : SAGE Publications.
- Bajpai, N., & Srivastava, D. (2004). Sectorial comparison of factors influencing job satisfaction in Indian banking sector. Singapore Management Review 26 (2): 89-99.
- Berkowitz, L. (1987). Pay, equity, job gratifications and comparisons in pay satisfaction. *Journal of Applied Psychology* 72 (4): 544-551.
- Bless, C., & Higson-Smith, C. (1995). Fundamentals of social research methods. An African perspective. (2 ed.). South Africa : Juta and Co, Ltd.
- Buitendach, J.H., & De Witte, H. (2005). Job insecurity, extrinsic and intrinsic job satisfaction and affective organization commitment of maintenance workers in a parastatal. South African Journal of Business Management 36 (2): 27-33.
- Carr, M., & Human, P. (1988), Job satisfaction and its relationship with demographic and work-related variables: A case study in the Western Cape, South Africa. South African, Journal of Labour Relations 10 (3 & 4): 60-67.
- Chambers, J.M. (1999). The job satisfaction of managerial and executive women: Revisiting the assumptions. *Journal of Education for Business* 72 (2): 69-75.
- Clark, A. (1997), Job satisfaction and gender: Why are women so happy in work?, Labor Economics, 4, 341-372
- Cooper, D., & Emory, C. (1995). Business research methods (5th ed.). USA: McGraw-Hill.
- Cooper, C., & Locke, E. (2000). Industrial and organizational psychology, New York : Blackwell Business.
- Cooper, D., & Schindler, P. (2001). Business research methods (7th ed.). McGraw-Hill Irwin
- Cooper, D., & Schindler, P. (2003) Business research methods (8th ed.). McGraw-Hill Irwin.

Cranny, C.J., Cain-Smith, P., & Stone, E. F. (1992). Job satisfaction: How people feel about their jobs and how it affects their performance. New York: Lexington Books.

- Cresswell, J. (2003). Research design-Qualitative, quantitative and mixed methods approaches (2 ed.). USA : SAGE Publications.
- Egan, M., & Kadushan, G. (2004). Job satisfaction of home health social workers in the environment of cost containment. *Health and Social Work* 29 (4) : 287-295.
- Hair, J.F., Babin, B., Money, A. & Samouel, P. (2003). Essentials of business research methods Leyh Publishing, NJ: LLC.
- Hussey, J., & Hussey, R. (1997). Business research-A practical guide for undergraduate and postgraduate students. London: MacMillan Business.
- Kreitner, R., & Kinicki, A. (2001). Organizational behavior (5th ed.). New York: Irvin McGraw-Hill.
- Lambert, E.G., Hogan, N.L., Barton, A., & Lubbock, S.M. (2001). The impact of job satisfaction on turnover intent; A test of a structural measurement model using a national sample of workers. *Social Science Journal 38 (2)*: 233-251.
- Lau, V.C., Au, W.T., & Ho, J.M. (2003). A qualitative and quantitative review of antecedents of counterproductive behavior in organizations. *Journal of Business and Psychology 18 (1)*: 73-93.
- Leedy, P.D. & Ormrod, J.E. (2001). Practical research Planning and design. (7 ed.). NJ: Merrill Prentice Hall.
- Lee. R., Wilbur E. R. (1985), Age, Education, Job Tenure, Salary, Job Characteristics, and Job Satisfaction. A multivariate analysis. *Human Relations*, 38, 781-791
- Luthans, F. (1995). Organizational behavior. (7 ed.). St. Louis, MO: McGraw-Hill, Inc.
- Matrunola, P. (1996). Is there a relationship between job satisfaction and absenteeism? Journal of Advanced Nursing 23: 827-834.
- Miles, E.W., Patrick, S.L., & King, W.C. (1996). Job level as a systematic variable in predicting the relationship between supervisory communication and job satisfaction. *Journal of Occupational and Organizational Psychology*, 69, 277-293.
- Mullins, L.R. (1999). Management and organizational behavior (5 ed.). NJ: Pitman Publishing.
- Neuman, W.L. (2003), Social research methods Qualitative and quantitative approaches (5th ed.). USA : Allen & Bacon.
- Norvald. Glen (1982), University of Texas at Austin, Charles N. Weaver, St. Mary's University, Further Evidence on Education and Job Satisfaction
- Oshagbemi, T. (1997). The influence of rank on the job satisfaction of organizational members. *Journal of Managerial Psychology 12 (7)*: 511-520.

- Porac, J.F., Ferris, G.R. and Fedor, D.B. (1983), Job satisfaction and performance, Academy of Management Journal, Vol. 26, pp. 285-96.
- Price, J. (1995). A role for demographic variables in the study of absenteeism and turnover. *The International Journal of Career Management* 7 (5): 26-32.
- Randolph, D.S., & Johnson, S.P. (2005). Predicting the effect of extrinsic and intrinsic job satisfaction factors on recruitment and retention of rehabilitation professionals. *Journal of Healthcare Management*, 50(1): 49.
- Robbins, S.P. (1989). Organizational behavior: Concepts, controversies and applications. (4 ed.). New Jersey : Prentice Hall.
- Robbins, S.P. (1998). Organizational behavior: Concepts, controversies, applications. (8 ed.). New Jersey : Prentice Hall.
- Robbins, S.P. (2005). *Essentials of organizational behavior* (8 ed.). New Jersey : Prentice Hall.
- Sekaran, U. (2000). Research methods for business: A skill-building approach. (3 ed.). New York : John Wiley & Sons,Inc.
- Sempane, M., Rieger, H., & Roodt, G. (2002). Job satisfaction in relation to organizational culture. SA Journal of Industrial Psychology 28 (2): 23-20.
- Smither, R.D. (1988). The Psychology of Work and Human Performance. New York: Harper & Row.
- Spector, P.E. (1996). Industrial and organizational psychology Research and practice. USA : John Wiley & Sons, Inc.
- Spector, P.E. (1997). Job satisfaction: Application, assessment, causes and consequences. USA: SAGE Publications.
- Spector, P.E. (2000). Industrial and organizational Psychology-Research and practice. (2 ed.). USA : John Wiley & Sons, Inc.
- Staw, B.M. (1995). Psychological dimensions of organizational behavior. (2nd ed.). New Jersey: Prentice Hall.
- Steers, R., Porter, L., & Bigley, G. (1996). Motivation and leadership at work (6 ed.). New York: McGraw-Hill Companies, Inc.
- Tredoux, C., & Durrheim, K. (2002). Numbers, hypotheses & conclusions-A course in statistics for the social sciences. Cape Town, South Africa: UCT Press.
- Vroom, V. H. (1964), Work and Motivation, New York: Wiley
- Weiers, R.M. (1988). Marketing research (2nd ed.). Englewood Cliffs: Prentice Hall.

KUESIONER QUETIONNAIRE

Π

 \square

A. PROFIL RESPONDEN

Respondent Profile

Beri tanda \sqrt{di} pada jawaban yang paling sesuai dengan Anda. Please check $\sqrt{on the}$

1. Jenis Kelamin (Gender) 1. Laki-laki (Male)

2. Perempuan (Female)

2. Usia (Age)

Dibawah 25 Tahun (Below 25)
 25 - 34 Tahun (25 - 34)
 35 - 44 Tahun (35 - 44)
 45 - 54 Tahun (45 - 54)
 Di atas 54 Tahun (Over 54)

3. Pendidikan Terakhir (Educational Background)

- 1. SLTP (Junior High School)
- 2. SLTA (Senior High School)
- 3. Akademi (Diploma)
- 4. Sarjana (Bachelor)
- 5. Magister (Magister)

4. Masa Kerja (Working Period)

- 1. Kurang dari 1 Tahun (Less Than 1 year)
- 2. Antara 1 dan 3 Tahun (Benween 1-3 years)
- 3. Antara 3 dan 5 Tahun (Between 2-5 years)

· · · ·

م فالاتفالية ا

4. Antara 5 dan 7 Tahun <i>(Between 5 -7 years)</i> 5. Lebih dari 7 Tahun <i>(More Than 7 years)</i>	
5. Status Perkawinan (Marital Status) 1. Menikah (Married)	D

2. Tidak Menikah (Single) 3. Duda/Janda (Widower)

B. KEPUASAN KERJA (Job Satisfaction)

I. Aspek Pekerjaan Job itself

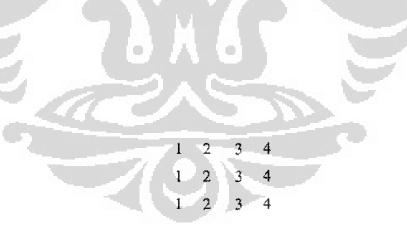
Pikirkan mengenai pekerjaan Anda saat ini. Bagaimana kondisi pekerjaan Anda saat ini dikaitkan dengan pilihan kondisi di bawah ini. Pilih jawaban :

O

Ο

- 1 Sangat tidak puas 2 Tidak puas 3 Puas
- 4 Sangat puas

Think of the work you do at present. How well does each of the following words or phrases describe your work? In he blank beside each word or phrase below, write :


I Very dissatisfied 2 Dissatisfied 3 Satisfied 4 Very Satisfied

Pekerjaan Saya saat ini : My current job is :

1. Mempesona/Menarik Fascinating

N 6 1

- 2. Rutin Routine
- 3. Memuaskan Satisfying

N 44.186 **N** -

4

1.2.34

	1	2	3	4
5. Baik Good	1	2	3	4
6. Memberikan perasaan keberhasilan Gives sense of accomplishment	1	2	3	4
7. Terhormat Respected	1	2	3	4
8. Tidak nyaman Uncomfortable	1	2	3	4
9. Menyenangkan Pleasant	1	2	3	λų.
10. Bermanfaat Useful	1	2	3	4
11. Menantang Challenging	1	2	3	4
12. Sederhana Simple	1	2	3	4
13. Berulang Repetitive	1	2	3	4
14. Kreatif Creative	1	2	3	4
15. Tidak cerdas Dull	1	2	3	4
16. Tidak menarik Uninteresting	1	2	3	4
17. Bisa melihat hasil kerja Can see results	1	2	3	4
18. Menggunakan kemampuan saya Uses my abilities	1	2	3	4
	メへてい			

,

« s i

< 1

2

-

b since in

.. .

II. Aspek Penghasilan Pay

Pikirkan mengenai penghasilan yang Anda peroleh ini. Bagaimana kondisi penghasilan Anda saat ini dikaitkan dengan pilihan kondisi di bawah ini. Pilih jawaban :

1 Sangat tidak puas 2 Tidak puas 3 Puas 4 Sangat puas

< 1 1</p>

· · ·

Think of the pay you get now. How well does each of the following words or phrases describe your present pay? In he blank beside each word or phrase below, write :

 Very dissatisfied Dissatisfied Satisfied 4 Very Satisfied 		ð			Л.
	P			Ľ	
Penghasilan Saya saat ini : My current pay is :					
1. Cukup untuk pengeluaran normal income adequate for normal expenses	1	2	3	4	
2. Adil Fair	1	2	3	4	
3. Tidak memadai Barely live on income	1	2	3	4	
4. Buruk Bad	1	2	3	4	
5. Pendapatan yang dapat memberikan kemewahan Income provides lucuries	ι	2	3	4	
6. Tidak layak Less than I deserve	1	2	3	4	
7. Baik Well paid	1	2	3	4	
8. Memberikan rasa tidak aman Insecure	Ĩ	2	3	4	
9. Dibayar kurang/di bawah kewajaran Underpoid	1	2	3	4	

1 : 3

x

3

. . .,

III. Aspek Kesempatan Promosi Promotion

Pikirkan mengenai kesempatan promosi di perusahaan Anda saat ini. Bagaimana kondisi kesempatan promosi di perusahaan Anda saat ini dikaitkan dengan pilihan kondisi di bawah ini. Pilih jawaban :

1 Sangat tidak puas

- 2 Tidak puas
- 3 Puas
- 4 Sangat puas

Think of the opportunities for promotion that you have now. How well does each of the following words or phrases describe these? In he blank beside each word or phrase below, write :

1 Very dissatisfied 2 Dissatisfied 3 Satisfied 4 Very Satisfied

Kesempatan promosi di perusahaan Saya saat ini : My current opportunities for promotion are ;

. . .

1. Banyak peluang untuk promosi Good opportunities for promotion	1	2	3	4	
2. Terbatas Opportunities somewhat limited	1	2	3	4	
3. Promosi didasarkan kemampuan Promotion on ability	1	2	3	4	-
4. Tidak ada kesempatan promosi Dead-end job	1	2	3	4	
5. Kesempatan terbuka untuk promosi Good chance for promotion	1	2	3	4	\leq
6. Kebijakan promosi tidak adil Unfair promotion policy	1	2	3	4	
7. Kesempatan promosi jarang Infrequent promotions	1	2	3	4	5- ² -1
8. Promosi adalah kegiatan regular Regular promotions	1	2	3	4	
9. Kesempatan promosi cukup baik Fairly good chances for promotion	1	2	3	4	
		The second s			

بالاسترابين الا

IV. Aspek Supervisi dari Atasan Supervision

Pikirkan mengenai bentuk supervisi dari Atasan yang Anda dapat di pekerjaan Anda. Bagaimana bentuk supervisi dari Atasan yang Anda dapat di pekerjaan Anda dikaitkan dengan pilihan kondisi di bawah ini. Pilih jawaban :

1 Sangat tidak puas

- 2 Tidak puas
- 3 Puas
- 4 Sangat puas

Think of the kind of supervision that you get on your job. How well does each of the following words or phrases describe this? In he blank beside each word or phrase below, write :

- I Very dissatisfied
- 2 Dissatisfied
- 3 Satisfied
- 4 Very Satisfied

Bentuk supervisi dari Atasan yang Saya dapat di pekerjaan saya adalah : *My current kind of supervision is :*

 $s_{i} = s_{i} = 1$

						the second se
1.	Menanyakan saran saya Ask my odvice	1	2	3	4	
2.	Sulit untuk memenuhi keinginannya Hard to please	1	2	3	4	
3.	Tidak sopan Impolite	1	2	3	4	
4.	Memberikan pujian untuk pekerjaan yang bagus Praises good work	1	2	3	4	
5.	Bijaksana/penuh pertimbangan Tactful	10	2	3	4	
6.	Berpengaruh Influential	1	2	3	4	
7.	Terkini/terbaru Up-to-date	1	2	3	4	
8.	Tidak memberikan supervisi yang cukup Doesn't supervise enough	1	2	3	4	- 100
9.	Memiliki karyawan yang disenangi Has favorites	-1	2	3	4	

A (1) (1) (1) (1)

. . .

74 A I

÷

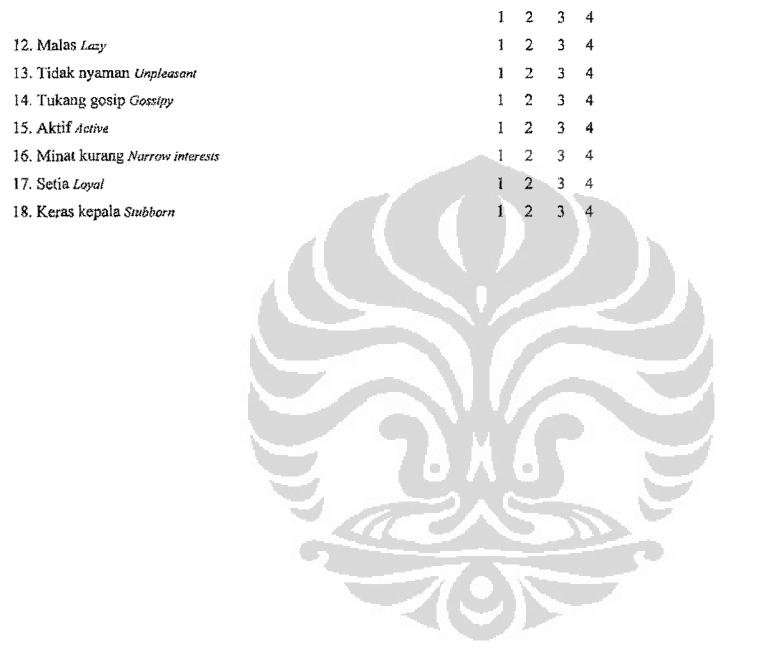
5.58 51. 6 .

1

V. Aspek Rekan Kerja Co-workers

Pikirkan mengenai rekan kerja Anda di pekerjaan Anda. Bagaimana rekan kerja Anda dikaitkan dengan pilihan kondisi di bawah ini. Pilih jawaban :

1 Sangat tidak puas 2 Tidak puas 3 Puas 4 Sangat puas


-0 I I

1 4

Think of the majority of people with whom you work or meet in connection with your work. How well does each of the following words or phrases describe these people? In he blank beside each word or phrase below, write :

1 Very dissatisfied 2 Dissatisfied 3 Satisfied 4 Very Satisfied Rekan kerja Saya adalah rekan kerja yang: My current Co-workers are: 1. Mendukung untuk lebih baik Stimulating 2 L 2. Membosankan Boring 2 3 3. Lambat Slow $\mathbf{2}$ 3 4 4. Penolong Helpful 2 4 5. Bodoh Stupid 4 6. Bertanggung jawab Responsible 3 7. Cepat Fast 3 4 8. Pintar Intelligent -9. Mudah membuat musuh atau permusuhan Easy to make enemies 10. Terlalu banyak bicara Talk too much

And a start of a

.

۰.

. 8.

1....

VI. Aspek Pekerjaan Secara Umum Job in General

Pikirkan mengenai pekerjaan Anda secara umum. Secara umum, bagaimana Anda menilai pekerjaan Anda. Pilih jawaban :

l Sangat tidak puas

- 2 Tidak puas
- 3 Puas
- 4 Sangat puas

Think of your job in general. All in all, what is it like most of the time? In he blank beside each word or phrase below, write :

- 1 Very dissatisfied 2 Dissatisfied 3 Satisfied
- 4 Very Satisfied

Pekerjaan Saya secara umum adalah pekerjaan yang: My current Job is:

1 1 1

- 1. Menyenangkan Pleasant
- 2. Buruk Bad
- 3. Ideal Ideal
- 4. Pemborosan waktu Waste of time
- 5. Baik Good
- 6. Tidak diinginkan Undesirable
- 7. Bermanfaat Worthwhile
- 8. Paling buruk Worse than most
- 9. Dapat diterima Acceptable
- 10. Superior Superior

			12.2				-	
		1	2	3	4			
		1	2	3	4			
		1	2	3	4			
		1	2	3	4		-	,
	07	1	2	3	4			_
	~~~ ,	1	2	3	4			
- 44		1	2	3	4	5		
6		1	2	3	4	-	۰.	
	7110	1	2	3	4	7		
	$\langle \langle \cdot \rangle$	1	2	3	4			

. .

and the at

11. Paling baik Berrer than most	1	2	3	4
12. Tidak menyenangkan Disagreeable	1	2	3	4
13. Membuat saya berisi Makes me content	1	2	3	4
14. Tidak layak inadequate	1	2	3	4
15. Baik sekali Excellent	1	2	3	4
16. Curang/menyebalkan Rotten	1	2	3	4
17. Menyenangkan Enjoyable	1	2	3	4
18. Menyedihkan Poor	シー			4

c> 4

» · · ·

8

.

-

# Appendix 2: Reliability

· · · ·

к ж

÷

÷

## Reliability (JOB)

١.
١.
١.
١.
67 L

L-12

,

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

JOB9	41.0132	17.2665	.6058	.8539
JOB10	40.7500	17.1767	.5885	.8545
JOB11	40.6184	17.0391	.6025	.8537
JOB14	40.7368	17.2632	.6340	.8527
JOB15	40.7368	16.6765	.6355	.8515
JOB16	40.7895	16.9684	.4417	.8658
JOB17	40.8289	18.1170	.5204	.8591
JOB18	40.7763	17.0293	.6828	.8501

#### RELIABILITY ANALYSIS - SCALE_ (ALPHA)

#### Reliability Coefficients

N of Cases = 76.0	N of Items = 14
Alpha = .8669	
Deliability (DAV)	

Reliabilit	y (PAY)
------------	---------

		Mean	Std Dev	Cases		
1.	PAY2	2.3289	.5511	76.0	£	100.00
2.	PAY3	2.4342	.6183	76.0		
з.	PAY4	2.8026	.6329	76.0		· · · · · · · · · · · · · · · · · · ·
4.	PAY6	2.6316	. 6898	76.0	A-4400	
5.	PAY8	2.4737	.5994	76.0		
6.	PAY9	2.4342	.6799	76.0		
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

				N of	
Statistics for	Mean	Variance	Std Dev	Variables	C
SCALE	15.1053	7.0021	2.6461	6	
			<u> </u>		And the second s

### Item-total Statistics

0.1.1

Scale Mean	Scale Varíance	Corrected Item-	Alpha	-7
mean	variance	Item-	Атрпа	1000
if Item	if Item	Total	if Item	
Deleted	Deleted	Correlation	Deleted	

/ T +

1. . . . . . . .

.

PAY2	12.7763	5.5893	.4257	.7848
PAY3	12.6711	5.2637	.4780	.7747
Pay4	12.3026	4.8805	.6155	.7420
PAY6	12.4737	4.6793	.6189	.7403
Pay8	12.6316	5.1425	.5519	.7579
PAY9	12.6711	4.8370	.5694	.7534

Reliability Coefficients

N of Cases = 76.0

N of Items = 6

Alpha = .7915

# Reliability (PROMOTION)

							and the second second	
			Mean	Std Dev	Cases			
<b>4</b>	PRO1		2.8421	. 6122	76.0			
2.	PRO2		2.6711	.5748	76.0			
з.	PRO3		2.9605	. 4744	76.0			-
4.	PRO4		3.2368	.5130	76.0			
s.	PROS		2.9605	.4454	76.0			
6.	PRO6		2.7500	,5686				
7.	PRO7		2.6316	.5620				
8.	PRO9		2.7632	.5130	76.0			
					0.73			
					N of			
Statis	tics for	Mean	Variance	Std Dev	Variables	( married		
	SCALE	22.8158	8.0723	2.8412				
				7488				

Item-total Statistics

 $s \rightarrow -1$ 

. .

Scale	Scale	Corrected	
Mean	Variance	Item-	Alpha
if Item	if Item	Total	if Item
Deleted	Deleted	Correlation	Deleted

ι.

L-14

,

10 m

PRO1	19.9737	5.7860	.6491	.7797
PRO2	20.1447	6.3654	.4746	.8068
PRO3	19.8553	6.7921	.4267	.8113
PRO4	19.5789	6.5404	. 4836	. 8044
PRO5	19.8553	6.5254	.5925	.7920
PRO6	20.0658	6.1156	. 5808	.7907
PRO7	20.1842	6.3923	.4801	.8056
PRO9	20.0526	6.2105	.6252	.7852
				and the second

N of Cases	= 76.0	N of	Items = 8
Alpha =	.8181		

# Reliability (SUPERVISION)

> { i

			Mean	Std Dev	Cases	
1.	SUP11		3.1053	.5311	76.0	
2.	SUP12		2.9868	.4470	76.0	
з.	SUP13		2.9474	.5137	76.0	1 Y X
4.	SUP14		3.1447	. 5587	76.0	
5.			2.9211	. 4247	76.0	
б.	SUP18		3.1711	.5748	76.0	
				1	Nof	
at	istics for	Mean	Variance		riables	and the second second
	SCALE	18.2763	5.1093	2.2604	6	
em	-total Stati	stics				
				Contractory of the local states of the local s	71 1 1 N 1 N	and the second se
	S	cale	Scale	Corrected -		

00010	Said Said Said Said	Sur Sur die die Sill Sur Sur Sur Sur	
Mean	Variance	Item-	Alpha
if Item	if Item	Total	if Item
Deleted	Deleted	Correlation	Deleted

- 4 - 4 - 4

. . .

SUP11	15.1711	3.6104	. 6029	.8046
SUP12	15.2895	3.7818	.6486	,7976
SUP13	15.3289	3.5037	.6977	.7845
SUP14	15.1316	3,1825	.8101	.7565
SUP15	15.3553	4.1254	.4658	.8294
SUP18	15.1053	3.8021	.4358	.8429

Reliability Coefficients

N of Cases = 76.0

N of Items = 6

Alpha = .8316

# Reliability (CO-WORKER)

			Are 4 12		
		Mean	Std Dev	Cases	Carlo Martin
1.	WREL	3.1447	. 4533	76.0	
2.	WRE2	3.0789	. 4247	76.0	A
з.	WRE3	2.8553	. 5587	76.0	
4.	WRE5	3.2500	. 4359	76.0	
5.	WRE6	3.0395	.3441	76.0	
6.	WRE7	2.7763	,5059	76.0	
7.	WRE9	3.1974	.5169	76.0	
8.	WRELO	2.9737	.4611	76.0	
9.	WRE11	2,8289	.4730	76.0	
10.	WRE12	3.1447	.4533	76.0	
11.	WRE13	3.0000	.3651	76.0	
12.	WRE14	3.0789	.4834	76.0	
13.	WRE15	2.9605	.3809	76.0	
14.	WRE16	2.9211	. 4550	76.0	
15.	WRE18	2,9605	.4454	76.0	
				- West	
				to M	and the second se

· · ·

h

					*** ******	
SCALE 45.2105 18.3284 4.2812 15	Statistics for	Mean	Variance	Std Dev	Variables	1
	SCALE	45.2105	18.3284	4.2812	15	

Item-total Statistics

х I I Х

1 2:4 3-4 2....

د. .

	Scale	Scale	Corrected		
	Mean	Variance	Item-	Alpha	
	if Item	if Item	Total	if Item	
	Deleted	Deleted	Correlation	Deleted	
WRE1	42.0658	16.5156	.4363	.8889	
WRE2	42.1316	15.7691	.7053	.8783	
WRE3	42.3553	15.4321	. 5888	.8832	
WRE5	41.9605	16.4384	.4810	.8870	
WRE6	42.1711	16.5437	. 5952	.8836	
WRE7	42.4342	16.1689	.4678	.8882	2000
WRE9	42.0132	15.5065	. 6275	.8810	
WRE10	42.2368	16.2898	.4906	.8868	
WRE11	42.3816	16.4258	.4380	.8891	
WRE12	42.0658	15.3156	.7913	.8742	
WRE13	42.2105	16.5151	.5661	.8842	
WRE14	42.1316	15,8491	. 5834	.8829	
WRE15	42.2500	16.6967	.4776	.8871	<i>al 1</i> 1
WRE16	42.2895	15.5684	.7110	.8776	
WRE18	42.2500	16.3233	.5019	.8862	
RELIA	BILITY	ANALYSI	IS - SCA	LE (ALPHA)	and the second of the second o
Reliability	Coefficients				No. 1
N of Cases =	76.0		N of Items =	15	
			t in the second second		and the second second
Alpha = .	8909				
Reliability	(JOB SATIS	EACTION			
Tenasmuy		- Morriolay			
		Mean	Std Dev	Cases	
		1123 2211	DLU DEV	Cases	and the second second
1. JG1		3.1974	. 4327	76.0	
2. JG2		3.3026	,4624	76.0	
3. JG4		3.1711	.4439	76.0	
4. JG6		3.1974	.4624	76.0	
5. JG7		3.2895	4565	76.0	
6. JG8		3.4868	.5031	76.0	
7. JG9		3.0789	.2714	76.0	
1.8 65.63.67		sent ni "s.¥ ¥ Ten# me"	* 🖬 १ मा ४		

• • •

> a 16 a 2

L-17

÷

			N	o£
12.	JG18	3.1842	.5089	76.0
11.	JG17	3.1184	.4310	76.0
10.	JG16	3.3026	.4904	76.0
9.	JG14	3.2105	.4417	76.0
8.	JG12	3.1447	.5087	76.0

Statistics for	Mean	Variance	Std Dev	Variables
SCALE	38.6842	14.7523	3.8409	12

#### Item-total Statistics

	Scale	Scale	Corrected		
	Mean	Variance	Item-	Alpha	
	if Item	if Item	Total	if Item	
	Deleted	Deleted	Correlation	Deleted	
JG1	35.4868	12.6532	. 6212	.9001	
JG2	35.3816	12.5591	.6039	.9010	1
JG4	35.5132	12.5998	. 6206	.9001	
JG6	35.4868	12.0665	.7694	.8928	
JG7	35.3947	12.6154	.5946	.9014	
JG8	35.1974	12.3205	.6168	.9006	
JG9	35,6053	13.6288	.5238	.9053	
JG12	35.5395	11.9851	.7122	.8956	
JG14	35.4737	12.2793	.7359	.8947	
JG16	35.3816	12.1858	. 6793	.8973	
JG17	35.5658	12.9423	. 5237	.9045	
JG18	35.5000	12.1733	. 6534	.8987	

### Reliability Coefficients

.

< *s* 1

N of Cases = 76.0

N of Items = 12

### Alpha = .9070

.

4. URANES

## Appendix 3: Compare Means Analysis

9 I.A.

به به م

## Oneway Anova (age)

.

. ...

					-	1	nce Interval for		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
JOB_AVE	25 - 34 Years Old	22	3.15	.314	.067	3.01	3.29	3	4
	35 - 44 Years Old	44	3.13	.343	.052	3.03	3.24	2	4
	45 - 54 Years Old	10	3.18	.239	.075	3.01	3.35	3	4
	Total	76	3.14	.320	.037	3.07	3.22	2	4
PAY_AVE	25 - 34 Years Old	22	2.31	.494	.105	2.09	2.53	1	З
	35 - 44 Years Old	44	2.57	.396	.060	2.45	2,69	2	4
	45 - 54 Years Old	10	2.73	.962	.114	2.47	2.99	2	3
	Total	76	2.52	.441	.051	2.42	2.62	1	4
PRO_AVE	25 - 34 Years Old	22	2.86	.411	.088	2.70	3.06	2	3
	35 - 44 Years Old	44	2.81	.340	.051	2.71	2.91	2	4
	45 - 54 Years Old	10	2.98	.275	.087	2.78	3.17	3	4
	Total	76	2.85	.365	.041	2.77	2.93	2	4
SUP_AVE	25 - 34 Years Old	22	3.04	.252	.054	2.93	3.15	3	4
	35 - 44 Years Old	44	3.03	.451	.068	2.90	3.17	1	4
	45 - 54 Years Old	10	2.90	.639	.202	2,44	3.36	1	4
	Total	76	3.02	.431	.049	2.92	3.12	1	4
WRE_AVE	25 - 34 Years Old	22	2.97	.300	.064	2.84	3,10	2	4
	35 - 44 Years Old	44	3.05	.300	.045	2.96	3.14	2	4
	45 - 54 Years Old	10	2.95	.154	.049	2.84	3.06	3	3
	Total	76	3.01	.285	.033	2.95	3.08	2	4
JG_AVE	25 - 34 Years Old	22	3.16	.239	.051	3.06	3.27	3	4
	35 - 44 Years Old	44	3.24	.343	.052	3.13	3.34	3	4
	45 - 54 Years Old	10	3.30	.377	.119	3.03	3.57	3	4
	Total	76	3,22	.320	.037	3.15	3.30	3	4

Descriptives

a service a service

. .

L-19

### Test of Homogeneity of Variances

	Levene Statistic	_ df1	df2	Sig.
JOB_AVE	1.076	2	73	.346
PAY_AVE	1.004	2	73	.371
PRO_AVE	.883	2	73	.418
SUP_AVE	1.881	2	73	.160
WRE_AVE	1.521	2	73	.225
JG_AVE	1,412	2	73	.250

+ 4 ×

		Sum of Squares	df	Mean Square	∖ _F ∥	Sig.
JOB_AVE	Between Groups	.019	2	.009	089.	,915
	Within Groups	7.654	73	.105		
	Total	7.673	75	3		
PAY_AVE	<b>Between Groups</b>	1.538	2	.769	4.302	.017
	Within Groups	13.050	73	.179		
	Total	14.588	75		<b>W</b> 87.	
PRO_AVE	Between Groups	.248	2	.124	.984	.379
	Within Groups	9.211	73	,126		6-4
	Total	9.460	75			( )
SUP_AVE	Between Groups	.159	2	.080	.423	.657
	Within Groups	13.7 <b>62</b>	73	.189		
	Total	13.921	75			·
WRE_AVE	Between Groups	.137	2	.059	.837	.437
	Within Groups	5.972	73	.082		- 10 m
	Total	6,109	75			18 M P
JG_AVE	Between Groups	.147	2	.074	.712	.494
	Within Groups	7.536	73	.103		Contractory of the local division of the loc
	Total	7.683	75			

و

ANOVA

Job Satisfaction..., Tengku Mohamad Meidi Akbar, FEB UI, 2009

Fills available of the

## Post Hoc Tests

Dependent				Mean Difference	Std.		95% Confide	nce Interval
Variable		(I) AGE	(J) AGE	(I-J)	Error	Şig,	Lower Bound	Upper Bound
JOB_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	.02	.085	.971	18	.22
			45 - 54 Years Old	03	.123	.976	32	.27
		35 - 44 Years Old	25 - 34 Years Old	02	.085	.971	22	.18
			45 - 54 Years Old	05	.113	.915	32	.23
		45 - 54 Years Old	25 - 34 Years Old	.03	.123	.976	27	.32
			35 - 44 Years Old	.05	.113	.915	23	.32
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	.02	.085	1.000	19	.23
			45 - 54 Years Old	03	.123	1.000	33	.28
		35 - 44 Years Old	25 - 34 Years Old	02	.085	1.000	23	.19
			45 - 54 Years Old	05	.113	1.000	32	.23
		45 - 54 Years Old	25 - 34 Years Old	.03	.123	1.000	28	.33
			35 - 44 Years Old	.05	.113	1.000	23	.32
PAY_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	26	.110	.053	53	.00
			45 - 54 Years Old	42*	.161	.028	81	04
		35 - 44 Years Old	25 - 34 Years Old	.26	.110	.053	00.	.53
			45 - 54 Years Old	16	.148	.524	52	.19
		45 - 54 Years Old	25 - 34 Years Old	.42*	.161	.028	.04	.81
			35 - 44 Years Old	.16	.148	.524	19	.52
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	26	.110	.062	53	.01
			45 - 54 Years Old	42*	.161	.032	82	03
		35 - 44 Years Old	25 - 34 Years Old	.26	.110	.062	01	.53
			45 - 54 Years Old	-,16	.148	.839	52	.20
		45 - 54 Years Old	25 - 34 Years Old	.42*	.161	.032	.03	.82
			35 - 44 Years Old	.16	.148	.839	20	.52

* The mean difference is significant at the .05 level.

1 1 1

. .

.

- -

A CONTRACTOR OF A

205

#### **Multiple Comparisons**

Decendent				Mean Difference	Std.		95% Confidence Interval	
Variable		(I) AGE	(J) AGE	([-,])	Error	Sig.	Lower Bound	Upper Bound
PRO_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	.07	.093	.725	-,15	.29
			45 - 54 Years Old	09	.135	.766	42	.23
		35 - 44 Years Old	25 - 34 Years Old	07	.093	.725	29	.15
		45 - 54 Years Old	17	.124	.384	46	.13	
		45 - 54 Years Old	25 - 34 Years Old	.09	.135	.766	23	.42
			35 - 44 Years Old	.17	.124	.384	13	.46
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	.07	.093	1.000	16	.30
			45 - 54 Years Old	09	.135	1.000	-,43	.24
		35 - 44 Years Old	25 - 34 Years Old	07	.093	1.000	30	,16
			45 - 54 Years Old	17	.124	.664	-,47	.14
		45 - 54 Years Old	25 - 34 Years Old	.09	.135	1.000	24	.43
			35 - 44 Years Old	.17	.124	.564	14	.47
SUP_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	.00	.113	.999	27	.28
			45 - 54 Years Old	.14	.166	.684	26	.53
		35 - 44 Years Old	25 - 34 Years Old	.00	.113	.999	28	.27
			45 - 54 Years Old	.13	.152	.654	23	.50
		45 - 54 Years Old	25 - 34 Years Old	- 14	.166	.684	53	.26
			35 - 44 Years Old	13	.152	.654	50	.23
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	.00	.113	1.000	27	.28
			45 - 54 Years Old	.14	.166	1.000	27	.54
		35 - 44 Years Old	25 - 34 Years Old	.00.	.113	1,000	28	.27
			45 - 54 Years Old	.13	.152	1.000	24	.51
		45 - 54 Years Old	25 · 34 Years Old	14	.166	1.000	54	.27
			35 - 44 Years Old	13	.152	1.000	61	.24

-70

۰.

.

٠.

• • •

L-22

50°16 ± K +.

. . .

Dependent				Mean Difference	Sid.		95% Confide	nce Intervai
Variable		(I) AGE	(J) AGE	(L-I)	Error	Sig.	Lower Bound	Upper Bound
WRE_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	08	.075	.532	26	,10
			45 - 54 Years Old	.02	.109	.968	24	.28
		35 - 44 Years Old	25 - 34 Years Old	80,	.075	.532	10	.26
			45 - 54 Years Old	.10	.100	.601	14	.34
		45 - 54 Years Old	25 - 34 Years Old	-,Q2	.109	.988	28	.24
			35 - 44 Years Old	10	.100	.601	34	.14
	Bonferrani	25 - 34 Years Old	35 - 44 Years Old	08	.075	.858	26	.10
			45 - 54 Years Old	.02	.109	1.000	25	.28
		35 - 44 Years Old	25 - 34 Years Old	.08	.075	.858	10	.26
		S7	45 - 54 Years Old	.10	.100	1.000	15	.34
		45 - 54 Years Old	25 - 34 Years Old	02	.109	1.000	28	.25
			35 - 44 Years Old	-,10	.100	1.000	-,34	.15
JG_AVE	Tukey HSD	25 - 34 Years Old	35 - 44 Years Old	07	.084	.654	-27	,13
			45 - 64 Years Old	14	.123	.506	43	.16
		35 - 44 Years Old	25 - 34 Years Old	.07	.084	.854	13	,27
			45 - 54 Years Old	06	.113	.841	-,33	.21
		45 - 54 Years Old	25 - 34 Years Old	.14	.123	.506	16	.43
			35 - 44 Years Old	.06	.113	.841	-,21	.33
	Bonferroni	25 - 34 Years Old	35 - 44 Years Old	07	.084	1.000	28	.13
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46 - 54 Years Old	-,14	,123	.800	-,44	.16
		35 - 44 Years Old	25 - 34 Years Old	.07	.084	1.000	13	.28
			45 - 54 Years Old	*.05	.113	1.000	34	.21
		45 - 54 Years Old	25 - 34 Years Old	.14	.123	.800	16	.44
			35 - 44 Years Old	.06	.113	1.000	21	.34

4 1

۰۰ × ۱

### Multiple Comparisons

× .. .

## Oneway Anova (education)

Descriptives

						95% Confidence	Interval for Mean		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
3VA_BOL	Junior High School	2	2.96	.051	.036	2.51	3.42	3	3
	Senior High School	17	3.11	,312	.076	2.95	3.27	2	4
	Dipioma	11	3.21	.377	.114	2.96	3.47	з	4
	Bachelor	42	3.12	.307	.047	3.03	3.22	3	4
	Magister	4	3.43	.345	.173	2.88	3.98	3	4
	Total	76	3,14	.320	.037	3.07	3.22	2	4
PAY_AVE	Junior High School	2	2.33	.471	.333	-1.90	6.57	2	3
	Senior High School	17	2.52	.399	.097	2.31	2.72	2	3
	Dipioma	11	2.61	.430	.130	2.32	2.89	2	3
	Bachelor	42	2.54	.467	.072	2.39	2.69	1	4
	Magister	4	2.13	.285	.142	1.67	2.58	2	3
	Total	76	2,52	.441	,051	2.42	2,62	1	4
PRO_AVE	Junior High School	2	2,69	.265	,187	.31	5,07	3	
	Senior High School	17	2.97	.271	.066	2.83	3.11	2	:
	Diploma	11	2.90	.357	.108	2.66	3.14	2	
	Bachelor	42	2.82	.361	.056	2.71	2.93	2	
	Magister	4	2.63	.586	.293	1.69	3.56	2	:
	Total	76	2.85	.355	.041	2.77	2.93	2	4
SUP_AVE	Junior High School	2	3.00	.000	.000	3.00	3.00	3	
	Senior High School	17	3,07	,339	.082	2.89	3.24	2	4
	Diploma	11	2.80	.645	.194	2.37	3.24	1	4
	9achelor	42	3,03	,395	,061	2,91	3,15	1	
	Magister	4	3,25	,500	.250	2,45	4.05	з	4
	Total	76	3,02	.431	.049	2.92	3,12	1	4
WRE_AVE	Junior High School	2	3.00	.000	.000	3.00	3.00	3	:
	Senior High School	17	3.04	.324	.079	2.87	3.21	2	4
	Diploma	11	3.08	,328	.099	2.86	3.30	з	4
	Bachelor	42	3.00	.272	.042	2.91	3.08	2	4
	Magister	4	2.90	.258	.129	2.49	3.31	3	:
	Total	76	3.01	.285	.033	2.95	3.08	2	
JG_AVE	Junior High School	2	3.25	.354	.250	.07	6,43	3	
-	Senior High School	17	3,13	.289	.070	2.98	3,28	3	
	Diploma	11	3.42	,407	.123	3.15	3.70	3	4
	Bachelor	42	3.17	,274	.042	3.09	3.26	з	
	Magister	4	3.60	.258	.129	3.19	4.01	3	
	Total	76	3.22	.320	,037	3.15	3,30	3	

and the second sec

.

..... n

### Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
JOB_AVE	1.007	4	71	.410
PAY_AVE	.311	4	71	.869
PRO_AVE	1.667	4	71	.167
SUP_AVE	1.826	4	71	.133
WRE_AVE	.952	4	71	.439
JG_AVE	2.242	4	71	.073

4 3 L

.

1.4

ANOVA

		Sum of Squares	df	Mean Square	F /	Sig.	
JOB_AVE	Between Groups	.481	4	.120	1.188	.324	
	Within Groups	7.192	71	.101			
	Total	7.673	75				
PAY_AVE	Between Groups	.791	4	.198	1.018	.404	
	Within Groups	13.797	71	.194			·
	Total	14.585	75			£	
PRO_AVE	Between Groups	.562	4	.140	1.120	.354	
	Within Groups	8.898	71	.125	Fe a'		
	Total	9.460	75				
SUP_AVE	Between Groups	.778	4	.194	1.048	.389	
	Within Groups	13.145	71	.185			
	Total	13.921	75			ro J	
WRE_AVE	Batween Groups	.120	- 4	.030	.354	.840	
	Within Groups	5,990	71	.084		Sec.	
	Total	6.109	75	14 A		1 Carlos 10	
JG_AVE	Between Groups	1.290	4	.322	3.581	.010	
	Within Groups	6.394	71	.090		to strange	
	Total	7.683	75		( ( ) Y		

. . . .

*

- 127
-
~
147
-
×.
1.1
5
-
•
r¥.
~
with.
w
1
÷
-

Dependent Variable: JOB_AVE

			Maan Disterence	Std		\$5% Contribution Internal	a <u>nco tn</u> torval
	()) EDU	(J) EDU	(+4)	Error	SIG.	LOSSAS BOORT	Lipper Bound
Tukey MSD	Jankor Flight	Semicy High School	15	233	919	247	5
		#2507270	н); Е.Ж.	*** **	X	8	<b>*</b>
		Bachelar	99 77	8	998	8	24 C
		Maginer	9 9		.450	2.	12. 13.
	Serier Nigh	ARION NIGH SCINCE	¥5	ALC:	979.	××	29
	Net oot	Chichan	ġ,	2	924	345	24
		Bachabac	9,	180	1.000	R,	¥1
		Ada (Stater	.32	445	382	ŝ	a.
	Cipioma	Junitar High School	5Z,	245	944	.43	66.
		Startist High School	0 ¹ .	123	924	-,2A	3 <del>4</del> .
		Bachelor	8	109	808	12.4	.40
		Magiaser	Ę	, <del>1</del> 05	827.	\$7.5	.34
		Juekor Pigh School	91.	230	094		.80
		Service High School	2	8	3	Ŗ	8
		Deplorta	53-	3	50	40	21
		Maghuer	5°.	1993	392 1	17	Ð,
	Neugister	Jankor Physic Schutst	<b>4</b>	278	450	10°2	1.24
		Senter High School	10	111	2007	\$K7	18
		(Sphorna	12	. 188	315.	١ <u>٢</u> ,	52
		Bacheke	M	.167	.355	61	11.
Bonleyon	Jurker High	Serior Migh Schwa	- 11	002.	1,000	¥8	.54
	100100	Cipkema	52.,	245	1,000	196.	40
		Bachelor	.16	230	1,000	62	.51
		Machtter	35-	378	596	-1.28	S.
	Server High	Juster High School	. 15	232	5000 ⁺ }	¥\$.*	33.
	(Sector)	Déploma	.10	<b>\$</b>	1,000	\$\$P.*	R
		Darcheter	5	100	1.000	22	R
		The second s	25	111	100	8	8
	Copicante	Artist High School	.25	.245	300	34··	8
		Server Hoy School	<u>Q</u>	8	1.000	*	×
		Bathete	8	<b>10</b>	1.050	22.	Γ¥.
		Maginer	R	166	1,000	第4.2	32
	Rechelpr	JEANA HIGH SCOROL	.16	230	1,028	-51	.82
		Warter High School	10.	160	1,000	927.	21
		Diploma	60°	108	1,000	15.	22
		Magister	16.1	.167	100	\$1°*	41.
	Magister	Jenter Higs Oliver	46	.276	285	-,33	92.1
		Senice High School	R.	€ £ +	201	82°-	53
		Utplama	ñ	<b>8</b>	1.000	E.	52'
				1			

1. P. D. D. J.

ŝ

_

ţ

			Moan			45% ปีอกที่ยุ่งการแรง	ารคน ใจวุษมระดั
		(1) C D I I			Ď	   	í teor De- ex
Tukey HSD	Junit High School	Senor Hen Scrott	19	330	086	1175-	**************************************
		Ceptoma		922	826	8	8
		Bachetta	Ş	818	5 <del>8</del> ,	÷110	63.
		Magistar	2	1882	2885	8.	1,20
	Service Spart Young	1.0400 (1921 262000)	65	.33	046	- PC-	1.11
		Chplerna	8į	111.	開語	- 56	90.
		Rachtoloc	-02	.127	1.000	2E'-	8
		Headistor	<b>P</b>	.24B	496	\$	8
	Explores	Jurior High School	2	955.	928	89.	1.12
		Senior High School	8	H1F.	986	時、	3
		Eacholar	10	.149	255	13	豊学
		Maginar	6 <del>4</del> ,	257	8	*.24	1.20
	Buchadar	Justice Fright School	21	64X	136	- 83-	1,10
		Sordar Prigh School	8	123	0001	13:	7E.
		Chipkoma	ġ	44.C	332		.35
		Magister	¥	¥62.	E0E	•.23	1.06
	MARULS OF	Are vor High Stational		382	286	-1,28	<b>9</b> 8,
		Sealar tigh 砂珠tool	\$	.245	961	÷,.08	Ŗ
		Existent	-48 -	752	698	-1.20	₩,
		Backulor	-41	231	1985	-1.06	Ŗ
Borterrow	Jurvor High School	Second Migh School	÷,19	055	1.000	-5,44	11.
		Lipherne	-27	8	2,000.	1.26	¥.
		Steraior	Ę	319	000''	8r.r.	22
		Magister		.382	1.000	96	1.5.1
	Marker High School	durior High Techand	\$.	330	1,000	11.	1.14
		Digioma	Ŗ	5211	1,000	88°-	.45
		Bactivitor		127	1.000	<b>\$</b>	\$\$.
		Magitter	<b>۳</b> ,	246	1.000	-32	1,10
	Chyloric	Linin High School	27	936	1.000	Ę,	1.25
		Solving High School	8	HU.	1.000	14.	<b>8</b>
		Bachelor	6	140 ×	1,000	16,	8
		Magistar	Đ≱	.257	,657	Ş	1.23
	Suchotor	Junior High School	12	EtE,	1,000	~72	1.13
		Second tigh warman	8	8	1.000	32°	8
		Diplema	<i>1</i> 0,	149	1,000	8	33
		Being the state	¥.	152	,785	-25-	50 F
	N'UG'SEN	loonbox Appt same	-21	382	1,000	131	<b>8</b>
		South High School	8E	245	1,080	-1.10	<b>35</b>
		Dipioma	.48	552	450	87	8
		Batheior	-41	2	Z.	1.06	22,

. .

· · · · · ·

- * *

Dependent Variable: PRO_AVE

	×r	¥.	2	<b>3</b> Ş	<b>8</b>	ŝ	45	ģ	8	46'	Đ	ŧ	- SE	,85 ,	<b>*</b> 1.	.26	۲۲.	CS.	.81	R,	.32	,43	83	f3,	.95	1.05	.47	44.	.02	1.00	N	42	.87	<b>8</b> 4	÷.		Ŕ	er,	S,	Ŗ	
itterval	USBOR BOARD							2	1																														Ş		
85% Confidentias Internal	LIPPER BOUND	2071-	.a	<b>2</b> 27	đ,	3 F.'.	W.	*,14	-23°	\$\$.'-		82.7	18-	123 - -	CP	1 <b>F</b>	32	đ.	08	.85	17	-1.05	-1.00	88°*	-,03	eh	32	*.1 <b>5</b>	22		ę	17	52°-	+94		*.42		, 36, ,		18.	
	ß.	821	638	\$95	1,000	421	<b>9</b> 6%	\$8 <b>\$</b>	40¥.		***	699,	.680	,585,	865°	.969	.626	1.000	707.	080	.626	1.000	1,000	1.000	1.000	1.000	1,000	1.000	.a.a	1.000	1.000	1.000	1.000	1.000	1.000	1.060	1.000	1,000	\$13	1.000	
28	Emr	.265	272	236	307	385	12	102	197	,272	101.	120	207	256	102	82 <u>5</u>	.185	307	181.	207	.185	.285	.272	.256	200	265	.137	.102	.187	272	LEF.	.120	207	256	-102	120	,185	307	161,	-207	
We add	6-0		ភ្	Ş	8	47. 47.	6	2	Ņ	14	20%	8,	42,	. 13	-15	100-	62,	90;-	¥,		- 20	\$2'*	-21	£1.*	,06	¶2'	20.	<del>ا</del> ر ک	\$C.	24 14	10~	8		£1	-,15	90	.20	<b>8</b>	\$C.	-27	
	(J) EDU	Seach Heart	Cipitotta	Bachelix		Junkar Phigh School	Criticana	Rectinetor	ងវិងណូនៃ៩៨៩	Jankor High Bentow	Stanlar High Echand	Badieko"	Magister	JUNION MIGH SCHOOL	Sesior High School	Optamu	Magister	Luciar Nigh School	Service High School	Crokama	Bachelor	Service High School	Diploma	Buchelor	Magister	Junior High School	Diploma	Bachelor	Magister	Junior High Schoot	Sentor High School	Bachélor	Magisler	Junior High School	Senior High School	Diploma	Magister	Junior High School	Seniar High School	Dipforta	
	(I) EDU	Junior High School				Barbar High School				Distoria				Eachetor				អិនឲ្យទៅលក				Junior High School				Sentor High School				Ciplonin				Bachalor				Megistar			
		Tukey HSD																				Bonferroni																			

.. * *:

+-

c

,

n n
•
- 00
Ξ.
10
E
5
ŏ
~
Ð.
70
=
=
-
Σ
_

Dependent Variable: SUP_AVE

Sundri Hon School
Diploma
Bochelor
Inder Vich School
Diptoma
Bachelor
Magistor
Junior High School
Senior High School
Bachelor
Meglater
Junior High School
Senior High School
Mediater
Junior High School
Senior High School
Diploma
Bachelor
Senior High School
Diploma
Bachalor
Magister
Junior High School
Diploma
Bachelor
Mogistor
Junior High School
Senier High School
Bacholor
Magister
Junior High School
Senlor High School
Diploma
Magister
Junior High School
Sanlor High School
Diploma
Bachelor

•

- - -

#### Multiple Comparisons

Dependent Variable: WRE_AVE

			Mean Difference	Site,		95% Conlide	nee interval
	(I) EDU	(J) EOU	(1.1)	Error	Sig.	Lower Bound	Upper Sound
lukey HSO	Junior High School	Senior High School	-,04	.217	1,000	65	.5
		Diploma	09	.223	.997	- 70	.\$
		Bacholor	.00	.210	1.000	59	.\$
		Magistar	.16	292	.095	-,60	,Q
	Senior High School	Junior High School	.04	.217	1.000	- 57	8,
		Distome	04	.112	,997	35	.2
		Bacheler	.04	.083	.988	~.19	
		Magister	.14	,161	.910	31	.5
	Cipicano	Junior High School	80.	.223	.997	55	7
		Senior High School	.04	.112	.997	28	
		Bachelor	.00	.008	.925	19	.a
		Magister	.58	.170	.823	30	.6
	Bechelor	Junior High School	.00	015,	1,000	59	.5
		Senior High School	04	.083	382	.27	
		Diploma	- 08	.090	.925	.35	
		Magister	.10	.552	.967	33	
	Maglater	Junior High School	-,10	.252	.095	-,80	.6
		Senior High School		.161	.910	.59	.3
		Distorio	18	.170	.826	65	.3
		Bachelor	.10	152	.967	52	.3
Bontemoni	Janky High School	Senior High School	•.04	.217	1.000	67	.5
		Diploma	08	.223	1.000	-,73	.5
		Bachelor	.00	.210	1.000	61	.6
		Mogister	.10	.252	1.000	63	.6
	Seniar High School	Junior High School	.04	.217	1.000	-,59	.6
		Diplama	04	.112	1.000	37	2
		Bachelor	.04	.083	1.000	20	.2
		Magister	.14	.101	1,000	.33	.5
	Digioma	Junior High School	.08	.223	1.000	57	.7
		Sanier High School	.64	.512	1.000	29	.3
		Secholor	.08	.098	1,000	20	
		Magiater	,18	170	1,000	-,31	.6
	Bachetar	Junior High School	00	.210	1,000		.5
		Seniar High School	04	.063	1,000	28	2
		Diploma	-,08	.096	1,000	-37	
		Magister	.10	.152	1.000		.6
		Janior High School	10	.252	1.000	03	.€
	-	Senior High School	- 14	.161	1.000	51	.2
		Okołoma	-,18	170	1,000	-,67	.3
		Bashaior	-,10	152	1,000	54	.3

. . . .

•

1 3

a second second second

1.11

Dependent Variable: JG_AVE

			Maan Diference			AS% Confidence Interval	rxe interval
	(i) EOU	(J) EDU	(-1) 	Std. Error	Sěg.	Lover Bourd	Upper Rewro
Tukey HSD	Lines righ School	00000 1782 00000	£¥.	224	S.	400 500 1	£1.
		Dyptant	2	231	r,	- 82	<u>4</u>
		Banchanitor	60	217	868	ŝ	5
		Magistor	N,	260	525	1.CUB	Ξ.
	Service High Jackson	Larke High School		224	.962	***	***
		Choicerta	8	391	690	-62	8
		Gutheler	-05	000	332.	29	20
		Megiator	~49×~	.187	.043	- 94	Ģ
	Dyborna	Junior Flight School		195	242	ζ¢'.	149) 
		Statics height Richauf	8	110	8	38-	÷
		Burchakor	.25	Đ.	108	8,	ίð.
		Magistor	89 - 1 -	:175	542	-87	31
	Bachelet	Awar Han School	-, 05	217	88	86-	4
		Sonior High School	\$0 [.]	(880)	538		ĸ
		Ciplema	10	300	3	45°-	ð.
		Magistar	.,43	157	.052	-87	Ð,
	Mogistar	Justice High School	36.	092	.653	£.	9.1
		Sorier High Schud	-48×	.167	600	6	đị
		Dipkoma		523.	.842	-:31	ų
		Bechtlor	£9:	151.	150	10:	<b>1</b> 8,
Bonferroni	Judar High School	Social Flor School	12	124	0001	8	£.
		Cipitanua	-11-	231	1.000	â	49
		Barcholor	8	217	1,000	- <del>1</del> 85-	K.
		Magsud	-35	560	1.000	-1.11	
	Service High School	Janiar High Salaool	21.4	224	(X);	11	3
		Diplosta	-30 -	.116	127	23-	Ş
		Bechalar	8	986	1.000	9; -	*4
		1402°1497	-'4E	.167	.050	*	a
	Ceplorna	. Lumber Play it School	71.	121	1,000	€≯'-	ð
		Service High Service	8	311	.127	\$0.	Ξ.
		Gachelor	23	102	.157	5	S.
		Magitter	-16	.175	831	18 1 1	N.
	Bacheler	JLIN RY FROM SICHOOL	80.	242	1,000	\$ <u></u>	स
		Service Might School	\$	580	1.000	-,20	Ŗ
		Deporta	- 25	.102	151	路,	S,
		Maghtor	.43	44 ·	9.03	\$ <b>9</b> **	8
	Mogister	Jurder High School	13	380	1.000	O.A.	1.1
		ಟಿಗಿಗುರಿಗೆ ಗ್ರಾಧಾ ವಿಜೇಜಭತೆ	ŧ,	.167	950	107	96
		Diploma	2 <b>G</b>	471.	1,000	8	<b>6</b>
		al authoritar	43	155	840	-02	Έ.

;

:

# Oneway Anova (work period)

0 F 1

.

						95% Confiden Me	ce Interval for		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
JOB_AVE	0 • 5 years	6	3.32	,322	.131	2.98	3.66	3	4
	5-7 years	14	3.13	.362	.097	2.92	3.34	3	4
	> 7 years	56	3.13	.309	.041	3.05	3.21	2	4
	Total	76	3.14	.320	.037	3.07	3.22	2	4
PAY_AVE	0 - 5 years	6	2,47	.531	.217	1.91	3.03	2	3
	5 - 7 years	14	2.35	.460	.123	2.08	2.61	1	3
	> 7 years	56	2.57	.424	.057	2.45	2.68	1	4
	Total	76	2.52	.441	.051	2.42	2.62	6 1	4
PRO_AVE	0 - 5 years	6	3.17	.219	.089	2.94	3.40	3	4
	5-7 years	14	2.71	.538	.144	2.39	3.02	2	3
	> 7 years	56	2,85	.268	.038	2.78	2.93	2	4
	Total	76	2.85	.365	.041	2.77	2.93	2	4
SUP_AVE	0 - 6 years	6	2.67	.782	.319	1.85	3,49	1	4
	5-7 years	14	2.99	.201	.054	2.87	3.10	3	3
	> 7 years	56	3.05	,415	.055	2.95	3.17	1	4
	Total	76	3.02	.431	.049	2.92	3.12	5 6 1	4
WRE_AVE	0 - 5 years	6	2.94	,356	.145	2.57	3.32	3	4
	5-7 years	14	2.94	.224	.060	2.81	3.07	2	3
	> 7 years	56	3.04	.291	.039	2,96	3.12	2	4
	Total	76	3.01	.285	.033	2,95	3.08	2	4
JG_AVE	0 - 5 years	6	3.29	.386	,158	2.89	3.70	3	4
—	5-7 years	14	3,15	.249	.067	3.00	3.29	3	4
	> 7 years	56	3.24	.331	.044	3.15	3.32	3	4
	Total	76	3,22	.320	.037	3.15	3.30	3	4

Descriptives

a availation or o

11 174 81

#### Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
JOB_AVE	.324	2	73	.724
PAY_AVE	.315	2	73	.731
PRO_AVE	10.288	2	73	.000
SUP_AVE	4.243	2	73	.018
WRE_AVE	.697	2	73	.501
JG_AVE	1.170	2	73	.316

N 1 1

ANOVA

							-
		Sum of					
		Squares	df	Mean Square	F F	Sig.	
JOB_AVE	Between Groups	.203	2	.102	.994	.375	
	Within Groups	7.470	73	.102			1000
	Total	7.673	75				
PAY_AVE	Between Groups	.557	2	.278	1.448	.242	
	Within Groups	14.031	73	.192			200
	Total	14.588	75			le ser -	10000
PRO_AVE	Between Groups	. <b>8</b> 96	2	.448	3.817	.027	
	Within Groups	8.564	73	.117	8	10	
	Total	9.460	75		1		1.000
SUP_AVE	Between Groups	.864	2	.432	2.415	.096	
	Within Groups	13.057	73	.179			
	Total	13.921	75				
WRE_AVE	Between Groups	.149	2	.074	.912	.406	
	Within Groups	5.961	73	.082			
	Total	6.109	75				
JG_AVE	Between Groups	.114	2	.057	.547	.581	
	Within Groups	7.570	73	.104		and the second	1000
	Total	7.683	75				1

and dealers in a

## Post Hoc Tests

--

0 = 1 - 1

#### Multiple Comparisons

				Mean Difference			95% Confide	ence Interval
Dependent Variable		(I) WORKPER	(J) WORKPER	(L-I)	Std. Error	Sig.	Lower Bound	Upper Bound
JOB_AVE	Tukey HSD	0 - 5 years	5-7 years	.19	.156	.432	18	.57
			> 7 years	.19	.137	.350	14	.52
		5-7 years	0 - 5 years	19	.156	.432	57	.18
			> 7 years	.00	.096	1.000	23	.23
		> 7 years	0 - 5 years	19	.137	.350	52	.14
			5-7 years	.00	.096	1.000	23	.23
	Bonferroni	0 - 5 years	5-7 years	.19	.156	.655	19	.58
			> 7 years	.19	.137	.504	15	.53
		5-7 years	0 - 5 years	19	.156	.655	58	.19
			> 7 years	.00	.096	1.000	24	.23
		> 7 years	0 - 5 years	19	.137	.504	53	.15
			5-7 years	.00	.096	1.000	23	.24
PAY_AVE	Tukey HSD	0 - 5 years	5-7 years	.13	.214	.824	38	.64
			> 7 years	09	.188	.874	54	.36
		5-7 years	0 - 5 years	13	.214	.824	64	.38
		A Second	> 7 years	22	.131	.219	53	.09
		> 7 years	0 - 5 years	.09	.188	.874	36	.54
			5 - 7 years	.22	.131	.219	09	.53
	Bonferroni	0 - 5 years	5-7 years	.13	.214	1.000	40	.65
			> 7 years	09	.188	1.000	55	.37
		5-7 years	0 - 5 years	13	.214	1.000	65	.40
			> 7 years	22	.131	.291	54	.10
		> 7 years	0 - 5 years	.09	.188	1.000	37	.55
		-	5-7 years	.22	.131	.291	10	.54

.

1. 2.0.20.1

. .

. . .

.

				Mean Difference			95% Confide	ance Interval
Dependent Variable		(I) WORKPER	(J) WORKPER	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
PRO_AVE	Tukey HSD	0 - 5 years	5-7 years	.46*	.167	.020	.06	.86
			> 7 years	.31	.147	.093	04	.66
		5-7 years	0 - 5 years	-,46*	.167	.020	86	06
			> 7 years	15	.102	.315	39	.10
		> 7 years	0 - 5 years	31	.147	.093	66	.04
			5-7 years	.15	.102	.315	~.10	.39
	Bonferroni	0 - 5 years	5-7 years	.46*	.167	.022	.05	.87
			> 7 years	.31	.147	.113	05	.67
	-	5-7 years	0 - 5 years	-,46*	.167	.022	87	~.05
			> 7 years	15	.102	.445	40	.10
		> 7 years	0 - 5 years	31	.147	.113	67	.05
			5-7 years	.15	.102	.445	-,10	.40
SUP_AVE	Tukey HSD	0 - 5 years	5 - 7 years	32	.206	.271	82	.17
			> 7 years	40	.182	.082	83	.04
		5-7 years	0 - 5 years	.32	.206	.271	17	.82
		1 3059	> 7 years	07	.126	.827	38	.23
		> 7 years	0 - 5 years	.40	.182	,082	04	.83
			5-7 years	.07	.126	.827	23	.38
	Bonferroni	0 - 5 years	5-7 years		.206	.371	83	.18
			> 7 years	40	.182	.098	84	.05
		5-7 years	0 - 5 years	.32	.206	.371	18	.83
			> 7 years	07	.126	1.000	38	.24
		> 7 years	0 - 5 years	.40	.182	.098	05	.84
		1	5-7 years	.07	.126	1.000	- 24	.38

Multiple Comparisons

* The mean difference is significant at the .05 level.

. . .

<>> 、 、 ×

· • • · · ««• * . . .

Multiple	Comparisons
----------	-------------

				Mean Difference	1		95% Confide	ence Interval
Dependent Variable		(I) WORKPER	(J) WORKPER	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
WRE_AVE	Tukey HSD	0 - 5 years	5-7 years	.01	.139	.999	33	.34
			> 7 years	10	.123	.715	39	.20
		5-7 years	0 - 5 years	01	.139	.999	34	.33
			> 7 years	10	.085	.458	31	.10
		> 7 years	0 - 5 years	.10	.123	.715	20	.39
			5-7 years	.10	.085	.458	10	.31
	Bonferroni	0 - 5 years	5-7 years	.01	.139	1.000	34	.35
			> 7 years	10	.123	1.000	40	.20
		5-7 years	0 - 5 years	01	.139	1.000	- 35	.34
			> 7 years	10	.085	.703	31	.11
		> 7 years	0 - 5 years	.10	.123	1.000	- 20	.40
			5-7 years	.10	.085	.703	11	.31
JG_AVE	Tukey HSD	0 - 5 years	5 - 7 years	.14	.157	.636	23	.52
			> 7 years	.06	.138	.912	27	.39
		5-7 years	0 - 5 years	14	.157	.636	52	.23
			> 7 years	09	.096	.644	32	.14
		> 7 years	0 - 5 years	06	.138	.912	39	.27
			5-7 years	.09	.096	.644	14	.32
	Bonferroni	0 - 5 years	5-7 years	.14	.157	1.000	24	.53
		and the second sec	> 7 years	.06	.138	1.000	-,28	.40
		5-7 years	0 - 5 years	14	.157	1.000	-,53	.24
			> 7 years	09	.096	1.000	-,32	.15
		> 7 years	0 - 5 years	06	.138	1.000	40	.28
			5-7 years	.09	.096	1.000	15	.32
		> 7 years	0 - 5 years	06	.138	1.000	40	.2

L-36

a comparent a

. . ..

. 1

.

# Oneway Anova (status)

5 S S

· •

• • •

......

Descriptives

							nce Interval for an	4	
		<u>N</u>	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
JOB_AVE	Married	70	3,15	.310	.037	3.07	3.22	2	4
	Single	4	3.20	.567	.283	2.29	4.10	3	4
	Widower	2	3.00	.202	.143	1.18	4.82	3	3
	Total	76	3.14	.320	.037	3.07	3.22	2	4
PAY_AVE	Married	70	2.55	.420	.050	2.45	2.65	1	2
	Single	4	2.04	.614	.307	1.06	3.02		9
	Widower	2	2.17	.236	.167	.05	4.28	2	2
	Total	76	2.52	.441	.051	2.42	2.62	1	4
PRO_AVE	Married	70	2.87	.324	.039	2.80	2.95	2	4
	Single	4	2.63	.736	.368	1.45	3.80	2	3
	Widower	2	2.56	.442	.313	-1.41	6.53	2	
	Total	76	2.85	.355	.041	2.77	2,93	2	4
SUP_AVE	Married	70	3.02	.441	.053	2.91	3.12	1	4
	Single	4	3.13	.370	.185	2.54	3.71	3	4
	Widower	2	2.83	.000	.000	2.83	2.83	3	3
	Total	76	3.02	.431	.049	2.92	3.12	1	4
WRE_AVE	Married	70	3.02	.283	.034	2.95	3.09	2	4
	Single	4	3.00	.425	.213	2.32	3.68	3	4
	Widower	2	2.90	.141	.100	1,63	4.17	3	3
	Total	76	3.01	.285	.033	2.95	3.08	2	
JG_AVE	Married	70	3.24	.319	.038	3.16	3.31	3	4
	Single	4	3.17	.326	.163	2.65	3.69	3	4
	Widower	2	2,92	.354	.250	26	6.09	3	3
	Tolal	76	3.22	.320	.037	3.15	3.30	3	4

. 1

a de la companya de l

### Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
JOB_AVE	2.455	2	73	.093
PAY_AVE	.537	2	73	.587
PRO_AVE	6.274	2	73	.003
SUP_AVE	.678	2	73	.511
WRE_AVE	.744	2	73	,479
JG_AVE	.010	2	73	.990

ANOVA

		Sum of Squares	df	Mean Square	F /	Sig.
JOB_AVE	Setween Groups	.053	2	.026	.252	.778
	Within Groups	7.621	73	.104		
	Total	7.673	75			
PAY_AVE	Between Groups	1.249	2	.625	3,418	.038
	Within Groups	13.339	73	.183		
	Total	14.588	75			la su
PRO_AVE	Between Groups	.405	2	.203	1.634	.202
	Within Groups	9.054	73	.124	S	<b>7</b>
	Total	9.460	75			
SUP_AVE	Between Groups	.114	2	.057	.302	.741
	Within Groups	13.807	73	.189		• •
	Total	13.921	75			
WRE_AVE	Between Groups	.028	2	.014	.168	.846
	Within Groups	6.082	73	.083		-
	Total	6,109	75			10 million - 10
JG_AVE	Between Groups	.212	2	.106	1.034	.361
	Within Groups	7.472	73	.102		Contractory of
	Total	7.683	75	·		

÷

. . . . . . . .

· ·

## Post Hoc Tests

· · …

1.1.1.1

			•	oompanoon.				
			_	Mean Difference			95% Confide	
Dependent Variable	-	(I) STATUS	(J) STATUS	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
JOB_AVE	Tukey HSD	Married	Single	05	.166	.950	45	.35
			Widower	.15	.232	.804	41	.70
		Single	Married	.05	.166	.950	35	.45
			Widower	.20	.280	.763	47	.87
		Widower	Married	15	.232	.804	70	.41
			Single	20	.280	.763	87	.47
	Bonferroni	Married	Single	05	.166	1.000	46	.36
		- A.V	Widower	.15	.232	1.000	42	.71
		Single	Married	.05	.166	1.000	36	.46
			Widower	.20	.280	1.000	49	.88
		Widower	Married	15	.232	1.000	.71	.42
			Single	20	.280	1.000	88	.49
PAY_AVE	Tukey HSD	Married	Single	.51	.220	.057	01	1.04
			Widower	.39	.307	.419	35	1.12
		Single	Married	51	.220	.057	-1.04	.01
		and a second	Widower	13	.370	.939	-1.01	.76
		Widower	Married	39	.307	.419	-1.12	.35
			Single	.13	.370	.939	76	1.01
	Bonferroni	Married	Single	.51	.220	.067	03	1.05
			Widower	.39	.307	.629	36	1.14
		Single	Married	51	.220	.067	-1.05	.03
			Widower	13	.370	1.000	-1.03	.78
		Widower	Married	39	.307	.629	-1.14	.36
			Single	.13	.370	1.000	78	1.03

. .

. . .

. . .

#### Multiple Comparisons

а. на **н** 

				Mean Difference			95% Confide	ence Interval
Dependent Variable		(I) STATUS	(J) STATUS	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
PRO_AVE	Tukey HSD	Married	Single	.25	.181	.361	18	.68
			Widower	.31	.253	.439	29	.91
		Single	Married	-,25	.181	.361	68	.18
			Widower	.06	.305	.977	67	.79
		Widower	Married	31	.253	.439	91	.29
			Single	06	.305	.977	79	.67
	Bonferroni	Married	Single	.25	.181	.524	20	.69
			Widower	.31	.253	.668	-,31	.93
		Single	Married	25	.181	.524	69	,20
			Widower	.06	.305	1.000	68	.81
		Widower	Married	31	.253	.668	93	.31
			Single	06	.305	1.000	81	.68
SUP_AVE	Tukey HSD	Married	Single	11	.224	.879	64	.43
		Sec.	Widower	.18	.312	.827	56	.93
		Single	Married	.11	.224	.879	43	.64
			Widower	.29	.377	.720	61	1.19
		Widower	Married	-,18	.312	.827	93	.56
			Single	29	.377	.720	-1.19	.61
	Bonferroni	Married	Single	11	.224	1.000	66	.44
		-	Widower	.18	.312	1.000	58	.95
		Single	Married		.224	1.000	44	.66
			Widower	.29	.377	1.000	63	1.21
		Widower	Married	-,18	.312	1.000	95	.58
			Single	-,29	.377	1.000	-1.21	.63

**Multiple Comparisons** 

1 1 1 1 1 1 1 1 1

. . . .

1. . . .

.

.

. . .

. . . . . . .

205

				Mean Difference			95% Confide	ence Interval
Dependent Variable		(I) STATUS	(J) STATUS	(L-I)	Std. Error	Sig.	Lower Bound	Upper Bound
WRE_AVE	Tukey HSD	Married	Single	.02	.148	.992	34	.37
			Widower	.12	.207	.836	38	.61
		Single	Married	02	.148	.992	37	.34
			Widower	.10	.250	.916	50	.70
		Widower	Married	12	.207	.836	61	.38
			Single	10	.250	.916	70	.50
	Bonferroni	Married	Single	.02	,143	1.000	35	.38
			Widower	.12	.207	1.000	39	.63
		Single	Married	-,02	.148	1.000	38	.35
			Widower	.10	.250	1.000	51	.71
		Widower	Married	12	.207	1.000	63	.39
			Single	10	.250	1.000	71	.51
JG_AVE	Tukey HSD	Married	Single	.07	.164	.908	32	.46
			Widower	.32	.229	.351	23	.87
		Single	Married	07	.164	.908	46	.32
			Widower	.25	.277	.641	41	.91
		Widower	Married	32	.229	.351	87	.23
			Single	-,25	.277	.641	91	.41
	Bonferroni	Married	Single	.07	.164	1.000	33	.47
			Widower	.32	.229	.506	-,24	.88
		Single	Married	07	.164	1.000	47	.33
			Widower	.25	.277	1.000	43	.93
		Widower	Married	32	.229	.506	88	.24
			Single	25	.277	1.000	93	.43

L-41

.

k and shok a

, ,

1.1.1

. .

. . .....

1 I C

## Appendix 4: Multiple Regressions

## **Regression 1**

Variables Entered/Removed

Model	Variables Entered	Variables Rem <u>oved</u>	Method
1	wre_fac, pay_fac, job_fac, promo_fa _a c, sup_fac		Enter

a. All requested variables entered.

b. Dependent Variable: jg_fac

#### Model Summary

Model	R R Square		Adjusted R Square	Std. Error of the Estimate
1	.782 ^a	.612	.584	.64497248

a. Predictors: (Constant), wre_fac, pay_fac, job_fac, promo_fac, sup_fac

### ANOVAb

Model		Sum of Squares	df	Mean Square	E-P	Sig.
1	Regression	45.881	5	9.176	22.059	.000 ^a
	Residual	29.119	70	.416	Sec. 1	
	Total	75.000	75			

a. Predictors: (Constant), wre_fac, pay_fac, job_fac, promo_fac, sup_fac

b. Dependent Variable: jg_fac

----

The second second

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t.	Sig.
1	(Constant)	-2.89E-16	.074		.000	1.000
	job_fac	.689	.085	.689	8.132	.000
	pay_fac	.057	.084	.057	.676	.501
	promo_fac	147	.085	147	-1.724	.089
	sup_fac	.258	.094	.258	2.751	,008
	wre_fac	058	.091	058	635	.527

a. Dependent Variable: jg_fac

## **Regression 2**

---- - -

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method	
1	sup_fac, job_fac		Enter	

a. All requested variables entered.

b. Dependent Variable: jg_fac

#### Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.769°	,592	.580	.64783261

1.1.1

1.1

. . .

a. Predictors: (Constant), sup_fac. job_fac

.

4 16-6 16-1 C

ANOVAÞ

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	44.363	2	22.181	52.852	.000ª
	Residual	30.637	73	.420		
	Total	75.000	75			

a. Predictors: (Constant), sup_fac, job_fac

b. Dependent Variable: jg_fac

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			
Model		6	Std. Error	Beta	t	Sig.	1
1	(Constant)	-2.57E-16	.074		.000	1.000	1
	job_fac	.675	.081	.675	8.327	.000	
	sup_fac	.190	.081	,190	2.345	.022	-

a. Dependent Variable: jg_fac

-- -- -

- -



construction

## Appendix 5 : Crosstab

							EDU			
GENDER	STATUS				Junior High School	Senior High School	Diploma	Bachelor	Magister	Total
Male	Married	25 - 34 Years Old	WORKPER	1 - 3 Year (s)	<b>X</b> X	0		1	0	1
				3 - 5 Years		O		1	[ 0	1
				5 - 7 Years		3		5	0	8
				>7 Years	N 8	0		7	1	8
			Total		N. 19	3		14	1	18
		35 - 44 Years Old	WORKPER	3 - 5 Years	0	0	0	1	0	1
				5-7 Years	0	0	1	1	1	3
			No. of Concession, Name	>7 Years		8	5	20	0	34
			Total		1	8	8	22	1	38
		45 - 54 Years Old	WORKPER	3 - 5 Years	0	0	1	0	1	1
				5 - 7 Years	0	1	0	0		1
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		> 7 Years	1	3	0	1		5
			Total	60 - A.	1	4	1	1		7
	Single	25 - 34 Years Old	WORKPER	3 - 5 Years		1		0	1	2
				5 - 7 Years		0		2	0	2
			Total		1 1 4 6	1		2	1	4
	Widower	35 - 44 Years Old	WORKPER	> 7 Years				1		1
			Total		$\mathbf{n} = \mathbf{n}$		1 No	1		1
Female	Married	35 - 44 Years Old	WORKPER	>7 Years	F 20 10 1	1	2	1	1	5
			Total	<u> </u>		1	2	1	1	5
		45 - 54 Years Old	WORKPER	> 7 Years			2			2
			Total		W . W		2			2
	Widower	45 - 54 Years Old	WORKPER	> 7 Years				1		1
			Total	Sec. M		A Comments	100	1		1

#### WORKPER * EDU * AGE * STATUS * GENDER Crosstabulation

Count

,

• • • • • • • •

.