

UNIVERSITAS INDONESIA

٠*.*

PENGARUH PENAMBAHAN UNSUR MANGAN 0.1%, 0.3%, 0.5%, 0.7% DALAM PADUAN AI-7%Si dan Al-12%Si TERHADAP PEMBENTUKAN LAPISAN INTERMETALIK PADA FENOMENA *DIE SOLDERING*

TESIS

VIKA RIZKIA 0706173780

FAKULTAS TEKNIK DEPARTEMEN METALURGI DAN MATERIAL KEKHUSUSAN DESAIN MANUFAKTUR DEPOK JUNI 2009

Pengaruh Penambahan..., Vika Rizkia, FT UI, 2009

UNIVERSITAS INDONESIA

PENGARUH PENAMBAHAN UNSUR MANGAN 0.1%, 0.3%, 0.5%, 0.7% DALAM PADUAN AI-7%Si dan AI-12%Si TERHADAP PEMBENTUKAN LAPISAN INTERMETALIK PADA FENOMENA *DIE SOLDERING*

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Teknik (MT)

VIKA RIZKIA 0706173780

FAKULTAS TEKNIK DEPARTEMEN METALURGI DAN MATERIAL KEKHUSUSAN DESAIN MANUFAKTUR DEPOK JUNI 2009

LEMBAR PERNYATAAN ORISINALITAS

~ ~ `

Tesis ini adalah hasil karya saya sendiri, Dan semua sumber baik yang dikutip maupun dirujuk Telah saya nyatakan dengan benar

Nama	: Vika Rizkia	
Tanda Tanga	an : Vit	
Tanggal	: 26 Juni 2009	

LEMBAR PENGESAHAN

Tesis ini diajukan oleh :

Nama	: Vika Rizkia
NPM	: 0706173780
Program Studi	: Teknik Metalurgi dan Material
Judul Tesis	: Pengaruh Penambahan Unsur Mangan 0.1%, 0.3%, 0.5%, 0.7% Dalam Paduan Al-7%Si dan Al-12%Si Terhadap Pembentukan Lapisan Intermetalik Pada Fenomena Die Soldering

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Teknik pada Program Studi Teknik Metalurgi dan Material Fakultas Teknik, Universitas Indonesia

DEWAN PENGUJI

(

(

- Pembimbing : Prof. Dr. Ing. Ir Bambang Suharno
- Pembimbing : Dr. Ir. Sri Harjanto
- Penguji 1 : Dr. Ir. Winarto, M.Sc.
- Penguji 2 : Ir. Myrna Ariati Mochtar, M.Si

Ditetapkan di : Depok

Tanggal : I Juli 2009

Universitas Indonesia

KATA PENGANTAR

Puji syukur saya panjatkan kepada Allah SWT, karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan tesis ini. Penulisan tesis ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Magister Teknik pada Departemen Metalurgi Material Fakultas Teknik Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan skripsi ini, sangatlah sulit bagi saya untuk menyelesaikan skripsi ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- Prof. Dr. Ing. Ir. Bambang Suharno, selaku dosen pembimbing pertama yang telah bersedia menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini;
- Dr. Ir. Sri Harjanto, selaku dosen pembimbing kedua yang juga telah bersedia menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini
- 3. Rino Vidias Putra, dengan cintanya yang selalu sabar dan tidak hentihentinya memberikan dukungan moral setiap saat kepada penulis
- Orang tua dan keluarga di rumah, yang selalu memberikan dukungan material dan moral kepada penulis
- 5. Ir. Bustanul Arifin, M.Phil.Eng (alm), yang selalu membuat penulis termotivasi untuk menyelesaikan tesis mengenai *die soldering*
- Deni Ferdian, ST, M.Sc, orang yang selalu memberikan wawasan dan diskusi positif kepada penulis
- Wahyuaji NP, ST, MT dan Doddy Alexander, ST, orang yang meluangkan waktunya untuk membantu penulis dalam melakukan pengujian
- Esti Yulia A, SE, Ahmad Ivan Karayan, ST, Dian Adisty, ST, TP.Tiggor, ST, yang selalu memberikan dukungan dan pengertiannya
- Andre Diaz, M. Adyutatama, Yektie Ikhtiarie, Mabrur, Dewin Purnama, Joki, Zulkifli, Fadi, Pak Mirza, Pak Syaiful, atas kekeluargaan dan keceriaan yang diberikan kepada penulis selama ini.

Akhir kata, saya berharap Allah SWT berkenan membalas segala kebaikan semua pihak yang telah membantu. Semoga skripsi ini membawa manfaat bagi pengembangan ilmu.

Depok, 26 Juni 2009

LEMBAR PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	: Vika Rizkia
NPM	: 0706173780
Program Studi	: Desain Manufaktur
Departemen	: Teknik Metalurgi Material
Fakultas	: Teknik Universita Indonesia
Jenis karya	: Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

PENAMBAHAN UNSUR MANGAN 0.1%,0.3%, 0.5%, 0.7% DALAM PADUAN AI-7%Si DAN AI-12%Si TERHADAP PEMBENTUKAN LAPISAN INTERMETALIK PADA FENOMENA *DIE SOLDERING*

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di

di : Depok

Pada tanggal : 1 Juli 2009

Yang menyatakan

Vika Rizkia

ABSTRAK

- -

Nama: Vika RizkiaProgram Studi: Teknik Metalurgi dan MaterialJudul: Pengaruh Penambahan Unsur Mangan 0.1%, 0.3%, 0.5%,
0.7% Dalam Paduan Al-7%Si dan Al-12%Si Terhadap
Pembentukan Lapisan Internetalik pada Fenomena
Die Soldering

Die soldering merupakan hasil dari reaksi interface antara aluminium cair dengan material cetakan. Akibat tingginya afinitas aluminium terhadap besi. unsur besi dari material cetakan berdifusi menuju aluminium cair membentuk lapisan intermetalik pada permukaan cetakan. Kemudian, aluminium cair menempel pada permukaan cetakan dan tertinggal setelah pelepasan hasil pengecoran. Fenomena ini mengakibatkan terjadinya kegagalan cetakan dan menurunnya kualitas permukaan hasil coran, sehingga mengarah kepada penurunan produktivitas dan peningkatan biaya produksi pengecoran. Untuk mencegah terjadinya die soldering, pembentukan lapisan intermetalik pada permukaan cetakan harus diminimalisir. Mangan merupakan unsur yang dapat meningkatkan kekuatan produk pengecoran dan dapat mengurangi pengaruh buruk Fe dengan membentuk suatu fasa kesetimbangan. Berdasarkan penelitian sebelumnya, belum ada korelasi yang jelas mengenai pengaruh unsur mangan dalam pembentukan lapisan interemetalik. Untuk itu, dilakukan penelitian guna mempelajari morfologi, ketebalan dan sifat mekanis lapisan intermetalik akibat penambahan unsur mangan.

Sampel dalam penelitian ini adalah baja H13 yang dicelupkan dalam paduan Al-7%Si dan Al-12%Si yang mengandung 0.1%, 0.3%, 0.5%, dan 0.7%Mn dengan waktu kontak 20, 40, dan 60 menit pada temperatur 700°C. Dalam penelitian ini dihasilkan pembentukan dua lapisan intermetalik pada permukaan baja H13, yaitu *compact layer* yang merupakan fasa padat, dan *broken layer* yang merupakan fasa semi padat.

Hasil penelitian menunjukan bahwa kondisi efektif untuk mengurangi kecenderungan cacat *die soldering* dengan meminimalisir pembentukan pembentukan *compact layer* adalah pada kondisi penambahan 0.3% Mn dalam paduan Al-7%Si dengan waktu kontak 20 menit. Kemudian penambahan Mn hingga 0.7% pada paduan Al-12%Si akan menurunkan ketebalan *compact layer* pada permukaan baja H13, dengan kondisi ketebalan lapisan intermetalik tertipis adalah saat waktu kontak 40 menit. Namun penambahan unsur Mn pada Al-7%Si dan Al-12%Si tidak berpengaruh pada ketebalan *broken layer*, fasa yang terkandung dalam lapisan intermetalik dan sifat mekanis lapisan intermetalik.

Kata Kunci :

H13, die soldering, lapisan intermetalik, pengaruh penambahan Mn, Al-7%Si, Al-12%Si

ABSTRACT

Name Study Program Title : Vika Rizkia
: Teknik Metalurgi dan Material
: Effect of 0.1%, 0.3%, 0.5%, 0.7% Mangan Addition on Al-7%Si Alloy Al-12%Si to The Intermetallic Layer on *Die Soldering* Phenomenon

Die soldering is the result of an interface reaction between the molten aluminum and the die material. Due to high affinity of aluminum for iron, the iron element from die diffuses into aluminum melt resulting in intermetalic layers on the die surface. Molten aluminum "welds" to the die surface and remains there after the ejection of the part. This phenomenon resulting in damage to the die and poor surface quality of the casting, lead to decreasing productivity and increasing production cost. In order to alleviate or mitigate die soldering, the forming of intermetallic layer on die surface has to be minimized. Mangan is an element which increase the strength of cast product and reduce the detrimental effect of Fe by form of equilibrium phase. Based on previous studies, the correlation between manganese element and the formation of intermetallic layer not yet clearly understood. Hence, this research is done to study the morphology, thickness, and mechanical properties of intermetallic layers in influence of mangan addition.

The sample on this research is as anneal H13 tool steel dipped into the molten Al-7%Si and Al-12%Si alloy containing 0.1%Mn, 0.3%Mn, 0.5%Mn, and 0.7%Mn in 20, 40, and 60 minutes at *holding* temperatures 700 °C. This research resulted two intermetallic layers in the surface of H13 tool steel, compact intermetallic layer and broken intermetallic layer.

The result showed that the most effective condition in order to mitigate *die* soldering tendention is minimizing the form of *compact layer* by addition of 0.3%Mn into Al-7%Si alloy in dip time around 20 minutes. Then, Mn addition up to 0.7% into Al-12%Si reduces the thickness of *compact layer* with the most effective dip time around 40 minutes. However, the addition of Mn into Al-7%Si and Al-12%Si does not influence broken intermetallic thickness, phases that formed in intermetallic layer, and mechanical properties of intermetallic layer.

Key Words :

H13, die soldering, intermetallic layer, influence of Mn addition, Al-7%Si, Al-12%Si

DAFTAR ISI

~

~

HALAMAN JUDUL	Ì
LEMBAR PERNYATAAN ORISINALITAS	ü
LEMBAR PENGESAHAN	iii
KATA PENGANTAR	iv
LEMBAR PERSETUJUAN PUBLIKASI	vi
TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS	vi
ABSTRAK	.vii
ABSTRACT	viii
DAFTAR ISI	ix
DAFTAR GAMBAR	xi
DAFTAR TABEL	. XV
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Ruang Lingkup Penelitian	,4
1.2.1 Material	4
1.2.2 Parameter Penelitian	4
1.2.3 Pengujian	4
I.3 Tujuan Penelitian	4
1.4 Manfaat Penelitian	5
BAB 2. STUDI LITERATUR.	6
2.1 Definisi Die Soldering	6
2.2 Mekanisme Die Soldering	8
2.3 Lapisan Intermetalik	. 13
2.3.1 Lapisan Intermetalik Biner	. 13
2.3.2 Lapisan Intermetalilk Terner	. 17
2.4 Pengaruh Unsur Mangan Terhadap Pembentukan Lapisan	
Intermetalik	. 19
2.5 Model Pelarutan dan Mass Loss pada Baja die dalam Aluminum	
Cair	.21
BAB 3. METODOLOGI PENELITIAN	. 24
3.1 Diagram Ahr	.24
3.2 Peralatan dan Bahan	.25
3.2.1 Peralatan	.25
3.2.2 Bahan	.27

Universitas Indonesia

\$

3.3	Pros	edur P	enelitian	l ********	**************	``* * \$7`7``*	×******	**********	
3.3	J.1	Pemot	tongan S	ampel Ma	terial H13.	****	s * * * 4 + 1 * + e × e × + * *	*****	
3.3	3.2	Penga	mplasan	Sampel N	aterial H13	3	* **************	*********	
3.3	3.3	Pelebi	iran Al-	7%Si dan	Al-12%Si	Untuk	Pembuata	n Maste	r
		alloy.	.***~```	*******	***** ***********			*****	
3.3	3.4	Pelebi	iran <i>Ma</i> s	ster alloy .	***************				
3.3	3.5	Pence	lupan M	aterial H1	3 pada <i>Mas</i>	ter alloj	y	.**	
3.3	8.6	Prepa	rasi Metz	ulografi Sa	mpel			****	
3.3	3.7	Penga	matan M	likrostruk	hur	*****			
3.3	3.8	Pengu	jian Kek	erasan La	pisan Intern	netalik.	******	*****	
3.3	3.9	Pengu	jian Fas	a Lapisan	Intermetali	k	*****	***********	
		-							
BAB 4.	HAS	IL AN	JALISA	DAN PE	MBAHASA	N	*****	*****	
4.1	Mor	fologi	dan Kar	akteristik	Lapisan Inte	ermetali	ik	**********	
4.2	Peng	aruh	Unsur	Mangan	dan Waktu	Kont	ak Terha	dap Fas	a
	Inter	metali	ik yang 🕽	l'erbentuk.	**=*****		*********		
4.3	Peng	aruh 1	Unsur M	langan da	n Waktu K	ontak T	erhadap J	Ketebala	n
	Lapi	san In	termetal	ik	****		*********		
4.4.	Peng	aruh	Unsur	Mangan	Terhadap	Sifat	Mekanis	Lapisa	n
	Inter	metali	ik					********	
BAB 5	KES	IMPU	LAN	********	***			********	
	- 8								
DAFTA	R RI	EFERI	ENSI					******	63
					0 /	1 Q		1.12	
				<u> </u>		~			
					A has				

101

Ξ

DAFTAR GAMBAR

- . .

Gambar 2. 1 Core pin yang terkena soldering dan (b) lapisan intermetalik yang
Gambar 2. 2 Skematis fenomena <i>die soldering</i> (Y.L. Chu, P.S. Cheng, and R. Shivpuri,2003)
Gambar 2. 3 Mekanisme Die Soldering
Gambar 2. 4 Daerah intergranular yang disebabkan oleh erosi aluminium cair pada batas butir sekitar permukaan cetakan(Shankar Sumanth dan Diran Apelian,2002)
Gambar 2. 5 Mikrostruktur dari sampel aluminium A380 yang mengalami pelengketan pada cetakan H13. (Kiri) Foto makro (50X) menunjukkan <i>pit</i> erosi pada permukaan H-13 (Kanan) Bagian dari sampel (kiri) dimana ditemukan aluminium yang lengket pada permukaan cetakan(Shankar,Sumanth. Diran Apelian,2002)
Gambar 2. 6 Pitting awal dan terbentuknya fasa intermetalik biner (Sumanth Shankar, Diran Apelian, 2002)
Gambar 2. 7 Lapisan intermetalik berbentuk piramid ditemukan pada permukaan cetakan (Shankar, Sumanth. Diran Apelian, 2002) 11
Gambar 2. 8 Pertumbuhan awal lapisan intermetalik berbentuk piramid(Shankar,Sumanth. Diran Apelian,2002)
Gambar 2. 9 Fotomikro yang menunjukkan pit terbentuk pada permukaan cetakan, kemudian fasa intermetalik terbentuk dan tumbuh pada pit, selanjutnya bagian dari aluminium menempel pada lapisan intermetalik dan tersisa pada baja cetakan(Shankar,Sumanth. Diran Apelian,2002)
 Gambar 2. 10 Skema susunan pertumbuhan lapisan intermetalik dan void internal dengan oksida (a) as-coated steel. (b) difusi Al dari aluminium dan pertumbuhan retak. (c) pertumbuhan FeAl2+Fe2Al5 dan presipitat FeAl. (d) pertumbuhan FeAl dalam FeAl2+Fe2Al5. (e) pembentukan logam bebas dalam presipitat FeAl (f) pembentukan void internal. (g) Pertumbuhan void dan FeAl dalam lapisan intermetalik. (h) Pertumbuhan FeAl ke seluruh lapisan intermetalik (Yo-Yu Chang,2006)
Gambar 2. 11 Diagram Fasa Fe-Al (ASM International, 1994) 15

Universitas Indonesia

:

Gambar 2. 12 Lapisan intermetalik yang terbentuk pada baja H13 yang dicelup ke dalam paduan aluminium cair A380 selama 2 jam
pada temperatur 680°C(V. Joshi, A. Srivastava, R. Shivpuri,2004)17
Gambar 2. 13 Diagram Fasa Al-Fe-Si(N.C.W. Kuijpers, 2000) 18
Gambar 2. 14 Perubahan diagram fasa AlFeSi akibat adanya pengaruh Mn a)0%Mn, b)0.1%Mn, c)0.2%Mn, d)0.3%Mn(Y.L. Chu, P.S. Cheng, dan R. Sbivpuri,2003)
Gambar 2. 15 Pengaruh unsur utama dalam fenomena <i>die</i> soldering(Shankar Sumanth dan Apelian Diran,2000)
Gambar 2. 16 Fasa jarum β-AlFeSi vs cubic α-AlFeMnSi (a) 200µm dan (b) 20µm (Y.L. Chu, P.S. Cheng, dan R. Shivpuri,1993)
Gambar 2. 17 Pertumbuhan dan pelarutan lapisan intermetalik(Shahverdi. H.R,2002)
Gambar 3. 1 Penampang dapur holding
Gambar 3. 2 Gergaji mesin
Gambar 3. 3 Alat uji kekerasan mikrovickers
Gambar 3. 4 SEM yang dilengkapi dengan EDS
Gambar 3. 5 Tahapan pemotongan material H13
Gambar 3. 6 Penampang dapur holding
Gambar 3. 7 Tahapan pemotongan material H13 hasil pencelupan ke dalam aluminium cair
Gambar 3. 8 Mounting sampel
Gambar 4. 1 Foto mikro hasil pengujian Scanning electron microscope dengan perbesaran 350X
Gambar 4. 2 Foto mikro hasil pengujian Scanning electron microscope dengan perbesaran 350X
Gambar 4. 3 Grafik kadar Aluminium pada lapisan intermetalik paduan Al- 7%Si
Gambar 4. 4 Grafik kadar Besi pada lapisan intermetalik paduan Al-7%Si
Gambar 4. 5 Grafik kadar Aluminium pada lapisan intermetalik paduan Al- 12Si

.

Universitas Indonesia

:

Gambar 4. 6 Grafik	kadar besi pada lapisan intermetalik paduan Al-12Si
Gambar 4. 7 Data h	asil XRD paduan Al-7%Si 0.1%M,0.3%Mn,0.5%Mn,
dan 0.	7%Mn dengan waktu kontak 20 menit dibandingkan
dengar	n Al-7%Si 0.7%Mn
Gambar 4. 8 Data h	asil XRD paduan Al-12%Si 0.1%M,0.3%Mn,0.5%Mn,
dan 0.	7%Mn dengan waktu kontak 20 menit dibandingkan
denga	n Al-12%Si 0.7%Mn
Gambar 4. 9 Anal	isa XRD lapisan intermetalik menggunakan radiasi
monol	cromatik Cu Ka yang dioperasikan pada 40kV dan
100m.	A (Yo Yu Chang, 2006)
Gambar 4. 10 Hasil	XRD master alloy Al-7%Si 0.1%Mn dengan baja H13
hasil	pencelupan dalam Al-7%Si 0.1%Mn dengan waktu
kontal	20 menit
Gambar 4. 11 Hasil	XRD master alloy Al-7%Si 0.3%Mn dengan baja H13
hasil	pencelupan dalam Al-7%Si 0.3%Mn dengan waktu
kontal	20 menit
Gambar 4. 12 Hasil	XRD master alloy Al-7%Si 0.5%Mn dengan baja H13
hasil	pencelupan dalam Al-7%Si 0.5%Mn dengan waktu
kontal	20 menit
Gambar 4. 13 Hasil	XRD master alloy Al-7%Si 0.7%Mn dengan baja H13
hasil	pencelupan dalam Al-7%Si 0.7%Mn dengan waktu
kontal	20 menit
Gambar 4. 14 Hasi	XRD master alloy Al-12%Si 0.1%Mn dengan baja
H13	hasil pencelupan dalam Al-12%Si 0.1%Mn dengan
waktu	kontak 20 menit
Gambar 4. 15 Hasi	XRD master alloy Al-12%Si 0.3%Mn dengan baja
H13	basil pencelupan dalam Al-12%Si 0.3%Mn dengan
waktu	kontak 20 menit
Gambar 4, 16 Hasi	XRD master alloy Al-12%Si 0.5%Mn dengan baja
H13	hasil pencelupan dalam Al-12%Si 0.5%Mn dengan
waktu	kontak 20 menit
Gambar 4. 17 Hasi	l XRD master alloy Al-12%Si 0.7%Mn dengan baja
H13	hasil pencelupan dalam Al-12%Si 0.7%Mn dengan
waktu	kontak 20 menit
Gambar 4. 18 Data	hasil penelitian pengaruh unsur Mn terhadap ketebalan
compe	Int layer pada paduan Al-7%Si dalam fungsi waktu
Gambar 4. 19 Data	hasil penelitian pengaruh unsur Mn terhadap ketebalan
broke	11 <i>layer</i> pada paduan Al-7%Si dalam fungsi waktu

- -

- .

Universitas Indonesia

_

÷

×

Gambar 4. 20 Data hasil penelitian pengaruh unsur Mn terhadap ketebalan compact layer pada paduan Al-12%Si dalam fungsi waktu
Gambar 4. 21 Data hasil penelitian pengaruh unsur Mn terhadap ketebalan broken layer pada paduan Al-12%Si dalam fungsi waktu
Gambar 4. 22 Data hasil penelitian pengaruh unsur Mn terhadap total ketebalan lapisan intermetalik pada paduan Al-7%Si
Gambar 4. 23 Data hasil penelitian pengaruh unsur Mn terhadap total ketebalan lapisan intermetalik pada paduan Al-12%Si
Gambar 4. 24 Data hasil penelitian pengaruh waktu kontak terhadap kekerasan lapisan intermetalik pada paduan Al-7%Si
Gambar 4. 25 Data hasil penelitian pengaruh waktu kontak terhadap kekerasan lapisan intermetalik pada paduan Al-12%Si
Gambar 4. 26 Data hasil penelitian pengaruh %Mn terhadap kekerasan lapisan intermetalik pada paduan Al-7%Si
Gambar 4. 27 Data hasil penelitian pengaruh %Mn terhadap kekerasan lapisan intermetalik pada paduan Al-12%Si

- 、

DAFTAR TABEL

. .-

~ /

Tabel 2.1 S	Struktur Kristal dan rentang stabilitas yang terbentuk dalam system biner Fe-Al pada temperatur ruang	, ,
Tabel 2.2	Konstanta termodinamik fasa intermetalik dalam system fasa biner 17	I
Tabel 2.3	Pengaruh beberapa elemen terhadap ketebalan lapisan intermediate (Y.L. Chu, P.S. Cheng, and R. Shivpuri, 1993)	I
Tabel 4.1	Unsur yang terkandung di dalam lapisan intermetalik paduan Al- 7%Si	
Tabel 4.2	Unsur yang terkandung di dalam lapisan intermetalik paduan All2Si	ļ

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Paduan aluminium silikon (mengandung lebih dari 4%Si) merupakan paduan aluminium tuang yang memiliki aplikasi terluas di dunia selama 60 tahun belakangan ini. Hal tersebut dikarenakan paduan aluminium silikon tuang memiliki kelebihan antara lain kekuatan yang tinggi, ringan dengan densitas yang rendah, tahan terhadap korosi, konduktifitas panas dan listrik tinggi, mampu cor tinggi dan biaya pengerjaan rendah.^[1,2]

Saat ini tidak diragukan lagi bahwa industri otomotif merupakan pengguna terbesar paduan aluminium silikon tuang. Setiap tahunnya, total permintaan paduan aluminium silikon tuang bertambah secara konstan. Fenomena ini dapat kita lihat pada sepuluh tahun terakhir, semenjak dimulainya produksi aluminium untuk otomotif terutarna untuk komponen : blok silinder, piston, rangka otomotif, dan lain-lain.^[3]

Salah satu proses pengaplikasiannya adalah penggunaan paduan aluminium silikon tuang dalam proses *die casting*, dimana proses ini telah berkembang sejak beberapa dekade lalu. Dengan berbagai keuntungannya, seperti proses yang relatif mudah dan murah serta produknya yang sangat kuat dan tahan lama, penggunaan paduan aluminium silikon tuang dalam proses *die casting* menjadi suatu hal yang berprospek cerah dalam dunia industri. Namun disisi lain, harga/biaya dari cetakan *die casting* relatif tinggi yaitu mencapai 20% dari biaya produksi total pada industri aluminium *die casting*^[4]. Oleh sebab itu, umur pakai sebuah cetakan merupakan faktor penting dalam proses *die-casting*. Dalam prakteknya, terdapat suatu permasalahan dominan terjadi pada proses *die casting* menggunakan paduan aluminium, yaitu fenomena *die soldering* yang mengakibatkan berkurangnya umur pakai cetakan.

Die soldering merupakan hasil dari reaksi permukaan antara aluminium cair dengan material cetakan, dimana paduan aluminium cair menempel pada

cetakan yang terbuat dari baja perkakas kemudian tertinggal pada permukaan cetakan setelah pelepasan hasil pengecoran^[5]. Hal tersebut mengarah kepada kegagalan cetakan dan jumlah penolakan produk yang bertambah, sehingga diperlukan perbaikan atau penggantian cetakan bila hal ini sering terjadi. Akibatnya terjadi penurunan tingkat produktivitas proses pengecoran yang signifikan. Berdasarkan penelitian mengenai pengaruh negatif *die soldering* pada *Contech LLC Squeeze Casting Plant* di Piercerton, terhitung 1.5% dari total biaya variable overhead disebabkan oleh kegagalan akibat *die soldering* ^[6]. Oleh karena itu, apabila efisiensi dari proses pengecoran dapat ditingkatkan dengan cara meminimalisir efek *die soldering*, industri dapat menghemat bahan baku dan penggunaan energi. Untuk mengurangi atau meminimalisir terjadinya fenomena *die soldering*, diperlukan pengetahuan dan pemahaman mengenai mekanisme proses dan penyebab penempelan aluminium cair pada material cetakan.

Berbagai analisa metalografi mengenai fenomena terbentuknya lapisan intermetalik antara permukaan baja perkakas dan aluminum cair telah dilakukan. Hasil dari berbagai penelitian tersebut memperlihatkan fenomena yang cukup menarik dalam *die soldering*, mulai dari pengaruh kondisi proses seperti waktu tahan dan temperatur tahan hingga pengaruh unsur paduan dalam aluminum cair.

Berdasarkan penelitian Kajoch^[7], aluminium menunjukkan kecenderungan yang tinggi terhadap terjadinya penempelan dengan Fe. Hal tersebut terlihat dengan keberadaan lapisan intermetalik yang terdiri dari senyawa intermetalik seperti fasa Fe₂Al₅, Fe₃Al and FeAl₃. Selain itu, kehadiran unsur-unsur lain pada paduan aluminium seperti Si, Cu, Mg, dan lainnya, juga menghasilkan pembentukkan senyawa kompleks intermetalik yang terdapat pada lapisan intermediet. Dalam penelitian G. B. Winkelman et al^[8], lapisan intermetalik hasil *die soldering* dikarakterisasikan menjadi beberapa lapisan, yaitu : *compact intermetallic layer* yang bersifat solid, kemudian lapisan kedua disebut *broken intermetallic layer* dan *floating intermetallic layer* yang bersifat semi solid, dan *Reaction Zone Boundary (RZB)*. Q Han, dkk^{15]} melakukan penelitian bahwa terdapat hubungan antara fraksi liquid dengan kandungan Fe dalam aluminium terhadap fenomena *die soldering*. Jika fraksi liquid kecil, maka ikatan antara cetakan dan logam cair lemah sehingga proses pengeluaran benda coran (eject) mudah dilakukan, dan kecenderungan terjadinya soldering sangat kecil.

Banyak penelitian-penelitian lain mengenai upaya pengurangan kecenderungan terjadinya fenomena *die soldering* dengan memfokuskan kepada komposisi kimia yang terkandung dalam paduan aluminium antara lain : Y.L Chu^[9] menunjukkan bahwa kemampuan cairan logam lepas dari cetakan akan meningkat dengan penambahan Mn pada batas minimal 0,4%. Dalam penelitian Shankar^[10] menghasilkan kandungan Mn sebesar 1-3% dalam paduan aluminium tipe 380, meningkatkan ketebalan intermetalik sekitar 50% pada 720-730°C. Diran Apelian^[11] melakukan penelitian bahwa penambahan unsur Mn pada aluminium menunjukkan kemiringan positif yang mengindikasikan bahwa penambahan unsur tersebut akan membantu menghindari terjadinya *die soldering.* Kemudian penelitian Bambang Suharno et al ^[12,13], menunjukkan bahwa semakin tinggi kadar Fe dalam paduan Al-7%Si dan Al-12%Si, akan menurunkan total ketebalan lapisan intermetalik yang terbentuk.

Hasil penelitian Bambang Suharno, dkk mengenai peran unsur Fe dalam mengurangi pembentukan lapisan intermetalik sangat menarik, sehubungan dengan pengaruh unsur Fe terhadap hasil coran itu sendiri. Dimana selain mempertimbangkan nilai ekonomis, unsur Fe juga dapat meningkatkan kekuatan hasil coran. Namun, terdapat kandungan maksimum unsur Fe dalam paduan aluminium tuang yaitu 0.5% dan 0.75% untuk paduan Al-7%Si dan Al-12%Si berturut-turut^[14]. Mangan adalah unsur yang memiliki pengaruh yang hampir sama dengan Fe terhadap produk hasil coran, yaitu dapat meningkatkan kekuatan hasil coran dan dapat menstabilkan kadar Fe berlebih dengan membentuk suatu fasa kesetimbangan α AlMnFeSi^[15]. Namun dari berbagai penclitian dunia mengenai unsur mangan, masih belum ada korelasi yang jelas mengenai pengaruh unsur mangan terhadap pembentukan lapisan intermetalik dan fenomena *die soldering*. Oleh karena itu, penulis memutuskan untuk melakukan penelitian lebih lanjut untuk memastikan pengaruh unsur mangan dalam paduan aluminium silikon terhadap pembentukan tapisan intermetalik dan fenomena *die soldering*.

1.2 Ruang Lingkup Penelitian

1.2.1 Material

Material yang digunakan dalam penelitian ini adalah :

- 1. Baja perkakas H13 yang berbentuk silinder pejal
- 2. Paduan dasar Al-7%Si dan Al-12%Si
- 3. Al-80%Mn

1.2.2 Parameter Penclitian

Parameter penelitian yang digunakan adalah :

- 1. Temperatur tahan 700°C
- 2. Mn yang ditambahkan : 0,1%,0,3%, 0,5% dan 0,7%
- 3. Waktu pencelupan : 20, 40, dan 60 menit

1.2.3 Pengujian

Adapun berbagai jenis pengujian yang dilibatkan dalam penelitian ini adalah :

- 1. Pengujian kekerasan lapisan intermetalik yang terbentuk setelah pencelupan menggunakan microvickers hordness tester.
- 2. Pengujian komposisi kimia master alloy menggunakan Optical Emission Spectrometer (OES).
- Pengujian komposisi kimia lapisan intermetalik yang terbentuk setelah pencelupan menggunakan Energy Dispersive Spectrometer (EDS).
- Pengujian morfologi dan ketebalan lapisan intermetalik yang terbentuk setelah pencelupan menggunakan Scanning electron microscope (SEM).
- 5. Pengujian fasa lapisan intermetalik yang terbentuk setelah pencelupan menggunakan X-Ray Dispersive Spectrometer (XRD).

1.3 **Tujuan Penelitian**

Penelitian ini dilakukan dengan tujuan untuk:

- Mengetahui waktu yang paling efektif untuk mengurangi ketebalan lapisan intermetalik pada paduan aluminium Al-7%Si dan Al-12%Si yang mengandung 0,1%, 0,3%, 0,5% dan 0,7% Mn.
- Mengetahui morfologi lapisan intermetalik yang terbentuk selama soldering, akibat penambahan 0,1%, 0,3%, 0,5% dan 0,7% Mn dalam Al-7%Si dan Al-12%Si.
- Mengetahui kekerasan lapisan intermetalik yang terbentuk pada paduan aluminium Al-7%Si dan Al-12%Si yang mengandung 0,1%, 0,3%, 0,5% dan 0,7% Mn.

1.4 Manfaat Penelitian

Kegunaan dari penelitian ini adalah sebagai informasi mengenai pengaruh unsur mangan pada paduan aluminium terhadap ketebalan lapisan intermetalik serta waktu yang efektif untuk mengurangi ketebalan lapisan intermetalik dalam fenomena *die soldering*. Sehingga, penelitian ini sangat diharapkan dapat digunakan sebagai referensi dalam proses pencegahan cacat *die soldering* guna meningkatkan produktivitas benda cetak dan umur pakai dari cetakan di industri pengecoran.

BAB 2 STUDI LITERATUR

2.1 Definisi Die Soldering

terbentuk pada bagian yang terkena soldering

Menurut K.Venkatesan et al^[16], *die soldering* merupakan salah satu penyebab utama kegagalan cetakan dan terjadi akibat dari reaksi antara baja cetakan dan paduan aluminium yang diinjeksikan ke dalam cetakan. Fenomena ini dikarakterisasikan dengan pembentukan fasa intermetalik pada *interface* antarabaja cetakan dan aluminium cair. Menurut Sumanth Shankar^[17], *die soldering* atau *die sticking* adalah cacat pengecoran dimana logam cair menempel pada permukaan cetakan saat proses pengecoran dan masih tertinggal setelah proses pelepasan produk.

Penyebab terjadinya fenomena *Die soldering* adalah reaksi kinetik yang tinggi antara besi dan aluminium, dimana besi memiliki afinitas yang sangat tinggi terhadap aluminium sehingga mengakibatkan menempelnya aluminium cair ke permukaan material cetakan. Secara umum, *die soldering* merupakan hasil dari reaksi *interface* antara aluminium cair dengan material cetakan. Ketika aluminium mengalami kontak dengan material baja cetakan, atom aluminium dan atom besi saling berdifusi menghasilkan pembentukan fasa intermetalik pada permukaan material cetakan, selanjutnya paduan aluminium tuang menempel pada *die* yang terbuat dari *toolsteel* dan masih tertinggal pada saat pelepasan hasil coran^[18].

Gambar 2. 2 Skematis fenomena die soldering^[9]

Fenomena *die soldering* sangat berkaitan erat dengan fenomena perusakan dari lapisan tipis yang melindungi permukaan cetakan. Logam cair dimasukkan ke dalam gate pada *die* dengan tekanan tinggi (*die casting*) dengan siklus pengecoran pada umumnya kurang dari 1 (satu) menit. Sehingga, permukaan *die* akan mengalami pemasukkan aluminium cair dan terjadi keausan. Hal ini menyebabkan terjadinya kerusakan pada *coating* permukaan *die* dan lubrikannya^[9]. Oleh sebab itu, aluminium cair akan kontak langsung pada permukaan cetakan. Selanjutnya besi yang terkandung pada cetakan larut ke dalam aluminium cair dan membentuk lapisan intermetalik. Pada *die soldering*, lapisan terjadi pada level atomik schingga sulit dicegah. Afinitas aluminium terhadap besi tinggi, sehingga reaksi kimia akan terjadi pada permukaan cetakan ketika aluminium cair kontak langsung dengan cetakan ^[19].

Awalnya, besi dan aluminium saling bereaksi membentuk fasa intermetalik biner Fe-Al. Kemudian, fasa tersebut bereaksi dengan aluminium cair untuk selanjutnya membentuk fasa intermetalik terner FeAlSi^[20]. Saat lapisan fasa intermetalik biner dan terner terbentuk pada material *die*, aluminium menempel pada *die* akibat adanya konduktivitas termal yang sangat rendah pada fasa intermetalik dan adanya energi *interface* antara lapisan intermetalik dan aluminium^[9].

Lapisan senyawa intermetalik FeAl yang terbentuk pada kondisi tersebut diatas umumnya FeAl₃ dan F_2Al_5 . Awalnya terbantuk lapisan FeAl₃ pada

interface antara substrat aluminium dan baja dengan cara difusi atom besi menuju aluminium, kemudian lapisan Fe₂Al₅ terbentuk pada *interface* antara lapisan FeAl₃ dan baja. Telah diteliti sebelumnya bahwa petumbuhan lapisan Fe₂Al₅ merupakan proses difusi dengan energi aktivasi untuk pertumbuhannya adalah 155 kJ mol⁻¹ pada rentang temperatur 943 hingga 1073 K. Pertumbuhan lapisan intermetalik FeAl dengan komposisi aluminium yang tinggi tergantung dari koefisien difusi antara substrat baja dan aluminium cair. Dimana koefisien difusi dari besi menuju aluminium adalah 53x 10⁻⁴ m²s⁻¹, lebih besar dari koefisien difusi dari aluminium menuju besi, $1.8x 10^{-4}$ m²s⁻¹. Sebagai tambahan, laju pertumbuhan lapisan intermetalik menurun dengan adanya peningkatan kandungan karbon dalam substrat baja, dan ditahan oleh adanya atom silicon ^[21].

2.2 Mekanisme Die Soldering

Mekanisme terjadinya soldering bergantung pada difusi dan reaksi kimia dari unsur yang terdapat pada cetakan dan logam cair^[7]. Menurut Shankar ^[17], soldering merupakan reaksi difusi besi yang terkandung pada cetakan, masuk ke dalam aluminium cair, bereaksi membentuk lapisan intermetalik.

Gambar 2. 3 Mekanisme Die Soldering^[2]]

Gambar 2.3 diatas menjelaskan reaksi yang terjadi antara aluminium dan cetakan. Reaksi tersebut terdiri dari 5 tahapan, yaitu ^[17,18,20,23,24]:

1. Pengikisan batas butir pada permukaan cetakan

Cetakan yang tebuat dari baja perkakas umumnya dilakukan perlakuan panas double tempering hingga kekerasan sekitar Rc48-Rc50.

Selama siklus proses pengecoran, aluminium cair menyerang secara berulang bagian yang lunak pada permukaan cetakan, yaitu daerah antara plat martensitik dan partikel karbida yang merupakan daerah intergranular. Ketika aluminium mengerosi daerah lunak pada permukaan cetakan, menghasilkan terbentuknya Fe-solid solution (a-Fe) pada aluminium cair seperti yang terlihat pada Gambar 2.4.

Gambar 2. 4 Daerah intergranular yang disebabkan oleh erosi aluminium cair pada batas butir sekitar permukaan cetakan^[18]

1. Pembentukan sumuran (pitting) pada permukaan cetakan

Ketika batas butir dan fasa yang lemah pada permukaan cetakan mengalami penyerangan, terbentuk *pit hemisperical* seperti yang terlihat pada Gambar 2.5.

Gambar 2. 5 Mikrostruktur dari sampel aluminium A380 yang mengalami pelengketan pada cetakan H13. (Kiri) Foto makro (50X) menunjukkan *pit* erosi pada permukaan H-13 (Kanan) Bagian dari sampel (kiri) dimana ditemukan aluminium yang lengket pada permukaan cetakan^[18]

2. Pembentukan senyawa intermetalik biner Fe-Al dan struktur piramid

Selanjutnya, pada permukaan *pit* tersebut, fasa biner seperti FeAl, FeAl₂, Fe₂Al₅, dan FeAl₃ terbentuk. Pembentukan berturut-turut lapisan biner tersebut merupakan akibat dari reaksi tiap fasa yang terbentuk dengan aluminium cair baru yang terus berlanjut. Hal ini ditunjukkan pada Gambar 2.6.

Gambar 2. 6 Pitting awal dan terbentuknya fasa intermetalik biner (18

Dalam tahap selanjutnya, fasa FeAl₃ bereaksi dengan aluminium dan silikon dalam paduan aluminium cair untuk membentuk fasa terner α -(Al,Fe,Si). Lapisan intermetalik yang terbentuk selama proses ini memiliki morfologi piramid. Hal ini disebabkan oleh pertumbuhan radial dari fasa intermetalik keluar dari *pit* pada permukaan baja. Karena volume aluminium cair sangat banyak, reaksi antara fasa intermetalik dan logam cair mendominasi difusi besi dari permukaan baja. Sehingga fasa terner ini memiliki ketebalan yang paling besar dibandingkan fasa yang lain. Selanjutnya, silikon dan unsur minor lainnya (kromium, mangan, vanadium, dll) dari cetakan dan paduan aluminium cair membentuk presi*pit*at pada batas butir dari fasa intermetalik Fe₂Al₅. Selain itu, presi*pit*at silikon juga ditemukan pada batas antara fasa biner dan terner.

Gambar 2.7 yang menunjukkan pembentukan piramid pada permukaan cetakan juga menunjukkan *pit* terbentuk dibawah piramid dan pola pertumbuhan radial senyawa intermetalik muncul dari *pit*.

Gambar 2. 7 Lapisan intermetalik berbentuk piramid ditemukan pada permukaan cetakan

3. Penggabungan struktur piramid dari fasa intermetalik yang ada pada permukaan cetakan

Produk reaksi terakhir antara besi dan paduan aluminium cair adalah pembentukan fasa α-(Al,Fe,Si). Sesaat setelah lapisan intermetalik piramid terbentuk pada permukaan cetakan, aluminium berlebih menempel pada piramid, seperti yang ditunjukkan pada Gambar 2.8.

Gambar 2. 8 Pertumbuhan awal lapisan intermetalik berbentuk piramid^[18]

Penempelan tersebut terjadi kemungkinan akibat pengaruh energi permukaan dari lapisan intermetalik yang menonjol kearah aluminium cair dan akibat rendahnya konduktivitas termal dari fasa intermetalik dibandingkan dengan permukaan baja. Sehingga, ketika bagian lain dari hasil pengecoran telah memadat dan siap untuk di lepas, cairan logam sekitar lapisan intermetalik sedang mengalami pembekuan. Hal inilah yang menyebabkan penempelan logam cair disekitar lapisan intermetalik bahkan hingga setelah hasil pengecoran telah dilepas, seperti terlihat pada Gambar 2.9.

Gambar 2. 9 Fotomikro yang menunjukkan pit terbentuk pada permukaan cetakan, kemudian fasa intermetalik terbentuk dan tumbub pada pit, selanjutnya bagian dari aluminium menempel pada lapisan intermetalik dan tersisa pada baja cetakan¹¹⁸.

4. Pertumbuhan fasa intermetalik dan sumuran

Seiring dengan berjalannya waktu, *pit* erosi melebar dan bergabung satu sama lain, menghasilkan *pit* yang lurus. Saat lapisan intermetalik terbentuk didalam *pit*, *pit* berhenti untuk tumbuh ke arah permukaan baja melainkan tumbuh sejajar dengan permukaan baja. Ketika *pit* mulai bergabung satu sama lain, aluminium cair yang masuk ke permukaan baja terperangkap pada gap, kemudian tumbuh retak antara lapisan intermetalik dari *pit* yang bersebelahan. Gambar 2.9 juga menunjukkan retak yang terbentuk antara lapisan intermetalik piramid.

Tahapan yang paling vital dalam proses *die soldering* adalah saat pengikisan awal permukaan baja cetakan oleh aluminium cair dan pembentukan senyawa intermetalik pertama (tahapan I hingga tahapan III). Dalam material cetakan baja, terdapat rentang waktu antara tahapan tersebut yang sangat sedikit, karena adanya reaksi kinetik yang sangat cepat dalam pembentukan senyawa lapisan intermetalik biner Fe_xAl_y setelah terjadinya *pit*ting pada permukaan baja cetakan. Mekanisme pembentukan *pit* disinyalir terjadi akibat dua kemungkinan, yaitu pertama adanya tumbukan secara mekanis aluminium cair ke permukaan cetakan, dan kedua adanya korosi intergranular pada permukaan cetakan akibat aluminium cair^[10]. Erosi atau pengikisan secara mekanis sangat tergantung oleh kekuatan dan kekerasan dari material cetakan, sedangkan korosi intergranular tergantung dari komposisi kimia dan konsistensi mikrostruktur pada permukaan baja cetakan ^[10,23].

Sesaat setelah *pit* pertama kali terbentuk pada baja cetakan, lapisan intermetalik pun ikut terbentuk, kemudian aluminium cair secara instan menempel pada lapisan intermetalik tersebut. Tebalnya lapisan intermetalik pertama yang menempel pada permukaan baja cetakan menunjukkan seberapa besar kecenderungan terjadinya cacat *die soldering* pada baja cetakan tersebut^[20].

2.3 Lapísan Intermetalik

2.3.1 Lapisan Intermetalik Biner

Lapisan intermetalik adalah lapisan fasa padat yang terbentuk akibat adanya dua atau lebih unsur logam berbeda yang saling berdifusi. Kemudian membentuk kombinasi dari dua atau lebih unsur logam tersebut dengan struktur kristal yang berbeda dari unsur logam pembentuknya^[25]. Pertumbuhan lapisan intermetalik merupakan hasil dari difusi suatu unsur logam menuju unsur logam lainnya melalui kekosongan (vacancy) struktur kristal. Vacancy tersebut akan muncul sebagai fitur yang bergerak dan memiliki kecenderungan untuk bergabung satu sama lain kemudian terlihat sebagai bentuk void atau pori^[26].

Yo-Yu Chang^[27] meneliti proses pencelupan 9Cr-1Mo steel ke dalam Al-7%Si menghasilkan dua jenis lapisan aluminide, yaitu lapisan aluminium bagian atas dan bagian dalam yang merupakan senyawa intermetalik Fe-Al dengan Si terlarut didalamnya. Setelah lapisan aluminium bagian atas menghilang, lapisan intermetalik didominasi oleh Fe₂Al₃ dan FeAl₂. Perbedaan ekspansi termal pada *interface* antara lapisan Fe₂Al₅ + FeAl₂ dan permukaan baja menyebabkan terjadinya tegangan tarik pada lapisan Fe₂Al₅ + FeAl₂ yang akan mengarah pada pembentukan retak. Ketika semua lapisan Fe₂Al₅ + FeAl₂ bertransformasi menjadi FeAl, retak juga dapat dilihat pada lapisan bagian atas.

Seiring dengan peningkatan waktu, void dan cavities terbentuk di bawah lapisan Al_2O_3 yang terbentuk akibat konsumsi oksidasi dan difusi atom Al dari aluminium cair. Difusi atom Al dari aluminium cair mendominasi pada tahap ini, sedangkan konsumsi akibat pertumbuhan oksida merupakan faktor minor. Kemudian, adanya difusi lanjutan Al dari aluminium cair dan Fe dari permukaan baja menuju lapisan Fe₂Al₅ + FeAl₂ membuat lapisan Fe₂Al₅ + FeAl₂ menjadi

tidak stabil dan mengarah pada pembentukan presi*pit*at FeAl(Cr,Si) yang menyebar pada lapisan intermetalik. Ketika presi*pit*at FeAl semakin membesar, terbentuk *loose metal* pada FeAl yang memiliki komposisi kimia sama dengan FeAl. Selain itu, perubahan volume akibat perubahan fasa juga dapat terjadi akibat adanya pembentukan FeAl. Hal ini disebabkan berat jenis FeAl adalah 5,37 g/cm³, sedangkan FeAl₂ dan Fe₂Al₅ secara berturut-turut adalah 4,36 g/cm³ dan 4,11 g/cm³. Berat jenis FeAl₂ dan Fe₂Al₅ tidak berbeda jauh. Ketika Fe₂Al₅ + FeAl₂ bertransformasi menjadi FeAl, tegangan tarik terjadi pada batas presi*pit*at FeAl akibat berat jenis FeAl yang lebih tinggi.

Gambar 2. 10 Skema susunan pertumbuhan lapisan intermetalik dan void internal dengan oksida (a) as-coated steel. (b) difusi Al dari aluminiom dan pertumbuhan retak. (c) pertumbuhan FeAl2+Fe2Al5 dan presipitat FeAl (d) pertumbuhan FeAl dalam FeAl2+Fe2Al5. (c) pembentukan logam bebas dalam presipitat FeAl (f) pembentukan void internal. (g) Pertumbuhan void dan FeAl dalam lapisan intermetalik. (h) Pertumbuhan FeAl ke selurub lapisan intermetalik ^[27].

Dalam proses *die casting*, lapisan intermetalik (FexAly) terbentuk pada permukaan cetakan ketika logam cair (aluminium) kontak langsung dengan cetakan (baja H13). Morfologi dari lapisan intermetalik tersebut tergantung pada reaksi *interface* antara aluminium cair dan material cetakan yang dipengaruhi oleh komposisi logam cair dan cetakan, temperatur logam cair dan waktu kontak ^[28].

Gambar diatas merupakan diagram fasa Al-Fe, dimana berdasarkan diagram tersbut dapat terlihat bahwa apabila terjadi reaksi antara aluminium cair dengan material baja, terdapat lima jenis lapisan intermetalik yang kemungkinan terbentuk yaitu Fe₃Al, FeAl, FeAl₂, Fe₂Al₅ dan FeAl₃ ^[29].

Dalam penelitiannya, Shahverdi et $al^{[30]}$ menyatakan bahwa awal pertumbuhan lapisan intermetalik menuju aluminlum kemungkinan bertujuan untuk mengurangi terjadinya proses difusi atom besi dari *die* menuju aluminium cair. Setelah lapisan intermetalik pertama terbentuk (Fe₂Al₅), pertumbuhan berikutnya tergantung dari difusi atom besi dan atau aluminium dalam Fe₂Al₅. Dimana energi aktivasi untuk difusi atom besi dan aluminium dalam Fe₂Al₅ secara berurutan adalah 107 dan 171 kJ · mol-1. Oleh karena itu akan lebih mudah bagi aluminium untuk berdifusi dan membentuk lapisan intermetalik yang bertumbuh ke arah bagian yang kaya akan unsur besi.

Eggeler et al^[31] mempelajari reaksi yang terjadi pada baja paduan rendah dengan aluminium cair. Dalam penelitian tersebut dihasilkan dua lapisan intermetalik (fasa Fe₂Al₅ yang berbatasan dengan substrat baja dan fasa FeAl₃ yang berbatasan dengan aluminium) dengan pertumbuhan yang menunjukkan deviasi negatif dari persamaan parabolic setelah reaksi beberapa lama.

Sedangkan Heumann dan Dittrich^[32] mengindentifikasikan lapisan intermetalik Fe₂Al₅ sebagai konstituen dominan dari total lapisan intermetalik yang terbentuk dan membentuk kurva parabolik terhadap waktu. Hal ini disebabkan adanya pertumbuhan dan pelarutan lapisan intermetalik untuk waktu celup yang cukup lama.

Berdasarkan diagram fasa Fe-Al, kemungkinan urutan pembentukan lapisan fasa intermetalik pada 680°C beserta energi bebasnya adalah sebagai berikut^[33]:

Fe(a) + Al(a) 🗲 FeAl(s),	Go = -490.6 kcal/mol	2.1
FeAl(a) + Al → FeAl2(s),	G° = -140.3 keal/mol	2.2
FeAl2(a) + Al 🔿 Fe2Al5(s),	G= = -84.83 kcal/mol	2.3
Fe2Al5(a) + Al → FeAl3(s),	$G_{\circ} = -120.65 \text{ kcal/mol}$	2.4

Dibawah ini merupakan tabel struktur kristal, kestabilan dan konstanta termodinamika lapisan intermetalik

Tabel 2. 1 Struktur	Kristal dan	reutang stab	ilitas yang	terbentuk	dalam	system	biner F	6-AI
		pada temp	æratur rua	ng				

Struktur Kristal	Rentang Stabilitas (w1%)	Berat Jenis (Mg/mm ³)
BCC	0-45	7.8
FCC	0-1.3	7.8
BCC (order)	23-555.5	5.58
Do3	23-34	6.72
Cubic (complex)	58-65	
Triclinic	66-66.9	4.36
Orthorombic	70-73	4.11
Monoclinic	74.5-76.5	3.9
FCC	99.998-100	2.69
	Struktur Kristal BCC FCC BCC (order) Do3 Cubic (complex) Triclinic Orthorombic Monoclinic FCC	Struktur Kristal Rentang Stabilitas (w1%) BCC 0-45 FCC 0-1.3 BCC (order) 23-555.5 Do3 23-34 Cubic (complex) 58-65 Triclinic 66-66.9 Orthorombic 70-73 Monoclinic 74.5-76.5 FCC 99.998-100

Fasa	∆H ₃₉₈ (J/mol)	ΔS292 (K-1mol-1)	∆G ₉₇₃ (J/mol)
FeAl ₃ (0)	-112560	9 5.6	-22869
$Fe_2Al_5(\eta)$	-194040	166.7	-19636
FeAl ₂ (C)	-81900	73.3	-16999
FeAl (β2)	-51240	S1	-11090
Fe ₃ Al (β1)	-57372	28	-4827

Tabel 2. 2 Konstanta termodinamik fasa intermetalik dalam system fasa biner

2.3.2 Lapisan Intermetalilk Terner

Cambar 2. 12 Lapisan intermetalik yang terbentuk pada baja H13 yang dicelup ke dalam paduan aluminium cair A380 selama 2 jam pada temperatur 680°C^[20]

Gambar 2.12 merupakan lapisan intermetalik yang terbentuk pada baja cetakan H13 yang bereaksi dengan aluminium cair, lapisan yang terbentuk merupakan hasil dari proses difusi dimana atom besi berdifusi keluar dari cetakan (baja) menuju aluminium cair. Lapisan intermetalik dapat terbentuk pada permukaan cetakan melalui dua cara, yaitu *solid-state diffusion* atau reaksi dan difusi ke dalam logam cair. *Solid-state diffusion* terjadi ketika aluminium yang berasal dari logam cair lewat jenuh mengendap/menempel pada cetakan baja. Difusi aluminium-besi dalam keadaan solid (*solid-state diffusion*) dipengaruhi oleh temperatur dan konsentrasi. Difusi ini berlangsung secara lambat dan karenanya tidak sesuai dengan proses cetak tekan (*die casting*) dimana siklus injeksi berlangsung dalam milisekon. Di sisi lain, reaksi kimia dan difusi ke dalam logam cair memiliki waktu proses yang relatif singkat, dan ini merupakan mekanisme yang dominan terjadi pada pembentukan intermetalik dan soldering. Pergerakan dari difusi padat-cair menghasilkan pengurangan massa atau pelarutan ^[24].

Gambar 2.13 menunjukkan posisi fasa untuk jenis lapisan intermetalik stabil yang berbeda dalam paduan Al-Fe-Si. Fasa-fasa ini juga dapat terbentuk pada sistem paduan Al, dimana terdapat Fe dan Si sebagai fasa konstituen.

2.4 Pengaruh Unsur Mangan Terhadap Pembentukan Lapisan Intermetalik

Penambahan unsur-unsur tertentu ke dalam aluminium sangat memberikan pengaruh besar terhadap sifat-sifat aluminium serta kegunaannya. Aluminium paduan biasanya ditambahkan beberapa unsur paduan dengan tujuan untuk meningkatkan kekuatan, disamping untuk meningkatkan sifat-sifat mekanis lainnya sesuai dengan kebutuhan yang dinginkan. Shankar^[10]secara sistematis telah mempelajari pengaruh dari komposisi paduan dalam fenomena *die soldering* untuk paduan aluminium tipe 380 dan mengukur pengaruh dari beberapa unsur pada pertumbuhan dari lapisan antara (*intermediate*) yang ada pada permukaan baja perkakas (cetakan) dan aluminium yang tersolder.

14×143.	.lanbh	Pengaruh	
Nikel	0,5 %	Ketebalan meningkat sekitar 50% pada 720-730°C	
Mangan	1 -3%	Ketebalan meningkat sekitar 50% pada 720-730°C	
Silikon	- Ketebalan berkurang jika kandungan Si Meningkat		
Tembaga	- Tidak Berpengaruh		
Berilium	0,3-2%	Ketebalan berkurang sekitar 7%	
Nitrogen Bebas	0,002-0,055%	Ketebalan berkurang sekitar 70%	
Kromium	2-20%	Ketebalan berkurang sekitar 60%	
Titanium	0,1%	Ketebalan berkurang sekitar 85%	

Tabel 2. 3 Pengaruh beberapa elemen terbadap ketebalan lapisan intermediate [28]

Mangan adalah salah satu unsur paduan yang sering dipergunakan dalam pengecoran alumunium. Kelarutan mangan pada alumunium, sebesar 1.82% wt pada temperatur 658°C. Penambahan mangan pada alumunium, meningkatkan kekuatan, kekerasan, ketahanan temp tinggi dan ketahanan korosi. Penambahan mangan juga membantu mengurangi daya adhesi dari logam cair ke cetakan. Tanpa adanya mangan pada alumunium, cairan akan lebih lengket dengan cetakan meskipun cetakan mempunyai berbentuk sederhana. Berdasarkan penelitian, kemampuan cairan logam lepas dari cetakan akan meningkat dengan penambahan Mn pada batas minimal 0.4%^[10].

Penambahan mangan menurunkan afinitas Al-Si terhadap Fe, terlihat pada diagram fasa Al-Fe-Si dengan penambahan Mn pada Gambar 2.14. Dimana penambahan mangan akan menurunkan kadar Fe yang dibutuhkan untuk membentuk intermetalik. Oleh karenanya, hal ini akan menurunkan reaksi penyerangan Fe oleh alumunium ketika keduanya berinteraksi. Sehingga, mampu menurunkan kecenderungan untuk terjadinya *die soldering*.

Gambar 2, 14 Perubahan diagram fasa AlFeSi akibat adanya pengaruh Mn a)0%Mn, b)0.1%Mn, c)0.2%Mn, d)0.3%Mn^[23]

Shankar Sumanth dan Apelian Diran, dalam penelitiannya ^[10] memberikan suatu penjelasan mengenai pengaruh unsur paduan dalam aluminium cair terhadap kecenderungan terjadinya fenomena *die soldering*. Seperti yang terlihat pada Gambar 2.15.

Gambar 2. 15 Pengaruh unsur utama dalam fenomena die soldering⁽¹⁰⁾

Pada gambar diatas, kemiringan positif mengindikasikan bahwa penambahan unsur tersebut akan memicu timbulnya *soldering* sementara kemiringan negatif mengindikasikan hal yang sebaliknya. Jika kemiringan semakin besar, semakin besar pula pengaruh unsur pada pertumbuhan dari lapisan intermetalik. Dengan kata lain, berdasarkan penelitian Shankar Sumanth dan
Apelian Diran, peningkatan kadar mangan membantu menghindari terjadinya fenomena die soldering.

Berdasarkan penelitian Y.L. Chu, P.S. Cheng, dan R. Shivpuri^[28], penambahan mangan, akan membentuk fasa *cubic ternary* Al₁₅Mn₃Si₂ (atau sering disebut dengan α AlMnSi) yang akan menstabilkan kadar Fe berlebih dengan membentuk suatu fasa kesetimbangan, *equilibrium quaternary phase* Al₁₅(Fe,Mn)₃Si₂ atau yang biasa disebut α -AlFeMnSi. Biasanya Cr juga ditambahkan bersama dengan Mn sebagai Fe *corrector*. Selanjutnya, α AlFeMnSi akan membeku sebagai *cubic phase* yang mampu mengurangi efek negatif dari Fe. Intinya, prinsip dari pengurangan efek negatif dari Fe adalah dengan mengubah morfologi dari *primary* β AlFeSi berbentuk jarum, dimana hal tersebut dapat dilakukan dengan cara menambahkan Mn yang akan mengubah *primary monoclinic* β AlFeSi menjadi fasa *cubic* α AlFeMnSi.

Gambar 2. 16 Fasa jarum β-AlFeSi vs cubic α-AlFeMnSi (a) 200µm dan (b) 20µm^[28]

2.5 Model Pelarutan dan Mass Loss pada Baja die dalam Aluminum Cair

Pembentukkan dan perkembangan lapisan intermetalik pada *die casting* dapat dijelaskan sebagai berikut^[30]:

- Tahap 1: Selama injeksi aluminium cair dan pembekuan, terjadi difusi atom aluminium dan Fe menuju *interface* untuk membentuk fasa intermetalik Fe_xAl_ySi_x pada *interface*. Silikon merubah laju kinetik dan kelarutan Fe dalam aluminium.
- Tahap 2 : Siklus baru die casting mulai dan aluminium cair baru memasuki lubang cetakan. Driving force untuk terjadinya difusi membentuk lapisan intermetalik menurun secara perlahan, tetapi masih terdapat driving force

yang cukup bagi lapisan intermetalik untuk tumbuh. Driving force untuk pelarutan dalam tahap ini tinggi namun cenderung lebih rendah dibandingkan driving force untuk difusi.

- Tahap 3 : Pada siklus berikutnya, ketebalan lapisan FexAlySiz mencapai batas kritisnya, driving force untuk terjadinya difusi menurun dan dapat diabaikan, kemudian driving force untuk terjadinya pelarutan semakin mendominasi. Hal ini mengakibatkan lapisan intermetalik terlarut dalam aluminium cair.
- Tahap 4 : Terjadi mass loss pada permukaan cetakan namun permukaan tersebut cenderung bebas dari lapisan intermetalik. Driving force untuk terjadinya difusi meningkat karena hilangnya Fe_xAl_y kedalam aluminium cair, namun masih dapat diabaikan dibandingkan dengan driving force untuk terjadinya pelarutan. Selajutnya driving force untuk terjadinya pelarutan menurun seiring dengan meningkatnya ketebalan lapisan intermetalik.
- Tahap 5 : Proses siklus *die soldering* semakin berkembang dan pelarutan masih berlanjut sedangkan permukaan cetakan akan secara kontinyu kehilangan kadar Fe karena terlarut ke dalam aluminium cair.

Gambar 2.13 merupakan hubungan antara ketebalan lapisan intermetalik dengan waktu pada dua temperatur pencelupan yang berbeda. Kurva yang berbentuk bel tersebut merupakan hasil dari adanya dua mekanisme yang terdapat dalam proses *die soldering*, yaitu pertumbuhan dan pelarutan lapisan intermetalik. Ketika slope kurva bernilai positif menunjukkan adanya pertumbuhan lapisan intermetalik akibat adanya reaksi antara atom aluminium dari aluminium cair dan atom Fe dari baja cetakan. Sedangkan, apabila slope kurva bernilai negatif menunjukkan adanya reduksi ketebalan lapisan intermetalik akibat adanya pelarutan lapisan intermetalik yang telah terbentuk. Pada puncak kurva, laju difusi cenderung sama dengan laju pelarutan.

Gambar 2, 17 Pertumbuhan dan pelarutan lapisan intermetalikⁱⁿⁱ

BAB 3 METODOLOGI PENELITIAN

3.1 Diagram Alir

3.2 Peralatan dan Bahan

3.2.1 Peralatan

- 1. Dapur peleburan tipe krusibel dan blower
- 2. Holding Furnace

Gambar 3. 1 Penampang dapur holding

- 3. Mesin Potong Gerinda
- 4. Gergaji Mesin

Gambar 3. 2 Gergaji mesin

- 5. Medium Speed Diamond Saw
- 6. Kertas Amplas grid 240 1500
- 7. Mesin Amplas & Poles
- 8. Kowi (kapasitas 1000 dan 1500 gr aluminium)
- 9. Thermocouple
- 10. Stopwatch

- 11. Cetakan ingot
- 12. Plunger, tang penjepit, dan sendok besi
- 13. Plastik dan label nama
- 14. Peralatan keselamatan (masker dan sarung tangan)
- 15. Timbangan digital
- 16. Vickers Microhardness Tester

Gambar 3. 3 Alat uji kekerasan mikrovickers

- 17. Optical Emission Spectrometer (OES)
- 18. Scanning Electron Microscopy (SEM) dan Energy Dispersive Spectrometer (EDS)

Gambar 3. 4 SEM yang dilengkapi dengan EDS

19. X-Ray Diffraction (XRD)

3.2.2 Bahan

1. Master alloy Al-7%Si dan Al-12%Si

_ _ _ _ ~ ~ ~ ~

- 2. Toolsteel H13
- 3. Material Mn (Al-80% Mn)
- 4. Silica gel
- 5. Thermal coating
- 6. Briket batubara & minyak tanah
- 7. Resin & hardener
- 8. Alumina
- 9. Nital 3%

3.3 Prosedur Penelitian

3.3.1 Pemotongan Sampel Material H13

Tahap awal dalam penelitian ini adalah memotong sampel H13 seperti pada Gambar.3.5 guna mempermudah proses pencelupan H13 ke dalam aluminium cair.

Gambar 3. 5 Tahapan pemotongan material H13

Sampel tersebut dipotong menggunakan gergaji mesin sehingga memiliki bentuk setengah lingkaran dengan diameter ±30 mm dan mempunyai ketebalan sebesar ±4mm.

3.3.2 Pengamplasan Sampel Material H13

Tool steel H13 diamplas menggunakan masin gerinda kemudian dilanjutkan pengamplasan menggunakan kertas amplas grid #240, #320, 400, #600, #800 dan #1000. Proses pengamplasan dilakukan hanya sampai grid 1000 dengan pertimbangan bahwa permukaan sampel telah cukup halus dan rata, namun proses difusi logam cair juga tetap optimal. Setiap peningkatan grid, arah pengamplasan harus $45^{\circ} - 90^{\circ}$ dari arah sebelumnya agar goresan dapat dihilangkan dengan baik. Hal yang penting dalam pengamplasan yaitu pemberian air, karena selama pengamplasan terjadi gesekan antara kertas amplas dan sampel yang dapat meningkatkan kenaikan suhu yang dapat mempengaruhi mikrostruktur sampel.

3.3.3 Peleburan Al-7%Si dan Al-12%Si Untuk Pembuatan Master alloy

Sebelum melebur ingot, dilakukan beberapa proses persiapan peleburan yaitu :

- 1. Pernotongan ingot Al-Si menjadi bagian yang lebih kecil dengan menggunakan mesin potong gerinda.
- 2. Penimbangan material Al-Si mendekati kapasitas kowi pada dapur krusibel yaitu 1.4 kg dan bervariasi sesuai dengan perhitungan material balance. Penimbangan ini menggunakan perhitungan dengan menggunakan timbangan digital. Sebelum di timbang, dilakukan perhitungan material balance untuk mendapatkan massa paduan Al-Si dan massa Mn yang akan ditambahkan, dengan rumus :

% Kadar Mn % Kadar Mn dalam Al-Mn X % Efisiensi Mn X kapasitas kowi 3.1

Mn yang ditambahkan merupakan paduan Al-Mn dengan kadar Mn 80%, dan efisiensi Mn dalam paduan tersebut sebesar 95%. Kapasitas kowi yang digunakan sebesar 1400gr. Bentuk Mn yang ditambahkan pada proses pengecoran berupa bentuk padatan, sehingga perlu dilakukan penumbukan material Al-80%Mn dengan menggunakan *hammer*. Penumbukan dilakukan sampai material menjadi halus berbentuk serbuk. Lalu material di bungkus oleh aluminium foil dan dimasukan ke dalam aluminium cair dengan menggunakan *panjer*. Hal ini dilakukan agar ketika Mn dimasukan ke dalam aluminium cair, material tersebut tidak mengambang di permukaan dan terbakar. *Master alloy* yang telah ditambahkan Mn, diperiksa menggunakan *Optical Emission Spectrometer* (OES) untuk mengetahui apakah komposisi mangan yang berada pada aluminium sesuai dengan keinginan.

3.3.4 Peleburan Master alloy

Sebelum peleburan, terlebih dahulu dilakukan preparasi peleburan master alloy. Preparasi tersebut dilakukan dengan meng-coating berbagai macam peralatan peleburan, seperti kowi, dapur krusibel, sendok besi, penjepit, panjer, dan cetakan ingot, selanjutnya dibakar untuk mengeringkan lapisan thermal coating. Selain itu briket direndam minyak tanah selama beberapa saat sebelum disusun di dalam krusibel dan dilakukan proses pembakaran. Setelah dilakukan preheating pada kowi, master alloy yang telah mengandung komposisi mangan 0,1%, 0,3%, 0.5%, dan 0,7% dimasukkan ke dalam kowi untuk selanjutnya dilebur hingga temperatur sekitar 700°C. Sebelum dilakukan proses pencelupan H13, kowi yang berisi master alloy tersebut dipindahkan ke dalam dapur holding terlebih dahulu dengan menggunakan tang penjepit.

3.3.5 Pencelupan Material H13 pada Master alloy

Sebelum dilakukan pencelupan, temperatur dapur holding disetting terlebih dahulu yaitu 700°C, kemudian temperatur pemanas sekitar 750-850°C. Adapun penampang dapur holding ditunjukkan pada gambar dibawah.

Gambar 3. 6 Penampang dapur holding

Setelah temperatur krusibel konstan, dilakukan proses pencelupan H13 kedalam aluminum cair. Pencelupan sampel dilakukan selama 20, 40, dan 60 menit. Setelah selesai pencelupan, aluminum cair dituang kedalam cetakan ingot. Ketika sudah membeku, ingot diberi kode penelitian.

3.3.6 Preparasi Metalografi Sampel

Sebelum dilakukan pengujian SEM & EDS, material H13 yang telah dicelup dilakukan persiapan meliputi :

1. Pernotongan ujung sampel (bagian a) yang telah dicelup dengan menggunakan medium speed diamond saw seperti pada Gambar 3.7.

Gambar 3. 7 Tahapan pemotongan material H13 hasil pencelupan ke dalam aluminium cair

 Sampel H13 yang telah dipotong, dilakukan mounting guna memudahkan penulis dalam proses pengamatan mikrostruktur seperti ditunjukkan pada Gambar 3.8.

Gambar 3. 8 Mounting sampel

- 3. Pengamplasan dengan menggunakan kertas amplas SiC dari grid 100-1500
- 4. Pemolesan sampel dengan menggunakan kain beludru sebagai media poles dan alumina.
- 5. Sampel yang telah dipoles selanjutnya dilakukan etsa, proses ini bertujuan untuk memunculkan fasa pada lapisan intermetalik yang terbentuk pada permukaan sampel, selain itu juga untuk memonjolkan batas butir antara H13 tool steel dan aluminum. Proses etsa yang dilakukan merupakan etsa kimia dengan menggunakan larutan Nital 3-4% untuk H13

3.3.7 Pengamatan Mikrostruktur

Pengamatan mikrostruktur dilakukan dengan menggunakan alat SEM (Scanning electron microscope) yang dilengkapi dengan EDS (Energy-Dispersive Spectroscopy). Sebelum pengujian SEM, sampel uji di coating dengan menggunakan coating Au-Pd pada seluruh permukaan sampel yang dimounting dengan tujuan agar elektron dapat dihantarkan. Pengujian SEM bertujuan untuk mengamati karateristik lapisan intermetalik serta mengukur ketebalan dari lapisan

tersebut, dan pengujian EDS dilakukan untuk mengetahui unsur-unsur kimia dari lapisan intermetalik yang terbentuk.

3.3.8 Pengujian Kekerasan Lapisan Intermetalik

Pengujian Microhardness dilakukan dengan menggunakan metode vickers microhardness dengan beban indentasi 50 gram untuk penjejakan pada lapisan intermetalik. Bentuk indentor pada alat uji ini adalah square pyramidal. Hasil dari uji ini adalah berupa jejak indentasi, kemudian dihitung nilai kekerasan mikronya. Perhitungan pada vickers microhardness sama seperti perhitungan pada vickers hardness, perbedaannya hanya terletak pada beban indentasi (P) yang diberikan.

3.3.9 Pengujian Fasa Lapisan Intermetalik

Penentuan fasa yang terbentuk pada lapisan intermetalik diidentifikasi dengan X-Ray Diffraction (XRD) merk Philip analytical X-Ray menggunakan radiasi monokromatik Cu Ka. Perhitungan X-Ray Diffraction (XRD) dioperasikan menggunakan goniometer pada rentang scanning 5° <20<890 untuk spesimen baja H13 yang telah dicelup ke dalam master alloy, dan 10° <20<89° untuk master alloy itu sendiri. Selain itu stepwise yang digunakan adalah 0.02° dengan waktu per step 0.5 detik pada 40 kV dan 30 mA.

BAB 4 HASIL ANALISA DAN PEMBAHASAN

4.1 Morfologi dan Karakteristik Lapisan Intermetalik

Berdasarkan hasil pengamatan menggunakan Scanning electron microscope (SEM), pencelupan baja H13 ke dalam paduan Al-7%Si dan Al-12%Si dengan kandungan Mn 0,1, 0,3, 0,5, dan 0,7% Mn selama 20, 40, dan 60 menit menghasilkan dua jenis lapisan yang memiliki karakteristik berbeda dengan H13 maupun aluminium. Contoh kedua lapisan tersebut yang dihasilkan dalam penelitian ini ditunjukkan pada Gambar 4.1 dan Gambar 4.2

Gambar 4. 1 Foto mikro hasil pengujian Scanning electron microscope dengan perbesaran 350X.

Lapisan intermetalik yang terbentuk hasil pencelupan baja H13 ke dalam paduan Al12Si dengan kandungan 0,5%Mn selama 20 menit

Gambar 4.1 dan Gambar 4.2 memperlihatkan bahwa terdapat cekungan (pit) pada permukaan baja H13 yang mengalami kontak dengan aluminium cair. Selain itu, juga terlihat dua jenis lapisan intermetalik dengan karakteristik berbeda yang terdapat tepat diatas lubang (pi/) tersebut. Cekungan (pi/) yang terlihat merupakan akibat dari fenomena penyerangan aluminium ke permukaan H13 saat dilakukan pencelupan, kemudian aluminium mengikis permukaan H13 hingga terbentuk lubang. Selanjutnya, akibat tingginya afinitas besi terhadap aluminium maka terjadi reaksi antara aluminium cair dengan baja H13, dimana atom Fe dari baja H13 dan atom Al dari aluminium cair saling berdifusi satu sama lain membentuk lapisan intermetalik. Berdasarkan pengamatan hasil Scanning electron microscope, lapisan intermetalik yang terbentuk terbagi menjadi dua jenis. Lapisan intermetalik pertama, berbatasan dengan baja H13, merupakan lapisan intermetalik yang berbentuk padat selanjutnya disebut compact layer. Sedangkan lapisan intermetalik kedua, berbatasan dengan compact layer dan aluminium, merupakan lapisan intermetalik semi padat, selanjutnya disebut broken layer.

Compact layer merupakan hasil reaksi dari setiap fasa dengan aluminium cair secara kontinu dan Fe berdifusi keluar dari permukaan hingga membentuk fasa biner seperti FeAl, FeAl₂, FeAl₃ dan Fe₂Al₅. Selanjutnya fasa Fe₂Al₅ bereaksi dengan Al dan Si pada aluminium cair sehingga terbentuk fasa ternary -(Al,Fe,Si). yaitu broken layer^[35].

Compact layer merupakan lapisan intermetalik pertama yang terbentuk setelah adanya difusi atom Fe dari baja H13 dan atom Al dari aluminium cair. Lapisan ini merupakan lapisan yang akan terus bereaksi hingga menjadi stabil dengan energi bebas Gibs pada T 700°C adalah -22.869 hingga -4.827 J/mol^[33]. Karena koefisien difusi untuk logam dalam melewati fasa cair besarnya mencapai 3-4 kali lebih besar jika dibandingkan dengan dalam melewati fasa padat^[7], maka dapat disimpulkan bahwa akan jauh lebih mudah bagi aluminium cair untuk bereaksi dengan *compact layer* dibandingkan dengan baja H13 yang harus melewati fasa padat *compact layer*. Sehingga, setelah *compact layer* terbentuk optimal dan stabil, atom Al yang berasal dari aluminium cair cenderung untuk bereaksi dengan *compact layer* membentuk *broken layer*, dengan kata lain Fe dari baja H13 tidak berdifusi untuk membentuk *broken layer*.

Apabila diperhatikan, compact layer terlihat padat sedangkan broken layer terlihat semi padat. Hal ini disebabkan compact layer merupakan hasil dari reaksi atom Fe dengan atom AI yang membentuk ikatan logam. Sedangkan broken layer merupakan hasil reaksi lanjutan yang melibatkan atom AI bereaksi dengan senyawa compact layer, dimana ikatan yang terbentuk adalah ikatan Van Der Waals yang cenderung lebih lemah dibandingkan ikatan antara atom AI dengan atom Fe.

Selain compact dan *broken layer*; Gambar 4.1 dan Gambar 4.2 juga menunjukkan adanya penempelan aluminium cair ke *broken layer*. Hal ini kemungkinan disebabkan pengaruh energi permukaan dari lapisan intermetalik yang menonjol kearah aluminium cair dan akibat rendahnya konduktivitas termal dari fasa intermetalik dibandingkan dengan permukaan baja.

Kemudian, pada Gambar 4.1 terlihat bahwa lapisan intermetalik yang terbentuk cenderung menyerupai pyramid, sedangkan lapisan intermetalik pada Gambar 4.2 cenderung "lurus dan konstan". Perbedaan tersebut menunjukkan bahwa lapisan intermetalik yang terbentuk pada permukaan cetakan cenderung terus tumbuh dan bergabung menjadi satu hingga ke seluruh permukaan cetakan.

4.2 Pengaruh Unsur Mangan dan Waktu Kontak Terhadap Fasa Intermetalik yang Terbentuk

Setelah dilakukan pengujian Scanning electron microscope (SEM) untuk analisa morfologi lapisan intermetalik yang terbentuk, pada lapisan intermetalik tersebut dilakukan pengujian Energy Dispersive Spectrometer (EDS) untuk mengidentifikasi unsur-unsur yang terkandung didalamnya. Kemudian, fasa lapisan intermetalik diidentifikasi menggunakan X-Ray Diffraction (XRD).

Unsur-unsur yang didapat dari hasil pengujian Energy Dispersive Spectrometer (EDS), kemudian diplot ke dalam diagram fasa pada Gambar 2.11 untuk diperkirakan kemungkinan fasa lapisan intermetalik yang terbentuk. Ringkasan unsur-unsur yang terdapat pada lapisan intermetalik hasil percobaan dapat dilihat pada Tabel 4.1 dan Tabel 4.2. Dimana, Tabel 4.1 untuk kemungkinan fasa intermetalik yang terbentuk pada paduan Al-7%Si dan Tabel 4.2 pada paduan Al-12%Si.

35

%Mn	Waktu	Lapisan	%Al	%Si	%Fe	Fasa yang terbentuk
0.1	()	Compact	63.25	5.04	23.45	FcAl ₃
	00 00	Broken	61.25	7.28	22.92	AlxFeySiz
	40	Compact 1	49.17	1.61	43.93	FeAl ₂
		Compact 2	58.43	5.76	28.58	Fe ₂ Al ₅
		Broken	69.04	4.59	17.89	AlxFeySiz
	20	Compact 1	47.8	2.08	42.82	Fe ₂ Al ₅
		Compact 2	52.12	5.51	34.3	Fe ₂ Als
		Broken	57.92	5.93	26.52	AlxFeySiz
0.3	60	Compact	56.75	5.98	28.41	Fe ₂ Al ₅
		Broken	58.22	6.29	26.74	AlxFeySiz
	40	Compact	59.53	5.86	28.02	Fe ₂ AI5
		Broken	63.47	5.69	22.25	AlxFeySiz
	20	Compact 1	54.87	6.32	33.99	Fe ₂ Al ₅
		Broken	60.88	5.79	25.79	AlxFeySiz
0.5	60	Compact 1	48.77	1.93	43.05	Fe ₂ Al ₅
		Compact 2	55.75	6.13	30.76	Fe2Al5
		Broken	67.78	5.02	18.59	AlxFeySiz
	40	Compact	48.55	4.36	40.26	Fe ₂ Al ₃
		Broken	56.88	10.71	23.32	AlxFeySiz
	20	Compact	44.69	2.88	46.73	FeAlz
		Broken	58.08	5.65	28.75	AlxFeySiz
0.7	60	Compact	56.88	10.71	23.32	Fe ₂ Al ₅
		Broken	65.4	6.12	20.32	AlxFeySiz
	40	Compact	45.1	2.75	43.5	FeAl ₂
		Broken	57.05	5.99	27.87	AlxFeySiz
	20	Compact 1	48.05	1.59	42.97	FeAl ₂
		Compact 2	49	5.64	34.92	Fe ₂ Al ₅
		Broken	63.72	4.69	17.81	AlxFeySiz

Tabel 4. 1Unsur yang terkandung di dalam lapisan intermetalik paduan Al-7%Si

- · · · ·

%Mn	Waktu	Lapisau	%AI	%Si	%Fe	Fasa yang Terbentuk
0.1	60	Compact 1	47.65	2.08	46.42	FeAl ₂
		Compact 2	52.61	6.81	34.2	Fe ₂ Al ₅
		Broken	96.79	0.91	10.9	AixFeySiz
	40	Compact	56.4	6.48	24.4	Fc2Als
		Broken	66.58	4.74	15.07	AlxFeySiz
	20	Compact 1	48.66	1.86	43.43	Fe ₂ Al ₅
		Compact 2	56.75	6.28	29.61	FeAl ₃
		Broken	66.4	3.74	12.85	AlxFeySiz
0.3	60	Compact I	35.15	5.76	49.25	FeAl ₂
		Compact 2	50.73	6.46	32.23	Fe ₂ AI ₅
		Broken	64.22	16.04	3.75	AlxFeySiz
	40	Compact	55.25	6.55	30.11	Fe ₂ Als
		Broken	73.88	10.91	4.39	AlxFeySiz
	20	Compact 1	46.89	2.56	44.84	FcAl ₂
		Compact 2	52.38	6.88	33.21	Fe ₂ Al ₅
		Broken	72.29	15.22	2.54	AlxFeySiz
0.5		Compact 1	45.46	2.39	49.47	Fe ₂ Al ₅
	60	Compact 2	57.05	5.66	34.91	FcAl ₃
		Broken	59.23	5.3	25.38	AlxFeySiz
	40	Compact	54.25	7.07	36.13	Fe ₂ Al ₅
		Broken	73.68	7.14	11.4	AlxFeySiz
	20	Compact 1	43.39	1.98	42.12	FcAl ₂
		Compact 2	49.43	5.89	31.87	Fe ₂ Al ₅
		Broken	63.78	4.17	11.98	AlxFeySiz
0.7	60	Compact 1	45.99	2.33	44.72	Fe ₂ Al ₅
		Compact 2	57.56	6.2	29.95	FeAl ₃
		Broken	62.36	6.65	22.59	AlxFeySiz
	40	Compact 1	47	1.78	45.43	Fe ₂ Al ₅
		Compact 2	56.84	13.16	27.9	FeAl ₁
		Broken	61.22	22.24	5.76	AlxFeySiz
	. 20.	Compact 1	52.49	6.26	27.42	Fe ₂ Als
		Broken	85.84	6.16	1.92	AlxFcySiz

Tabel 4. 2 Unsur yang terkandung di dalam lapisan intermetalik paduan Al12Si

. . _ . _ _

ł

.

Gambar 4. 4 Grafik kadar Besi pada lapisan intermetalik paduan Al-7%Si

Gambar 4. 5 Grafik kadar Aluminium pada lapisan intermetalik paduan Al-12Si

Gambar 4. 6 Grafik kadar besi pada lapisan intermetalik paduan Al-12Si

Berdasarkan Gambar 4.3 hingga Gambar 4.6 dapat dilihat bahwa pada setiap waktu kontak dan kandungan Mn yang berbeda dalam paduan Al-7%Si maupun paduan Al-12%Si menghasilkan kandungan Al dan Fe pada *compact layer* dan *broken layer* yang berbeda pula. Namun, secara umum dapat disimpulkan bahwa *compact layer* memiliki kandungan Fe relatif lebih tinggi dibandingkan dengan *broken layer*. Sedangkan *broken layer* memiliki kandungan. Al yang relatif lebih tinggi dibandingkan dengan *compact layer*. Hal tersebut terjadi karena *compact layer* merupakan lapisan yang terbentuk pertama kali hasil difusi atom Fe dari H13 dan atom Al dari aluminium cair, dimana koefisien difusi dari besi menuju aluminium adalah $53 \times 10^{-4} \text{ m}^2 \text{s}^{-1}$, lebih besar dari koefisien difusi aluminium menuju besi, $1.8 \times 10^{-4} \text{ m}^2 \text{s}^{-1}$ [35]. Sehingga, dapat disimpulkan bahwa atom Fe dari baja H13 lebih banyak berdifusi membentuk *compact layer* dibandingkan atom Al dari aluminium cair. Kemudian, *broken layer* merupakan reaksi lanjutan yang menyebabkan terjadinya reaksi antara *compact layer* (fasa dominan adalah Fe₂Al₅ adalah 107 kJ/mol sedangkan difusi atom Al adalah 171 kJ/mol^[35], sehingga difusi Al dari aluminium cair menuju *compact layer* membentuk *broken layer* lebih mendominasi dibandingkan difusi Fe dari H13 melalui *compact layer*.

Berdasarkan Gambar 4.3 dan Gambar 4.5, terlihat semakin meningkatnya kandungan Mn pada paduan Al-7%Si dan Al-12%Si, kandungan Al pada *compact* dan *broken layer* cenderung konstan. Hal tersebut menunjukkan bahwa penambahan unsur Mn ke dalam paduan Al-7%Si dan Al-12%Si tidak berpengaruh terhadap prosentase aluminium yang berdifusi membentuk lapisan intermetalik. Kemudian berdasarkan Gambar 4.2 dan Gambar 4.6, data cenderung acak dan tidak beraturan, tidak ada korelasi yang jelas antara peningkatan kandungan Mn dalam paduan Al-7%Si dan Al-12%Si dengan prosentase Fe yang berdifusi membentuk lapisan intermetalik. Sehingga, berdasarkan hasil penelitian, peningkatan kandungan Mn dalam paduan Al-7%Si dan Al-12%Si tidak mempengaruhi prosentase Fe dan Al yang berdifusi membentuk lapisan intermetalik. Hal ini mengindikasikan bahwa Mn hanya mempengaruhi laju reaksi pembentukan lapisan intermetalik saja, tanpa berpengaruh terhadap kandungan unsur Fe dan Al pada lapisan intermetalik tersebut.

Gambar 4.7 merupakan data hasil X-Ray Diffraction (XRD) yang berupa gabungan dari data hasil pencelupan baja H13 pada Al-7%Si dengan kandungan 0.1%, 0.3%, 0.5%, 0.7% Mn selama 20 menit serta data master alloy Al-7%Si dengan 0.7%Mn. Berdasarkan pengujian X-Ray Diffraction (XRD) pada master alloy Al-7%Si 0.7%Mn, semua puncak yang teridentifikasi pada grafik tersebut merupakan senyawa Al₃.21SiO₄₇. Setelah itu, dilakukan penggabungan data hasil XRD baja H13 yang dicelupkan dalam paduan Al-7%Si dengan kandungan 0.1%, 0.3%, 0.5%, 0.7%Mn dengan waktu 20 menit dengan tujuan untuk mengetahui apakah puncak-puncak tertinggi dari hasil XRD baja H13 tersebut merupakan puncak dari *hase* atau master alloy Al-7%Si. Berdasarkan analisa dari Gambar 4.7, semua puncak yang teridentifikasi pada data hasil XRD baja H13 yang dilakukan pencelupan merupakan puncak yang juga teridentifikasi pada data hasil pengujian XRD pada Al-7%Si.

Gambar 4.8 merupakan data hasil X-Ray Diffraction (XRD) yang berupa gabungan dari data hasil pencelupan baja H13 pada Al-12%Si dengan kandungan 0.1%, 0.3%, 0.5%, 0.7% Mn selama 20 menit serta data master alloy Al-12%Si dengan 0.7%Mn. Berdasarkan pengujian X-Ray Diffraction (XRD) pada master alloy Al-12%Si 0.7%Mn, semua puncak yang teridentifikasi pada grafik tersebut juga merupakan senyawa Al₃.21SiO₄₇. Setelah itu, juga dilakukan penggabungan data hasil XRD baja H13 yang dicelupkan dalam paduan Al-12%Si dengan kandungan 0.1%, 0.3%, 0.5%, 0.7%Mn dengan waktu 20 menit dengan tujuan untuk mengetahui apakah puncak-puncak tertinggi dari hasil XRD baja H13 tersebut merupakan puncak dari base atau master alloy Al-12%Si. Berdasarkan analisa dari Gambar 4.8, semua puncak yang teridentifikasi pada data hasil XRD baja H13 yang dilakukan pencelupan merupakan puncak yang juga teridentifikasi pada data hasil pengujian XRD pada Al-12%Si.

Hal diatas terjadi bukan berarti bahwa tidak terbentuknya lapisan intermetalik pada permukaan baja H13, melainkan akibat rentang ketebalan ukuran lapisan intermetalik yang mencapai skala mikron sehingga menjadi sulit untuk teridentifikasi.

~ ~ · · · -

Gambar 4. 9 Analisa XRD lapisan intermetalik menggunakan radiasi monokromatik Cu Ka yang dioperasikan pada 40kV dan 100mA ^[27]

Guna memperkuat data bahwa lapisan intermetalik terbentuk pada permukaan baja H13, dilakukan penggabungan data hasil X-Ray Diffraction seperti yang ditunjukkan pada Gambar 4.10 hingga Gambar 4.17. Data hasil XRD master alloy Al-7%Si dan Al-12%Si beserta penambahan 0.1%, 0.3%, 0.5%, 0.7% Mn digabungkan dengan data XRD baja H13 yang dicelupkan ke dalam master alloy Al-7%Si dan Al-12%Si. Setelah itu dilakukan pencocokan puncak dengan Gambar 4.9.

Gambar 4. 10 Hasil XRD master alloy Al-7%Si 0.1%Mn dengan baja H13 hasil pencelupan dalam Al-7%Si 0.1%Mn dengan waktu kontak 20 menit

Gambar 4. 11 Hasil XRD master alloy AI-7%Si 0.3%Mn dengan baja H13 hasil pencelupan dalam AI-7%Si 0.3%Mn dengan waktu koatak 20 menit

Gambar 4. 12 Hasil XRD master alloy Al-7%Si 6.5%Mn dengan baja H13 hasil pencelupan dalam Al-7%Si 0.5%Mn dengan waktu kontak 20 menit

Gambar 4. 13 Hasil XRD master alloy Al-7%Si 0.7%Mn dengan baja H13 hasil pencelupan dalam Al-7%Si 0.7%Mn dengan waktu kontak 20 menit

Gambar 4. 14 Hasil XRD master alloy Al-12%Si 0.1%Mn dengan baja H13 hasil pencelupan dalam Al-12%Si 0.1%Mn dengan waktu kontak 20 menit

Gambar 4. 15 Hasil XRD master alloy Al-12%Si 0.3%Mn dengan baja H13 basil pencelupan dalam Al-12%Si 0.3%Mn dengan waktu kontak 20 menit

Gambar 4. 16 Hasil XRD *master alloy* Al-12%Si 0.5%Mn dengan baja H13 hasil pencelupan dalam Al-12%Si 0.5%Mn dengan waktu kontak 20 menit

Gambar 4. 17 Hasil XRD master alloy Al-12%Si 0.7%Mn dengan baja H13 hasil pencelupan dalam Al-12%Si 0.7%Mn dengan waktu kontak 20 menit

Pada Gambar 4.11, Gambar 4.13, dan Gambar 4.15 tidak teridentifikasi puncak-puncak hasil pengujian baja H13 hasil pencelupan selain dari puncak-puncak master alloy Al-7%Si 0.3%Mn, Al-7%Si 0.7%Mn, dan Al-12%Si 0.3%Mn. Hal ini dapat terjadi karena rentang ketebalan ukuran lapisan intermetalik yang mencapai skala mikron sehingga menjadi sulit untuk teridentifikasi.

Pada Gambar 4.10 dan Gambar 4.12 teridentifikasi adanya fasa intermetalik FeAl dan Fe₂Al₅ pada baja H13 hasil pencelupan ke dalam Al-7%Si yang mengandung 0.1%Mn dan 0.3%Mn berturut-turut. Kemudian pada Gambar 4.14 dan Gambar 4.17 teridentifikasi adanya fasa intermetalik FeAl₃ pada baja H13 hasil pencelupan ke dalam Al-12%Si yang mengandung 0.1%Mn dan 0.7%Mn berturut-turut. Kemudian pada Gambar 4.16 teridentifikasi adanya Fasa Fe₂Al₅ pada baja H13 hasil pencelupan ke dalam Al-12%Si 0.5%.

Berdasarkan perbandingan antara Gambar 4.11 hingga Gambar 4.17 dengan Tabel 4.1 dan Tabel 4.2 diindikasikan bahwa pada 1 (satu) set lapisan intermetalik yang terbentuk dalam 1 (satu) sampel uji memiliki kemungkinan terdapat beberapa fasa yang terbentuk. Oleh karena itu, terdapat beberapa sampel uji yang memiliki dua *compact layer*. Berdasarkan grafik diatas, fasa-fasa intermetalik yang terbentuk dalam penelitian ini adalah FeAl dan Fe₂Al₅ untuk lapisan intermetalik hasil pencelupan dalam Al-7%Si, sedangkan fasa FeAl₃, dan Fe₂Al₅ dimana fasa Fe₂Al₅ mendominasi pembentukan lapisan intermetalik. Dimana, fasa Fe₂Al₅ mendominasi dalam penelitian ini.

4.3 Pengaruh Unsur Mangan dan Waktu Kontak Terhadap Ketebalan Lapisan Intermetalik

Selain bertujuan untuk mengetahui morfologi lapisan intermetalik yang terbentuk, pengujian *Scanning electron microscope* (SEM) pada sampel baja H13 hasil pencelupan ke dalam paduan Al-7%Si dan Al-12%Si juga dilakukan untuk menghitung ketebalan lapisan intermetalik yang terbentuk. Data hasil penghitungan ketebalan lapisan intermetalik dapat dilihat pada Lampiran.l

Gambar 4.18 hingga Gambar 4.21 merupakan data hasil percobaan pencelupan baja H13 pada paduan Al-7%Si dan Al-12%Si dengan variasi penambahan Mn dan waktu kontak yang berbeda. Berdasarkan keempat grafik tersebut didapat variasi ketebalan antara *compact layer* dan *broken layer*. Dimana, secara umum terlihat bahwa *compact layer* memiliki ketebalan yang lebih rendah dibandingkan dengan *broken layer*. Seperti yang telah dibahas pada sub bab sebelumnya, hal tersebut dapat terjadi karena senyawa pada *compact* layer memiliki ikatan yang lebih kuat dibandingkan dengan broken layer yang memiliki ikatan cenderung lebih renggang. Compact layer merupakan hasil dari reaksi atom Fe dengan atom Al yang membentuk ikatan logam yang kuat sehingga menjadi lebih padat. Sedangkan broken layer merupakan hasil reaksi lanjutan yang melibatkan atom Al bereaksi dengan senyawa compact layer, dimana ikatan yang terbentuk adalah ikatan Van Der Waals yang cenderung lebih lemah dibandingkan ikatan antara atom Al dengan atom Fe, sehingga cenderung lebih renggang. Selain itu, volume Aluminium cair cenderung berlebih, sehingga reaksi antara compact layer dan aluminium cair membentuk broken layer mendominasi difusi dari permukaan baja. Sehingga, broken layer cenderung memiliki ketebalan yang lebih tinggi dibandingkan dengan compact layer.

Gambar 4. 18 Data hasil penelitian pengaruh unsur Mn terhadap ketebalan compact layer pada paduan Al-7%Si dalam fungsi waktu

Pada Gambar 4.18 diperlihatkan pengaruh penambahan Mn dalam Al-7%Si terhadap ketebalan *compact layer*. Seperti yang terlihat pada grafik tersebut, kurva pertumbuhan *compact layer* berbentuk parabolik, mengindikasikan bahwa terdapat dua proses yang terjadi pada proses *die soldering*, yaitu proses pertumbuhan lapisan intermetalik dan proses pelarutan lapisan intermetalik. Berdasarkan hasil penelitian, terlihat bahwa pada penambahan 0,3% Mn dalam Al-7%Si menghasilkan ketebalan *compact layer* yang cenderung turun dibandingkan ketebalan *compact layer* hasil penambahan 0.1% Mn, kemudian ketebalan *compact layer* terus meningkat kembali pada penambahan 0,5% Mn dan 0.7%Mn. Sehingga dapat dikatakan bahwa penambahan 0.1% hingga 0,3% Mn pada AI-7%Si merupakan kondisi optimum untuk menurunkan ketebalan *compact layer* dengan titik ketebalan *compact layer* terendah adalah pada penambahan 0.3%Mn yaitu, 2.74 µm, 5.29 µm, dan 3.42 µm untuk waktu kontak 20, 40, da 60 menit berturut-turut (data ketebalan dapat dilihat pada Lampiran.1). Hal ini terjadi karena pada kondisi penambahan 0.3%Mn, *driving force* untuk terjadinya pertumbuhan lapisan intermetalik cenderung rendah, sedangkan *driving force* untuk terjadinya pelarutan cenderung mendominasi.

Gambar 4.18 juga memperlihatkan bahwa pada kadar 0.1%, 0.3%, 0.5%. dan 0.7% Mn yang ditambahkan ke dalam paduan Al-7%Si, pertumbuhan compact layer pada permukaan H13 juga dipengaruhi oleh waktu kontak antara baja H13 dengan aluminium cair. Berdasarkan hasil penelitian, secara umum pertumbuhan compact laver pada H13 dalam rentang waktu kontak 20, 40, dan 60 menit memperlihatkan suatu trend linier dimana tingkat ketebalan compact layer dari yang tertinggi hingga terendah berturut-turut adalah pada kondisi pencelupan baja H13 ke dalam Al-7%Si dengan waktu kontak 60 menit, 40 menit, kemudian 20 menit. Sehingga, dengan kata lain pada proses pencelupan baja H13 ke dalam paduan Al-7%Si yang mengandung 0.1%, 0.3%, 0.5%, dan 0.7% Mn menghasilkan penurunan ketebalan compact layer seiring dengan menurunnya waktu kontak baja H13 dengan aluminium cair. Hal ini disebabkan semakin meningkatnya waktu kontak antara aluminium cair dengan material cetakan H13 maka aktivitas atom permukaan akan semakin meningkat, kemudian atom Al dari aluminium cair dan atom Fe dari baja H13 memiliki kesempatan yang lebih lama untuk saling berdifusi dan bereaksi membentuk compact layer sehingga compact layer yang terbentuk akan semakin tebal.

Berdasarkan hasil penelitian didapat kondisi efektif untuk mengurangi kecenderungan cacat *die soldering* dengan meminimalisir pembentukan *compact layer* adalah pada kondisi penambahan 0.3% Mn dalam paduan Al-7%Si dengan waktu kontak 20 menit. Hasil diskusi dengan narasumber dari salah satu industri sepeda motor di Jakarta, 1 (satu) siklus pengecoran dengan menggunakan *High Pressure Die Casting* (HPDC) sekitar 50 hingga 70 detik tergantung dari ukuran

produk. Sehingga dengan kata lain, kondisi paling efektif dalam pencegahan cacat *die soldering* pada paduan coran Al-7%Si adalah dengan penambahan sekitar 0.3%Mn ke dalam paduan Al-7%Si dengan siklus pengecoran maksimal sekitar 20 kali.

.....

Gambar 4. 19 Data hasil penelitian pengaruh unsur Mn terhadap kelebalan broken layer pada paduan Al-7%Si dalam fungsi waktu

Gambar 4.19 memperlihatkan hubungan antara penambahan Mn dalam paduan Al-7%Si terhadap ketebalan *broken layer*. Seperti yang terlihat pada grafik di atas, data pada grafik tersebut cenderung acak dan tidak beraturan, tidak ada korelasi yang jelas antara peningkatan kandungan Mn dalam paduan Al-12%Si dengan ketebalan *broken layer*. Sehingga, berdasarkan hasil penelitian, peningkatan kandungan Mn dalam paduan Al-7%Si tidak mempengaruhi pertumbuhan *broken layer*.

Gambar 4. 20 Data hasil penelitian pengaruh unsur Mu terhadap ketebalan compact layer pada paduan Al-12%Si dalam fungsi waktu

Gambar 4.20 memperlihatkan hubungan antara penambahan Mn pada paduan Al-12%Si terhadap ketebalan *compact layer*. Secara umum, grafik tersebut memperlihatkan trend yang konsisten yaitu semakin tinggi kadar Mn yang ditambahkan pada paduan Al-12%Si, maka *compact layer* yang terbentuk akan semakin tipis (data ketebalan dapat dilihat pada Lampiran.1). Hal ini disebabkan penambahan Mn mengakibatkan tingkat kejenuhan pada aluminium silikon cair menjadi meningkat. Selanjutnya mengakibatkan kecenderungan Al untuk bereaksi dengan Fe yang terkandung pada H13 akan semakin berkurang. Sehingga kecenderungan Fe untuk berdifusi keluar dan bereaksi dengan Al akan semakin berkurang. Hal ini berdampak pada ketebalan lapisan intermetalik yang semakin menurun seiring dengan meningkatnya kadar Mn pada Al cair. Fenomena ini mengindikasikan adanya peran Mn sebagai inhibitor reaksi pembentukan *compact layer*.

Gambar 4.20 juga memperlihatkan bahwa pada kadar 0.1, 0.3, 0.5, dan 0.7% Mn yang ditambahkan ke dalam paduan Al-12%Si, pertumbuhan *compact layer* pada permukaan H13 juga dipengaruhi oleh waktu kontak. Berdasarkan hasil penelitian pertumbuhan *compact layer* pada H13 dalam rentang waktu kontak 20, 40, dan 60 menit membentuk kurva parabolik, dimana tingkat ketebalan *compact layer* tertinggi hingga terendah secara berturut adalah

pencelupan dengan waktu kontak 60 menit, 20 menit, dan 40 menit. Hal ini menunjukkan bahwa terdapat dua proses yang terjadi dalam penelitian ini, yaitu proses pertumbuhan lapisan intermetalik dan proses pelarutan lapisan intermetalik. Pada kondisi waktu kontak 40 menit, *driving force* untuk terjadinya pertumbuhan lapisan intermetalik cenderung rendah, sedangkan *driving force* untuk terjadinya pelarutan cenderung mendominasi. Oleh karena itu, pencelupan selama 40 menit pada Al-12%Si dengan kandungan 0.1%, 0.3%, 0.5%, dan 0.7% Mn menghasilkan *compact layer* yang tipis.

Berdasarkan hasil penelitian didapat kondisi efektif untuk mengurangi kecenderungan cacat *die soldering* pada paduan Al-12%Si dengan meminimalisir pembentukan *compact layer* adalah pada kondisi penambahan hingga 0.7% Mn dalam paduan Al-12%Si dengan waktu kontak 40 menit. Hasil diskusi dengan narasumber dari salah satu industri sepeda motor di Jakarta, 1 (satu) siklus pengecoran dengan menggunakan *High Pressure Die Casting* (HPDC) sekitar 50 hingga 70 detik tergantung dari ukuran produk. Sehingga dengan kata lain, kondisi paling efektif dalam pencegahan cacat *die soldering* pada paduan coran Al-12%Si adalah dengan penambahan sekitar 0.7%Mn ke dalam paduan Al-12%Si dengan siklus pengecoran maksimal sekitar 40 kali.

Gambar 4. 21 Data hasil penelitian pengaruh unsur Mn terhadap ketebalan broken layer pada paduan Al-12%Si dalam fungsi waktu

Gambar 4.21 memperlihatkan hubungan antara penambahan Mn dalam paduan Al-12%Si terhadap ketebalan *broken layer*. Seperti yang terlihat pada grafik di atas, data pada grafik tersebut cenderung naik turun, tidak ada korelasi yang jelas dan konsisten antara peningkatan kandungan Mn dalam paduan Al-12%Si dengan ketebalan *broken layer*. Sehingga, berdasarkan hasil penelitian, peningkatan kandungan Mn dalam paduan Al-12%Si tidak mempengaruhi pertumbuhan *broken layer*.

Namun, Gambar 4.21 memperlihatkan bahwa pada kadar 0.1%, 0.3%, 0.5%, dan 0.7% Mn yang ditambahkan ke dalam paduan Al-12%Si, pertumbuhan broken layer pada permukaan H13 dipengaruhi oleh waktu kontak antara baja H13 dengan aluminium cair. Berdasarkan hasil penelitian, pertumbuhan broken lover pada H13 dalam rentang waktu kontak 20,40,dan 60 menit memperlihatkan suatu trend linier dimana tingkat ketebalan broken laver dari yang tertinggi hingga terendah berturut-turut adalah pada kondisi pencelupan baja H13 ke dalam Al-12%Si dengan waktu kontak 60 menit, 40 menit, kemudian 20 menit. Sehingga, dengan kata lain pada proses pencelupan baja H13 ke dalam paduan AI-12%Si yang mengandung 0.1%, 0.3%, 0.5%, dan 0.7% Mn menghasilkan penurunan ketebalan broken layer seiring dengan menurunnya waktu kontak baja H13 dengan aluminium cair. Hal ini disebabkan semakin meningkatnya waktu kontak antara aluminium cair dengan material cetakan H13 maka aktivitas atom permukaan akan semakin meningkat, kemudian atom Al dari aluminium cair dan atom Fe dari baja H13 memiliki kesempatan yang lebih lama untuk saling berdifusi dan bereaksi membentuk broken laver sehingga broken laver yang terbentuk akan semakin tebal.

Gambar 4. 22 Data hasil penclitian pengaruh unsur Mn terhadap total ketebalan lapisan intermetalik pada paduan AI-7%Si

Gambar 4. 23 Data hasil penelitian pengarub unsur Mu terhadap total ketebalan lapisan intermetalik pada paduan Al-12%Si

Gambar 4.22 memperlihatkan hubungan antara penambahan Mn dalam paduan Al-7%Si terhadap total ketebalan lapisan intermetalik. Berdasarkan gambar tersebut, terlihat bahwa data pada grafik tersebut cenderung naik turun dan acak. Tidak terlihat adanya korelasi yang jelas dan konsisten antara peningkatan kandungan Mn dalam paduan Al-7%Si terhadap total ketebalan lapisan intermetalik. Sedangkan Gambar 4.23 memperlihatkan hubungan antara penambahan Mn dalam paduan Al-7%Si terhadap total ketebalan lapisan intermetalik. Berdasarkan gambar tesebut, secara umum grafik tersebut memperlihatkan trend yang konsisten yaitu semakin tinggi kadar Mn yang ditambahkan pada paduan Al-12%Si, maka total ketebalan lapisan intermetalik yang terbentuk akan semakin tipis (data ketebalan dapat dilihat pada Lampiran.I).

Sehingga pengaruh penambahan unsur mangan terhadap paduan aluminium silikon baru terlihat pada penambahan unsur mangan dalam paduan Al-12%Si, dimana penambahan mangan dalam paduan Al-12%Si akan menurunkan ketebalan total lapisan intermetalik yang terbentuk.

Gambar 4. 24 Data basil penelitian pengaruh waktu kontak terhadap kekerasan lapisan intermetalik pada paduan Al-7%Si

Gambar 4. 25 Data hasil penelitian pengaruh waktu kontak terhadap kekerasan lapisan intermetalik pada paduan Al-12%Si

Gambar 4. 26 Data hasil penelitian pengaruh %Mn terbadap kekerasan lapisan intermetalik pada paduan Al-7%Si

Gambar 4. 27 Data hasil penelitian pengaruh %Mu terhadap kekerasan lapisan intermetalik pada paduan Al-12%Si

Gambar 4.24 hingga Gambar 4.27 menunjukkan distribusi kekerasan untuk setiap penambahan 0.1%, 0.3%, 0.5%, dan 0.7% Mn ke dalam paduan Al-7%Si dan Al-12%Si. Pada grafik diatas, secara keseluruhan dapat dilihat bahwa compact layer cendering lebih keras dibandingkan dengan broken layer, dimana rata-rata kekerasan untuk compact layer adalah 117 HVN dan broken layer 50 HVN (data kekerasan lapisan intermetalik dapat dilihat pada Lampiran.2). Hal ini berkaitan dengan difusi besarnya Fe kedalam lapisan tersebut. Compact layer merupakan lapisan yang terbentuk pertama kali hasil difusi atom Fe dari H13 dan atom Al dari aluminium cair, dimana koefisien difusi dari besi menuju aluminium adalah 53x 10⁻⁴ m²s⁻¹, lebih besar dari koefisien difusi aluminium menuju besi, 1.8x 10⁻⁴ m²s^{-1[35]}. Schingga, atom Fe dari baja H13 lebih banyak berdifusi membentuk compact layer dibandingkan atom Al dari aluminium cair. Kemudian, broken layer merupakan reaksi lanjutan yang menyebabkan terjadinya reaksi antara compact layer (fasa dominan adalah Fe2Al5) dan aluminium cair. Dimana energi aktivasi untuk difusi atom Fe pada fasa Fe2Als adalah 107 kJ/mol sedangkan difusi atom Al adalah 171 kJ/mol^[35], sehingga difusi Al dari aluminium cair menuju compact layer membentuk broken layer lebih mendominasi dibandingkan difusi Fe dari H13 melalui compact layer.

Oleh karena kandungan unsur Fe dalam compact layer cenderung lebih banyak dibandingkan dengan compact layer, sedangkan kandungan unsur Al dalam broken layer lebih banyak dibandingkan dalam compact layer, maka jelas compact layer akan cenderung memiliki kekerasan yang lebih tinggi dibandingkan dengan broken layer.

Berdasarkan Gambar 4.24 hingga Gambar 4.27 diatas, secara keseluruhan dapat dilihat hubungan antara kekerasan dengan penambahan unsur Mn dalam paduan Al-7%Si dan Al-12%Si. Data distribusi kekerasan yang didapat dalam grafik tersebut cenderung konstan, sehingga berdasarkan hasil penelitian tidak terlihat adanya pengaruh penambahan unsur Mn pada Al-7%Si dan Al-12%Si. Hal ini kemungkinan berhubungan dengan pengaruh kadar Al dan Fe yang terkandung pada setiap lapisan intermetalik. Telah dijelaskan sebelurnnya bahwa penambahan unsur Mn dalam Al-7%Si dan Al-12%Si tidak mempengaruhi kadar

Fe dan Al yang berdifusi ke dalam lapisan intermetalik baik *compact* maupun *broken*. Sedangkan kekerasan suatu lapisan intermetalik kemungkinan besar identik dengan kandungan unsur yang terdapat didalamnya, dimana unsur yang mendominasi didalam *compact layer* dan *broken layer* adalah unsur Fe dan Al pada lapisan tersebut. Semakin banyak kadar Al dan semakin sedikit kadar Fe yang terkandung pada lapisan tersebut maka kekerasannya akan semakin menurun. Sebaliknya jika semakin tinggi kadar Fe dan semakin rendah kadar Al maka kekerasan lapisan tersebut akan semakin meningkat. Sehingga penambahan unsur Mn tidak berpengaruh terhadap kekerasan pada lapisan intermetalik.

BAB 5 KESIMPULAN

- Pada pencelupan baja H13 kedalam Al-7%Si dan Al-12%Si dengan penambahan unsur mangan sebesar 0.1%, 0.3%, 0.5%, 0.7% pada temperatur 700 °C menghasilkan dua lapisan intermetalik yaitu compact layer (lapisan padat) yang berbatasan dengan baja H13, kemudian broken layer (lapisan semi padat) yang berbatasan dengan compact layer dan aluminium.
- Penambahan unsur Mn dan waktu kontak tidak mempengaruhi kadar Fe dan Al yang terkandung pada lapisan intermetalik yang terbentuk. Penambahan unsur Mn dan waktu kontak tidak mempengaruhi fasa broken layer ataupun compact layer yang terbentuk.
- Compact layer hasil pencelupan dalam Al-7%Si mempunyai ketebalan 20% dari total lapisan, sedangkan untuk hasil pencelupan dalam Al-12%Si mempunyai ketebalan 16% dari total lapisan. Sehingga compact layer memiliki ketebalan yang lebih rendah dibandingkan dengan broken layer.
- 4. Kondisi efektif untuk mengurangi kecenderungan cacat die soldering dengan meminimalisir pembentukan compact layer pada Al-7%Si adalah pada penambahan 0.3% Mn dengan siklus pengecoran maksimal 20 kali. Sedangkan pada paduan Al-12%Si, semakin tinggi kadar Mn yang ditambahkan pada paduan Al-12%Si, maka compact layer yang terbentuk akan semakin tipis. Dimana kondisi efektif untuk mengurangi kecenderungan cacat die soldering pada paduan Al-12%Si adalah pada penambahan hingga 0.7% Mn dengan siklus pengecoran maksimal 40 kali. Namun penambahan Mn pada paduan Al-7%Si dan Al-12%Si tidak mempengaruhi ketebalan broken layer yang terbentuk.
- pengaruh penambahan unsur mangan terhadap paduan aluminium silikon baru terlihat pada penambahan unsur mangan dalam paduan Al-12%Si, dimana penambahan mangan dalam paduan Al-12%Si akan menurunkan ketebalan total lapisan intermetalik yang terbentuk.

6. Kekerasan compact layer lebih tinggi dibandingkan kekerasan pada broken layer. Dimana compact layer memiliki kekerasan rata-rata 117 HVN dan broken layer 50 HVN. Selain itu, penambahan unsur Mn pada Al-7%Si dan Al-12%Si tidak berpengaruh terhadap kekerasan kedua lapisan intermetalik yang terbentuk.

DAFTAR REFERENSI

- 1. Properties and Selection of Nonferrous Alloys and Special Purpose Volume 2. (2003). ASM International.
- Goerge, T. E. (2003). Handbook of Aluminum vol 1, Physical Metallurgy and Process. New York: Marcel Dekker Inc.
- 3. Vadim, Z. S. (2007). Casting Aluminum Alloys. Elsevier
- Yu Long Zu, et al. (2004). Evaluation of Soldering, washout and thermal fatigue resistance of advanced metal materials for aluminum die casting dies. Material Science and Engineering, 420-431.
- Q Han, S. (2003). Analysis of the Mengchanism of *Die Soldering* in Aluminum *die* Casti. *Oak Ridge*, 1.
- 6. Hogan, P. (2000). Die Solder Reduction. Contech LLC.
- W. Kajoch, A. F. (1991). Testing the Soldering Tendencies of Aluminum Die Castig Alloy. NADCA Transaction, 67-74.
- G.B Winkelman, Z.W Chen, D.H St john, M.Z Jahedi. (2004). Morphological Features of Interfacial Intermetallics and Interfacial Reaction Rate in Al-11Si-2.5Cu(0.15/0.6) Fe cast Alloy/die steel couples. Kluwer Academic Publishers.
- Y.L. Chu, P. C. (1993). Soldering Phenomenon in Aluminum Die Casting : Possible Causes and Cures. Transactions Resemon Illinox, 360-371.
- 10. Shankar, S. (2000). A Study of interface REaction Mechanism Between Molten Aluminum and Ferrous Die Material. WPI.
- 11. Sumanth Shankar, Diran Apelian. (2003). *Die Soldering* : Effect of Process Parameters and Alloy on *Soldering* in The Pressure *Die Casting*.
- 12. Bambang Suhamo, Bustanul Arifin, Sri Harjanto, Vika Rizkia. (2007). Pengaruh Unsur Fe pada Paduan Al-12%Si Terhadap Morfologi dan Karakteristik Lapisan Intermetalik pada Fenomena Die Soldering Dalam Proses Die Casting. SENAMM I.

- Andriyah, L. (2006). Pengaruh Unsur Besi pada Paduan Al-7%Si teterhadap Morfologi dan Karakteristik Lapisan Intermetalik pada Fenomena Die Soldering. Depok.
- 14. Taylor, J. (2000). The Effect of Iron in Al-Si Casting Alloy. The University of Quensland.
- 15. X.Fang, G.Shao, Y.Q Liu, Z.Fan. (n.d.). Effect of Intensive Forced Melt Convection on The Mechanical Properties of Fe-Containing Al-Si Based Alloys. Brunel University.
- K. Venkatesan, R. Shivpuri. (1995). Indiana Polis: Transaction of 18th International Casting Congress and Exposition.
- 17. Sumanth Shankar, D. A. (2002). Mechanism of The Interface Reaction Between Molten Aluminum Alloy and Tool Steel. Metallurgical and Material Transactions.
- 18. Sumanth Shankar, Diran Apelian. (2002). Mechanism and Preventive Measures for *Die Soldering* During Al *Casting* in a Ferrous Mold. JOM.
- R. Shivpuri. (1991). An Evaluation of H-13 Die Steel, Surface Treatments and Coating for Wearing Die Casting Dies. NADCA Transaction, 391-397.
- 20. Sumanth Shankar, Diran Apelian. (2002). Mechanism of The interface Reaction Between Molten Allominum Alloy and Tool Steel. Metallurgical and Material Transactions.
- 21. Kobayasi, S. (2002). Control of Intermetallic Compound Layers at Interface Between Steel and Aluminum by Diffusion-Treatment. Elsevier Science.
- 22. www.wpi.edu/academics/research/ACRC/research/diesoldering.html. (2002). Retrieved July 2007, from www.wpi.edu/academics/research/ACRC/research/diesoldering.html
- 23. Sumanth Shankar, Diran Apelian. (1997). Die Soldering-A Metallurgical Analysis of The Molten Metal/Die Interface REaction. 19th nternational Die Csting Congress. NADCA Transaction.
- 24. Sumanth Shankar, Diran Apelian. (1999). Soldering Tendencies of Alternate Non Feroous Die Material. Worchester.
- 25. (n.d.). Retrieved Juni 24, 2009, from http://en.wikipedia.org/wiki/Intermetallic

- 26. (n.d.). Retrieved June 24, 2009, from http://nepp.nasa.gov/wirebond/intermetallic_creation_and_growt.htm
- 27. Yo Yu Chang, e. a. (2006). Microstructural studies of an aluminide Coating on 9Cr-1Mo Steel During High Temperatur Oxidation. Science Direct.
- 28. V. Joshi, A. Srivastava, R. Shivpuri. (2004). Intermetallic Formation and Its Relation to *Interface* Masss Loss and Tribology in *Die Casting Die*. Science Direct.
- Davis, J. (1994). Aluminum and Aluminum Alloys. Ohio: ASM International.
- 30. Sahverdi, H. (2002). Kinetic of interfacial Readtin Between Solid Iron and Molten Aluminum. *Journal of Material Science*.
- 31. G.Eggeler, H.Vogel, J.Friedrich, H.Kaesch, Pract. (2007). Intermetallic Fe-Al phases in a steel/Al Alloy Fusion Weld. *Journal of Material Science Vol 42*.
- 32. Bouche, K. e. (1998). Intermetallic Compound Layer Growth Between Solid Iron and Molten Aluminum. *Elsevier*.
- 33. Shahverdi, H. (2002). Microstructural Analysis of Interfacial Reaction Between Molten Aluminum and Solid Iron. Journal of Material Processing and Technology.
- Kuijpers, N. (2000). Intermetallic Phase Transformation During Homogenzation og 6xxx Al Alloy.
- 35. Chen, Z. (2005). Formation and Progression of *Die Soldering* During High Pressure *Die Casting. Elsevier B.V*.

Lampiran. 1

% Mn	Waktu (menit)	Compact I (mikrop)	Compact II (mikron)	Total Compact (mikron)	Brøken (mikron)	Total Layer (mikron)
0.1	20	7.64	9.45	17.09	35.67	52.76
	40	6.95	4.78	11.73	20.97	32.7
	60	5.93		5.93	22.01	27.94
0.3	20	2.74	a	2.74	57,44	60.18
	40	5.29		5.29	59. 9	65.19
	60	3.42		3.42	50.26	53.68
0.5	20	6.56		6.56	14.6	21.16
	40	8.67		8.67	127.42	136.09
	60	20.74	4.44	25.18	125.3	150,48
0.7	20	20.1		20.1	38.94	59.04
	40	19.89		19.89	81.28	101.17
	60	42.96	3.81	46.77	80.01	126.78

Tabel. 1 Ketebalan compact layer dan Broken layer hasil pencelupan baja H13 pada paduan Al-7%Si dengan penambahan 0.1%, 0.3%, 0.5%, dan 0.7% Mn selama 20, 40, dan 60 menit

Tabel. 2 Ketebalan compact layer dan Broken layer hasil pencelupan baja H13 pada paduan Al-12%Si dengan penambahan 0.1%, 0.3%, 0.5%, dan 0.7% Mn selama 20, 40, dan 60 menit

% Mn	Waktu (menit)	Compact I (mikron)	Compact II (mikron)	Total Compact (mikron)	Broken (mikron)	Total Layer (mikron)
n i	20	11.01	9.1	20.11	72.18	92.29
0.1	40	10.16		10.16	86.78	96.94
	60	31.75	14.6	46.35	117.69	164.04
<u>م</u> ۲	20	8.25	7.83	16.08	47.84	63.92
0.5	40	8.67		8.67	67.52	76.19
	60	6.77	7.83	14.6	82.34	96.94
0.5	20	4.44	6.56	11	62,23	73.23
0.5	40	6.98		6.98	62.65	69.63
	60	8.04	5.08	13.12	68.36	81.48
n 7	20	6.56		6.56	27.73	34.29
U./	40	5.93		5.93	41.91	47.84
	60	11.01		11.01	99.27	110.28

Lampiran. 2

%Mn	Waktu	Lapísan	¥l	yl	x2	y2	Dmean	HVN
	70	Broken	40	42	44	48	43.5	49
:	- 20	Compact	26	25.5	27.5	26.5	26.375	133
0.1	40	Broken	40	38.5	39	47.5	41.25	54
V .1	41/	Compact	26	26.5	28	29	27.375	124
	£A	Broken	37	42	49	49.5	44.375	47
	60	Compact	25	25.5	29	31	27.625	121
0.3 40	20	Broken	45.5	49	44	46	46.125	44
	2.9	Compact	26.5	29.5	27	30	28.25	116
	AK.	Broken	39.5	42.5	42	44	42	53
	10	Compact	26	25	_ 27	25.5	25.875	138
	60	Broken	46	48	45.5	47.5	46.75	42
		Compact	26	28	25	25.5	26.125	136
<u>}</u>	20	Broken	45.5	48.5	44	48	46.5	43
	20	Compact	25.5	28	28.5	26.5	27.125	126
05	<i>4</i> 0	Broken	47.5	48.5	46	47.5	47.375	41
Q. ,	-414	Compact	28	28	27.5	28	27.875	119
	60	Broken	47.5	48_5	46	47.5	47.375	41
		Compact	- 29	28.5	30	30	29.375	107
	20	Broken	42.5	41	44.5	44.5	43.125	50
	<i>A</i> U	Compact	26	25.5	26.5	25.5	25.875	138
67	40	Broken	44	45	42.5	43	43.625	49
U.7	40	Compact	27	28.5	25	28	27.125	126
	20	Broken	38	46	45	47.5	44.125	48
	DU	Compact	25.5	26	25.5	28	26.25	135

Tabel. 3 Kekerasan *compact layer* dan *broken layer* hasil pencelupan baja H13 pada paduan Al-7%Si dengan penambahan 0.1%, 0.3%, 0.5%, dan 0.7% Mn selama 20, 40, dan 60 menit

%Mn	Waktu	Lapisan	x1	yl	x2	y2	Dmean	HVN
	20	Broken	40	38	41.5	38	39.375	60
	20	Compact	26.5	27.5	28.5	29	27.875	119
0.1	40	Broken	48.5	42	47.5	39	44.25	47
0.1	ΨU	Compact	28	26.5	29	28.5	28	118
	£D	Broken	42	42.5	48	48.5	45.25	45
	00	Compact	26	25.5	28.5	26	26.5	132
	ግ ስ	Broken	47.5	49	48.5	48	48.25	40
0.3 40	Compact	29	27	29.5	25	27.625	121	
	Broken	41	43.5	40.5	41.5	41.625	54	
	Compact	25	28	25	27.5	26.375		
	60	Broken	46	47.5	41.5	38	43.25	50
	60	Compact	27	25.5	28	27	26.875	128
	50	Broken	48.5	48	40.5	46	45.75	44
	257	Compact	25.5	29	28.5	- 29	28	118
À S	10	Broken	38	38.5	38	40.5	-38.75	62
v)	40	Compact	27	27	25.5	25.5	26.25	135
	60	Broken	42	40	47.5	47	44.125	48
	00	Compact	- 26	25.5	29	28	27.125	126
	20	Broken	44.5	41	40.5	41	41.75	53
		Compact	29	28.5	29	29.5	29	110
67	40	Broken	46.5	45	43	42	44.125	48
V.7	40	Compact	25	29	29	29.5	28.125	117
	~	Broken	42	44	44.5	43.5	43.5	49
	60	Compact	27.5	28	26.5	27	27.25	125

Tabel. 4 Kekerasan *compact layer* dan *broken layer* hasil pencelupan baja H13 pada paduan Al-12%Si dengan penambahan 0.1%, 0.3%, 0.5%, dan 0.7% Mn selama 20, 40, dan 60 menit

_

Gambar. 1 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-7%Si dengan 0,1%Mn selama 20 menit

Gambar. 2 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-7%Si dengan 0,3%Mn selama 20 menit

Gambar. 3 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-7%Si dengan 0,5%Mn selama 20 menit

Gambar. 4 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-7%Si dengan 0,7%Mn selama 20 menit

Gambar. 5 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-12%Si dengan 0,1%Mn selama 20 menit

Gambar. 6 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-12%Si dengan 0,3%Mn selama 20 menit

Gambar. 7 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-12%Si dengan 0,5%Mn selama 20 menit

Universitas Indonesia

75

Gambar. 8 Hasil pengujian XRD sampel H13 yang dicelup dalam Al-12%Si dengan 0,7%Mn selama 20 menit

Gambar. 9 Hasil pengujian XRD master alloy AI-7%Si dengan 0,1%Mn

ľ

Gambar. 10 Hasil pengujian XRD master alloy Al-7%Si dengan 0,3%Mn

į

Gambar. 11 Hasil pengujian XRD master alloy Al-7%Si dengan 0,5%Mn

-

Gambar. 12 Hasil pengujian XRD master alloy Al-7%Si dengan 0,7%Mn

ł

Gambar. 13 Hasil pengujian XRD master alloy Al-12%Si deogan 0,1%Mn

Gambar. 14 Hasil pengujian XRD master alloy Al-12%Si dengan 0,3%Mn

ŝ

Gambar. 15 Hasil pengujian XRD master alloy Al-12%Si dengan 0,5%Mn

Gambar, 16 Hasil pengujian XRD master alloy Al-12%Si dengan 0,7%Mn

Philips Analytical X-Ray B.V. Department of Metallurgy UI Sample identification: A175i 0,1Nn 20Mnt Data measured at: 19-Jun-2009 15:28:00 Diffractometer type: FW1710 BASED Tube anode: Co Generator tension (kV]: 40 Generator current [mA]: 30 Wavelength Alphai [A]: 1.54056 Wavelength Alpha2 [A]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated langth [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 5.000 Step size [*20]: 0.020	1 •
Sample identification: Al75i 0,1Nn 20Mnt. Bata measured at: 19-Jun-2009 15:28:00 Diffractometer type: PW1710 BASED Tube anode: Co Generator tension (kV): 40 Generator current [mA]: 30 Wavelength Alphai [A]: 1.54056 Wavelength Alpha2 [A]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 5.000 Step size (*20): 0.020	
Sample identification: A1751 0,1Nn 20Mnt. Data measured at: 19-Jun-2009 15:28:00 Diffractometer type: PW1710 BASED Tube anode: Co Generator tension (kV): 40 Generator current [mA]: 30 Wavelength Alphai [A]: 1.54056 Wavelength Alpha2 [A]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 5.000 Step size (*20): 0.020	
Diffractometer type: FW1710 BASED Tube anode: Co Generator tension (kV]: 40 Generator current [mA]: 30 Wavelength Alphai [A]: 1.54056 Wavelength Alphai [A]: 1.54439 Intensity ratio (alpha2/alphal): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 0.020	
Generator tension (kV]: 40 Generator current [mA]: 30 Wavelength Alphai [A]: 1.54056 Wavelength Alpha2 [A]: 1.54439 Intensity ratic (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 5.000 Step size (*20): 0.020	
Wavelength Alphai [A]: 1.54056 Wavelength Alpha2 [A]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 89.000 Step size (*20): 0.020	
Wavelength Alpha2 [8]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 89.000 Step size (*20): 0.020	
Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Jrradiated length [mm]; 12 Receiving slit: 0.2 Monochromator used: YES Start angle [°20]: 5.000 End angle [°20]: 89.000 Step size (°20): 0.020	
Stort angle ["20]: 5.000 End angle ["20]: 0.020	
Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: 5.000 End angle [*20]: 89.000 Step size (*20): 0.020	
Monochromator used: YES Start angle [°20]: 5.000 End angle [°20]: 89.000 Step size (*20): 0.020	
Start angle [°20]: 5.000 End angle [°20]: 89.000 Step size (°20): 0.020	
End angle [*20]: 89.000 Step size (*20): 0.020	
Step 5126 ["20]: 0.020	
Manuary market with the state of the ADAD	
Time net step [s]: 0.800	
Type of scan: CONTINUOUS	
Intensities converted to: FIXED	
Manicon peak tip width: 0.00	£1.
Maximum peak tip width: 1.00	
Peak base width: 2.00	
Vintarum signification u. /s	
Autor wy planst wy	1.1
the douging douging feat width Posk int Back int Rel. (or Simif	
[*26] al [A] a2 [A] [726] [counts] [counts] [%]	
	1
20.005 4.2946 4.3953 0.100 100 41 13.3 4.55 56 655 3 346 7.753 6.000 32 24 2 4 110	
29.355 3.1449 3.1529 0.120 144 21 18.4 0.89	
28.605 3.1180 3.1258 0.126 108 20 13.8 0.81	
36.140 2.4833 2.4895 0.400 2 14 0.3 0.75	
38.445 2.3396 2.3454 0.120 149 12 19.0 1.44	£.,
41.850 2.1553 2.1615 0.460 6 11 0.8 2.45	1
14 036 2 1132 2 1244 0 000 131 10 0314 3.03	2
	2
47,200 1.9240 1.9288 0.160 56 9 7.2 0.83	7
47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12	
47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76	
47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53	
47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53 56.185 1.6358 1.6398 0.560 28 7 3.6 7.71 59.220 1.5469 1.597 0.100 23 7 3.6 7.71	
47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53 56.185 1.6398 0.560 28 7 3.6 7.71 59.730 1.5469 1.5507 0.106 23 7 2.9 1.23 64.805 1.4375 1.410 0.200 74 8 9.4 1.39	
47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53 56.185 1.6398 0.560 28 7 3.6 7.71 59.730 1.5469 1.5557 0.106 23 7 2.9 1.23 64.805 1.4375 1.4410 0.200 74 8 9.4 1.39 65.265 1.4284 1.4320 0.100 784 8 100.0 9.62	
47.200 1.9240 1.9288 0.160 1.6 9 7.2 0.83 47.385 1.9169 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53 56.185 1.6358 1.6398 0.560 28 7 3.6 7.71 59.730 1.5469 1.5557 0.106 23 7 2.9 1.23 64.805 1.4375 1.4410 0.200 74 8 9.4 1.39 65.265 1.4284 1.4320 0.100 784 8 100.0 9.62 65.450 1.4248 1.4284 0.980 376 8 48.0 3.71	
47.200 1.9240 1.9288 0.160 1.60 1.6 9 7.2 0.83 47.385 1.9169 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53 56.163 1.6358 1.6398 0.560 28 7 3.6 7.71 59.730 1.5469 1.5507 0.106 23 7 2.9 1.23 64.805 1.4375 1.4410 0.200 74 8 9.4 1.39 65.265 1.4264 1.4284 0.200 76 8 48.0 3.71 65.450 1.4248 1.4284 0.060 376 8 48.0 3.71 67.745 1.3855 0.400 4 8 0.5 0.96	
47.200 1.9240 1.9288 0.160 1.6 1.4 3.1.8 3.1.4 47.200 1.9240 1.9288 0.160 56 9 7.2 0.83 47.385 1.9169 1.9217 0.200 58 9 7.4 1.12 52.055 1.7554 1.7598 0.080 10 7 1.2 0.76 53.170 1.7212 1.7255 0.280 10 7 1.3 2.53 56.163 1.6358 1.6398 0.560 28 7 3.6 7.71 59.730 1.5469 1.5507 0.106 23 7 2.9 1.23 64.805 1.4375 1.4410 0.200 74 8 9.4 1.39 65.265 1.4264 1.4284 0.200 784 8 100.0 9.62 65.450 1.4248 1.4284 0.060 376 8 48.0 3.71 67.745 1.3821 1.3855 0.400 4 8 0.5 0.96 69.325 1.3	

--

Gambar. 17 Data 20 hasil pengujian XRD sampel H13 Al-7%Si dengan 0,1%Mn selama 20 menit

File: Ví	.ka-8.DI					19-Jun-2	009 16:24
 Philips	Analytica	il X-Ray B	**********************************	**********	Departme	at of Meta	llurgy VI
Angle [*20]	d-value al [%]	d-value a2 [X]	Peak width [*20]	Peak int [counts]	Back. int [counts]	Rel. int [%]	Signif,
77.880	1.2256	1.2286	0.200	41	7	5.2	1.17
78,245	1.2208	1.2238	0.100	156	7	19,9	3.19
78.465	1.2179	1.2209	0.100	108	7	13.0	2.29
62.395	1.1698	1.1724	0.200	13	6	1.7	0.85
87.980	1,109)	1.1118	0.560	13	5	1.7	4.49

Gambar. 18 Data 20 hasil pengujian XRD sampel H13 Al-7%Si dengan 0,1%Mn selama 20 menit (lanjutan)

: Vika-é	S.DI				19-Jun-2009 13:50				
Philips	Analytica	l X-Ray B	.v.	********	Departne	nt of Meta	llurgy VI		
		Sample i Dat	dentificatio a measured a	n: AL7Si O t: 19-Jun-	,3Mn 20 Mnt 2009 12:54:	00			
		Diffra	ctometer typ Tube anod	e: PW1710 e: Cu	BASED				
		Generator	tension [XV]: 40					
		Generator	current [mA	J: 30					
		Waveleng	th Alphal (A]: 1.54056					
	Intancitu	waveleng	CO ALUNAS LA Imbaž/alebai]; 1,34437 * A 5AA					
	*********	Di	vergence sli	t: AUTOMAT	IC				
		Irradiate	d length (mm]: 12					
		R	eceiving sli	t: 0.2					
		Monoc	bromator use	d: YES					
		Star	t angle [°20]: 5.000					
		En	d angle ["20): 89.000					
		St	ep size ["20]: 0.020					
		i¶¢kata. ™imaa	nor ston (c	Y: 12/40.4 1- 0 800	2				
		• ***#***	Type of sca	n; CONTINU	ovs				
	Is	tensities	converted t	o: Fixed					
		Minimum p	eak tip widt	h: 0.00	1	<i>9</i>			
		maximum p	eak tip widt	n: 1.00			S 18 8		
		Minimum	significanc	e: 0.75					
		Nu	mber of peak	5: 24	1				
		State of the local division of the local div							
	1.1				A				
Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.		
["20]	01 [A]	a2 [M]	[*26]	[counts]	[counts]	[%]			
27.010	3.2984	3.3066	0.430	8	Z4	0.1	1.66		
28.630	3.1154	3.1231	0.140	313	23	2.5	3.06		
38 516	2 3325 2 3324	2.3312	0.000	193 3480	17	1.5	1.11		
36,665	2.3268	2.3326	0.060	2530	17	19.8	3.30		
38.780	2.3Z01	2.3259	0.060	1089	17	8.5	1.58		
42.025	2.1482	2.1535	0.240	15	14	0.1	0.77		
44.770	2.0226	2.0277	0.080	12746	13	100.0	25.92		
47 430	1 01/2	2.9221	0.000	7639	13	59.9	7.88		
53,485	1.7118	1.7161	0.240	443	8	6.1	2.11		
56.300	1.5327	1.6368	0.440	49	8	0.4	12.33		
64.975	1,434)	1.4377	0.060	159	10	1.2	0.82		
65.140	1.4309	1.4344	0.100	276	10	2.2	2.57		
05.310 66 *24	1.4276	1.4311	0.080	193	10	1.5	88.0		
74.765	1.3523	1.2719	0.320	01	9	0.0	1 41		
76.520	1.2439	1.2470	0.120	20	11	0.2	0.87		
78.175	1.2217	1.2247	0.060	502	12	3.9	1.13		
78.345	1.2195	3.2225	0.120	1552	12	12.2	12.32		
78.600	1.2161	1.2192	0.140	681	12	5.3	9.66		
8772 972	1,1074	1.1703	0.340	718	9	0.9	5.68		

e: Vika-6.DI

Gambar. 19 Data 28 hasil pengujian XRD sampel H13 AI-7%Si dengan 0,3%Mn selama 20 menit

;

F						19-Jun-2	009 13:50
~~~ <b>~</b> ~~~	mmmaamuqu	#############		**********			*****
Philips	Analytica	1 X-Ray B		Departme	nt of Meta	llargy UI	
Angle	d-value	d-value	Peak width	Peak int	Back, int	Rel. int	Signif.
[*20]	al [8]	a2 [8]	[*20]	[counts]	[counts]	<b>[%]</b>	
82.810	1.1547	1.1676	0.080	49	9	0.4	0.82
88.275	1,1061	1,1089	Ő.400	19	7	0.1	2.58
82.810 88.275	1.1647 1.1061	1.1676 1.1089	(20) 0.080 0.400	49 18	9 7	0.4 0.1	0.02 2.58



Gambar. 20 Data 20 hasil pengujian XRD sampel H13 Al-7%Si dengan 0,3Mn selama 20 menit (lanjutan)

Vika-	7.DI				19-Jun-2009 15:23			
hilips	Anelytice	il X-Ray B	.¥.		Departme	nt of Meta	llurgy UI	
		Sample in	lentification	n: A17Si 0	,5 20 Hnt			
		Data	a measured a	t: 19-Jun-	2009 14:27:1	00		
		Diffra	ctometer typ	e: PW1710	BASED			
		~	Tube anod	e: Cu 1. 40				
		Constator	current (mi	). 30 1: 30				
		Waveleno	th Alohal [8	1: 1.54056				
		Waveleng	th Alpha2 [8	]: 1.54439				
	Intensity	r ratio (a	lpha2/alphal	): 0.500				
		Di	vergence sll	E: AUTUMAT	10			
		TLEGISTER 2	a tengin (mm praiving th	j. 12 t.: 0.2				
		Monocl	hromator use	d: YES	2			
		Star	t angle [*20	1: 5.000				
		En	d angle [*20	1: 89.000				
		St	ep size [°20	1: 0.020				
		Maxi	num intensit	y: 1225.00	0		÷.	
		TIME	per step (s	J: OLEVU 5. CONFINH	CHIS .			
	I	tensities	converted t	o: FIXED	00.			
		Minimum p	eak tip widt	h: 0.00				
		Maximum p	eak tip widt	h: 1.00				
		Pe	ak base wigt	n: 2.00 a. 0.35				
		Nu	mber of peak	s: 31	10			
			The second second					
					12.00			
<b>Bn</b> ale	d-value	d-value	Peak width	Peak int.	Back, int	Rel. int	Sionif.	
[*Ž0]	al (A)	a2 [Å]	[ *20]	[counts]	[counts]	[8]	Liguiti	
25.545	9.4642	3.4928	0.050	18	25	1.4	0.88	
27.050	3.4730	3.3010	0.180	228	23	14.6	1.00 5.49	
29.765	2.9991	3.0065	0.120	13	20	1.1	1.08	
34.255	2.6156	2.6221	0.120	- 4	16	0.4	9.82	
35.370	2.5356	2.5419	0.640	12	15	1.0	1.66	
38.390	2,3428	2,3486	0.050	320	14	25.2	0.85	
	2.3300	4.3338	0.040	1225	14	100.0	U.94 6 36	
38.610	2 1246	L - J - J - J - J	0.010		14	0.4	1.80	
38.610 38.720 40.610	2.3236	2.2252	0.480	5	14	10.1		
38.610 38.720 40.610 41,780	2.3236 2.2197 2.1602	2.2252 2.1656	0.480 0.200	5 16	12	1.3	1.06	
38.610 38.720 40.610 41.780 43.110	2.3236 2.2197 2.1602 2.0966	2.2252 2.1656 2.1018	0.480 0.200 0.240	5 16 13	12 12	1.3	1.05	
38.610 38.720 40.610 41.780 43.110 44.490	2.3236 2.2197 2.1602 2.0966 2.0347	2.2252 2.1656 2.1018 2.0398	0.480 0.200 0.240 0.080	5 16 13 605	12 12 12 11	1.3 1.1 49.4	1.06 1.69 3.21	
38.610 38.720 40.610 41.780 43.110 44.490 44.775 44.610	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0162	2.2252 2.1656 2.1018 2.0398 2.0275 2.0217	0.480 0.200 0.240 0.080 0.100 0.050	5 16 13 605 961 579	12 12 11 11	1.3 1.1 49.4 78.4	1.06 1.69 3.21 6.19	
30.610 38.720 40.610 41.780 43.110 44.490 44.775 44.910 47,490	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0167 1.9129	2.2252 2.1656 2.1018 2.0398 2.0275 2.0217 1.9177	0.480 0.200 0.240 0.060 0.100 0.060 0.100	5 16 13 605 961 529 66	12 12 11 11 11 11 10	1.3 1.1 49.4 78.4 43.2 5.4	1.06 1.69 3.21 6.19 1.74 0.76	
30.610 38.720 40.610 41.780 43.110 44.490 44.775 44.910 47.490 52.290	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0224 2.0167 1.9129 1.7481	2.2252 2.1656 2.1018 2.0398 2.0275 2.0217 1.9177 1.7524	0.480 0.200 0.240 0.080 0.100 0.060 0.100 0.480	5 16 13 605 961 529 66 3	12 12 11 11 11 11 11 10 7	1.3 1.1 49.4 78.4 43.2 5.4 0.3	1.06 1.69 3.21 6.19 1.74 0.76 0.75	
$\begin{array}{c} 30.610\\ 38.720\\ 40.610\\ 41.780\\ 43.110\\ 44.490\\ 44.775\\ 44.910\\ 47.490\\ 52.290\\ 53.410\end{array}$	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0167 1.9129 1.7481 1.7140	2.2252 2.1656 2.1018 2.0398 2.0217 2.0217 1.9177 1.7524 1.7183	0.480 0.200 0.240 0.080 0.100 0.060 0.100 0.480 0.060	5 16 13 605 961 529 66 3 16	12 12 11 11 11 11 10 7 7	0.4 1.3 1.1 49.4 78.4 43.2 5.4 0.3 1.3	1.06 1.69 3.21 6.19 1.74 0.76 0.75 0.89	
38.610 38.720 40.610 41.780 43.110 44.390 44.910 47.490 52.290 53.410 56.160	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0167 1.9129 1.7481 1.7140 1.6364	2.2252 2.1656 2.1018 2.0398 2.0275 2.0217 1.9177 1.7524 1.7183 1.6405	0.480 0.200 0.240 0.100 0.100 0.100 0.100 0.480 0.080 0.280 0.280	5 16 13 605 961 529 66 3 16 34	12 12 11 11 11 11 10 7 7 7 7	1.3 1.1 49.4 78.4 43.2 5.4 0.3 1.3 2.7	1.06 1.69 3.21 6.19 1.74 0.76 0.75 0.89 4.22	
38.610 38.720 40.610 41.780 43.110 44.775 44.910 47.490 52.290 53.410 56.160 62.695 55.742	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0167 1.9129 1.7481 1.7140 1.6364 1.4807	2.2252 2.1656 2.1018 2.0398 2.0275 2.0217 1.9177 1.7524 1.7183 1.6405 1.4843	0.480 0.200 0.240 0.080 0.100 0.100 0.100 0.480 0.080 0.280 0.480 0.480	5 16 13 605 961 529 66 3 16 34 6	12 12 11 11 11 11 10 7 7 7 7 7	$ \begin{array}{c} 0.4 \\ 1.3 \\ 1.1 \\ 49.4 \\ 78.4 \\ 43.2 \\ 5.4 \\ 0.3 \\ 1.3 \\ 2.7 \\ 0.5 \\ 74.0 \\ \end{array} $	1.06 1.69 3.21 6.19 1.74 0.76 0.75 0.89 4.22 0.87 7.20	
38.610 38.720 40.6120 41.780 41.780 41.780 41.780 41.780 41.490 41.490 41.490 47.490 52.290 53.410 52.290 53.410 52.695 55.145 55.145	2.3236 2.2197 2.1602 2.0966 2.0347 2.0224 2.0167 1.9129 1.7481 1.7140 1.6364 1.4807 1.4308 1.4308	2.2252 2.1656 2.1018 2.0398 2.0275 2.0217 1.9177 1.7524 1.7183 1.6405 1.4843 1.4343 1.4343	0.480 0.200 0.240 0.080 0.100 0.100 0.480 0.080 0.280 0.480 0.080 0.480 0.080 0.480	5 16 13 605 961 529 66 3 16 34 6 906 497	12 12 11 11 11 11 10 7 7 7 7 7 7 6 6	1.3 1.1 49.4 78.4 43.2 5.4 0.3 1.3 2.7 0.5 74.0 40.6	1.06 1.69 3.21 6.19 1.74 0.76 0.75 0.89 4.22 0.87 7.30 4.92	

## Gambar. 21 Data 20 hasil pengujian XRD sampel H13 Al-7%Si dengan 0,5%Mn selama 20 menit

,

file: Vi Annana Philips	'ile: Vika-7.DI 19-Jun-2009 15.23 Harright Construction of Metallurgy UI Department of Metallurgy UI								
Angle [*20]	d-value al [A]	d-value z2 [K]	Peak width [*20]	Peak int [counts]	Back. int [counts]	Rel. int [%]	Signif.		
67.615	1.3844	1.3878	0.480	1	7	0.1	0.83		
69.Z55	1.3556	1.3589	0,320	8	7	0.7	1.25		
74.660	1.2702	1.2734	0.320	6	a	0.5	1.04		
76.455	1.2448	1.2479	0.320	12	8	0.9	1.14		
78.335	1.2196	1.2226	0.120	1225	9	100.0	20.31		
78.570	1.2165	1.2196	0.080	605	10	49.4	4.55		
82.120	1.1727	1,1756	0.100	83	7	6.8	3.57		
82.375	1.1697	1.1726	0.080	52	7	4.2	1.82		
87.995	1.1089	1.1117	0.320	32	5	0.9	0.76		



Gambar, 22 Data 20 basil pengujian XRD sampel H13 Al-7%Si dengan 0,5%Mu selama 20 menit (lanjutan)

		*********	出现从从来来就带着关键	********	*************	****	********
hilips	Analytica	1 X-Ray B.	ν.		<b>Departmen</b>	nt of Meta	liorgy VI
		Sample id	lențificațion	: 0,7A175	i 20Mnt	-	
		Data	a measured at	:: 19-Jun-1	2009 10:07:0	)0	
		Diffrac	tometer type	: PW1710 I	BASED		
			Tube anode	E: CU			
		Generator	tension [kV]	÷ 40			
		Generator	CUTTEDI (MA)	[; - 1 54058			
		Waveleny,	h Ainha? IR	1.54439			
	Intensity	ratio (al	pha2/alpha1	: 0.500			
		Div	vergence sli	:: AUTOMAT	IC		
		Irradiated	length [mm]	: 12			
		Ĥe.	ecciving sli	t: 0.2			
		Monoch	eromator used	1: 155			
		\$tari	t angle [*20	1: 5.000			
		End	3 angle [*20]	1: 89.000			
		Ste	ep size ["20	1: 0,020 • 707 SAD	5		
		Time	Der sten is	1: 0.800			
			Type of scal	: CONTINU	ous		
	10	<b>tensities</b>	converted to	D: FINED			
				. 0.00			
		MINIMUM IN	eas tip widt	5. 1 00		<u> </u>	
		Pox 1 more pr	ak base widt	h: 2.00			
	1.1	Maximum Per Minimum	ak base widt significanc	h: 2.00 e: 0.75			
	4	Minimom Ku	ak base widt significanc aber of pesk	h: 2.00 e: 0.75 s: 27			
	- 6	Maxinda p Per Minimum Ku	ak base widt significanc abar of peak	h: 2.00 e: 0.75 s: 27		-	
		Maxinda p Pe Minimum Xu	ak tip widt ak base widt significanc abar of peak	h: 2.00 e: 0.75 s: 27		<	
Angle	d-value	Minimow Ninimow Kur d-value	eak tip widt ak base widt significanc aber of pesk	Peak int	Back. int	Rel. int	Signif.
Ängle {°20}	d-value a1 (K)	d~value d2 [Å]	Feak width ["20]	Peak int [Counts]	Back. int [counts]	Hel. int	Signif.
Angle {'20] 5.675	d-value a1 (K) 15.5601	d-value az [Å]	Peak width [*20] 0.960	Peak int (counts)	Back. int [counts] 222	Re1. int [%] 3.6	Sign1f. 0.81
Angle (*20) 36.850	d-value a1 (K) 15.5601 2.4371	4-value d-value d2 [Å] 15.5988 2.4432	Peak width [*20] 0.960 0.40	Peak int (counts) 27 27 27 27 27 27	Back. int [counts] 222 20	Re1. int [%] 3.6 17.1	Sign1f. 0.81 5.26
Angle {*20} 5.675 36.850 36.965 37.200	d-value a1 (K) 15.5601 2.4371 2.4298 2.4150	4-value d-value d2 [Å] 15.5988 2.4432 2.4358 7.4210	Peak width [*20] 0.960 0.040 0.060	Peak int (counts) 27 27 27 27 27 27 27 121 106 708	Back. int [counts] 222 20 10	Rel. int [%] 3.6 17.1 15.0 100.0	Sign1f. 0.81 8.26 1.60 3.22
Angle {*20} 5.675 36.850 36.965 37.200 37.315	d-value a1 (K) 15.5601 2.4371 2.4298 2.4150 2.4076	d-value d-value d2 [Å] 15.5983 2.4432 2.4358 2.4210 2.4138	Peak width [*20] 0.960 0.040 0.040	Peak int (counts) 27 121 106 708 384	Back. int [counts] 222 20 19 10 10	Rel. int [%] 3.8 17.1 15.0 100.0 54.3	Sign1f. 0.81 8.26 1.60 3.22 10.79
Angle {*20} 5.675 36.850 36.965 37.200 37.315 \$2.935	d-value a1 (K) 2.55601 2.4371 2.4298 2.4150 2.4076 2.1047	d-value d2 [Å] 15.5988 2.4432 2.4358 2.4210 2.4138 2.1100	Eak base width significanc mber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.040	Peak int (counts) 27 121 106 708 384 13	Back. int [counts] 222 20 10 10 10 7	Rel. int [%] 3.6 17.1 15.0 100.0 54.3 1.8	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61
Angle {*20} 5.675 36.850 36.965 37.200 37.315 42.935 43.580	d-value a1 (%) 15.5601 2.4371 2.4298 2.4150 2.4050 2.4050 2.4075	d-value d-value d2 [A] 15.5989 2.4432 2.4358 2.4210 2.4138 2.1100 2.0802	Feak width significanc mber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.409 0.200	Peak int (counts) 27 121 106 708 384 13 15	Back. int [counts] 222 10 10 10 10 7 7	Hel. int [%] 3.6 17.1 15.0 100.0 54.3 1.8 2.1	Sign1F. 0.81 6.26 1.60 3.22 10.79 2.61 1.66
Angle {*20} 5.675 36.850 36.965 37.200 37.315 42.935 43.580 45.140	d-value a1 (%) 15.5601 2.4371 2.4298 2.4150 2.4078 2.1047 2.0751 1.9657	d~value d~value d2 [A] 15.5988 2.4432 2.4432 2.4438 2.4210 2.4138 2.4100 2.0802 1.9706	Feak width significanc mber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	Peak int (counts) 27 121 106 708 384 13 15 5	Back. int [counts] 222 20 10 10 10 7 7 6	Hel. int [%] 3.6 17.1 15.0 100.0 54.3 1.8 2.1 0.7	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80
Angle (*20) 5.675 36.850 36.965 37.200 37.315 42.935 42.935 43.580 46.140 50.280	d-value a1 (5) 25.5601 2.4371 2.4298 2.4150 2.4075 2.1047 2.0751 1.9657 1.8131 1.957	d~value d~value d2 [A] 15.5988 2.4432 2.4432 2.4438 2.4138 2.4138 2.4100 2.0802 1.9706 1.8176	Eak tip widt ak base widt significanc aber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.409 0.200 0.480 0.200 0.480 0.240	Peak int [counts] 27 121 106 708 384 13 15 5 4	Back. int [counts] 222 20 10 10 10 7 7 6 5	Rel. int [3] 3.6 17.1 15.0 100.0 54.3 1.8 2.1 0.7 0.6 0.5	Sign1f. 0.81 6.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49
Angle (*20) 5.675 36.850 36.965 37.200 37.215 42.935 43.580 45.140 50.280 51.430 55.110	d-value a1 (%) 15.5601 2.4371 2.4298 2.4150 2.4078 2.1047 2.0751 1.9657 1.8131 1.7753 3.6651	d~value a2 [Å] 15.59&8 2.4432 2.435 2.4210 2.4138 2.4210 2.4138 2.1100 2.0802 1.9706 1.8176 1.8176	Eak tip widt ak base widt significanc aber of peak [*20] 0.960 0.640 0.040 0.040 0.040 0.400 0.200 0.480 0.200 0.480 0.240 0.240 0.240	Peak int [counts] 27 121 106 708 384 13 15 5 4 4	Back. int [counts] 222 28 19 10 10 10 7 7 6 5 4	Rel. int [3] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 0.6 0.5 0.5 0.6	Signif. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98
Angle (*20) 5.675 36.850 36.965 37.200 37.315 42.935 43.580 45.140 50.280 51.430 55.110	d-value a1 (Å) 15.5601 2.4371 2.4298 2.4150 2.4076 2.1047 2.0751 1.9657 1.8131 1.7753 1.5651 1.5651	d~value d~value d2 [Å] 15.5988 2.4432 2.4358 2.4210 2.4138 2.4210 2.9706 1.8176 1.7797 1.6693 1.5933	Eak base widt: significanc aber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.040 0.200 0.480 0.200 0.480 0.240 0.240 0.240 0.240 0.240	Peak int {counts} 27 121 106 708 384 13 15 5 4 4 4 6	Back. int [counts] 222 20 10 10 10 7 7 6 5 4 4 4	Rel. int [%] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 9.6 0.5 0.6 0.8	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 0.89
Angle (*20) 5.675 36.850 36.965 37.200 37.200 37.315 42.935 43.580 43.580 45.140 50.280 51.430 55.110 57.980 63.310	d-value a1 (%) 15.5601 2.4298 2.4150 2.4078 2.1047 2.0751 1.9657 1.8131 1.7753 1.6651 1.5893 1.4678	d~value d~value d2 [Å] 15.5988 2.4432 2.4358 2.4210 2.4138 2.4210 2.9706 1.8176 1.7797 1.6693 1.5933 1.4714	Peak width significanc mbar of peak (*20) 0.960 0.040 0.040 0.040 0.040 0.040 0.200 0.480 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240	Peak int {counts} 27 121 106 708 384 13 15 5 4 4 4 6 605	Back. int [counts] 222 20 10 10 10 10 7 6 5 4 4 4 6	Rel. int [%] 3.8 19.1 15.0 100.0 54.3 1.8 2.1 0.7 9.6 0.5 0.6 0.8 85.5	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 9.37
Angle (*20) 5.675 36.850 36.965 37.200 37.315 43.580 43.580 45.140 50.280 51.430 55.110 57.980 57.980 63.515	d-value al (%) 15.5601 2.4371 2.4298 2.4150 2.4078 2.1047 2.0751 1.9657 1.8631 1.5893 1.5893 1.4635	d~value d~value d~value d~ (Å) 15.5988 2.4432 2.4432 2.4438 2.4210 2.4138 2.4210 2.4138 2.4210 2.4138 2.4210 2.4138 1.9706 1.9706 1.9706 1.9706 1.5933 1.5933 1.4714 1.4671	Peak width significanc mbar of peak (*20) 0.960 0.040 0.040 0.040 0.040 0.040 0.040 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.060 0.120 0.080	Peak int [counts] 27 121 106 708 384 13 15 5 4 4 6 605 400	Back. int [counts] 222 10 10 10 10 10 10 10 10 5 4 4 4 4 5 5 4 6 5	Hel. int [3] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 0.6 0.5 0.6 0.5 0.6 0.8 85.5 56.5	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 0.83 9.37 2.61
Angle (* 20) 5.675 36.850 36.965 37.205 42.935 43.580 46.140 50,280 51.430 55.110 57.980 63.515 63.515 63.515	d-value a1 (K) 15.5601 2.4371 2.4298 2.41047 2.4078 2.1047 2.0751 1.9657 1.9657 1.8631 1.5893 1.6678 1.4635 1.4594	d-value d-value d2 [Å] 15.5983 2.4432 2.4358 2.4432 2.4358 2.4210 2.4138 2.1100 2.0802 1.9706 1.8176 1.7797 1.6593 1.5933 1.4714 1.4671 1.4630	Peak width significanc mbar of peak 0.960 0.040 0.040 0.040 0.040 0.040 0.040 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240	Peak int (counts) 27 121 106 708 384 13 15 5 4 4 4 6 605 400 180	Back. int [counts] 222 10 10 10 10 10 10 10 5 4 4 4 5 4 4 6 6 6	Hel. int [3] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 0.6 0.5 0.6 0.5 0.6 0.8 85.5 56.5 25.4	Sign1f. 9.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 9.37 2.e1 2.34
Angle {* 20} 5.675 36.850 36.965 37.200 42.935 43.580 45.140 55.130 55.140 55.140 55.140 55.110 57.980 63.515 63.715 63.715 63.907	d-value a1 (K) 15.5601 2.4371 2.4298 2.4150 2.4076 2.1047 2.0751 1.9657 1.9657 1.5893 1.4635 1.4635 1.4594 1.4554	d-value a2 [A] 15.5988 2.4432 2.4432 2.4358 2.4432 2.4358 2.4410 2.4210 2.4210 2.4210 2.4138 2.1100 2.0802 1.9706 1.8176 1.8176 1.8176 1.6593 1.4714 1.46571 1.4659 1.4590 1.4590 1.4590	Peak width significanc mber of peak 0.960 0.040 0.040 0.040 0.409 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.250 0.080 0.080 0.080	Peak int (counts) 27 121 106 708 384 13 15 5 4 4 4 4 6 605 400 180 112	Back. int [counts] 222 20 10 10 10 7 7 6 5 4 4 4 6 6 6 6 6	Rel. int [%] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 0.6 0.5 0.6 0.5 0.6 0.5 56.5 56.5 56.5	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 0.89 9.37 2.61 1.79 0.89 1.24 1.26 0.80 1.49 1.17 0.98 0.85 0.85 0.37 2.61 1.77 0.98 0.85 0.85 0.85 0.85 0.80 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.
Angle {* 20] 5.675 36.850 36.965 37.305 42.935 43.580 51.430 55.110 63.515 63.910 63.515 63.910 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 63.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 64.025 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.05 65.0	d-value a1 [K] 15.5601 2.4371 2.4298 2.4150 2.4076 2.1047 2.0751 1.9657 1.8131 1.7753 1.5651 1.5893 1.4635 1.4594 1.4554 1.4529 1.4485	d-value d2 [A] 15.5988 2.4432 2.4432 2.4358 2.4432 2.4358 2.4210 2.4136 2.4136 2.4136 2.4136 2.4136 1.9706 1.8176 1.8176 1.8176 1.6593 1.5933 1.4714 1.46571 1.4650 1.4599 1.4595 1.4521	Peak width significanc mber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.409 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.220 0.240 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200000000	Peak int (counts) 27 121 106 708 384 13 15 5 4 4 4 6 605 400 180 112 86 30	Back. int [counts] 222 20 10 10 10 10 7 7 6 5 4 4 4 6 6 6 6 6 6 6	Rel. int [%] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 9.6 0.5 0.6 0.5 0.6 0.5 56.5 56.5 25.4 15.9 12.2 4.3	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 0.89 9.37 2.61 1.79 2.61 1.26 0.80 1.49 1.17 0.98 0.83 9.37 2.61 2.34 1.86 2.34 1.86 2.38
Angle {* 20} 5.675 36.850 36.965 37.200 37.200 542.935 43.580 45.140 51.430 55.110 53.310 63.515 63.315 63.715 63.910 54.250 54.250 56.255	d-value a1 [K] 15.5601 2.4371 2.4298 2.4150 2.4076 2.1047 2.0751 1.9657 1.9657 1.8131 1.7753 1.5651 1.5893 1.4678 1.4635 1.4594 1.4554 1.4554 1.4529 1.4485 1.3776	d-value d2 [A] 15.5988 2.4432 2.4432 2.4432 2.4358 2.4210 2.4138 2.4100 2.0802 1.9706 1.8176 1.7797 1.6693 1.5933 1.4714 1.4671 1.4650 1.4530 1.4565 1.4521 1.3805	Feak width significanc mber of peak [*20] 0.960 0.040 0.040 0.040 0.409 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.260 0.240 0.260 0.240 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.060 0.060	Peak int (counts) 27 121 106 708 384 13 15 5 4 4 4 6 605 400 180 112 86 30 1	Back. int [counts] 222 10 10 10 10 10 7 7 6 5 4 4 4 6 6 6 6 6 6 6 6 6 6 5	Hel. int [%] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 0.6 0.5 0.6 0.5 0.6 0.8 85.5 55.5 55.5 55.5 25.4 15.9 12.2 4.3 0.2	Signif. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 0.89 9.37 2.61 1.79 0.89 9.37 2.61 1.49 1.49 1.17 0.98 0.89 9.37 2.61 1.86 0.89 9.37 2.61 1.86 0.89 9.37 2.61 1.86 0.89 9.37 2.61 1.86 0.89 0.99 9.37 2.61 1.86 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Angle {*20} 5.675 36.850 36.965 37.205 43.580 45.140 50.280 51.430 55.110 57.980 63.515 63.315 63.315 63.910 64.035 64.035 64.035 68.025 73.320	d-value a1 (K) 15.5601 2.4371 2.4298 2.4150 2.40751 1.9657 1.9657 1.8131 1.7753 1.6651 1.5893 1.4678 1.4594 1.4594 1.4594 1.4594 1.32700 1.2901	d-value d-value d2 [A] 15.5988 2.4432 2.4432 2.4358 2.4210 2.4138 2.4210 2.4138 2.4210 2.0802 i.9706 1.8176 1.5933 1.5933 1.4714 1.4651 1.4650 1.4520 1.4521 1.3005 1.2933	Feak width significanc mber of peak [*20] 0.960 0.040 0.040 0.040 0.040 0.409 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.2400 0.240000000000	Peak int (counts) 27 121 106 708 384 13 15 5 4 4 4 6 605 400 180 112 86 30 1	Back. int [counts] 222 10 10 10 10 10 7 7 6 5 4 4 4 4 5 5 5	Hel. int [%] 3.8 17.1 15.0 100.0 54.3 1.8 2.1 0.7 9.6 0.5 0.5 0.5 0.6 0.8 85.5 56.5 56.5 56.5 56.5 56.5 56.5 56	Sign1f. 0.81 8.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.98 0.89 9.37 2.61 1.79 0.89 9.37 2.61 1.86 2.34 1.86 2.38 1.86 0.93 0.89
Angle {*20} 5.675 36.850 37.200 37.315 43.580 45.140 50.280 51.430 55.140 55.140 55.315 63.315 63.515 63.515 63.910 64.035 64.035 64.035 64.035 73.320 76.885	d-value a1 (%) 15.5601 2.4371 2.4298 2.4150 2.4075 2.0751 1.9657 1.8131 1.7753 1.5893 1.4658 1.4658 1.4658 1.4658 1.4554 1.4554 1.4554 1.4554 1.2901 1.2901 1.2399	d-value d-value d2 [A] 15.5980 2.4432 2.4432 2.4358 2.4210 2.4138 2.4100 2.0802 1.9706 1.8176 1.8176 1.9706 1.8176 1.5933 1.4714 1.4671 1.4659 1.4565 1.4521 1.3805 1.2933 1.2420	Feak width significanc mber of peak 0.960 0.040 0.040 0.040 0.040 0.040 0.040 0.200 0.480 0.200 0.480 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.2400 0.240000000000	Peak int (counts) 27 121 106 708 384 13 15 5 4 4 4 6 605 400 180 112 86 30 112 86 30 112	Back. int [counts] 222 20 10 10 10 10 7 7 6 5 4 4 4 4 4 6 6 6 6 6 6 5 5 7	Hel. int [%] 3.6 17.1 15.0 100.0 54.3 1.8 2.1 0.7 9.6 0.5 0.5 0.6 0.8 85.5 56.5 25.4 15.9 12.2 4.3 0.2 0.3 43.8	Sign1f. 0.81 6.26 1.60 3.22 10.79 2.61 1.66 0.80 1.49 1.17 0.99 0.89 9.37 2.81 2.81 2.81 2.81 1.86 2.38 1.86 0.93 0.89 5.66

ι,

# Gambar. 23 Data 20 hasil pengujian XRD sampel H13 Al-7%Si dengan 0,7%Mn selama 20 menit

'ile: Vi :====================================	ka-5.DI taasset Analytica	il X-Ray B		# <b>%≈≈⊑⊑</b> ⊒₩#	Departme	2-100-24 222888222 nt of Meta	l)urgy UI
Ang]a [°20]	d-value al [X]	đ-value α2 [Å]	Peak width [*20]	Feak ist [counts]	Back. int [counts]	Rel. int [%]	Signif.
77.335	1.2328	1.2359	0.060	98	7	13.9	2.02
77.575	1.2296	1.2327	0.080	37	7	5.3	3.10
B1,490	1.1802	1.1831	0.120	61	5	8.6	2.94
81.720	1.1774	1.1803	0.120	28	5	4.0	0.94
86.990	1.1191	1.1219	0.480	ő	5	0.9	0.77



Gambar. 24 Data 20 hasil pengujian XRD sampel H13 Al-7%Si dengan 0,7%Mn selama 20 menit (lanjutan)
18-Jun-2009 10:01 : Vikal.DI 静物机能要因少是你对你能做问题,我们有这些问题,你们有这些你们都会能够没有你能能够我没有你要没有知道你们能能能知道我们们是不是不是不是不是不能能能能。 Philips Analytical X-Ray B.V. Department of Metallurgy 81 Sample identification: All2Si 0,1Mn 40mnt Data measured at: 18-Jun-2009 9:04:00 Diffractometer type: PW1710 BASED Tube anode: Cu Generator tension [kV]: 40 Generator current [mA]: 30 30 Wavelength Alphal [A]: 1.54056 Wavelength Alpha2 [A]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Divergence slit: AUTOMATIC Irradiated length [mm]: 12 Receiving slit: 0.2 Monochromator used: YES Start angle [*20]: End angle [*20]: Step size [*20]: 5.000 89.000 0.020 Maximum intercity: 1375.410 Time per step [s]: 0.800 Type of scan: CONTINUOUS Intensities converted to: PIXED Nimimum peak tip width: Maximum peak tip width: Peak base width; 0.00 1.00 2.00 Minimum significance: 0.75 Number of peaks; 22 Angle d-value d-value Peak width Peak int Back. int. Rel. int Signif. [counts] [8] (°20) a1 (A) α2 (A) [*20] [counts]  $1.19 \\ 0.77$ 5.3349 16.645 9.3216 0.960 13 62 0.9 18.445 4.8062 4.8181 0.150 16 53 1,2 27.425 3.2494 3.2575 190 13.8 1.03 0.080 23 2.6224 0.9 1.22 9.61 34.250 2.6159 0.120 13 12 2.3988 2.4048 1376 100.0 37.460 14 2.3927 4.08 37.560 0.060 864 14 52.8 39.600 12 1.86 2.2740 2.2796 0.120 13 0.9 40.910 2.2041 2,2096 0,169 £. 13 0.6 43.750 2.0674 2.0725 0.200 1037 12 75.3 24.83 11 46.290 1.9597 3.9646 0.100 159 11.5 1.32 0.75 1.7485 52,275 1,7529 0.060 * 0.6 72 1.6633 1.6674 9 0.60 55.175 0.100 5.2 64.200 64.380 33.9 21.2 1.4495 467 12.84 8.180 Я 0.080 1.4459 1.4495 292 9 1.44 68.380 1.3706 1.3742 0.400 17 8 1.2 3.22 1.3493 1.3525 7 9.1 0.75 69.625 0.240 -7 1.2616 75.480 1.2505 0.320 19 9 1.4 3.13 1.2321 33.9 77.390 1,2352 0.140 467 10 8.41 250 18.1 3.84 77.645 1.2317 0.120 10 1.1785 4.36 81.625 1.1815 0.520 361 8 94 6.8 1.1757 0.080 0.86 81.865 1.1786 8 6 87.155 2.1174 1.1202 0.160 22 1.6 1.63

#### Gambar. 25 Data 20 hasti pengujian XRD sampel H13 Al-12%Si dengan 0,1%Mn selama 20 menit

93

: Vika3.	DI Messemport			,	18	-Jun-2009 Jun-2009	14:19 ==========
Philips	Analytics	al X-Ray B	,¥.		Departum	nt of Meta	llorgy UI
		Sample in Data	lentification a measured at	n: All2Si   E: 18-Jun-	0,3Mn 20 Mn 2009 13:22;	t 00	
		Diffra	togeter type Tube anod	2: PW1710   2: Cu	BASED		
		Generator	tension [kV]	1: 40			
		Generator Waveleng	Currant (DA) th Alohal IX	): 30 1: 1.54056			
		Waveleng	th Alpha2 (A	]: 1.54439			
	Intensity	y ratio (a) Di	lpha2/alpha1 margance sli	): 0.500 1070Mat	TE		
		Irradiate	i length [mm]	}; 12	- <b>`</b>		
		R	eceiving sli	t: 0.2			
		Monoci	hromator use	1: YES			
		Star	t angle ["20	]: 5.000			
		En	d angle [°20]	): 69.000		Sec. 19	
		Maxi	mum intensit	r: 580.810	0		
		Time	per step [s	): 0.800			
	*,		Type of scan	1: CONTINU	ous		1.1
	1.		CORVELLEL L				
		Minimum p	eak tip width	h: 0.00			
		Налівцій р	eax tip widt as born widt	h: 1.00			1 18
		Minimum	significance	e: 0.75			/ <u>8</u> 1
		ไปม	mber of peak	a: 20			
					100.00		
	13.4						
Angle from	d-value	d-value	Pesk width	Peak int	Back. int	Rel. int	Signif.
1 201	Ma [8]	ut [n]	[ 20]	[cours]	formurs)	151	
5.655	15.6151	15.6539	0,960	25	210	4.3	1.12
27.410	3.2512	3.2593	0.060	44	23	7.5	1.27
37.425	2,4010	2.4069	0.140	320	12	27.3 55.2	4.54
40.725	2.2137	2.2192	0.480		10	0.6	0:91
43.410	2.0828	2.0880	0,080	259	10	44.6	2.38
43.675	2.0708	2,0759	0.140	581	9	100.0	7.97
46.320	1.9585	1,9634	0.400	64	8	11.0	10.95
54.925	1.6703	1.6744	0.200	40	6	6,8	1.32
55.165	1.6636	1.6677	0.160	45	6	7.7	0.76
64.170	1.4501	1.4537	0.120	228	8	39.3	3.24
68.20S	1.3738	1.3773	0.400	13	6	2.2	2.93
73.840	1.2823	1.2855	0.400	2	7	0.3	0.79
75.470	1.2586	1,2617	0.120	2.6	8	4-5	0,78
77.210	1.2345	1.2376	0.100	380	8	65.5	2.19
77,405	1.2319	1.2350	0.100	350	8	60.2	1.27
77.610	1.2292	1.2322	0.080	135	8	23,2	1.57
81.515	1,1799	1.1828	0.080	55	7	9.4	1.03
83.965	1.1527	1.1555	0.060	5	6	6.0	0.79
87.090	1,1181	1,1209	0.240	23	6	4.0	1.55
			The second				

# Gambar. 26 Data 20 hasil pengujian XRD sampel H13 Al-12%Si dengan 0,3%Mo selama 20 menit

: vika4.	DI		18	18-Jun-2009 16:04				
Philips	Analytica	al X-Ray B	.V.		Departme	nt of Meta	allurgy UI	
		Sample in Dat	dentificatio a measured a	n: All2Si t: 18-Juo-	0,5Mm 20Mst 2009 15:08:	00		
		Diffra Generator	ctometer typ Tube anod tension [kV	is: PW1710 le: Cu ]: 40	BASED			
		Generator Waveleng Waveleng	current (mA th Alphel [X th Alpha2 [A	\]: 30  ]: 1.54056  ]: 1.54439				
	Intensity	ratio (a Di Irradiate	lpha2/alphal vergence ali d length [mm	): 0.500 t: Automat 1): 12	ıc.			
		R Monoc	eceiving sli bromator use	t: 0.2 d: YES				
		Star En St	t angle [*26 d angle {*26 op size [*26	): 5.000 ): 89.000 ): 0.020				
	I	Manı Tipe Alensities	num intensit per step (s Type of sca converted t	y: 846.810 ): 0.800 nn: CONTINU co: FIXED	ovs			
	- 51	Minimum p Maximum p	eak tip widt eax tip widt	h: 0.00	1		$D_{\rm el}$	
		Pe Minlaum Nu	ak base widt significant mber of peak	:h: 2.00 :e: 0.75 :s: 30	P			
Angle [*20]	d-value al [8]	d-value a2 [A]	Pesk width ['20]	Peak int [counts]	Back. int (counts)	Rel. int [%]	Signif.	
5.345	16.5201	16.5611	0.480	11	222	1.3	1.05	
25.305	3.3852	3.3936	0.240	5	23	0.7	0.96	
20.130	311030	311/09	0.120	5Q 163	20	6.0	0.93	
37 446	2 7863	2 3077	0.060	170	1.7	16.4	1 08	
38.165	2.3561	2.3620	0.100	306	13	36.2	1.90	
38.435	2.3402	2.3460	0.060	529	13	62.5	3.91	
38.665	2.3268	2.3326	0.060	847	13	100.0	1.43	
41.905	2.1541	2.1594	0.480	5	12	0.6	2.06	
43,900	2.0637	2.0658	0.160	55	10	6.5	1.19	
44.225	2.0463	2.0514	0,080	135	10	15.9	0.90	
44.480	2.0352	2.0402	0.100	Z37	10	28.0	1.68	
44.035	Z.0199	2.0249	0.140	256	10	30.2	5.79	
47.430	1.9152	1.9200	0.240	69	9	8,1	3,62	
53.310	1.7170	1.7213	0.485	4	7	0.5	1.33	
56.235	1.6344	1.6385	0.200	41	7	4.8	1.27	
59.315	1.5557	1.5606	0.120	12	6	1.4	1.02	
62.560	1.48.15	1,4872	0.280	2	7	0.3	U.96	
09.790 42 340	1.4370	1.4413	0.089	101		19.0	· Z,01	
03.22U	1.4293	1.9329	0.280	138	2	10.4	5.50	
97.310 77 468	1-2240	1.3380	0.400			0.9	1.33	
19.932	1. <i>Li</i> 24	1,4704	0.000	14	7.	λ.ψ	4.93	

# Gambar. 27 Data 20 hasil pengujian XRD sampel H13 Al-12%Si dengan 0,5%Mn selama 20 menit

1

File: vi exxeste	ka4.DI		***	******		10-Jun-2	009 16:04
Philips	Analytica	l X-Ray B	L.V.		Departme	nt of Meta	llargy UI
Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[*20]	al [Å]	az (A)	[*29]	[counts]	[counts]	[\$]	
76.575	1.2432	1.2463	0.320	16	7	1.9	2.04
78.015	1.2238	1.2260	0.100	202	7	23.9	2.19
78.290	1.2202	1,2232	0.080	234	7	27.6	0.79
79.925	1.1993	1.2023	0.100	29	7	3.4	2,48
80,165	1.1963	1.1993	0.060	24	7	2.8	2.23
82.623	1.1669	1.1597	0.080	110	6	13.0	1.14
92.880	1.1639	1.1667	0.120	42	6	5.0	0.97
88.010	1.1088	1.1115	0.560	21	6	2.5	5.65



Gambar. 28 Data 28 hasil pengujian XRD sampet H13 Al-12%Si dengan 0,5%Mn selama 20 menit (lanjutan)

Universitas Indonesia

: Vika2,	.DI		■====================================	********	18 	-Jun-2009	12:41
Philips	Analytica	1 X-Ray B	Ψ,		Departme	nt of Meta	llurgy UI
-	•	-			ų.		•••
		Sample in Dati	Jestířícatio a measured a	n: All2 12 t: 18-Jun-	\$51 2009 11:45:	00	
	Intensity	Diffrad Generator Generator Waveleng Waveleng ratio (a) Di	tometer typ Tube anod tension [kV current [mA th Alphal [Å th Alphal [Å lpha2/alphal vergence sli	e: PW1710 1 e: Cu ]: 40 ]: 30 ]: 1.54056 ]: 1.54439 ]: 0.500 t: AUTOMAT	BASED IC		
		1112079180	2 lengto (wa	]: 24 *: 8 7			
		Sonoci	rceiving sii Sràmatrar usai	d: YES			
	Ir	Star En St Maxis Time	t angle [*26 d angle [*26 ep size [*26 num intensit per step [s Type of sca converted t	3: 5.000 3: 59.000 3: 0.020 9: 1705.694 3: 0.800 m; CONTINUS 0: FIXED	0 DUS		
		Minimum p	ak tip widt	h: 0.00			
		Maximum po 20:	ear tip widt sy heed widt	h: 1.00	18		8 8 8 8
		Minima	significanc	a: 0.75			
		Nu	mber of peak	9: Z1			
		Sector and					
n n n i n			Bank states	Barate date	Part and	Mark Andrew	61-11-1 E
1.501	al (1)	27 TE1	reak winch	feenstel	Back. 10t.	Kel. int	Signii,
( )	eren fred	······································	1 247	[counce]	( counce ]	1.01	-
27.650	3.2235	3.2315	0.140	262	25	15.4	3.95
37.775	2.3795	2.3854	0.180	1706	17	100.0	26.50
40.995	2.1998	2.2052	0.240	26	13	1.5	2.81
92.275	2.1.101	6 1414 7 0463	0.240	8	13	0.5	0.89
44 615	2 0534	2.0003	0.000	870	1.A 1-3	31.V 83 7	3.32
45.485	1.9519	1.9568	0.060	1.32	12	7.8	0 89
46.605	1.9472	1.9520	0,080	185	12	10.6	1.)8
52.765	1.7335	1.7378	0.490	ŝ	8	0.3	2,05
55.430	1.6563	1.5604	0.120	92	7	5.4	1.31
61.950	1.4967	1.5004	0.480	3	8	0.2	1.28
64.415	1.4452	1.4468	0.160	384	9	22.5	7.45
64.635	1.4408	1.4444	0.080	166	9	9.8	0.85
08.415	1.3701	1.3735	0.240	18	8	1,0	1.72
75.615	1 2566	3 3683	0.320	74 74	10	0.5	0.99
77.496	1,2308	1.2338	0.320	147	0 12	20 1	5.40
77.610	1,2292	1,2322	0,140	458		26.8	6.07
77.840	1.7261	1.2292	0.120	222	10	13.0	2.91
\$1.715	1.1775	1.1804	0.140	121	9	*1.3	2.45
87.395	1.1150	1,1177	0.240	37	7	2.2	1.88

#### Gambar. 29 Data 20 hasil pengujian XRD sampel H13 Al-12%Si dengan 0,7%Mu selama 20 menit

,

¥184-1 =====			****	*	-0x 	anna Chuà.	12JU4 Loomoutut
ilips	Analytica	al X-Ray B.	¥.		Departmen	t of Meta	llurgy UI
		Sample id	entificati	on: 0,1Mn A	17Si		
		Data	measured	at: 20-Jun-	2009 11:30:0	0	
		Diffrac	toneter ty	pe: PW1710	BASED		
			Tube ano	de: Cu			
		Generator	tension [k	V]: 40			
		Generator	current [m	A]: 30			
		Wavelengt	n Alphai [	AJ: 1.54050 Min i Kaano			
	Intensity	wavelengt v vatim fal	n n⊥prosc [ mins2/stinhs	8]2 1,34439 11- 8 600			
	Incoms.cj	Div	ergence sl	it: AUTOMAT	'IC		
		Irradiated	length (m	n): 12	~~		
		Re	ceiving sl	it: 0.2			
		Monoch	romator us	ed: YES			
		Start	angla (*2	0]: 10.000			
		End	angle (*2	0]: 89.000			
		Ste	p size (*2	0]: 0.020			
		Maxim	um intensi	ty: 1474.56	0		<u> 1</u>
		TIME	per step (	SJ: 0.500	ANC		
	T.	stensitias	Converted	to: FIND	940		
			APTICA X NY A 40.30 40	Wet I Links			
		Minimum pe	ak tip wid	th: 0.00		<i>.</i>	
		Maximum pe	ak tip wid	th: 1.00			
		Minimum	K DASE WIG Giamifinan	CA: 2.00 ma- 0.76			
		Nem	ber of pea	ks: 14			
	- A.						
inale	d-value	d-value	Peak width	Peak int	Back, int	Rel. int	Signif.
•20)	al [X]	a2 (A)	["20]	{counts]	[counts]	[\$]	
4.495	3.1298	3.1376	0.080	114	13	7 8	0.93
455	2,3390	2.3448	0.140	1475	13	100.0	8.02
.820	2.1582	2.1636	0.400	6	10	0.4	1.07
.735	2.0241	2.0292	0.180	767	3	52.0	11.36
.265	3.9215	1.9263	0.050	74	8	5.0	0.76
.095	1.6382	1.6423	0.160	31	5	2.1	0.82
2005	1.5092	1.3080	0.290	212	5	U.Z	0.76
105	1.4014 1.35RT	1,34347	0.020	213 8	D E	14.2 A A	V.44 1 19
360	1.2461	1.2492	0.200	14	8	1.0	0.97
1.175	1.2217	1.2247	0.160	296	8	20.1	5.10
.505	1.2174	1.2204	G.160	139	8	9.4	1.05
. 445	1.1689	1.1718	0.080	100	5	6.8	1.13
.030	1.1086	1.1113	0.240	18	5	1.3	2.08
		a					<b>6.</b>
					A CONTRACTOR		
				18 63			<i>'</i>
		200					

Gambar, 30 Data 28 hasil pengujian XRD sampel master alloy Al-7%Si dengan 0,1%Mo

			**********	*******	**********	=======================================	
lips	Analytica	ŧl X-Ray β.	, V .		Departne	nt of Meta	illurgy UI
		Sample id Data	lentificatio a measured a	n: 0,3Mn A t: 20-Jun-	1751 2009 10:55:	00	
		Diffra	tometer typ Tube anod	e: PW1710 e: Cu	BAŜED		
		Generator Generator Wavelengt	tension [kV current [mA th Alphal [%	]: 40 ]: 30 ]: 1.54056			
	Intensity	Wavelengi ratio (a)	th AlphaZ (A lphaZ/alphal	): 1.54439 ): 0.500			
		Div Irradiated	vergence sli i lenath [mm	L: AUTOMAT	IC		
		Re	eceiving sli	t: 0.2			
		Monocl	remator use	d: YES	1.00		
		Star	t angle [*20	1: 10.000			
		Eng	d angle [*20	]: 89.000		Sec. 10	
		Maxis	mp size į zo Rum intensit	y: 1513.21	0		
		Time	per step [s	]: 0.500			
			Type of sca	n: CONTINO	ous		1.0
	13	scenaities	converted t	O: FIXED			
		Minimum pr	eak tip widt	h: 0.00			
		Maximum pi	eak tip widt	h: 1.00			
	1.1	₽®: Mirsiaaroo	ak base widt	b: 2.00	100		9 R
		Na	aber of peak	s: 17	1	-	
							and the second second
	10.1						
ngle	d-value	d-value	Feak width	Peak int	Back. Int	Rel. int	Signif.
*20]	al [#]	a2 (Å)	[°20]	{counts}	(counts)	[8]	
.240	3.1575	3.1653	0.120	98	15	5.5	1.91
470	3.1325	3.1403	0.120	77	14	5.1	1.50
.350	2.3452	2.3510	0.190	1513	15	100.0	9.42
.560	2,3329	2.3387	0.080	1037	14	68,5	0.97
	2,1024	2.1400	0.490	een	LL M	20.0	0.92
-123.27 11.62	2.0230	2 × V344	0.180	590	7	39.0	5 70
325	1 0107	1 9240	0.000	404 \$5	32 131	377	6 74
546	1 6010	1 6852	5 240		Ĕ	A 1	6 87
055	1 6.793	1,6433	0.200	भ	5	ž.i	1.45
150	1.4307	1.4342	0.120	222	ž –	14.7	1.76
.220	1.3562	1.3595	0.560	8	5	0.6	2.27
. 285	1.2472	1.2503	0.400	11	8	0.7	2.23
.260	1.2206	1.2236	0.480	269	g	17.8	32.75
. 905	1.1705	1.1734	0,100	110	7	7.3	0.79
. 605	1,1670	1.1699	6.200	104	7	6.9	1.21
1.005	1.1088	1.1116	0.200	16	4	1.1	0.92
				11. 0			
				18.			

#### Gambar, 31 Data 29 hasil pengujian XRD sampel master alloy Al-7%Si dengan 0,3%Mn

: vika-9	9.DI			***	20	-Jun-2009	10:47
Philips	Analytica	l X-Ray B.	V.		Departme	nt of Meta	llurgy UI
		Sample ić Data	lentification N weasured a	1: 0,5Mp A t: 20-Jun-	1751 2009 10:12:	00	
	Intensity	Diffrac Generator Generator Wavelengt Vavelengt ratio (a) Div Div Irradiated Remoch	tometer rypu Tube anod tension [kV] chrrent [mA th Alphal [A th Alphal [A] th Alphal [A th Alphal [A th Alphal [A] th Alphal [A th Alphal [A] th Alphal [A th Alphal [A] th Alphal [A] th Alphal [A] th Alphal [A] th Alphal [A	2: FW1710 2: CU 1: 40 1: 30 1: 1.54056 1: 1.54439 1: 0.500 1: 0.500 1: AUTOMAT 1: 12 1: 0.2 3: YES	BASED IC		
	In	Stari Bro Sto Maxin Time tensitles	t angle [*30 1 angle [*20 9p size [*20 0um intensit] per step [s Type of scan converted to	): 5.000 [: 89.000 ): 0.020 y: 1772.41 [: 0.580 h; CONTINU p: FIXED	o ous	5	
		Minimum p Marioum p Pos Minimum Nu	eak tip widt eak tip widt ak base widt significanc mber of peak	h: 0.00 h: 1.00 h: 2.00 e: 0.75 s: 17		~	シ
Angle [*20]	d-value al (A)	d-value a2 [8]	Peak width (*20)	Peak int [counts]	Back. int [counts]	Rel. int [%]	Signif,
28.510 38.570 41.905 43.140 44.790 56.250 65.250 65.250 69.240 76.395 78.395 78.395 78.395 78.395 82.510 82.610 88.080 88.375	3.1262 2.3323 2.1541 2.0952 2.0218 1.9154 1.3558 1.3558 1.3558 1.2457 1.2196 1.2457 1.2196 1.2166 1.1681 1.1681 1.1051	3.1360 2.3301 2.1594 2.1004 2.0260 1.9202 1.6301 1.4327 3.3592 1.2746 1.2488 1.2226 1.2196 1.3710 1.1676 1.1108 1.1079	0.080 0.260 0.260 0.126 0.120 0.140 0.080 0.320 0.460 0.160 0.180 0.120 0.180 0.120 0.180 0.120 0.120	139 1772 10 10 762 79 44 272 7 3 13 380 222 10 59 18 11	12 13 9 6 8 7 5 6 \$ 5 6 \$ 5 6 \$ 5 8 8 6 6 4 4	7.9 100.0 0.5 43.0 4.5 2.5 15.4 0.4 0.7 21.5 12.5 12.5 5.2 3.3 1.0 0.5	1.85 53.81 1.91 6.92 4.24 1.81 1.84 0.97 1.11 3.26 0.85 7.53 1.17 5.47 1.59 1.21 0.94

Gambar. 32 Data 28 hasil pengujian XRD sampel master alloy AI-7%Si deugan 0,5%Mn

Vika-1	12.DI			· · · · · · · · · · · · · · · · · · ·	20	-Jun-2009	12:39
bilips	Analvtica	1 X-Ray B	.V,		Departme	nt of Meta	llergy UI
··········	*		• • • • • • • • • •		-		
		Sample in	lentification measured a	1: V,/MD A F: 20-344-	1/51 2009 12+06+	00	
		M 53 3.1	p wedgyley a	L. KV-Gun-	2005 82.000	<i></i>	
		Diffra	ctometer type	e: PW1710 '	BASED		
			Tube anod	a: Cu			
		Generator	tension (**	]: 40 ì⊭ 30			
		Waveleng	th Alphal [A]	1: 1.54056			
		Waveleng	th Alphaz [8	j: 1.54439			
	Intensity	ratic (a)	lpha2/alphal	): 0.500	10		
		Die	vergence sil	E: AUTUMAT 1- 19	14		
		R	aceiving sli	t: 0.2			
		Monoci	hromator use	d: Yes			
		×	a	1. 10 000			
		Star	c angle [ 20	1: 10.000			
		St	ep size [°20	]: 0,020		Sec. 199	
		Maxi	mun intensit	ý: 1391.29	0		
		Tine	per step [s	]: 0.500	in the second		
	Ťŧ	tensities	ronversed to	o: FIXED	603		1992
		Minimum p	eak tip widt	h: 0.00			
		Naximum p	eak tip widt	h: 1.00			20 I I I I I I I I I I I I I I I I I I I
	1.1	ក្រ ស្រំសំណារព	simificate	a: 0.75			
		Nu	mber of peak	s: 18	10°		
		· · · · · · · · · · · · · · · · · · ·	- C - C - C - C - C - C - C - C - C - C				
Angle	d-value	d-value	Peak width	Peak int	Back, int	Rel, int	Signif.
Į°ŽQį	al [#]	[A] 5a	[°20]	[counts]	[counts]	<b>[4]</b>	
70 475	3 1336	1 1302	0 240	110	34	3.0	4 09
38.515	2.3355	2.3413	G. 180	1391	14	100.0	11.27
38.605	2.3303	2.3363	0.060	1102	14	79.2	1.46
41.630	2.1677	2.1730	0.240	10	12	0.7	1.69
42.915	2.1057	Z.1109	0.400	5 607	10	0.4	1.32
44.845	2.0194	2.0245	0.120	590	10	43 A	7 49
47.300	1.9202	1,9280	0.100	61	8	4.4	0.84
56.165	1.6363	1.6404	0.240	25	5	1.8	2.54
65.130	1,4311	1.4346	0.080	207	7	14.9	1.53
74.360	1.3007	1 2778	0.320	2	2	2.4 1 1	0.85
76.380	1.2459	1.2490	0.320	12	7	0.8	1.69
78.290	1.2202	1.2232	0.100	262	7	18.9	0.87
78.515	1.2172	1.2203	0.160	174	8	12.5	0.93
87 74%	1,1084	1.1713	0.280	14	6	5.3	5.05
58.040	1,1085	1.1112	0.200	16		1.2	0.98
	Ŧ						
				70 88			
			h				

Gambar. 33 Data 20 hasil pengujian XRD sampel master alloy Al-7%Si dengan 0,7%Mn

: Vika-1	4.DI				20-Jun-2009 13:55				
Philips	Analytica	1 X-Ray Ø.	**************************************	Tthe American of the second	Departmen	nt of Meta	llurgy UI		
		Sample id Data	entíficatio measured a	n: 0,1Mm A) t: 20-Jun-2	11251 2009 13:22:4	00			
		Diffrac	tometer typ	e: PW1710 1	BASED				
			Tube and	e: Cu					
		Generator	tension [KV	]: 9V 1- 30					
		Generator	GUITEBIL 1994	1: 20 1: 1.54056					
		Wavelengt	h Almha7 få	1: 1.54439					
	Intensity	ratio (al	pha2/alphal	): 0.500					
		Div	ergence sli	t: AUTOMAT	ĩĊ				
		Irradiated	langth (mm	]: 12					
		Re Maria and A	ceiving Sli	EI U.Z A: YOG					
		CONCUR	12 (338:03 ( 1,5 2 - 3,5 - 82	us 11					
		Start	: angle [*20	1: 10.000					
		Roc	langle ["20	]: 89.000					
		Ste	p size (*20	]: 0.020		S			
		Manio	WM INTENSIT	Y; 1/30.00 1. n chh	0				
		8 A 19947	Type Stop 19	n: CONTINU	ous				
	Lr	tensities	converted t	O: FIXED					
		Minimum pe	ak tip widt	h: 0.00					
		Max1MUM pe	de lip wios	n: 1.00 h· 7.00			<i>.17</i>		
		Minimum	significanc	e: 0.75			2 D Y		
		Nun	ber of peak	a: 20					
			S						
	1.1								
Angle	d-value	d-value	Peak width	Peak int	Back, int	Rel. int	Signif.		
[°20]	al [8]	a2 [8]	[*30]	(counts)	[counts]	[%]	Street St.		
10 740	0 3306	0 3633	1 980	1.4	67	0.9	1 10		
28 280	9.2300	9.2011 V 1610	0.000	276	92 14	15.9	0.77		
28.395	3.1406	3.1484	0.060	376	13	21.7	0.78		
28,515	3.1277	3.1354	0,100	289	13	16.7	1.41		
38.375	2.3437	2.3495	0.100	1490	14	86.1	2.48		
38.490	2.3370	2.3428	0.140	1731	14	100.0	7.26		
41,030	2.1040	3 0225	0.320	774	10	4.5	V. 69		
44.765	2.0229	2.0279	0.160	751	10	43.4	6.46		
47.340	1.9187	1.9234	0.140	142	8	8.2	2.66		
56.105	1.6379	1.6420	0.320	69	5	4.0	9.91		
65.155	1.4306	1.4341	0.220	253	7	14.6	9.85		
59.170	1.3570	1.3604	0.240	15	6	0.9	1,62		
76.405	1.2000	1.2496 1.2496	0.960	29	7	17	2 79		
78.130	1.2223	1.2253	0.240	269	7	15.5	14,85		
78.480	1,2177	1.2207	0.160	172	7	9.9	1.30		
82.450	1,1608	1.1717	9.249	106	6	6.1	6.00		
88.055	1.1083	1.1111	0.140	36	5	2.1	1.84		
88.300	1.1059	1.1096	0.160	20	5	1.2	0.87		
			Decase of the						
				10. 10.0					
					and the second second				

## Gambar. 34 Data 20 hasil pengujian XRD sampel master alloy Al-12%Si dengan 0,1%Mn

ĉ

÷

: Vika-1	s.DL		20-	20-Jun-2009 14:37			
Philips	Analytica	il X-Ray B	**********************************	********	Departmer	t of Meta	illurgy VI
		Sample i Dat	dentification: a measured at:	: 0,3 Mm : 20-Jun-	All2Sí 2009 14:04:0	iõ	
		Diffra	ctoneter type: Tobe anode	: PW1710 . : Cu	Based		
		Generator	tension [kV]:	40			
		Generator	current [mA]:	: .30			
		Waveleng	th Alphal [A]:	1.54056			
	Intoncilo	waveleng 	to Aipnas (A); Lobal/almhal);	: 1,54439 · 0 500			
	THEEHOTES	oi Di	vergence slit:	AUTOMAT	IC		
		Irradiate	d length [mm]:	: 12			
		R	eceiving slit	: 0.Z			
		Monoc	hromator used:	YES			
		Star	t angle [*20]	: 10.000			
		En	d angle ("20]:	89.000			
		QL Mavî	ep size į zoj mum intensito:	2500 00	'n		
		Time	per step [s]	: 0.500			
			Type of scan:	CONTINU	ous		
	I.I	ntensities	converted to	: FIXED			
		Minimum o	eak tip width:	: 0.00			
		Maximum p	eak tip width	: 1.00	1 - A		
		Pe	ak base width:	: 2.00			<i>∦</i> ≣€
	- 1 <b>-</b> 1	Minimum	significance	: 0.75			
		14 EL	mber or peaks	: 47			
		-					
K ]	d. Halana		Tool width	Onnis lan		that int	Cinni F
Ĩ°ŽΘ]	a1 [3]	- a2 [1]	[*20]	[COUNTS]	[counts]	(8)	Signii.
						, - 4	-
28,495	3.1298	3,1376	0.140	1303	18	52.1	19.41
38.513	2,3355	2,3913	0.060	2500	14 1 d	100.0	40.9 10 40
40.710	2.2145	2.2200	0.100	4	12	0.2	0.77
41.790	2.1597	2.1651	0.160	12	12	0.5	0.86
43.290	Z.0883	2.0935	0.320	6	11	0.3	0.88
44.765	2.0229	2.0279	0.060	1452	10	58.1	3.33
44.030	2.0173	4 9234	0.000	729	10	49.2	1.6/
47.475	1,9135	1.9183	0,050	135	10	5.4	0.81
54.350	1.6866	1.6909	0.100	Q	6	0.0	0.79
56.150	1,6367	1.6408	0.300	112	5	4.5	2.84
56.320	1.6322	1.6362	0.060	69 45	5	2.6	2.12
57,630	1.5027	1.6021	0.040	47	B Ř	1.6	1.95
65.135	1.4310	1.4345	0.100	437	7	17.5	7.31
65.320	1.4274	1.4309	0.080	234	7	9.4	2.86
69.140	1.3575	1.3609	0.100	14	ů .	0.5	0.80
24.555	1.2718	1.2749	0.480	23	Б £	0.1	1.57
76.530	1,2937	1.2440 ).7464	0.000	30	B A	1 4	1.90 1.90
78.265	1.2205	1.2235	0.120	534	ž v	21.3	12.03
				8. WS			

## Gambar. 35 Data 20 hasil pengujian XRD sampel master alloy Al-12%Si dengan 0,3%Mn

File: Vi ======= Philips	Vika-15.DI 20-Jun-2009 14:37   5 Analytical X-Ray S.V. Department of Metallurgy UL   a d-value Peak width Peak int Back. int Rel. int Signif.   a [A] [X20] [counts] [A] [X20] [counts] [A]   5 1.2175 1.2205 G.120 272 7 10.9 7.38   5 1.1884 1.1713 0.120 130 6 5.2 5.69   5 1.1685 0.100 66 6 2.6 1.86						
Angle [*29]	d-value gi [8]	d-value a2 [£]	Peak width [*20]	Peak int [counts]	Back. int (counts)	Røl. inr [¥]	Signif.
78.495	1.2175	1.2205	0.120	272	7	10,9	7.38
82.485	1.1884	1.1713	0.120	130	6	5.Z	5.69
82.725	1,1656	1.1585	D.100	66	6	2.6	1.86
88.050	1.1084	1.1111	0.100	58	5	2.3	2.23
88.366	3.1059	1.1086	D.100	32	5	1.3	08.1



### Gambar. 36 Data 29 hasil pengujian XRD sampel *master alloy* Al-12%Si dengan 0,3%Mn (lanjutan)

: Vika-	3.D1		20-Jun-2009 13:14				
Philips	Analytics	1 X-Ray 8.	ν.		Departmen	t of Neta	llurgy UL
		Sample 1d	entificatio	n: 0,5Ma A	1125i		
		Data	weganted g	t: 20-Jun-)	2009 12:41:0	10	
		Diffrac	tometer typ	e: FW1710	BASED		
		Generator	TUDE ADOD Valancian iku	e: Cu 1: 44			
		Generator	current (må	.): 30			
		Wavelengt	h Alphal (Å	]: 1.54056			
	Tast care of stra	Wavelengt	h Alphaz [X sharimhn]	): 1.54439			
	4.53 5.5% FE 20.4 L. Y	ιαττο ίατ Die	ergesce sli	1: AUTOMAT	IC		
		Irradiated	length [mm	1: 12			
		Re	ceiving sli	t: 0.2			
		ronoch	romator use	ar reş			
		Start	angle [°28	): 10.000			
		End	angle ["28	): 89.000		-	
		ST.C. Marstim	p size j"Zu um infansit	U: U.UZO 9-1640-254	a		
		Time	per step (a	]: 0.500	·		
		- 14 A - 1	Type of sca	n: CONTINU	DUS		10000
	Ir	tensities -	converted t	D: FIXED			
		Minimum pe	ak cip widt	h: 0.00			
		Maximum pe	ak tip widt	h: 1.00			19 I I I I I
		Pea Minimum	k Dase widt gignificant	h: 2.00	10 M		
	- S - 103	Filter Sign	ber of peak	s: 17	d	and the second sec	
			_				_
	1.1						
Angle	d-value	đ-value	Peak width	Peak int	Back. int	Rel. int	Signif.
{°20}	al (%)	a2 [£]	(*20)	(counts)	(counts)	(*)	1000
28.350	3.1455	3.1533	0.120	324	16	19.6	2.26
38.370	2.3440	2.3498	0.200	1640	15	100.0	19.12
44.555	2.0319	2.0376	0.100	606	10	36.6	0.80
44.665	2.0272	2.0322	0.080	767	IŬ	46.8	1.05
44.755	2.0229	2.0279	0.080	581	10	35.4	0.77
47.160	1.9256	1.9303	0.080	137	9	6.3 6 c	0.69
56.090	1.5208	1.6424	0.080	66T	¥ E	y.a 4.2	0.07
65.080	1.4320	1.4356	0.180	279	ž	17.0	6.40
69.155	1.3573	1.3606	0.120	16	6	1.0	0.99
74.335	3,2750	1.2782	0.480	3	6	0.2	1.26
78.196	1.2215	1.2245	0.160	328	1	20.0	5,21
78.450	1.2181	1.2211	0.100	164	· · · · · · · · · · · · · · · · · · ·	10.0	0.87
82.385	1.1696	1.1725	0.320	102	7	6.2	9.24
\$7.980	1,1091	1.1118	0.280	34	5	2.1	3.55
				the car		200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
			and the		1 1 30		
					- COL 67		

### Gambar. 37 Data 28 hasil pengujian XRD sampel master alloy Al-12%Si dengan 0,5%Mn

111192		PETDALIDA			TILITALATA.	TARAKARDSS of Af Mots	Success 111
	Miai y c Loo	A A Bay D	* * *		MARGINE CITI	64, 788, 878, 69	NYRIÄÄ MY
		Sample i	dentificatio	15: Q,786 A	1281 2000 14/20/	30	
		Vac	a mégénled «	ic: 29~900*	2009 141391	18()	
		Diffra	ctometer typ	iæ: ₽₩1710	Based		
			Tube anod	le: Cu			
		Generator	tension (XV	11 40			
		blage lang	COFFERE [08	LJI JV 17 1 RAARA			
		Wavelegg	th Alpha2 []	1: 1.54439	•		
	Intensity	ratio (a	lpha2/alpha1	1: 0.500			
		Dì	vergence ali	t: AUTOMAT	.IC		
		Irradiate	d length [RE				
		H Monoo	eceiving si: bromator vor	A 984			
		********	*** ****** *****	AND STORES			
		Star	t angle (*20	i: 10.000			
		En	d angle [*20	)]: 89.000			
		St	ep size [*24	∂]: 0.020 3∕74 €6	6		
		Piaxi Time	nun intensi Bar stan ís	.y. 14/4.55 1 0.500			
		T Thit	Type of sca	m: CONTINU	ous		
	Ir	tensities	converted t	O: FIXED			
		Manager and Manage	eak tip widt	n: 0.00		97 - E	
		NAX TEOU D	eer tip widt ak hase widt	n: 1.00			
	1.1	Kisimu	significan	e: 0.75			7 A.
		Nu	mber of peak	18: 18	1 -10		
		Statistics of the local division of the loca			- A		
	1.1				A. 19		
Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[°20]	ai (1)	a2 [8]	[*29]	[counts]	[coucts]	(%) ⁻⁰⁶⁰⁰	
		4 0101	A 466				
2.205	4 . 0002	G 122112	11 66 21 1	2	23	ព ស	1 21
2.205 8.340	4.0001 3.1466	3.1544	0.100	7 353	23 15	0.5 24.0	1.21
2.205 8.340 8.425	4.0001 3.1466 2.3408	3.1544 2.3466	0.100	7 353 1475	23 15 14	0.5 24.0 100.0	1.21 1.79 24.06
2.205 8.340 8.425 1.655	4.0001 3.1466 2.3408 2.1664	3.1544 2.3466 2.1718	0.100 0.220 0.320	7 353 1475 14	23 15 14 11	0.5 24.0 100.0 0.9	1.21 1.79 24.06 1.41
2.205 8.340 8.425 1.655 2.975	4.0001 3.1465 2.3408 2.1664 2.1029	4.0101 3.1544 2.3466 2.1718 2.1081	0.100 0.220 0.320 0.320	7 353 1475 14 10	23 15 14 11 10	0.5 24.0 100.0 0.9 0.7	1.21 1.79 24.06 1.41 1.14
2.205 8.340 8.425 1.655 2.975 4.630 7.225	4.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231	4.0101 3.1544 2.3466 2.1718 2.1081 2.0337	0.100 0.220 0.320 0.320 0.240 0.240	7 353 1475 14 10 795 112	23 15 14 11 10 10	0.5 24.0 100.0 0.9 0.7 53.9	1.21 1.79 24.06 1.41 1.14 21.08
2.205 8.340 8.425 1.655 2.975 4.630 7.225 6.030	4.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399	4.0101 3.1544 2.3466 2.1718 2.0081 2.0337 1.9278 1.6440	0.100 0.220 0.320 0.320 0.240 0.100 0.320	7 353 1475 14 10 795 132 62	23 15 14 11 10 10 8 5	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2	1.21 1.79 24.06 1.41 1.14 1.14 1.38 6.38
2.205 8.340 8.425 1.655 2.975 4.630 7.225 6.030 4.970	4.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342	4.0101 3.1544 2.3466 2.1718 2.1061 2.0337 1.9278 1.6440 1.4379	0.400 0.100 0.220 0.320 0.320 0.240 0.100 0.320 0.100	7 353 1475 14 19 795 132 62 222	23 15 14 11 10 10 8 5 7	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1	1.21 1.79 24.06 1.41 1.14 1.14 21.06 1.38 6.38 1.32
2.205 8.340 18.425 1.655 2.975 4.630 7.225 6.030 4.970 5.150	4.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307	3.1544 2.3466 2.1718 2.1081 2.0337 1.9278 1.6440 1.4379 1.4342	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100	7 353 1475 14 19 795 132 62 222 216	23 15 14 11 10 10 8 5 7 7	0,5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1 34.7	1.21 1.79 24.06 1.41 1.14 1.14 21.06 1.38 6.38 1.32 0.98
2.205 8.340 8.425 1.655 2.975 4.630 7.225 6.030 4.970 5.150 9.030	4.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594	3.1544 2.3466 2.1718 2.1081 2.0337 1.9278 1.6440 1.4379 1.4342 1.3628	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.100 0.120	7 353 1475 14 19 795 132 62 222 216 15	23 15 14 11 10 10 8 5 7 7 7 5	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1 14.7 1.0	1.21 1.79 24.06 1.41 1.14 1.14 21.06 1.38 6.38 1.32 0.98 1.08
2.205 8.340 1.655 1.655 2.975 4.630 7.225 6.030 4.970 5.150 9.030 4.345 76.405	A.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594 1.2748 1.2748	3.1544 2.3466 2.1718 2.1081 2.0337 1.9278 1.6440 1.4379 1.4342 1.3628 1.2780	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.100 0.120 0.560 0.320	7 353 1475 14 19 795 132 62 222 216 15 5 72	23 15 14 11 10 10 8 5 7 7 7 5 6 6 7	0.5 24.0 100.0 0.7 53.9 9.0 4.2 15.1 34.7 1.0 0.3 1.9	1.21 1.79 24.06 1.41 1.14 1.14 21.06 1.38 6.38 1.32 0.98 1.08 2.52 2.52 4.20
2.205 8.340 8.425 1.655 2.975 4.630 (7.225 6.030 4.970 6.150 9.030 4.345 (6.445	A.0001 3.1466 2.3408 2.1664 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594 1.2748 1.2748 1.2455 1.2221	4.0101 3.1544 2.3466 2.1718 2.0337 1.9278 1.6440 1.4379 1.4342 1.3628 1.2780 1.2251	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.100 0.120 0.560 0.320 0.120	7 353 1475 14 19 795 132 62 222 216 15 5 27 320	23 15 14 11 10 10 8 5 7 7 5 6 7 7	0.5 24.0 100.0 0.9 53.9 9.0 4.2 15.1 34.7 1.0 0.3 1.8 21.7	1.21 1.79 24.06 1.41 1.14 1.14 21.06 1.38 6.38 1.32 0.98 1.08 2.52 4.20 1.93
2.205 8.340 8.425 1.655 2.975 4.630 (7.225 6.030 (4.970 5.150 (4.970 4.345 (5.150 (4.945) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.145) (5.1	A.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.9231 1.4342 1.4342 1.4307 1.3594 1.2748 1.2455 1.2221 1.2185	4.0101 3.1544 2.3466 2.1718 2.0337 1.9278 1.6440 1.4379 1.4342 1.3628 1.2780 1.2486 1.2281 1.2251	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.100 0.120 0.560 0.320 0.120 0.120 0.120 0.160	7 353 1475 14 19 795 132 62 222 216 15 5 27 320 180	23 15 14 11 10 10 8 5 7 7 5 6 7 7 7 7 7	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1 14.7 1.0 0.3 1.8 21.7 12.2	1.21 1.79 24.06 1.41 1.14 21.06 1.38 6.38 1.32 0.98 1.08 2.52 4.20 1.93 1.27
2.205 8.340 8.425 1.655 2.975 4.630 (7.225 6.030 4.970 5.150 (4.970 4.345 (6.435 (6.435 (6.445 (8.145) (8.415) (8.415) (2.370)	A.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594 1.2748 1.2455 1.2251 1.2185 1.1698	4.0101 3.1544 2.3466 2.1718 2.0337 1.9278 1.6440 1.4370 1.4342 1.3628 1.2780 1.2486 1.2251 1.2216 1.1727	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.120 0.560 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320	7 353 1475 14 19 795 132 62 222 216 15 5 7 320 180 92	23 15 34 11 10 10 8 5 7 7 5 6 7 7 7 7 5 6	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1 14.7 1.0 0.3 1.8 21.7 12.2 6.2	1.21 1.79 24.06 1.41 1.14 1.06 1.38 6.38 6.38 1.32 0.98 1.08 2.52 4.20 1.93 1.27 4.83
2.205 8.340 8.425 1.655 2.975 4.630 (7.225 6.030 4.305 (6.030 4.345 (6.030 4.345 (6.030 4.345 (6.155) (6.155) (7.25) (6.155) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.25) (7.	A.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594 1.2748 1.2748 1.2455 1.2221 1.2185 1.1698 1.1698 1.1699	4.0101 3.1544 2.3466 2.1718 2.0337 1.9278 1.6440 1.4370 1.4342 1.3628 1.2780 1.2486 1.2251 1.2216 1.1727 1.1698	0.400 0.100 0.220 0.320 0.320 0.100 0.320 0.100 0.100 0.120 0.560 0.320 0.120 0.120 0.120 0.400 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.	7 353 1475 14 10 795 132 62 222 216 15 5 27 320 180 92 59	23 15 14 11 10 10 8 5 7 7 5 6 7 7 7 5 6 6 7 7 7 6 6	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1 14.7 1.0 0.3 1.8 21.7 12.2 6.2 4.0	1.21 1.79 24.06 1.41 1.14 1.06 1.38 6.38 1.32 0.98 1.08 2.52 4.20 1.93 1.27 4.83 0.95
2.205 8.3425 8.425 1.655 2.975 4.630 7.225 6.975 4.970 5.150 9.030 4.345 5.150 9.030 4.345 5.145 8.145 8.145 8.145 7.975	A.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594 1.2748 1.2455 1.2221 1.2455 1.2698 1.1698 1.1091	4.0101 3.1544 2.3466 2.1718 2.0337 1.9278 1.6440 1.4370 1.4342 1.3628 1.2780 1.2486 1.2251 1.2216 1.1727 1.1698 1.1119	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.120 0.560 0.320 0.120 0.120 0.120 0.120 0.120 0.160 0.240 0.160	7 353 1475 14 19 795 132 62 222 216 15 5 27 320 180 92 59 35	23 15 14 11 10 10 8 5 7 7 5 6 7 7 7 5 6 6 5 5	0.5 24.0 100.0 0.9 0.7 53.9 9.0 4.2 15.1 14.7 1.0 0.3 1.8 21.7 12.2 6.2 4.0 2.4	1.21 1.79 24.06 1.41 1.14 1.14 1.06 1.38 6.38 1.32 0.98 1.08 2.52 4.20 1.93 1.27 4.83 0.95 1.35
2.205 8.3425 8.425 1.655 2.975 4.625 6.975 6.975 6.975 6.975 6.975 6.975 6.405 8.145 8.145 8.145 2.370 2.615 7.975	A.0001 3.1466 2.3408 2.1664 2.1029 2.0287 1.9231 1.6399 1.4342 1.4307 1.3594 1.2748 1.2748 1.2455 1.2221 1.2455 1.1698 1.1699 1.1091	3.1544 2.3466 2.1718 2.1081 2.0337 1.9278 1.6440 1.4370 1.4342 1.3628 1.2780 1.2486 1.2251 1.2216 1.1727 1.1698 1.1119	0.400 0.100 0.220 0.320 0.240 0.100 0.320 0.100 0.100 0.120 0.560 0.320 0.120 0.560 0.320 0.160 0.240 0.160 0.160 0.160	7 353 1475 14 10 795 132 62 222 216 15 5 27 320 180 92 59 35	23 15 14 11 10 10 8 5 7 7 5 6 7 7 7 5 6 6 5 5	$\begin{array}{c} 0.5 \\ 24.0 \\ 100.0 \\ 0.7 \\ 53.9 \\ 9.0 \\ 4.2 \\ 15.1 \\ 14.7 \\ 1.0 \\ 0.3 \\ 1.8 \\ 21.7 \\ 12.2 \\ 6.2 \\ 4.0 \\ 2.4 \end{array}$	1.21 1.79 24.06 1.41 1.14 1.14 1.06 1.38 6.38 1.32 0.98 1.08 2.52 4.20 1.93 1.93 1.93 1.95 1.35

Gambar. 38 Data 20 basil pengujian XRD sampel master alloy Al-12%Si dengan 0,7%Mo

106

۶.)