

UNIVERSITAS INDONESIA

ANALISIS TERMAL STRES PADA KEBOCORAN PIPA ELBOW LOW PRESSURE EVAPORATOR HRSG

t

TESIS

ULIL AZMI 0706173143

FAKULTAS TEKNIK PROGRAM PASCA SARJANA BIDANG ILMU TEKNIK DEPOK JUNI 2009

Analisis Termal..., Ulil Azmi, FT UI, 2009

ANALISIS TERMAL STRES PADA KEBOCORAN PIPA ELBOW LOW PRESSURE EVAPORATOR HRSG

.

TESIS

Diajukan Sebagai Syarat Untuk Memperoleb Gelar Magister Teknk

> ULIL AZMI 0706173143

FAKULTAS TEKNIK PROGRAM PASCA SARJANA BIDANG ILMU TEKNIK DEPOK JUNI 2009

Ï

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah basil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirajuk telah saya nyatakan dengan benar.

	Nama	: Ulil Azmi
	NPM	: 0706173143
-	Tanda Tang	an: AMA
	Tanggal	: Juni 2009
-		
10		0 A O

5

-

HALAMAN PENGESAHAN

Tesis ini diajukan oleh	* *
Nama	: Ulil Azmi
NPM	: 070173143
Program Studi	: Teknik Mesin
Judul Tesis	: Analisis Tegangan Termal Pada Pipa Elbow
	Evaporator Tekanan Rendah HRSG

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Teknik pada Program Studi Teknik Mesin Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

í

)

Pembimbing : DR. Ir. Ahmad Indra Siswantara

Pembimbing : Ir. Ahmad Taufik Yogaswara, M.Sc

Penguji : Prof. DR. Ir. Budiarso

Penguji : DR. Ir. Warjito, MEng

Ditetapkan di : Depok

Tanggal : Juni 2009

KATA PENGANTAR/UCAPAN TERIMA KASIH

Puji syukur saya panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan tesis ini. Penulisan tesis ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Magister Teknik Program Studi Teknik Mesin pada Fakultas Teknik Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan tesis ini, sangatlah sulit bagi saya untuk menyelesaikan tesis ini. Oleh karena itu, saya menyampaikan ucapan terima kasih kepada:

- DR. Ir. Ahmad Indra Siswantara, selaku dosen pembimbing I yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini;
- (2) Ir. Ahmad Taufik Yogaswara, M.Sc., selaku dosen pembimbing II yang telah menyediakan waktu, tenaga, dan pikiran dalam mengarahkan saya dalam penyusunan tesis ini;
- (3) Orang tua dan keluarga saya yang telah memberikan bantuan dukungan material dan moral; dan
- (4) Rekan-rekan Teknik Mesin khususnya mahasiswa/i pasca sarjana 2007 yang telah berbagi dukungan moril maupun sumber informasi kepada saya dalam menyelesaikan tesis ini.

Akhir kata, saya berharap Tuhan Yang Maha Esa berkenan membalas segala kebaikan semua pihak yang telah membantu. Semoga tesis ini membawa manfaat bagi pengembangan ilmu.

Depok, 26 Juni 2009

Penulis

¥

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI

TESIS UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	: Ulil Azmi
NPM	: 0706173143
Program Studi	: Konversi Energi
Departemen	: Teknik Mesin
Fakultas	: Teknik
Jenis karya	: Tesis

demi pengembangan ilmu pengetahuan, menyetujul untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Nonekakinsif (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul :

Analisis Tegangan Termal Pada Pipa Elbow Evaporator Tekanan Rendah HRSG

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tesis saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenamya.

Dibuat di : Depok Pada tanggal : Juni 2009 Yang menyatakan AMA (Ulil Azmi)

Abstrak

Nama : Ulil Azmi Program Studi : Teknik Mesin Judul : Analisis Tegangan Termal Pada Pipa Elbow Evaporator Tekanan Rendah HRSG

HRSG merupakan peralatan yang berfungsi untuk mengubah air menjadi uap pada temperatur dan tekanan tertentu. Peralatan ini terdapat pada PLTGU yang menggunakan siklus kombinasi. Pada HRSG terdapat daerah LP evaporator, yang merupakan alat dengan fungsi untuk menaikkan temperatur air ke titik didih. Daerah LP evaporator ini terdiri dari susunan pipa-pipa yang bekerja pada temperatur dan tekanan yang cukup tinggi. Hal ini mengakibatkan seringnya terjadi kebocoran khususnya pada daerah elbow. Kebocoran ini dapat dianalisa dengan menggunakan simulasi CFD. Dari analisis didapatkan kesimpulan bahwa kebocoran tersebut disebabkan oleh kavitasi. Kavitasi menyebabkan terjadinya tumbukan oleh gelembung uap yang pecah pada daerah yang memiliki tekanan lebih besar daripada tekanan uap jenuh cairan. Tumbukan tersebut terjadi berulang-ulang dan mengakibatkan terbentuknya lubang-lubang kecil pada dinding elbow.

Kata kunci:

Evaporator, Kavitasi

Abstract

Name :Ulil Azmi Study Program:Mechanical Engineering Title :Analysis of Thermal Stresses of Leakage at Low Pressure Elbow Evaporator Pipe in Heat Recovery Steam Generator

HRSG is the component of combined cycle power plant which produces steam. The HRSG have low pressure evaporator area to increase water temperature until it reaches it's boiling point. In low pressure evaporator, the tubes always work at a moderately high temperature and pressure. This condition causes leakage especially in the elbow area. The leakage can be analyzed with CFD simulation. Base on the analysis of the CFD simulation result, the leakage were caused by cavitation. Cavitation cause crush at the tube wall by the breaking steam bubbles which have higher pressure than the pressure of vapor saturated fluid. The crush occurs continually and causes damage in elbow's wall.

Key words: Evaporator, Cavitation

DAFTAR ISI

Halaman

~

- - --

- - -

.

Bab 1. Pendahuluan	
1.1. Latar Belakang	1
1.2. Tujuan	3
1.3. Batasan Permasalahan	3
1.4. Metode Penelitihan	4
Bab 2. Landasan Teori	
2.1 Siklus Air dan Uap Dalam HRSG	5
2.2. Teori Dasar Evaporator	8
2.3. Prinsip-Prinsip Perpindahan Panas	9
2.4. ASME B31.1 Power Piping Code	11
2.5. Analisa Tegangan	13
2.6. Teori Kegagalan	20
2.7. Kavitasi	22
2.8. Teori Sekilas Tentang CFD (Computational Fluid Dynamic)	24
Bab 3. Simulasi Numeris	
3.1. Spesifikasi LP Evaporator	28
3.2. Proses Simulasi	30
Bab 4. Analisa Hasil Simulasi	
4.1 Hasil Simulasi EFD	32
4.1.1. Hasil Simulasi Sisi Inlet	32
4.1.2. Hasil Simulasi Pipa Spiral	32
4.1.3. Hasil Simulasi Sisí Outlet	33
4.2. Hasil Simulasi AutoPIPE	35

4.3. Analisis Kavitasi	39
Bab 5. Kesimpulan dan Saran	45
Bab 6. Daftar Pustaka	46
Lampiran	

DAFTAR GAMBAR

• ·

Gambar I.1. Instalasi dan Sambungan Elbow Tube Dengan Outlet Header LP
Evaporator HRSG-2 UP Muara Karang
Gambari.2. Lubang Yang Terbentuk Pada Elbow Dengan Sudut Penyambungan 90°
Terhadap Outlet Header
Gambar 2.1. Pusat Listrik Tenaga Gas dan Uap (PLTGU)
Gambar 2.2. Tingkatan Dalam HRSG
Gambar 2.3. Diagram T – h Perubahan Air Menjadi Uap9
Gambar 2.4. Tegangan Longitudinal
Gambar 2.5. Tegangan Longitudinal Akibat Tekanan Internal
Gambar 2.6, Tegangan Hoop
Gambar 2.7. Tegangan Radial
Gambar 2.8. Tegangan Geser
Gambar 2.9 Tegangan Geser Akibat Beban Torsi
Gambar 2.10. Uji Tegangan Tarik
Gambar 2.11. Cavitation Guide Curve
Gambar 3.1. LP Evaporator
Gambar 3.2. Dimensi Inlet Evaporator
Gambar 3.3 Dimensi Pipa Spiral
Gambar 3.4. Dimensi Outlet Evaporator
Gambar 3.5, Pemodelan utoPIPE
Gambar 4.1. Temperatur Sisi Inlet
Gambar 4.2 Temperatur Pipa Spiral
Gambar 4.3 Kecepatan Arah Z
Gambar 4.4 Grafik Perubahan Tekanan Sepanjang Elbow
Gamabr 4.5 Grafik Perubahan Y-Kecepatan Sepanjang Elbow
Gambar 4.6 Nilai Gaya dan Momen Sistem
Gambar 4.7 Code Stress Hasil Perhitungan
Gambar 4.8 Nilai Gaya dan Momen Akibat Termal

Gambar 4.9. Diagram Mollier	
Gambar 4.10. Distribusi Temperatur Fluida	40
Gambar 4.11. Distribusi Densitas Fluida Kerja	41
Gambar 4.12. Distribusi Volume Fraksi Uap	
Gambar 4.13. Lokasi Kebocoran	42
Gambar 4.14. Permukaan Bagian Dalam dan Bagian Luar Potongan Elbow Tub Telah Dibelah	e Yang 43

xii

DAFTAR SINGKATAN

: Heat Recovery Steam Generator HRSG HSD : High Speed Diesel LP-Eco : Low Pressure Economizer : Low Pressure Evaporator LP-Evap LP-Drum : Low Pressure Drum HP-Eco : High Pressure Economizer : Low Pressure Super heater LP-SH HP-Eva : High Pressure Evaporator HP Drum : High Pressure Drum HP-SH1 : High Pressure Superheater 1 : High Pressure Superheater 2 HP-SH2 EFD : Engineering Fluid Dynamics CFD : Computational Fluid Dynamics : Circulating Water Pump CWP PLTGU : Pembangkit Listrik Tenaga Gas dan Uap

xiii

٠

DAFTAR SIMBOL

- -- -

、 --.

* * /

Notasi	Keterangan Notasi	Satuan
* m	Laju aliram massa	T/H
Qkonduksi	Besar laju perpindahan panas konduksi	W
k	Konduktivitas termal dari benda	W/m.⁰C
A	Luas penampang dari benda	m
ΔΤ	Perbedaan temperatur	°C
Δx	Tebal medium yang dilalui proses	m
Qkonveksi	Besar perpindahan panas konveksi	W
h	Koefisien konveksi	W/m ²
Ts	Temperatur permukaan	°C
T.	Temperatur fluida	°C
Qrediasi	Besar perpindahan panas radiasi	W
σ	Konstanta Stefan-Boltzman	W/m ² .K ⁴
$\sigma_{\rm T}$	Termal stres	Pa
α	Thermal coefficient	1/°C
E	Elastic modulus	Pa
SL	Sustained loads	Psi
Р	Tekanan desain	Psi
Đo	Diameter luar pipa	in
t	Tebal pipa	W
Z.	Section modulus pipa	in ³
M _A	Momen akibat berat dan beban kontinyu	in.lb
~ ~	Stress intensification faktor	
Mc	Momen resultan akibat thermal ekspansion	In.łb
S_A	Tegangan diijinkan untuk expansion streses	Psi
ť	Stress range reduction factor	
S	Tegangan material diijinkan pada temperatur tetap	Psi

BAB I

PENDAHULUAN

I.1. LATAR BELAKANG

Header LP Evaporator HRSG UP Muara Karang dalam beberapa tahun terakhir ini dilaporkan seringkali mengalami kebocoran terutama pada HRSG unit-1 dan HRSG unit-2. Jenis kerusakan dan faktor penyebab terjadinya kebocoran pada elbow tube outlet header LP Evaporator tersebut sejauh ini belum pernah ditentukan secara pasti sehingga usaha penanggulangan yang dilakukan selama ini belum membuahkan hasil yang memuaskan.

Lokasi LP Evaporator terletak pada tingkat kedua dari atas (stack) HRSG setelah LP Economizer. Seperti terlihat pada Gambar 1, sistem evaporator tube HRSG tersebut terdiri dari elbow tube berikut dengan bagian plain tubenya yang lurus dan fin tube (tidak terlihat pada Gambar).

Gambar 1.1. Instalasi dan Sambungan Elbow Tube Dengan Outlet Header LP Evaporator HRSG-2 UP Muara Karang

Diambil dari HRSG 1.3 PT PJB Muara Karang

Elbow tube dengan sudut penyambungan 90⁰ terhadap outlet header diketahui telah memperlihatkan adanya lubang kebocoran di sekitar dinding bagian kurvatur atau radius luar dari belokan (lihat Gambar 2). Sedangkan pada elbow tube lainnya yang memiliki sudut penyambungan kurang dari 90° terhadap outlet header tidak diketernukan adanya pembentukan lubang kebocoran.

1

Gambar 1.2. Lubang Yang Terbentuk Pada Elbow Dengan Sudut Penyambungan 90⁰ Terhadap Outlet Header

Diambil dari HRSG 1.3 PT PJB Muara Karang

Dalam perencanaan suatu sistem aliran, sulit dihindari adanya suatu belokan (elbow). Adanya elbow dalam suatu saluran akan menyebabkan terjadinya kerugian tekanan pada aliran. Hal tersebut dikarenakan oleh perubahan arah aliran fluida yang melalui saluran tersebut. Besar kecilnya kerugian tekanan yang terjadi pada aliran yang melalui elbow tersebut dipengaruhi oleh besarnya jari-jari kelengkungan dan sudut belok dari elbow itu sendiri. Adanya elbow dalam suatu saluran akan menyebabkan terjadinya kerugian tekanan pada aliran. Hal tersebut dikarenakan oleh perubahan arah aliran fluida yang melalui saluran tersebut. Besar kecilnya kerugian tekanan yang terjadi pada aliran yang melalui elbow tersebut dipengaruhi oleh besarnya jari-jari kelengkungan dan sudut belok dari elbow itu sendiri. Selain adanya kerugian tekanan pada elbow, thermal stress juga memiliki peranan besar akan terjadinya kebocoran pada elbow pipa evaporator.Pada tahun 2008 telah dilaukan penelitian terhadap kebocoran lp evaporator. Pada tahun 2008 telah dilakukan survey terhadap instalasi dan konstruksi serta susunan elbow tube terhadap outlet header LP evaporator. Dari penelitian yang dilakukan oleh PT. EMPU AGUNG SAKTI tersebut, didapatkan kesimpulan bahwa penyebab kebocoran bukan disebabkan dari faktor instalasi maupun material yang digunakan, melainkan dikarenakan terjadinya kavitasi pada pipa elbow LP evaporator. Hal ini dikarenakan setelah dilakukan beberapa uji material didapatkan hasil bahwa material yang digunakan telah sesuai dengan kondisi operasi dan tidak ada indikasi sebagai penyebab terjadinya kebocoran. Untuk mengetahui secara aktual tentang terjadinya kebocoran pada elbow tube outlet header LP Evaporator, maka penulis akan melakukan analisis aliran pada

Universitas Indonesia

2

elbow pipa evaporator dengan menggunakan program EFD. Dari simulasi EFD didapatkan parameter tekanan dan temperatur operasi aktual pada daerah elbow LP evaporator. Kedua parameter tersebut digunakan sebagai input untuk menganalisa instalasi dan konstruksi pipa LP evaporator dengan menggunakan program AutoPIPE. AutoPIPE berfungsi untuk menganalisa tegangan-tegangan yang terjadi pada konstruksi pipa LP evaporator dan memastikan bahwa tegangan yang terjadi tidak melebihi dari tegangan material yang diijinkan. Bila tegangan-tegangan yang terjadi pada konstruksi pipa LP evaporator masih dibawah tegangan material yang diijinkan, maka dipastikan bahwa kebocoran bukan diakibatkan oleh instalasi dan konstruksi pipa LP evaporator. Analisis dilanjutkan menggunakan simulasi EFD dengan memasukkan flow karakteristik kavitasi pada general setting. Sehingga dengan menggunakan simulasi EFD tersebut dapat diketahui bahwa penyebab terjadinya kebocoran dikarenakan adanya kavitasi seperti kesimpulan yang diperoleh PT, EMPU AGUNG SAKTI.

I.2. TUJUAN

Tujuan dari analisa kerusakan ini adalah untuk menentukan penyebab seringnya terjadi kebocoran pada elbow tube outlet header LP Evaporator HRSG UP Muara Karang. Dari hasil analisa kerusakan yang diperoleh diharapkan akan dapat dilakukan langkah-langkah pencegahan agar kerusakan yang serupa tidak terjadi lagi atau minimal agar dapat memperpanjang umur operasi elbow tube tersebut secara ekonomis dan handal.

I.3. BATASAN MASALAH

- Gas buang dari mesin turbin gas berasal dari bahan bakar gas alam.
- · Fluida yang mengalir dalam pipa evaporator adalah air.
- Temperatur gas keluar turbin sebesar 540 °C, aliram massa (m = 1404 T/H).
- Temperatur air dalam inlet header evaporator sebesar 160 °C dan tekanan 10 bar.
- Analisa hanya pada daerah elbow evaporator.

I.4. METODE PENELITIAN

- · Bimbingan dan konsultasi dengan dosen pembimbing.
- Studi literatur.
- Studi dan pengamatan lapangan di PLTGU Muara Karang.
- Pembuatan model

Model digunakan untuk kegiatan simulasi menggunakan software CFD dan AutoPIPE

- Analisa numeris dengan menggunakan software CFD dan AutoPIPE.
- Validasi hasil simulasi dengan parameter aktual di lapangan.

BAB II

DASAR TEORI

II.1 Siklus Air dan Uap Dalam HRSG

Diambil dari manual book gas turbine General Electric

HRSG singkatan dari Heat Recovery Steam Generator, adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang suatu unit turbin gas untuk memanaskan air dan mengubahnya menjadi uap, dan kemudian uap tersebut dipergunakan untuk menggerakkan turbin uap. Pada umumnya, boiler HRSG tidak dilengkapi pembakar (burner) dan tidak mengkonsumsi bahan bakar, sehingga tidak terjadi proses perpindahan/penyerapan panas radiasi. Proses perpindahan/penyerapan yang terjadi hanyalah proses konveksi dari gas buang turbin gas kedalam air dan/atau uap melalui elemen-elemen pemanas didalam ruang boiler HRSG. Jumlah flow gas buang gas turbin yang masuk ke HRSG tergantung dari kondisi kerja/beban gas turbin. Untuk kasus di PLTGU Muara Karang ini tipe HRSG adalah tipe horizontal. Artinya flow gas buang dari gas turbin memiliki arah dari bawah keatas. Sehingga temperatur gas buang akan mengalami penurunan sebanding dengan ketinggian yang telah dicapai. Dalam HRSG terdapat beberapa tingkatan heat exchanger yang memiliki fungsi yang berbeda-beda, yaitu ;

1. Low Pressure Economizer

5

- 2. Low Pressure Evaporator
- 3. High Pressure Economizer
- 4. Low Pressure Superheater
- 5. High Pressure Evaporator
- 6. High Pressure Superheater 1
- 7. High Pressure Superheater 2

Gambar 2.2 Tingkatan Dalam HRSG

Diambil dari manual book gas turbine General Electric

Selain gas buang yang berfungsi sebagai sumber kalor dalam mengubah air baku menjadi uap kering, air pengisi sangat berperan penting pada siklus PLTGU. Hal ini dikarenakan air pengisi merupakan bahan baku dalam memproduksi uap kering sebagai tenaga penggerak turbin uap. Sebagai air pengisi HRSG digunakan air make up, air yang sudah mengalami proses demineralisasi, dengan cara dipompa menggunakan pompa kondensat. Pompa kondensat harus memompakan aliran tetap yang diperlukan untuk mengganti air didalam boiler yang telah diubah menjadi uap. Sistem air pengisi dimulai dari bawah tangki air pengisi (Hotwell). Air mengalir dari bawah tangki menuju sisi masuk (suction) pompa kondensat; tangki dipasang cukup tinggi sebagai NPSH pompa. Pompa mengalirkan air pengisi ke setiap boiler HRSG yang ada pada satu blok PLTGU melalui pemanas dan katup kontrol air pengisinya masing-masing, kemudian dipanaskan di ekonomiser dan diisikan kedalam low pressure drum. Dari lp drum air dipompakan oleh LP Circulation Pump, menuju LP Evaporator. Temperatur dan tekanan air saat dipompakan adalah sebesar 160 °C dan 10 bar. Setelah keluar dari header outlet lp evaporator, air yang bercampur uap masuk kedalam lp drum yang mengakibatkan temperatur dalam lp drum naik. Air yang berada pada bagian dasar LP Drum dialirkan menuju ke HP Drum dengan menggunakan HP Transfer Pump. Pada bagian atas lo Drum yang sudah berbentuk uap LP Superheater dialirkan menuju ke HP Turbin uap tingkat terakhir dengan temperatur dan tekanan sebesar 297 °C dan 5,8 bar. Air pada bagian dasar HP Drum disirkulasikan ke HP Evaporator menggunakan pompa HP Circulation. Pada bagian atas HP Drum, uap dialirkan menuju Super Heater 1 (SH 1) sehingga temperatur uap menjadi 480 °C. Untuk menurunkan temperatur uap, sebelum uap masuk ke Super Heater 2, uap didinginkan (spray) dengan air yang berasal dari LP Drum sehingga temperatur uap menjadi 464 °C. Temperatur dan tekanan uap kering setelah keluar dari header outlet HP Super Heater 2 menjadi 520 °C dan 67 bar. Kemudian uap kering ini akan masuk ke high pressure turbin. Setelah itu uap ini akan bergabung dengan uap dari LP Super Heater pada turbin tingkat terakhir. Uap dari turbin tekanan tinggi kemudian masuk ke turbin tekanan rendah (low pressure). Akibat energi gerak yang ditimbulkan dari kerja uap, generator yang terkopel dengan turbin akan bergerak dan menghasilkan energi listrik. Uap yang telah menggerakkan turbin akan masuk kedalam kondenser. Uap ini akan didinginkan oleh air laut yang dipompakan menuju kondenser

menggunakan CWP (*Circulating Water Pump*) dan mengalami proses kondensasi untuk mengubah uap menjadi air baku. Air baku ini kemudian dipompakan ke HRSG menggunakan pompa kondensat untuk menggantikan air yang telah diubah menjadi uap dalam HRSG.

II.2. Teori Dasar Evaporator

HRSG merupakan ketel uap yang mengalami pertukaran kalor secara konveksi antara gas buang dengan permukaan pipa-pipa bersirip (*fine tube*) yang dilewati air di dalam pipa – pipa tersebut. Keluaran HRSG berupa uap kering yang digunakan sebagai fluida kerja penggerak turbin.

Tiga (3) komponen utama HRSG, yaitu :

1. Evaporator

Merupakan bagian yang paling penting. Evaporator terdiri dari coil-coil. Coilcoil ini terisi oleh air, yang melewati tabung yang dipanaskan sampai dengan saturation point.

2. Superheater

Superheater digunakan untuk memanaskan uap jenuh yang terpisah didalam drum uap. Dalam beberapa bagian uap tersebut hanya dipanaskan sedikit diatas titik saturasi dimana dalam bagian yang lain mungkin dipanaskan sampai temperatur yang signifikan untuk penambahan penyimpanan energi. Bagian superheater ini normalnya diletakkan dalam aliran gas yang lebih panas, di depan evaporator.

3. Economizer

Economizer digunakan untuk pemanasan awal *feedwater* sebelum uap dipindahkan melalui superheater atau steam outlet dan air keluar melalui *blowdown*. Pada umumnya economizer diletakkan didalam gas yang lebih dingin pada bagian bawah (*down stream*) evaporator.

Evaporator merupakan bagian pada HRSG yang berfungsi menaikkan temperatur air mencapai titik didih. Pada evaporator terjadi peristiwa perubahan fase dari cair menjadi uap. Hal ini dapat terlihat pada diagram T – h perubahan air menjadi uap dibawah ini :

Keterangan:

- 1-2 : Zat cair bila diberi panas temperaturnya akan naik sampai mencapai titik didih.
- 2 3: Pada saat benda tersebut mencapai titik didihnya, suhunya tetap. Panas yang diterima, digunakan untuk merubah wujud dari cair menjadi uap, panas tersebut dinamakan panas laten.
- 3 4: Uap jenuh bila dipanaskan terus akan menjadi uap panas lanjut (superheat) dan panas yang digunakan disebut panas Superheat.

Dari gambar 4 diatas terlihat bahwa pada evaporator terjadi perubahan fasa dari fluida cair (air) menjadi fluida gas (uap). Hal ini terjadi dikarenakan air yang diberi panas Temperaturnya akan naik sampai mencapai titik didih. Jika pada air yang mendidih terus diberikan panas, maka air akan berubah fasa menjadi uap. Selama proses perubahan fasa, penambahan panas tidak menaikkan temperatur air. Panas yang diberikan untuk merubah fasa (wujud) dari air menjadi uap disebut panas laten. Panas laten atau panas pendidihan dalam tabel uap diberi simbol huruf hfg. Sedangkan jumlah panas sensibel (h_f) dan panas laten (h_{fg}) disebut panas total uap jenuh yang diberi simbol hg.

II.3. Prinsip-Prinsip Perpindahan Panas

Menurut Frank Kreith (1997), perpindahan panas merupakan ilmu yang mempelajari mengenai perpindahan energi dalam bentuk panas yang terjadi akibat adanya perbedaan temperatur. Secara umum perpindahan panas dapat dibagi menjadi 3, yaitu :

- 1. Perpindahan panas secara konduksi
- Perpindahan panas secara konveksi

3. Perpindahan panas secara radiasi

II.3.1. Perpindahan Panas Secara Konduksi

Konduksi adalah proses mengalirnya panas dari daerah yang memiliki temperatur lebih tinggi ke daerah dengan temperatur lebih rendah didalam suatu medium (padat, cair, gas) atau antara medium-medium yang berlainan yang bersinggungan secara langsung. Dalam aliran konduksi, perpindahan energi terjadi karena hubungan molekul secara langsung tanpa adanya perpindahan molekul yang cukup besar. Besar dari perpindahan panas secara konduksi tergantung bentuk dari medium, ketebalan medium dan bahan dari medium tersebut. Selain itu juga sangat tergantung dari perbedaan temperatur yang ada. Perpindahan panas tersebut akan terus berlangsung sampai dicapai suatu kesetimbangan energi dari daerah yang memiliki perbedaan energi. Secara matematis besar perpindahan panas yang terjadi dapat dihitung dengan menggunakan hukum Fourier's yang dirumuskan sebagai berikut :

$$Q_{\text{konduksi}} = -kA \frac{\Delta T}{\Delta x} \tag{1}$$

dengan,

Qkonduksi	= Besar laju perpindahan panas konduksi (W)
k	= Konduktivitas termal dari benda (W/m.°C)
A	= Luas penampang dari benda (m)
ΔΤ	= Perbedaan temperatur (°C)
∆x	= Tebal medium yang dilalui proses (m)

H.3.2. Perpindahan Panas Secara Konveksi

Perpindahan panas konveksi merupakan perpindahan energi antara permukaan padat dengan aliran fluida baik gas maupun cair. Pada perpindahan panas ini melibatkan efek konduksi dan pergerakan dari fluida. Semakin cepat aliran fluida yang terjadi maka semakin besar perpindahan panas yang terjadi. Perpindahan panas konveksi dapat dirumuskan sebagai berikut :

$$Q_{\text{konveksi}} = hA(T_s - T_{-})$$
⁽²⁾

dengan,

Qkonveksi	= Besar perpindahan panas konve	ksi (W)
h	= Koefisien konveksi	(W/m ²)

Α	= Luas permukaan konveksi	(m ²)
T_s	= Temperatur permukaan	(°C)
T.	= Temperatur fluida	(°C)

II.3.3. Perpindahan Panas Secara Radiasi

Perpindahan panas secara radiasi adalah perpindahan panas yang terjadi dalam bentuk gelombang elektromagnetik. Berbeda dengan perpindahan panas secara konduksi dan konveksi, pada perpindahan panas radiasi tidak diperlukan adanya media perantara untuk mengalirkan energi. Perpindahan panas secara radiasi dirumuskan oleh Stefan-Boltzman sebagai berikut :

$$Q_{radiasi} = \sigma.A.T_s^*$$

dengan,

Qradiasi	-ÇARE	Besar perpindahan panas radiasi	(W)
G		Konstanta Stefan-Boltzman	(5,67x10 ⁻⁸ W/m ² .K ⁴)
Ts	010	Temperatur benda	(K)

II.4. ASME B31.1 Power Piping Code

Dalam mendesain suatu peralatan mekanis, terutama sistem perpipaan, ada beberapa hal yang harus diperhatikan agar peralatan mekanis tersebut dapat beroperasi sesuai dengan desain waktu. Artinya sistem perpipaan tidak mengalami kegagalan (*failure*) yang diakibatkan beban-beban selama operasi. Untuk mencapai hal tersebut sistem perpipaan tersebut harus mampu mengantisipasi adanya tegangan-tegangan yang mungkin terjadi pada sistem tersebut. Menurut Basavaraju, tegangan yang mungkin terjadi pada sistem perpipaan terebut antara lain :

- Tegangan yang disebabkan oleh beban kontinyu (sustained loads). Beban beban yang bersifat kontinyu antara lain ;
 - Tekanan kerja fluida
 - Berat pipa
 - Berat fluida kerja

Efek dari beban-beban tersebut harus memenuhi persyaratan dari persamaan berikut ini

Universitas Indonesia

11

(3)

$$S_{L} = \frac{P.D_{o}}{4t} + \frac{0.75 i M_{A}}{Z} \le 1.0S_{h}$$
(4)

dimana;

$\mathbf{S}_{\mathbf{L}}$: Sustained loads	(Psi)
Р	: Tekanan desain	(Psi)
D.	: Diameter luar pipa	(in)
t	: Tebal pipa	(in)
Z	: Section modulus pipa	(in ³)
Ma	: Momen akibat berat dan beban kontinyu	(in.lb)

i : Stress intensification faktor

2. Tegangan akibat occasional loads

3. Tegangan akibat adanya thermal ekspansion

Tegangan temperatur (*thermal stress*) timbul jika terjadi pemuaian ataupun penyusutan termis. Artinya, jika sebuah batang yang ujung-ujungnya dijaga (misal; dilas) dan mengalami kenaikan temperatur yang seragam T, maka disepanjang batang tersebut akan terjadi tegangan langsung sebesar;

 $\sigma_r = -E. \alpha. \Delta T$

dimana;

σ _T	: Tegangan termal	(MPa)
E	: Modulus elastisitas	(MPa)
α	: Koefisien termal ekspansion	(1/°C)
ΔT	: Perubahan temperatur	(°C)

Begitu juga jika batang tersebut didinginkan, maka batang tersebut juga akan mengalami tegangan yang sama dengan persamaan diatas. Hanya yang membedakannya adalah jika batang mengalami pemuaian, batang tersebut mengalami tegangan tarik (positif). Namun bila batang tersebut mengalami penyusutan, maka batang tersebut dikenai tegangan tekan (negatif).

Efek dari ekspansi termal ini harus memenuhi persyaratan berikut ini.

$$\frac{iM_C}{Z} \le S_A + f(S_b - S_L) \tag{6}$$

dimana;

Universitas Indonesia

(5)

- M_C : Momen resultan akibat thermal ekspansion (in.lb)
- S_A : Tegangan diijinkan untuk expansion streses $S_A = f(1,25 S_C + 0,25 S_h)$, Psi (7)
- f : Stress range reduction factor
- S_b : Tegangan material diijinkan pada temperatur tetap (Psi)

Jika sistem perpipaan telah memenuhi persyaratan tersebut diatas, maka diharapkan sistem tersebut dapat bertahan lama sesuai umur desain.

II.5. Analisa Tegangan

Dalam mendesain sistem perpipaan secara tepat, para insinyur harus memahami perilaku sistem perpipaan yang dibebani beban potensial dan hal itu harus sesuai dengan persyaratan yang diperbolehkan untuk dibebankan pada sistem tersebut menurut governing codes. Perilaku pada sistem dapat diukur melalui penjumlahan nilai parameter fisik, seperti; percepatan, kecepatan, pemuaian, gaya-gaya dalam dan momen, tegangan, senta reaksi-reaksi luar yang terjadi yang dikarenakan adanya beban-beban. Nilai yang diijinkan untuk tiap parameter tersebut diatas ditentukan setelah melakukan tinjauan terhadap criteria kegagalan untuk sistem yang akan dibangun. Kriteria kegagalan sistem bergantung pada tipe pembebanan yang mana dapat diklasifikasikan berdasarkan variasivariasi pembebanan seperti; primary vs secondary, sustained vs occasionally, atau statis vs dinamik.

ASME/ANSI B31.1 piping power code adalah hasil dari kerja kira-kira selama 8 dekade oleh the American Society of Mechanical Engineers dan the American National Standards Insitute yang ditujukan untuk pengkodean dari desain dan standar engineering untuk sistem perpipaan. Pengkodean tekanan pipa B31 yang menentukan kondisi minimum desain, material, fabrifikasi, assembly, tes, dan persyaratan inspeksi dari sistem perpipaan baik untuk power plant, petrochemical/refinery, fuel gas, gas transmission, dan nuclear applications.

Menurut ASME B31.1 piping power code, ada beberapa alasan dalam kegiatan analisis tegangan pada sistem perpipaan, antara lain:

- 1. Untuk menjaga tegangan yang terjadi pada pipa dalam level yang diljinkan code.
- 2. Untuk menjaga beban pada nozel yang menyatu pada peralatan dalam standar manufaktur yang diijinkan.

- 3. Untuk menjaga tegangan vesel pada persambungan pipa dalam level yang dijinkan ASME bagian VIII
- 4. Untuk menghitung beban-beban desain pada bagian supports dan restraints.
- 5. Untuk menghitung pemuaian pipa.
- 6. Untuk menyelesaikan masalah dinamik pada pipa, seperti getaran yang disebabkan oleh faktor mekanis, getaran akustik, hantaman fluida kerja (*fluid hammer*), *pulsation*, dan aliran transien.
- 7. Untuk membantu dalam mengoptimasi desain perpipaan.

Tegangan-tegangan yang hitung adalah bukanlah tegangan yang sesungguhnya, tetapi lebih kearah tegangan "code". Perhitungan tegangan "code" didasarkan pada persamaan yang spesifik, yang mana merupakan hasil kompromi dan penyederhanaan selama 8 dekade. Perhitungan didasarkan pada :

- a. Beban-beban masuk dan keluar pada pipa, berdasarkan ketepatan perhitungan.
- b. Tipe pembebanan.
- c. Magnification, dikarenakan konfigurasi fitting lokal, dimana mungkin yang menggambarkan penurunan besar kelelahan (*fatigue srength*) daripada peningkatan tegangan aktual.

II.5.1. Teori dan Pengembangan dari Persyaratan Tegangan Pada Pipa-

II.5.1.1. Konsep Dasar Tegangan

1. Tegangan Normal

Tegangan normal bekerja pada arah normal terhadap permukaan material. Tegangan normal mungkin terjadi lebih dari satu arah dan dibangun dari beberapa tipe beban yang berbeda.

2. Tegangan Longitudinal

Tegangan longitudinal, ataupun aksial, adalah tegangan normal yang bekerja pararel terhadap sumbu longitudinal dari pipa. Tegangan ini disebabkan oleh gaya internal yang bekerja secara aksial dalam pipa. Menurut Basavaraju, tegangan longitudinal dapat dihitung dengan menggunakan rumus;

Gambar 2.4. Tegangan Longitudinal

dimana,

$$S_{L} = \frac{F_{AX}}{A_{\pi}}$$
(8)

dimana,

SL	= Tegangan longitudinal	(Psi)
FAX	= Internal axial force	(lb)
Am	= Luas penampang pipa	(in ²)
	$=\frac{\pi(d_0^2-d_i^2)}{4}$	
	= π.d _m .t	
da	= Diameter luar	(in)
di	= Diameter dalam	(in)
d _m	= Diameter rata-rata	(in)
	$=\frac{(d_0-d_i)}{2}$	

Kasus khusus dari tegangan longitudinal adalah tegangan yang disebabkan oleh tekanan internal, yaitu ;

Gambar 2.5. Tegangan Longitudinal Akibat Tekanan Internal

$$S_{L} = \frac{P.A_{i}}{A_{m}}$$
(9)

dimana,

P	= tekanan desain internal	(Psi)
Ai	= Luas internal pipa	(in ²)
	$=\frac{\pi d_i^2}{4}$	

Sehingga,

$$S_L = \frac{Pd_i^2}{(d_0^2 - d_i^2)}$$

Atau

$$S_L = \frac{P.d_i}{4.d_m}$$

Atau bila disederhanakan menjadi,

$$S_{L} = \frac{P.d_{0}}{4t}$$
(12)

3. Tegangan Hoop/Circumferensial

Merupakan bagian dari tegangan normal pada pipa, bekerja pada arah ortogonal terhadap arah aksial. Tegangan hoop disebabkan karena tekanan internal. Tegangan ini bekerja pada arah pararel terhadap keliling pipa.

Gambar 2.6. Tegangan Hoop

Universitas Indonesia

16

(10)

(11)

Nilai dari tegangan Hoop dapat dihitung dengan menggunakan persamaan Lame's :

$$S_{\rm H} = \frac{P(r_i^2 + \frac{r_i^2 r_a^2}{r^2})}{(r_a^2 - r_i^2)}$$
(13)

dimana,

SH	= Tegangan Hoop disebabkan oleh tekanan	(Psi)
T;	= Jari-jari dalam pipa	(in)
T _o	= Jari-jari luar pipa	(in)
T	= Posisi radial dimana terjadi tegangan	(in)

Tegangan Hoop dapat didekati dengan menggunakan tebal silinder (pipa), dengan mengasumsikan bahwa gaya tekanan, dikenakan pada panjang pipa yang berubah-ubah, l ($F = P.d_i.l$), adalah ditahan seragam oleh dinding pipa pada panjang yang sama. ($A_m = 2.t.l$), atau dapat dituliskan;

$$S_{\rm H} = \frac{Pd_{\rm i}l}{2ti}$$
$$= \frac{pd_{\rm i}}{2t}$$

Atau secara konservatif dapat dituliskan

$$S_{H} = \frac{pd_{a}}{2I}$$
(15)

4. Tegangan Radial

Merupakan salah satu dari tegangan normal yang terjadi pada dinding pipa. Tegangan ini bekerja pada arah ortogonal, pararel terhadap radius pipa. Dengan mengasumsikan tidak ada tekanan external, tegangan radial dapat dihitung sebagai berikut ;

(14)

Gambar 2.7. Tegangan Radial

$$S_R = \frac{P.(r_i^2 - \frac{r_i^2}{r_i^2})}{(r_o^2 - r_i^2)}$$

dimana,

SR

= Tegangan radial disebabkan oleh tekanan (Psi)

2

Tegangan radial adalah "nol"pada radius luar pipa, dimana tegangan bending mencapai maksimum. Oleh karena alasan itulah, tegangan ini diabaikan selama perhitungan tegangan.

5. Tegangan Geser

Tegangan geser bekerja pada arah pararel terhadap bidang permukaan material dan cenderung menyebabkan bidang yang berdekatan/berbatasan mengalami 'slip' satu dengan yang lain. Tegangan geser mungkin disebabkan oleh lebih dari satu jenis beban. Sebagai contoh, tegangan geser disebabkan oleh gaya geser arah melintang.

Gambar 2.8. Tegangan Geser

Universitas Indonesia

18

(16)

$$\tau_{\rm max} = \frac{V.Q}{A_m} \tag{17}$$

dimana,

 τ_{max} = Tegangan geser maksimum (Psi)

V = Gaya geser (lb)

Q = Faktor geser bentuk (1,333 untuk solid circular section)

Tegangan geser ini terdistribusi maksimum pada sumbu netral pipa dan nol pada jarak maksimum dari sumbu netral. Oleh karena alasan inilah, tegangan geser yang disebabkan oleh gaya biasanya diabaikan selama analisis tegangan pipa.

Tegangan geser juga dapat disebabkan oleh beban torsi,

$$=\frac{p.(d_{o}^{4}-d_{i}^{4})}{32}$$

Tegangan torsi maksimum terjadi jika c maksimum atau dapat dikatakan bahwa tegangan torsi maksimum pada radius luar pipa :

$$\tau_{\rm max} = \frac{M_T R_o}{2.I}$$
$$= \frac{M_T}{2.Z}$$
(19)

Dengan menjumlahkan komponen-kmponen tegangan geser, tegangan geser maksimum pada pipa adalah sebagai berikut :

$$\tau_{\text{reax}} = \frac{V.Q}{A_{\pi}} + \frac{M_T}{2.Z}$$
(20)

II.6. Teori Kegagalan

Agar mempunyai kegunaan/arti, perhitungan tegangan-tegangan harus diperbandingkan dengan tegangan material yang diijinkan oleh yang digunakan. Tegangan-tegangan material yang diijinkan didasarkan pada kekuatan material yang ditentukan melalui *unaxial tensile test*. Oleh karena itu tegangan-tegangan yang dibitung harus dibandingkan dengan hasil tes tersebut.

Diambil dari Pipe Stress Analysis Seminar COADE (1988)

Menurut Pipe Stress Analysis Seminar COADE (1988), secara umum ada 3 teori yang digunakan untuk memprediksi secara awal dari keluluhan (*vield*) suatu material, yaitu ;

- 1. Oktahedral Shear atau Von Mises teori
- 2. Maximum Shear atau Tresca teori
- 3. Maximum Stress atau Rankine teori

A. Oktahedral Shear - Von Mises Teori

Kegagalan terjadi dalam suatu benda adalah sama dengan tegangan geser octahedral pada keluluhan (yield) dalam unaxial tension test.

tegangan geser oktahedral dihitung dengan persamaan;

$$\tau_{\text{okt}} = \frac{1}{3[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2]^{3/2}}$$
(21)

Pada unaxial tensile test specimen pada titk luluh;

$$S_1 = S_{Yield}; S_2 = S_3 = 0$$

Oleh karena itu tegangan geser oktahedral pada unoxial tensile test specimen pada bagian yang mengalami kegagalan (failure) dapat dihitung dengan persamaan;

T_{okt}

$$3[(S_{Yield} - 0)^{2} + (0 - 0)^{2} + (0 - S_{Yield})^{2}]^{1/2}$$

= $\frac{2^{1/2}S_{Yield}}{3}$

Sehingga, teori Von Mises dapat ditulis sebagai berikut :

Deformasi plastis terjadi jika octahedral shear melebihi $\frac{2^{1/2} S_{_{Held}}}{3}$

B. Maximum Shear stress-Tresca Teori

Kegagalan terjadi ketika tegangan geser maksimum dalam sebuah benda sama dengan tegangan geser maksimum apda keluluhan (yield) pada suatu unaxial tension test.

Tegangan geser maksimum dihitung dengan persamaan;

$$\tau_{\max} = \frac{(S_1 - S_3)}{2} \tag{23}$$

dengan,

 $S_1 = S_{Yicld}; S_2 = S_3 = 0$

Universitas Indonesia

(22)

Sehingga,

$$r_{max} = \frac{(S_{Fleld} - 0)}{2}$$
$$= \frac{S_{Fleld}}{2}$$
(24)

Schingga, teori Tresca dapat ditulis sebagai berikut :

Deformasi plastis terjadi jika tegangan shear melebihi $\frac{S_{ned}}{2}$

C. Maximum Stress atau Rankine teori

Kegagalan terjadi ketika tegangan geser maksimum dalam sebuah benda sama dengan tegangan geser maksimum apda keluluhan (yield) pada suatu unaxial tension test.

Tegangan tarik maksimum adalah yang terbesar, tegangan positif, S_1 (S_1 selalu sebagai tegangan terbesar).

Dalam suatu unoxial tensile test specimen, pada titik luluh;

 $S_1 = S_{Yield}; S_2 = S_3 = 0$

Schingga, teori Rankine dapat ditulis sebagai berikut :

Deformasi plastis terjadi jika oktahedral shear melebihi Syicld

II.7. Kavitasi

Kavitasi adalah peristiwa terbentuknya gelembung-gelembung uap didalam cairan yang dipompa akibat turunnya tekanan cairan sampai di bawah tekanan uap jenuh cairan pada suhu operasi pompa. Gelembung uap yang terbentuk dalam proses ini mempunyai siklus yang sangat singkat. Knapp (Karassik dkk, 1976) menemukan bahwa mulai terbentuknya gelembung sampai gelembung pecah hanya memerlukan waktu sekitar 0,003 detik. Gelembung ini akan terbawa aliran fluida sampai akhirnya berada pada daerah yang mempunyai tekanan lebih besar daripada tekanan uap jenuh cairan. Pada daerah tersebut gelembung tersebut akan pecah dan akan menyebabkan *shock* pada

Universitas Indonesia

(25)
dinding di dekatnya. Cairan akan masuk secara tiba-tiba ke ruangan yang terbentuk akibat pecahnya gelembung uap tadi sehingga mengakibatkan tumbukan. Peristiwa ini akan menyebabkan terjadinya kerusakan mekanis pada pompa.

Satu gelembung memang hanya akan mengakibatkan bekas kecil pada dinding namun bila hal itu terjadi berulang-ulang maka bisa mengakibatkan terbentuknya lubanglubang kecil pada dinding. Bahkan semua material bisa rusak oleh kavitasi bila dibiarkan terjadi dalam jangka waktu yang lama. Adanya benda asing yang masuk ke dalam pompa akan lebih memperparah kerusakan sebab akan menyebabkan erosi pada dinding impeler. Bagian dari pompa sentrifugal yang paling rawan terkena kavitasi adalah sisi impeler dekat sisi isap yang bertekanan rendah juga tutup impeler bagian depan yang berhubungan dengan sisi isap. Hammit (Karassik dkk, 1976) menemukan hubungan yang rumit antara kecepatan aliran dengan kerusakan pada pompa akibat kavitasi. Kerusakan tersebut akan meningkat seiring dengan kenaikan kecepatan aliran.

II.7.1. Pengaruh Kavitasi

Akibat yang ditimbulkan oleh peristiwa kavitasi sangatlah merugikan. Hal-hal yang diakibatkan oleh kavitasi antara lain :

- 1. Terjadinya suara berisik dan getaran (noise and vibration).
- 2. Terbentuknya lubang-lubang kecil pada dinding pipa.

II.7.2. Indeks Kavitasi

Salah satu indikator yang menggambarkan terjadinya kavitasi adalah kavitasi indeks (cavitation indeks). Menurut James G. Peck (1963) indeks kavitasi dapat dihitung menggunakan rumus sebagai berikut :

$$\sigma = \frac{P_2 - P_v}{P_1 - P_2}$$

dimana,

 σ = indeks kavitasi (cavitation index)

 P_1 = Inlet pressure (psi)

 P_2 = Outlet pressure (psi)

 $P_V = Vapor pressure$ (psi)

Indeks kavitasi yang diperoleh kemudian dimasukkan kedalam cavitation guide curve dibawah ini,

Universitas Indonesia

(26)

Diambil dari http://www.google.co.id/cavitation index/

II.8. Teori Sekilas Tentang CFD (Computational Fluid Dynamic)

II.7.1. Sekilas Tentang CFD

Menurut Versteeg and Malalasekera computational fluid dynamic (CFD) merupakan metode analisa numerik dengan memanfaatkan komputer untuk menghasilkan informasi (prediksi) pola aliran fluida pada kondisi waktu dan ruang tertentu. Dengan menggunakan CFD, prediksi aliran fluida di berbagai sistem (*design*) dapat dilakukan dengan lebih efektif dan efisien dibandingkan bila design tersebut langsung diaplikasikan dengan metode eksperimen. Hasil prediksi aliran fluida menggunakan CFD juga lebih lengkap dibandingkan metode eksperimen yang terbentur masalah biaya, ketersedian, kepresisian, keakurasian alat ukur, dan metode yang benar.

CFD mencakup berbagai disiplin ilmu termasuk matematika, ilmu komputer fisika, dan teknik. Untuk membuat CFD dibutuhkan suatu pemahaman tentang dinamika fluida. Karena kompleksnya permasalahan aliran fluida, maka untuk memahami pergerakan fluida terlebih dahulu harus memahami sifat-sifat aliran fluida tersebut. Didalam literature mekanika fluida umumnya aliran fluida dikategorikan sebagai berikut :

Aliran Viskos dan Inviscid

- Aliran Compressible dan Incompressible
- Aliran Laminer dan Turbulen

Selain kategori tersebut beberapa kondisi khusus seperti dalam pipa, pompa dan turbin juga menjadi perhatian didalam pembuatan CFD. Pengklasifikasian aliran fluida ini menjadi sangat penting dan menjadi dasar untuk memahami pergerakan fluida sebagai upaya untuk membuat sebuah prediksi aliran fluida dengan menggunakan komputer. Sehingga sangat memungkinkan apabila hasil simulasi aliran fluida dengan menggunakan CFD tidak sesuai dengan kenyataan.

Aliran fluida dapat dideskripsikan dengan banyak cara. Salah satu cara yang dapat memberikan gambaran secara jelas adalah dengan menjabarkan kecepatan fluida pada tiap-tiap titik didalam ruang dan waktu. Namun demikian, kecepatan fluida saja tidak cukup untuk mendeskripsikan suatu situasi aliran fluida, properti fluida seperti viskositas, kerapatan, tegangan geser dan tekanan juga harus diketahui untuk memberikan gambaran yang lengkap tentang suatu aliran fluida. Pada intinya CFD melakukan kalkulasi terhadap properti fluida tersebut dan apabila hal itu ingin dilakukan maka hubungan matematis yang mengatur interaksi antara properti fluida dengan kecepatan aliran harus ditentukan.

Untuk memprediksi aliran fluida pada kondisi tertentu, sebuah program CFD harus dapat menyelesaikan persamaan yang mengatur aliran fluida. Sehingga pemahaman tentang sifa-sifat dasar aliran yang harus dimodelkan dan pemahaman tentang persamaan yang mengatur aliran fluida sangat penting. Persamaan dasar/pengatur (Governing Equation) ini dibangun dari suatu model aliran fluida berdasarkan hukum kekekalan massa dan hukum kekekalan momentum (persamaan Navier-Stokes). Apabila properti lain seperti temperatur juga ingin diketahui maka persamaan dasar/pengatur lain yang berdaasrkan hukum kekekalan energi harus ditentukan. Untuk kasus-kasus tertentu seperti pada aliran turbulen, persamaan lain yang memodelkan aliran turbulen juga harus ditentukan.

Persamaan pengatur aliran fluda adalah persamaan diferensial parsial. Komputer digital tidak dapat digunakan untuk menyelesaikan persamaan tersebut secara langsung. Oleh karena itu, persamaan diferensial parsial harus diubah menjadi suatu persamaan yang mengandung operasi-operasi matematika yang sederhana yaitu penambahan,

pengurangan, perkalian dan pembagian. Proses transformasi persamaan diferensial menjadi operasi matematika yang lebih sederhana disebut dengan proses diskritisasi. Pada proses diskritisasi persamaan diferensial parsial harus diterjemahkan menjadi analogi numerisnya sehingga dapat dikalkulasi oleh komputer. Secara visual, diskritisasi ditampilkan dalam bentuk grid yang memiliki luas atau volume yang terhingga. Grid memiliki titik-titik dalam ruang yang ditempati fluida dimana informasi mengenai propertinya dapat ditampilkan. Ada beberapa teknik diskritisasi yag sering digunakan dan masing-masing berdasarkan prinsip yang berbeda. Beberapa teknik diskritisasi tersebut misalnya adalah :

- Metode beda bingga (Finite Difference Method)
- Metode elemen hingga (Finite Element Method)
- Metode volume hingga (Finite Volume Method)

Ketika menyelesaikan persamaan diferensial parsial, kondisi batas (boundary condition) dan nlai awal (initial point) yang menentukan solusi akhirnya. Penentuan kondisi batas bagi persamaan diferensial parsial tergantung kepada persamaan itu sendiri dan cara persamaan tersebut didiskritisasi. Nilai-nilai seperti kecepatan, tekanan, dan variabel turbulensi harus ditentukan pada kondisi batas. Selain itu jenis kondisi batas seperti dinding (wall), inlet dan outlet juga harus ditentukan sebagai acuan untuk menyelesaikan persamaan diferensial parsial.

Karakteristik Grid

Dalam mensimulasikan suatu aliran fluida, jenis grid yang digunakan menjadi suatu hal yang sangat diperhatikan. Kompleksitas domain aliran, ketersediaan program solver dan numerical diffusion (suatu kesalahan ketersediaan diskritisasi yang dapat timbul apabila grid tidak sejajar dengan arah aliran) menjadi pertimbangan dalam penentuan jenis grid yang akan digunakan.

Secara umum grid dapat diklasifikasikan dari bentuk satuan terkecil penyusun grid (subdomain) di seluruh domain aliran. Bentuk-bentuk sub-domain tersebut adalah :

- Quadrilateral, berbentuk segiempet dan digunakan pada domain dua dimensi.
- Trilateral, berbentuk segitiga dan digunakan pada domain dua dimensi.
- Tetrahedral, berbentuk limas dengan keseluruhan sisinya berbentuk segitiga dan digunakan pada domain tiga dimensi.

- Hexahedral, berentuk balok dan digunakan pada domain tiga dimensi.
- Hybrid, merupakan gabungan dari sub-domain quadrilateral dan trilateral.

Selain bentuknya, sifat-sifat grid juga menentukan jenis solver yang dapat digunakan untuk simulasi aliran fluida. Sifat-sifat tersebut adalah :

- Grid terstruktur, yaitu grid jenis quadilateral atau hexahedral yang disusun dalam array I X J (2D) atau I X J X K (3d). Domain aliran yang digunakan grid terstruktur dapat dibayangkan sebagai sebuah segiempat (2D) atau sebuah balok (3D) yang dapat ditekuk, diputar, dimiringkan dan dipilin sepanjang acuan IJ dan IJK tetap terjaga.
- Grid tidak terstrktur, yaitu jenis grid trilateral atau tetrahedral.

BAB III

SIMULASI NUMERIS

III.1. Spesifikasi LP Evaporator

III.1.1. Parameter Geometri

Untuk mempermudah dalam proses simulasi, maka geometri LP Evaporator dibagi menjadi tiga bagian, yaitu :

1. Inlet Evaporator

Gambar 3.2 Dimensi Inlet Evaporator

- Diameter header : 219,1 mm
- Tebal diameter header : 10 mm
- Diameter pipa : 31,8 mm
- Tebal diameter : 2,6 mm
- Panjang A : 155 mm - Panjang B : 156,4 mm
- Panjang C : 164,6 mm
- Panjang D : 1700 mm
- Sudut E : 15°
- Radius elbow : 60 mm
- Jarak antar pipa : 70 mm

28

2. Pipa Spiral

- Diameter pipa	:31,8 mm
- Tebal diameter pipa	:2,6 mm
- Jarak antar pipa	:70 mm
- Panjang F	: 16570 mm
- Panjang G	: 560 mm
- Radius Elbow	:60 mm

III.1.2. Parameter Proses / Operasional

- Bahan bakar turbin	: Gas alam
- Luas Penampang masuk	
Gas buang	
a. Sisi Inlet	: 0,342 m ²
b. Sisi Spiral	: 1,071 m ²
c. Sisi Outlet	: 0,308 m ²
- Debit aliran gas buang	
a. Sisi Inlet	: 0,980 kg/s
b. Sisi Spiral	: 3,085 kg/s
c. Sisi Outlet	: 0,880 kg/s
- Temperatur gas buang	
masuk LP Evaporator	: 507 °C
- Temperatur ambient	:30 °C
- Temperatur air masuk	:160 °C
- Tekanan air masuk	:10 bar
- Debit air tiap pipa	: 0,043 kg/s
- Material pipa	: St 35.8/I (ASTM 240)
Tabel 1. Material Properties	ASTM 240
Properties	Nilai
Yield Strength	170 psi
Ultimate Tensile Strength	70000 psi
Density	8027 g/cm ³

III.2. Proses Simulasi

III.2.1. Simulasi EFD

Proses simulasi EFD bertujuan untuk mengetahui nilai tekanan dan temperatur terutama pada daerah elbow LP evaporator. Pada simulasi ini pipa LP evaporator dibagi menjadi 3 bagian/proses, yaitu ;

- A. Proses Simulasi Pada Sisi Inlet LP Evaporator
- B. Proses Simulasi Pada Sisi Spiral LP Evaporator

C. Proses Simulasi Pada Sisi Outlet LP Evaporator

Proses simulasi dari ketiga proses diatas sama. Artinya temperatur keluaran dari simulasi A digunakan sebagai temperatur masukan simulasi B dan temperatur keluaran simulasi B digunakan sebagai temperatur masukan simulasi C. Parameter gas buang (debit, tekanan dan temperatur) dari ketiga simulasi diatas juga sama. Yang membedakan dari ketiga simualsi diatas hanyalah luas penampang masuk gas buang.

III.2.2. Simulasi AutoPIPE

Proses simulasi dengan AutoPIPE ini bertujuan untuk memeriksa tegangantegangan yang terjadi pada pipa LP evaporator, seperti tegangan kontinyu (*sustained loads*) dan tegangan akibat termal expansion.

Gamoar 5.5 Femoueran dioFIFE

Proses simulasi EFD dan AutoPIPE dapat dilihat pada halaman lampiran.

BABIV

ANALISA HASIL SIMULASI NUMERIS

IV.1. Hasil Simulasi EFD

IV.1.1 Hasil Simulasi Sisi Inlet

Gamber 4.1. Temperatur Sisi Inlet

Diambil dari program EFD

Dari simulasi yang dilakukan pada sisi inlet evaporator didapatkan parameter sebagai berikut :

a. Temperatur

- Pipa 1 (T_1) : 445 K - Pipa 2 (T₂) : 442,5 ĸ - Pipa 3 (T₃) : 442,2 K - Pipa 4 (T₄) : 442 K b. Tekanan - Pipa 1 (P₁) : 1012200 Pa - pipa 2 (P2) : 1011910 Pa - Pipa 3 (P3) : 1011790 Pa - Pipa 4 (P₄) : 1011760 Pa **IV.1.2. Hasil Simulasi Pipa Spiral** 529,008 403,645 486,754 #20.484

Diambil dari program EFD

Dari simulasi yang dilakukan pada sisi pipa spiral didapatkan parameter sebagai berikut :

a. Temperatur

- Pipa 1 (T_1) : 513 K

- Pipa 2 (T_2) : 512 K K
- Pipa 3 (T₃) : 509,5
- Pipa 4 (T_4) : 507,6 K
- b. Tekanan
 - Pipa 1 (P₁) : 953000 Pa
 - Pipa 2 (P2) : 950000 Pa
 - Pipa 3 (P₃) : 937000 Pa
 - Pipa 4 (P₄) :916000 Pa

IV.1.3. Hasil Simulasi Sisi Outlet

Gambar 4.3 Kecepatan Arah Z

Diambil dari program EFD

Dari simulasi yang dilakukan pada sisi outlet evaporator didapatkan parameter sebagai berikut:

Gambar 4.4 Grafik Perubahan Tekanan Sepanjang Elbow

Diambil dari program EFD

Gambar 4.5 Grafik Perubahan Y-Kecepatan Sepanjang Elbow Diambil dari program EFD

Dari hasil simulasi menggunakan EFD, diperoleh parameter-parameter yang menunjukkan karakteristik dari aliran dalam elbor lp evaporator. Parameter-parameter tersebut adalah :

1. Tekanan

Terjadinya penurunan tekanan (*pressure drop*) pada LP evaporator. Tekanan masuk masuk header inler LP evaporator sebesar 1013250 Pa dan tekanan keluar header outlet LP evaporator sebesar 937700 Pa. Jadi penurunan tekanan yang terjadi sebesar 75550 Pa.

2. Temperatur

Terjadinya kenaikan temperatur fluida sepanjang pipa LP evaporator. Hal ini terjadi karena proses perpindahan panas dari panas gas buang menuju air didalam pipa.

3. Kecepatan

Kecepatan fluida, khususnya pada daerah elbow, mengalami penurunan. Kecepatan fluida masuk daerah elbow sebesar 64 m/s dan keluar elbow sebesar 7 m/s. Penurunan ini diakibatkan karena hampir seluruh head kecepatan yang ada diubah menjadi head tekanan.

Untuk menunjukkan kekuatan material elbow dalam menahan temperatur operasi Ip evaporator, maka diperlukan pemeriksaan terhadap kekuatan material dalam menahan

tegangan termal. Tegangan termal dapat diketaahui dengan menggunakan software yang khusus untuk perpipaan, yaitu AutoPIPE.

IV.2. Hasil Simulasi AutoPIPE

1. Analisa perpindahan (displacement) karena beban termal

Menurut Beer (1987), perpindahan (displacement) akibat beban termal dapat dihitung dengan persamaan;

 $\delta_T = \alpha \Delta T.L$

dimana,

- δ_T Perpindahan akibat beban termal
- α : Koefisien pengembangan termal
- ΔT : Perubahan temperatur
- L : Panjang benda

sehingga,

 $\delta_{\rm T} = \alpha.\Delta T.L$ = 10,8.10⁻⁶.(239-30).0,0159 = 10,8.10⁻⁶.209.0,0159 = 35,8.10⁻⁶ m $\delta_{\rm T} = 35,8 \ 10^{-3} \ {\rm mm}$ = 0,035 mm

Sedangkan dari hasil simulasi dengan AutoPIPE didapatkan bahwa displacement elbow pada temperatur 239 °C adalah sebesar 0 mm.

2. Tegangan yang disebabkan oleh beban kontinyu (sustained loads)

Menurut persamaan (4), tegangan yang diakibatkan oleh beban kontinyu adalah;

$$S_{L} = \frac{P.D_{o}}{4t} + \frac{0.75.j.M_{A}}{Z} \le 1.0S_{0}$$

Dengan

P : 138,03 Psi

M_A : 0 in-lb

Sehingga

ĩ

$$i = \frac{0.9}{(0.608)^{2/3}} = 1.25$$

Universitas Indonesia

^

¢

$$S_{L} = \frac{P.D_{o}}{4t} + \frac{0.75.iM_{A}}{Z} \le 1.0S_{h}$$
$$= \frac{(138).(1.25)}{4.0.1} + \frac{0.75.(1.25).(0)}{0.384}$$
$$= 431.25$$
$$= 431.25 \text{ Psi}$$

Sedangan tegangan material yang diijinkan adalah sebesar 515 Mpa (75000 Psi) Sehingga didapatkan persamaan;

$$S_{L} = \frac{P.D_{o}}{4t} + \frac{0.75.iM_{A}}{Z} \le 1.0S_{h}$$

431,25 Psi \le 75000 Psi

Sedangkan tegangan akibat sustained loads didapatkan nilai $S_L = 417$ Psi. Ini berarti tidak terjadi perbedaan yang cukup besar antara perhitungan manual dan perhitungan menggunakan AutoPIPE. Selisih sebesar 14 Psi dikarenakan pada perhitungan menggunakan AutoPIPE tidak diperhitungkan beban karena tekanan.

-	Point: A26 F - ["w/sus, load margin]	A26F+	
	Sustained (Max) - pst		
	Stress: 41/	417	
1000	Allow.: 12586 Balin: 0.03	12986	
	Combin.: GR + Max P	GR + Max P	
100 C	Expansion (Max) - psi		
· · · · · · · · · · · · · · · · · · ·	Stress: 67046	1	2
1000	Allow.: 39315"	26746	
	Ratio: 1.71	0.00	
1.00	Combin: Amb to T1	Amb to T1	and the second second
	Hoop (Max) - psi	000	a 2
	50785S: 658	12020	
	Allow. 12360	12380	Description of the second s
	Caphin May D	U.U/	
	Compet. Max F	max r	
		- C.	
			-

Gambar 4.7. Code Stress Hasil Perhitungan

Diambil dari program AutoPIPE

Jadi dari hasil diatas, diketahui bahwa material pipa tidak mengalami tegangan akibat beban kontinyu.

3. Tegangan akibat adanya termal ekspansion

Menurut persamaan (6), tegangan yang diakibatkan thermal ekspansion adalah;

$$\frac{iM_c}{Z} \leq S_A + f(S_b - S_L)$$

 $S_A = f(1,25 S_C + 0,25 S_h)$

Dengan;

Sc = 116,52 Mpa (17125,5 Psi)

Sh = 75000 Psi

Jadi, $S_A = 1[1,25(17125,5) + 0,25(75000)]$

= 21406,875 + 18750

= 40156,875 Psi

 $M_{c} = 366 \text{ ft-lb} = 4392 \text{ in.lb}$

Point: A26 F Load : T1	• • • •	A26F+
Forces · b	11.	
rx : Fv :	10724	35853
Fz :	Ö	0
lotal:	15165	35853
Moments - It-Ib	1	States - The
Mx :	Q	<u>0</u>
My :	0	0
Total:	366	Ŭ
Jee Patha, Patha	keys	

Gambar 4.8. Nilai Gaya dan Momen Akibat Termal

Diambil dari program AutoPIPE

Sehingga;

$$\frac{iM_c}{Z} \leq S_A + f(S_k - S_L)$$

$$\frac{1,25.4392}{0,384}$$
......40156,875 + 1(75000 - 841,406)
14296 87 Psi < 114314 6 Psi

Jadi, dari hasil diatas diperoleh kesimpulan bahwa sistem perpipaan LP Evaporator tidak mengalami tegangan yang diakibatkan oleh pemuaian termal (*thermal expansion*). Hal ini dapat dibuktikan bahwa tegangan yang terjadi pada material yang dikarenakan beban termal masih dibawah tegangan yang diijinkan dari material tersebut.

IV.3. Analisis Kavitasi

Dari hasil analisis diatas dapat disimpulkan bahwa sistem perpipaan pada lp evaporator tidak mengalami tegangan-tegangan yang melebihi batas dari kemampuan material. Artinya kebocoran yang terjadi tidak disebabkan karena faktor material pipa. Untuk itu dilakukan analisis pada terjadinya perubahan wujud dari air. Hal ini dikarenakan sesuai dengan fungsi evaporator adalah untuk mengubah wujud air menjadi uap. Langkah awal untuk mengetahui apakah terjadi perubahan fase air menjadi uap, maka dilakukan pengecekan pada diagram Mollier sebagai berikut ;

Gambar 4.9. Diagram Mollier

Diambil dari handbook pelatihan pengoperasian HRSG oleh PLN

Dari diagram Mollier terlihat bahwa pada tekanan 10 bar dan temperatur 176 °C ($h_f =$ 748 kJ/kg), mulai terjadi perubahan fasa. Adanya perubahan fasa ini, diduga menjadi dasar terjadinya peristiwa kavitasi yang menyebabkan terjadinya kebocoran pada elbow lp evaporator.

Selain menggunakan diagram Mollier, fenomena kavitasi dapat dilihat dengan menggunakan simulasi EFD. Dengan memasukkan flow karakteristik kavitasi pada general setting di software EFD, maka EFD akan melakukan simulasi aliran multifase yang menunjukkan adanya fenomena kavitasi. Parameter-parameter yang diamati pada aliran multifase adalah :

• Temperatur fluida kerja

Dari hasil simulasi terlihat bahwa terjadi kenaikan temperatur terutama pada bagian dinding akibat perpindahan panas dari dinding pipa menuju fluida kerja dalam pipa.

Densitas fluida.

Densitas fluida kerja menurun pada sisi dinding pipa. Hal ini dikarenakan temperatur dinding yang tinggi akan menurunkan kerapatan fluida kerja. Ini artinya terjadi perubahan fasa dari fasa cait menjadi fasa uap.

Gambar 4.11. Distribusi Densitas Fluida Kerja

Diambil dari program EFD

Fraksi volume uap

Terbentuknya fraksi uap ini semakin mempertegas terjadinya perubahan fasa dari fasa cair menjadi fasa uap. Hal ini sebagai indikator terjadinya peristiwa cavitasi pada pipa evaporator.

0.600274				
0.000548			· · · · · · · · · · · · · · · · · · ·	
				z x
	tana ing kanalang ka			
0.202101				
Vapour Volume F	raction []		(1. K. 1. K.	
the second		1.1.1.1.1.		

Gambar 4.12. Distribusi Volume Fraksi Uap

Diambil dari program EFD

Kavitasi adalah peristiwa terbentuknya gelembung-gelembung uap didalam cairan yang dipompa akibat turunnya tekanan cairan sampai di bawah tekanan uap jenuh cairan pada suhu operasi pompa. Dari data sebelumnya didapatkan bahwa tekanan fluida mengalami penurunan sepanjang pipa. Penurunan tekanan ini mengakibatkan terbentuknya gelembung uap. Gelembung uap ini akan terbawa oleh aliran fluida sampai akhirnya berada pada daerah yang mempunyai tekanan lebih besar, dan akhirnya pecah. Tekanan sepanjang pipa evaporator mengalami penurunan, kecuali pada daerah elbow. Pada daerah elbow ini (titik 1) tekanan fluida mengalami kenaikan. Sehingga gelembunggelembung tersebut akan pecah dan akan menyebabkan shock pada dinding didekatnya. Cairan akan masuk secara tiba-tiba ke ruangan yang terbentuk akiibat pecahnya

gelembung uap tadi sehingga mengakibatkan tumbukan. Satu gelembung memang hanya akan mengakibatkan bekas kecil pada dinding namun bila hal itu terjadi berulang-ulang maka bisa mengakibatkan terbentuknya lubang-lubang kecil pada dinding.

Gambar 4.13. Lokasi Kebocoran

Kavitasi juga dapat diperkirakan dengan menggunakan indeks kavitasi seperti yang ditampilkan pada gambar 2.11. Indeks kavitasi yang diperoleh kemudian dimasukkan kedalam cavitation guide curve,

$$\sigma = \frac{138 - 133}{147 - 138} = 0.55$$

Dari gambar 2.11, diperoleh data bahwa terjadi moderate cavitation yang menyebabkan kebocoran pada elbow lp evaporator.

Hasil simulasi dengan EFD menunjukkan kesesuaian dengan analisa/pengujian mikro dan makro yang sudah dilakukan oleh PT. EMPU AGUNG SAKTI. Dari pengujian makroskopik menggunakan mikroskop stereo yang dilakukan oleh PT. EMPU AGUNG SAKTI menunjukkan bahwa kerusakan disisi dalam pipa berbentuk rumah atau sarang tawon (*honeycomb*), yang umumnya kerusakan tersebut disebabkan oleh kavitasi (*cavitation damage*). PT. EMPU AGUNG SAKTI juga menyimpulkan bahwa faktor erosi dari sisi luar pipa tidak signifikan.

Gambar 4.14. Permukaan Bagian Dalam Potongan Elbow Tube Yang Telah Dibelah Diambil dari Laporan Akhir PT. EMPU AGUNG SAKTI

Elbow tube diatas menunjukkan lubang kebocoran, permukaan dinding bagian dalamnya disekitar daerah lubang memperlihatkan tekstur berbentuk rumah atau sarang tawon (*honeycomb*). Hal ini menandakan bahwa jenis kerusakan yang terjadi pada dinding bagian dalam elbow tube tersebut termasuk *cavitation damage*. Dari gambar diatas juga terlihat dengan jelas bahwa penipisan dinding elbow tube yang disebabkan oleh *cavitation damage* tersebut umumnya terjadi di dinding bagian dalam tube dan terpusat di

sekitar daerah dinding pada bagian kurvatur luar yang mengalami perubahan arah belokan yang tajam. Sedangkan penipisan yang terjadi pada bagian permukaan luar elbow tube nampaknya tidak signifikan dan penipisan tersebut kemungkinan disebabkan oleh pengaruh korosi dan/atau oksidasi akibat flue gas.

BAB V

KESIMPULAN & SARAN

V.1. Kesimpulan

- Analisa terhadap tegangan kontinyu (sustained loads) dan tegangan akibat termal expansion pada pipa LP evaporator, didapatkan kesimpulan bahwa tegangan yang terjadi masih berada dibawah tegangan material yang diijinkan. Hal ini berarti material pipa yang telah didesain telah sesuai dengan kondisi operasi.
- Simulasi aliran multifase dengan EFD menunjukkan terjadinya fraksi uap yang merupakan indikasi terjadinya kavitasi.
- Pengecekan dengan kavitasi indeks juga memperkuat indikasi terjadinya kavitasi pada elbow LP evaporator
- Hasil simulasi aliran multifase dengan EFD sesuai dengan studi/analisa yang telah dilakukan oleh PT. EMPU AGUNG SAKTI, yaitu terjadinya kavitasi pada pipa LP evaporator.
- V.2. Saran
 - Meningkatkan atau meng-upgrade material elbow tube outlet header LP Evaporator dari baja karbon rendah (spesifikasi St 35.8/I) menjadi baja paduan rendah berbasis Cr-Mo. Baja Cr – Mo ini memiliki komposisi kimia yang diharapkan dapat meningkatkan ketahanan terhadap cavitation damage.

BAB VI

DAFTAR PUSTAKA

- 1. Basajaravu, C., and Sun, William S., "Stress Analysis of Piping System", Lexicon.
- Beer, Ferdinand. P., "Mechanics of Materials", McGraw Hill Book Company Inc., New York, 1988.
- Cengel, Yunus. A., and Boles, Michael. A, "Yhermodynamics An Engineering Approach", McGraw-Hill, Inc., United States of America, 1994.
- 4. General Electric, "Manual Book Combine Cycle Power Plant", Austrian, 1995.
- 5. http://:www.google.co.id/cavitation index/
- 6. http://:www.google.co.id/COADE Pipe Stress Analysis Seminar Notes/
- 7. http://:www.google.co.id/mechanical properties 240/
- Incopera, Frank. P., and DeWitt, David P., "Fundamental of Heat and Mass Transfer", John Willey & Sons, New York, 1996.
- Iremonger, M. J., "Dasar Analisis Tegangan", Terjemahan S Sardy, Universitas Indonesia, Jakarta, 1990.
- Kreith, F., "Prinsip-Prinsip Perpindahan Panas", Terjemahan A. Prijono, Erlangga, Jakarta, 1997.
- PT. EMPU AGUNG SAKTI, "Laporan Akhir Analisa Kerusakan Elbow Tube LP Evaporator HRSG UP Muara Karang", Jakarta, 2008.
- Nugroho, Anggun., "Analisis Distribusi Tekanan Fluida Cair Yang Melalui Elbow 90 ° Dengan variasi Jari-Jari Kelengkungan Dan Kapasitas Aliran Fluida", Tugas Akhir Jurusan Mesin FT UNS, Semarang, 2006.
- Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics And The Finite Volume Method", London, 1995.

INSTRUCTION OF HRSG TUBE REPLACEMENT

ĺ

Operating Manual

HEAT RECOVERY STEAM GENERATOR

Volume : Section :3.0 Page :2/6 Status :31.Oct. 1995

MUARA KARANG CCPP II

3034 3037

3035

3038

3036

3099

7050 mm

19200 mm

13440 mm

45000 mm

3.0 Design and operating data:

3.1 HRSG-design data:

- 3.1.1 Manufactures Number:
 - HRSG 1

High pressure water a. steam system Low pressure water a. steam system

è,

HRSG 2 High pressure water a. steam system Low pressure water a. steam system

HRSG 3

High pressure water a. steam system Low pressure water a. steam system

3.1.2 Dimensions of HRSG:

Width (seen from GT side) Depth (seen from GT side) Height of rectangular cross section Top of the stack

3.1.3 Heat transfer surfaces:

Low pressure water a. steam system High pressure water a. steam system Total heating surface 34620 m² 52256 m² 86876 m²

Operating Manual

HEAT RECOVERY STEAM GENERATOR

Volume : Section :3.0 Page :3/6 Status :31.Oct.1995

MUARA KARANG CCPP II

.

3.1.4 Volumes:

Low pressure water and steam system (total)	94,80	m ³
Low pressure Economizer	. 9,05	m ³
Deaerator	8,89	m ³
Low pressure drum	42,50	m ³
Low pressure evaporator	11,960	m ³
Low pressure superheater	6,40	m ³
Low pressure connection lines	16,00	m ³
High pressure water and steam system (total)	80,90	m ³
High pressure economizer	10,78	m ³
High pressure drum	24,50	m ³
High pressure evaporator	13,41	m ³
High pressure superbeater I & II	7,21	m ³
High pressure connection lines	25,0	m ³
Total volume of HRSG	175,70	m ³
	A CONTRACTOR OF A	

3.1.5. High pressure system:

		Superheater		Evaporator	Economizer
Design pressure Design temperatur Calculated pressure drop Exhaust gas temperature inlet Exhaust gas temperature cutlet Transfer water temperature	bar (g) °C bar (g) °C °C °C	SH2 110 525 1,0 541.3 523	SH1 110 490 0,7 523 468	111 319 2,0 468 313	111 319 1,5 305 234 157,6

Total water circulation ratio	4,5
Losses (radiation) %	0,2

умалсявая снян

Operating Manual

HEAT RECOVERY STEAM GENERATOR

Volume : Section :3.0 Page :4/6 Status :31.Oct.1995

MUARA KARANG CCPP II

3.1.6. Low pressure system:

ŝ

		Superheater	Evaporator	Economizer
These seconds	tone for	10.0	10.0	1.2.0
Design pressure	°C	318	183	214
Calculated pressure drop	bar (g)	0,2	1,5	1,5
Exhaust gas temperature inlet	°C T	313	234	170
Exhaust gas temperature outlet	°C	305	170	104,5
Condensate temp.	°C			42,3

Total water circulation ratio.5,0Losses (radiation) %0,2

÷

÷

Operating Manual

HEAT RECOVERY STEAM GENERATOR

Volume : Section :3.0 Page :5/6 Status :31.Oct.1995

MUARA KARANG CCPP II

3.2 HRSG-operating data:

3.2.1 Natural gas operation

	1.	Load condition (MCR)			
High pressure system:		25 %	50 %	75 %	100 %
Superheater outlet steam flow	t/h	42,7	97,0	135,5	171,2
Superheater steam outlet pressure	bar (g)	40,0	46,7	69,2	87,28
Superheater steam outlet temperature	C°	336	425	512,7	518,4
Steam drum pressure	bar (g)	40,7	47,8	71,3	89,8
Steam drum temperature	°C	251	261,2	287	303,2
Transfer water temperature	°C	157	157,9	157,7	160
Continuous blow down	kg/h	1	approx.	854	
		1.000			
Low pressure system:		25 %	50 %	75 %	100 %
Superheater outlet steam flow	t/h	25,9	35,2	32,0	42,4
Superheater steam outlet pressure	bar (g)	5,6	- 5,6	5,6	5,81
Superheater steam outlet temperature	°C	230	257,3	285	297,5
Drum pressure	bar (g)	5,8	5,9	5,8	6,2
Drum temperature	°Č	157	157,9	157,7	160
Condensate flow to deaerator	kg/s		36,71	46,54	59,33
Condensate inlet temperature	°C	42		1.00	
Gas side pressure drop	mbar	28			

The operation design data are based on the following conditions:

	25	% 50 %	75 %	100 %	
GT-Exhaust flow	ưh	1151,0	1152,5	1403.5	
GT-Exhaust temperature	°C	434	528	541,3	
Ambient temperature	°C	27	27	27	
Ambient rel. humidity	%	83	83	83	
Atmospheric pressure	mbar	1013	1013	1013	

2

Operating Manual

HEAT RECOVERY STEAM GENERATOR

Volume : Section :3.0 Page :6/6 Status :31.Oct.1995

MUARA KARANG CCPP II

3.2.2 Distillate oil operation

		L	oad condit	ion (MCR)	
High pressure system:		25 %	50 %	75 %	100 %
Superheater outlet steam flow	t/h	43,2	99,0	137,9	171,8
Superheater steam outlet pressure	bar (g)	40	47,5	70,6	88,17
Superheater steam temperature	°C	335	425	513,8	518,7
Drum pressure	bar (g)	40,7	48,9	72,7	91,1
Drum temperature	°C	251	262,6	288,4	304,2
Transfer water temperature	°C	157	159,4	159,1	158
Continious blow down	kg/h			approx. 85	4
		<u> </u>			
Low pressure system:		25 %	50 %	75 %	100 %
Superheater outlet steam flow	t/h	15,1	20,3	14,1	15,7
SH, steam outlet pressure	bar (g)	5,6	6,0	6,0	5,8
SH. steam outlet temperature	°C	248	267,8	297,2	314,7
Drum pressure	bar (g)	5,7	6,1	6,0	5,9
Drum temperature	°C	157	159,4 '	159,1	158
Condensate flow to deaerator	kg/s		55,16	57,21	52,06
Condensate inlet temperature	°C	125	7		
Gas side pressure drop	mbar	28			

The operation design datas are based to following conditions

		and the second shall be an an an and the second sec			the second se	
	11000	25 %	50 %	75 %	100 %	
GT-Exhaust flow	t/h		1153,2	1155,4	1407,3	
GT-Exhaust temperature	°C		437	530	541,8	
Ambient temperature	• °C		27	27	27	
Ambient rel. humidity	%		83	83	\$3	
Atmospheric pressure	mbar		[1013	1013	1013	

Comparison of Mechanical and Chemical Properties between American, DIN and BS specifications

Staffman Gund		Sandara S	Lilliya. Mitant		Michael Properties PSS		ingthemer	
		Natus	linde	1 19461	Territe	Yes	Terrate	YWE
ASTMÁ ZIE TP XM		S/ERW	A 17	>307		×107270	۸XX	7214
(son metundi)	CONTIN-45	6-CHWEFW		>104	7111546545	>2750	\$10.71 0	эЦI
3 3925 334-5 CB			42-30	×235	7(20)-10(30)	>34 193	50.1-362.4	ويجد
NUTWARKSHIP SEA SALWG-TP SIMT			2417	2057	712204	200000	\$6228	200
RT 2015-004-0-22		A Signature	end faith	×25	21/220-102/208	>36100	84.1-704	326.9
\$3%# A \$12-12 \$0+34		S/CRW	5817	587	>75008	>90000	200	\$21.0
£\$046 GB (1.400) 1	DIPH ATTAIN	NUMBER	40.425	>:86	71115-89530	NZ3920	SQ2754	sina
ATTE A 12-TP 3011		WERW]	3422	>172	xiano	122200	244.4	SIL
(2014 \$90(E,J304) *	UPI 1740	BARRING W	\$46-BIS	2110	\$4000-64590	>25000	655765	SRU
55 3675 306-5 34		5	100-02	>755	11203-105200	DOMES	07.1-X3. €	التتجر
ustreaser and the second		197 8	>40	2572	>7007	>3526	248.0	⇒£2 3
5 M54% 6 12		W GMAN	490-490	>	71203-100200	×2900	\$2,17,14.1	22
SATIM A 310-TH 916		#C:3#	5877	>877	375 86 4	>37760	>\$2.0	37.5
E 18 CHAR 2528 [1.4941] 13	業 教 任 470-88	B.C. BARRACE	2007214	>254	45723-10007*	PHONE I	#5,875.8	2210
13114 A 200-TP 210 (A 240-TP 210-S)		er#	ə 4 17	>207	573830	53200	فتعر	5 8 0.9
Little and the second sec		LACON	2017	10%	×7500	10000	2.5%	283,8
(#CNIEIo 189 (1.4401) ") ")	DN (244)	SARRANDEW	490-045	124	71115-00500		10.6768	. x?1.£
第 50551余寺 X章		3	\$1971P	245	747/04/04/00	20000	Q.1-72.5	255
LYILLA SOLUP SINA SOLUP SIN		84	>817	3437?	y:75000	>\$2003	351.0	215
15 JED 514 4 28		WESTING THIS	areana Diferra	5365	34.995-160199	36878.4	\$1725	>210
este Anterpatem		SEP.	>617	54877	10000	>30080	343,0	्रत
E & CANNIG LALE (1.4401) ½ 7	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SARAWAR Y	404-85	9407 1	7111542580	>30000	60,676.5	210
131W 6 312-17 716 L		6459W	34683	H17Z	>700236	\$2500	>R.I	217.5
K 2 CONNIN THE ET. A 45 9 7 7	DIM 17445	SARAHERW	बन इन्हा ई	5126-207	ACCULUTION (1997)	×20452	15.8764	12
85 365376-8 14		5	-100-163	3255	71,200-180200	20100	50.1-70.A	\$21.9
ASTH A THE THE SERVICE HIS IS		17 M	≫un	2015	>>>00000	×29000	, energy	×17.5
85 3025-11 6-6 2 2		W CHWEFN	89(5-160	>475 S	21 258 -120200	5130	\$4,679.4	>21.0
ISTRAILETPIRI	_	2 521	>\$17	>207	>75000	>30000	3.53.0	×21.5
50 P.207 100 10 100 10 10			500.792	*****	11112.044		(54.7% A	
en musikers senedensen i 1	MRX 33 440	and the second	VIGZIE	- Cont	74605-002903	154165	109 1.25 6	3460
22 10 Yande 1 (8 1 %						~~~~~	70.178.4	
运行以大关举·TP 324(天空中-TP 32)		<i>₹₽₩</i>	>%?	57297	>750a	******	3453.6	স্থাত
es 305-171-3 42		WERKEFT;	\$10-710	2025	741004(00100	134193	2.672 5	>24.0
857WA112-177 221 N		NEPM	>\$17	1207	*75206	>370.07	×52,7	321.0
E IOCHER FORLASHIN	Deri 12640	SCRUEFV	6803.754	- १९९४	21116-104529	230900	50.6-75.0	21.0
K2MK302-00-307		3/5711	NIV.	×207	>7510	×30800	9.52K	
In statistic, can be extended			AND 173-		22416 106874		#10.75 A	
BS \$855-347-3 18	1744E	G	510-710	345	74100-501100	>35206	62.142.5	125.0
aster a successful southers		EC.W	134	3977	*27989222	MAR	1	-210
antes en activitano e la real d'Alf Rappo (). Antes en activitano e la real d'Alf Rappo ().		orn			PT NAW			
85 2015-317-5 17	- A.	W SHARFWO	115-710	>245	NICE-LOIG	1,5408	92.1.57.5	L 🐝
азтильтетрыти		MERN	Tiác	5207	>75005	>300071	9 2 20	s21.0
1 ISCARN WE IN ASSASS	THE STEAS	SERVICEN	40714	100	211106-106674	1000	50.6-79.0	100
ter and mer and and a sound for sublicitients. It	find the same	E water and the			1 Add and a second seco		1	1

7 For most discount ston and he this with whow many passes are negled a constant at 0.00 percent in moneyary in grades 127 and neglements by here have nearly passes and have nearly been and the state of TP 350 L and the set of the state of the state

TPS TUBE & PIPE SIZES

156

TABLE 1 - SATURATION LINE (TEMPERATURE) - continued

Temp. Abs.Press. *C b#		Specific Enthaloy kJ/kg		Spe	Specific Entropy & kJ/kg °C			Specific Valums dm ³ /kç			
t _y	P	ħ,	n Ig	ъ ø	s,	***	' g	*1	"ty	*	l _s
150.0	4.760	632,1	2113,2	2745.4	1,8416	4.9941	6.8358	1.0908	391.36	392.46	150.0
152.0	5.021	535.5 640.8	2110.1	2746.5	1.8518	4,9750	5.8268 5.0170	1,0919	381,59	382.69	151.0
153,0	5,155	645,1	2103.8	2748.5	1.6019	4.9368	6.2029	1.0941	362.93	364.02	152.0
154,0	5.293	649.4	2100.6	2750.0	1,8922	4,9178	6.8000	1.0953	354.01	355,10	154,0
155.0 156.0	5.433 5.577	553.8 858.1	2097.4	2751.2 3757 1	1.8923	4,6988	6.7911 5 7921	1,0964	345.35	346.44	155.0
157.0	5.723	662,4	2091.0	2753.4	1.9124	4.8611	6,7735	1.0987	328.77	329.67	100.0
158.0 159.0	5.872 6.025	666.8 671.1	2087.7	2754.5	1.9224	4,8424	6,7648	1.0999	320.84	321.94	158,0
160.0	6.181	675.5	2081.3	2756 7	1,0444 1 8,496	4 8060	6 7475	1,1010	200.04	306.70	123,0
161.0	8.339	679.8	2078.0	2757.8	1.9525	4,7854	6,7389	1,1034	298.38	299.49	160.0
162.0	6.502 # car	684.2-	2074.7	2758.9	1.9624	4.7679	6,7303	1.1046	291.32	292.42	162.0
164.0	6.836	692,9	2068,1	2759.9	1.9724	4,7309	6.7218	1,1058	284,45 277,78	285.56 278.89	163.0 164.0
165.0	7.008	697,3	2064.8	2762.0	1.9923	4.7126	6.7048	1.1082	271.29	272.40	165.0
166,0 167 0	7,783	701.6	2061.4	2763.1	2.0022	4,6942	6.6964	1.1095	264,98	266.09	166.0
168.0	7.545	710.4	2054.7	2764.1	2.0121	4,6759	5,5880	- 1,1107	258.85	259,96	167.0
ס.ר	7,731	714.7	2051.3	2766.1	2,0318	4:6395	6.6713	1,1132	247.08	248.20	169.0
170.0	7.920	719.1	2047.9	2767.1	2.0416	4.6214	6.6630	1.1144	241,44	242.55	170.0
172.0	8.311	727.9	2041.1	2769.0	2.0515	4,5033 4,5033 4,5033	6.6546 6.6465	1.1157	235.95	237.05	171.0
173,0	8.511	732.3	2037.7	2769.9	2.0711	4.5673	6,6384	1,1183	225.41	226.52	173.0
174,0	8,716	736.7	2034.2	2770.9	2.0809	4.5493	6.6302	1,1196	220.35	221.47	174.0
175.0	8.924	741,1	2030.7	2771.8	2.0906	4.5314	6,6221	1.1209	215.42	216.54	175.0
177.0	9,353	743.3	2027.3	2772.7	2.1004	4.5136	5,6140	1,1222	210.63	211,75	175.0
178.0	9.574	754,3	2020.2	2774.5	2,1199	4.4780	6.5979	1.1248	201.45	202.54	178.0
179.0	9,798	758.7	2016.7	2775.4	2, 1296	4.4603	6.5899	1.1262	196.98	198,11	179.0
180.0 181.0	10.027	763.1	2013.1	2776.3	2.1393	4,4426	6.5819	1.1275	192.67	193.80	180.0
182.0	10,498	772.0	2006.0	2778.0.	2,1490	4,4250	6.5660	1.1289	188.47	105,60	181.0
103.0	10.738	776,4	2002.4	2778.8	2,1683	4.3898	6.5591	1,1316	180.39	181.53	183.0
184.0	10.981	780.9	1998.9	2779.6	2,1780	4.3723	6,5500	1,1300	176.51	177.64	184.0
185.0	11.233	785.3	1995.2	2790.4	- 2.1875	4,0548	6.5424	1,1344	172.72	173.86	185.0
187.0	11.747	788.7	1991.5	2781.2	2,1972	4.3374	6.5346	1,1358	169.03	170.17	186.0
188.0	12.010	798.6	1984.2	2782.8	2.2164	4_3026	6.5191	1.1286	161,93	163.07	165.0
189,0	12.278	803,1	1980,5	2783.5	2.2260	4,2853	6,5113	1,1401	158,51	159,65	189.0
190.0 191.0	12.551 12.829	807.5	1976,7	2784.3	2,2356	4.2680	6.5036	1,1415	155.17	156.32	190.0
192.0	13.111	816.4	1269.3	2785.7	2.2547	4.2338	6.4883	1,1444	148.25	149.90	192.0
33.0 194.0	13.398 13.690	820.9 625.4	1965.5	2788.4	2.2542	4.2164	6,4806	1,1459	145.66	145.80	193.0
195.0	13.987	829 9	1957.0	3747 9	4 100 10	4 1021	C ACCA	8 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 20	140.92	104.0
196.0	14,289	034.4	1954,1	2788.4	2.2928	4,1651	6.4975	1.1504	136.52	137.97	196.0
197.0	14.596	839,9	1950.2	2709.1	2.3023	4,1480	6.4503	1,1519	134.02	135.17	197.0
193.0	15.226	847.9	1946.4	2789.7 2790_3	2.3117	4,1310	6,4428 6,4352	1,1534 1,1540	131,78 128,61	132.44 129,77	198,0 199.0
200.0	15.549	852.4	1938.6	2790.9	2.2307	4.0971	6.4278	1.1565	126.00	127.16	200.0
201.0	15.877	856,9	1934.6	2791.5	2.3401	4.0202	6.4203	1,1580	123,48	124,62	201.0
202.0	16.210 16 %±0	861,4 544 0	1930,7	2792.1	2.3495	4,0633	8,4128	t.1596	120,37	122.13	202.0
204.0	16.893	870.5	1922.8	2792.7	2.2590	4,0454 4,0296	6,2980	1.1617 1.1628	118.55 116.16	117,34	204.0
205.0	17.243	875,0	1518.8	2793.8	2,3778	4.0128	6,3905	1,1644	113.66	115.00	205.0
A39.0 207.0	17,599	879.5	1914,7	2794.3	2.3972	3.9951	6,3832	1,1560	111,60	112.77	205.0
208.0	18,326	898.G	1.0101	4794.8 2795.1	3000.5 0204 C	3.9793	5 30er	1,1676	107 23	103.40	208.0
209.0	18.699	892,2	1902.5	2795.7	2,4153	3,9459	6.3512	1,1709	105.13	106.30	209.0
210.6	19.077	£97.7	1098.5	2796.2	2.4247	39393	6.2529	1,1726	103.07	104.24	210.0

1

Analisis Termal..., Ulil Azmi, FT UI, 2009

Lampiran A-2

Proses Simulasi EFD Dan AutoPIPE

٠

•

LAMPIRAN PROSES SIMULASI

A. Proses Simulasi

A.1. Simulasi EFD

- A. Proses Simulasi Pada Sisi Inlet LP Evaporator
- B. Proses Simulasi Pada Sisi Spiral LP Evaporator
- C. Proses Simulasi Pada Sisi Outlet LP Evaporator

Proses simulasi dari ketiga proses diatas sama. Artinya temperatur keluaran dari simulasi A digunakan sebagai temperatur masukan simulasi B dan temperatur keluaran simulasi B digunakan sebagai temperatur masukan simulasi C. Parameter gas buang (debit, tekanan dan temperatur) dari ketiga simulasi diatas juga sama. Yang membedakan dari ketiga simulasi diatas hanyalah luas penampang masuk gas buang.

Diambil dari program EFD

Parameter geometri dapat dilihat pada subbab parameter geometri

A.1.2. Pembuatan Lid

Lid berfungsi sebagai penutup setiap bagian model geometri yang berlubang. Jadi model geometri harus tidak terdapat bagian yang terbuka, sehingga inlet dan outlet yang terbuka harus tertutup dengan lid.

Gambar 2. Pembuatan Lid

Diambil dari program EFD

A.1.3. Pembuatan Project Configuration

Wassed frager (tasatigunation			(7 '%)
	Configurators		199
	Configuration region	1111 Diale #1	
	Convert storigantions		
Comparison Contend Salaria Diagonal Stationerus Billion Contended Billion Contended			
Construction State Productions Constructions Conditioners Constructions Constructio		1	
LE: New Statute			
Contract The Contract State			2 9
	 D at - 		<u>***</u>

Gambar 3. Pembuatan Project Configuration

Diambil dari program EFD

Pembuatan project configuration ini berfungsi untuk memberikan nama terhadap simulasi

yang akan kita lakukan. Untuk simulasi ini penulis memberi nama "inlet evaporator".

A.1.4. Pendefinisian Satuan

Gambar 4. Pendefinisian Satuan
Diambil dari program EFD

Pemilihan satuan disesuaikan dengan satuan dari data-data yang telah kita dapatkan. Sehingga kita tidak mengalami kesulitan ataupun harus mengkonversikan ke satuan yang lain. Pada simulasi ini penulis memilih satuan SI.

A.1.5. Pendefinisian Tipe Analisis

Gambar 5. Pendefinisian Tipe Analisis

Diambil dari program EFD

Ada 2 tipe analisis, yaitu internal dan eksternal. Pada simulasi ini penulis memilih menggunakan tipe internal. Hal ini dikarenakan pipa LP Evaporator berada dalam ruangan yang didalamnya mengalir gas buang yang memanaskan air didalam pipa. Sedangkan didalam pipa LP evaporator mengalir air.

A.1.6. Pendefinisian Fluida Kerja

Gambar 6. Pendefinisian Fluida Kerja Diambil dari program EFD

Analisis Termal..., Ulil Azmi, FT UI, 2009

Pada proses simulasi ini digunakan dua buah fluida kerja, yaitu :

- 1. Air yang mengalir didalam pipa LP Evaporator
- 2. Gas buang yang berfungsi untuk memanaskan air.

A.1.7. Pendefinisian Material Pipa

Material yang digunakan untuk pipa LP evaporator adalah St 35.8/1 dengan karakteristik sebagai berikut :

٠

477	J/(kg.K)
15	W/(m.K)
1670	K
	477 15 1670

A.1.8. Pendefinisian Mesh

Yerahi) - Hamarika anaf Lawasariy y Dinasii	ihour (? 🔀
	I I and approximate and the set of the matrix and space approximate and the set of the s
	Maranan ann ann Rhananan an Bhallacaca Dharanan agusthadann a' Cas Mainann, an T Gastannan
	Manner wit fullen

Gambar 8. Pendefinisian Mesh

Diambil dari program EFD

Resolusi meshing yang digunakan pada ketiga jenis pipa berbeda-beda. Hal ini disesuaikan dengan model geometri tiap-tiap jenis pipa. Maka penggunaan mesh resolution tiap-tiap jenis pipa adalah sebagai berikut ;

- Pipa inlet evaporator : Mesh resolution 3
- Pipa spiral : Mesh resolution 1
- Pipa outlet evaporator : Mesh resolution 4

sehingga untuk resolusi yang lebih tinggi komputer tidak mampu untuk mensimulasikan model geometri tersebut.

A.1.9. Pendefinisian Kondisi Batas

a. Sisi Inlet LP Evaporator

• Air masuk	JAL •	
- Tekanan	: 1013250	Pa
- Temperatur	: 433	К
• Flow air keluar	: 0,172	kg/s
• Luas penampang aliran	: 0,342	m ²
• Flow gas buang keluar	: 0,980	kg/s
 Flow gas buang keluar 	C ·	
- Tekanan	: 17473	Pa
- Temperatur	: 507	К
 Dinding sisi kiri header 	: Real wall	
 Dinding ketiga sisi lain 	: ideal wall	

• Dinding ketiga sisi lain : Ideal wall

A.2. Simulasi AutoPIPE

A.2.1. Pendefinisian General Model Options

🗟 General Model Opti	ions ?X
Project ID :	Tesis
Prepared by :]	Uli Checked by: Uli
Piping Code : 8211 20	erter Elphig
Service level	Seismic fevel.
Léetime (hrs)	Lifetime mondoring system :
Pipelg code to calculate SIF	for General piping.
Units file name - Imput :	
Vertical axis direction :	Y-5042 -
Number of thermal/pressure	cases: 1 Ambient temperature : 70.0
Libraries - Companyort :	AUTOPIPE + Material: AUTO8311 -

Gambar 12. Pendefinisian General Model Options

Diambil dari program AutoPIPE

Ada beberapa hal yang harus diperhatikan pada bagian ini, yaitu ;

- a. Piping Code : B31.1 Power Piping
- b. Satuan : SI
- c. Ambient Temperatur : 30 °C

A.2.2. Pendefinisian Segment

🖾 Segm	ent				[?[×]
Segment r	ame: 🖸				
Name of R	ist point :	A00	-		
Qu etter	a shaqti point. Q	Ö≱∕;;n! "	ſ	Ľ	
Offsæts -	DX:	0.00	DY: [0.00 DZ:	0.00
Pipe data i	identifier :	ſ	*	<u></u>	
				OK Cance	Help

Gambar 13. Pendefinisian Segment

Diambil dari program AutoPIPE

Pada awal pendefinisian awal ini digunakan nama segment A dengan koordinat. sebagai berikut;

- a. Koordinat DX : 0.0
- b. Koordinat DY : 0.0
- c. Koordinat DZ : 0.0

A.2.3. Pendefinisian Properties Pipa

Firm I denotifier :	SHPER			
Rominal Dismeter: Actual G.D.	INS JUB	- balisedule Wall Halokowawa :	26	
Convolon Allow : Insul thickness :	<u>0.000</u>	Mil toleranoon : print molenul brind tisease		
Lining Inkolonaac Long weid lactor: Seecific glavity of s	1 0.00 1.00	Lennin destory	I 1.00	
Pipe Haterial :	-240-317L	Losag morkeder Hoop modeler Griger recoluty	013455 013455 013455	
Cold allowsbie : Minimum pield :	128.62	Evencing Politerin evit a	20053 0.3390	

Gambar 14. Pendefinisian Properties Pipa

Diambil dari program AutoPIPE

Pada bagian ini kita harus memasukkan nilai dari dimensi pipa yang akan kita desain. Jadi setiap kali kita ingin mengganti dimensi dari pipa, maka kita harus memasukkan kembali nilai dari dimensinya dengan memberikan nama identitas pipa (*Pipe Identifier*) yang berbeda dengan dengan nama pipa sebelumnya. Selain memasukkan nilai dimensi dari pipa, kita juga harus mendefinisikan material dari pipa tersebut. Pada simulasi ini digunakan jenis pipa A 240-317L yang memiliki properties sama dengan St 35.8/l. Parameter-parameter yang dimasukkan adalah :

- a. Diameter pipa : 31,8 mm
- b. Tebal pipa : 2,6 mm
- c. Material pipa : A 240-317L
 - Cold allowable : 129,62
 - Minimum yield : 206,84

A.2.4. Pendefinisian Tekanan dan Temperatur

B Pressure	h Temperature		2 🗙
Cument point :	ODA		
Select cases:	1 to 🛱 🗖 6 to 70. 🎵 17	10 35 🦵 16 10 20 🗂	
Case number -	Auto I Auto	Auto Aito	ఎడల
Pressure :	0.84		
Temperature :	j 238		
Expansion :	ा हा जि		r r
Hot modulus :	P 29.9430 F		
Hot allow. :	P 21261.00 F		r r
Apply only blos	charges F		
			OK Concel Help

Gambar 15. Pendefinisian Tekanan dan Temperatur

٠

Diambil dari program AutoPIPE

Temperatur dan tekanan ditentukan sebesar ;

a. Temperatur : 239 °C

b. Tekanan : 0,94 MPa

Nilai ini merupakan nilai dari operasi lp evaporator.

A.2.5. Pendefinisian Anchor

Pemberian anchor pada bagian ini dikarenakan pipa penukar kalor dalam kondisi dilas pada header inlet evaporator. Selain pada titik awal, pemberian anchor juga dilakukan pada titik akhir yang menyatu dengan header outlet LP evaporator.

ጅ Anchor											? ` ×
Point Name :		20									
Anchor type :	Pligid		~]								
Track. \$11.	×	[Rigid	۲:	ſ	Fligid		2:	Ľ	Rixad	-
flot stiff, -	ж:	r	Rigid	¥;	ſ	Rigid		Ζ:	ſ	Figid	-
Reiseza for ham	ger koloc	tion -	×: ×:	۳۳ ۳	Y: YY:	Г Г	Z ; ZZ	, r			
Thomal anchor	movame										
Soloct cases:	1 to S	Ø	6 M 30	1	211	les i S	r	\$ ¥]	ite in	, F	
	DX		D۲	C	2	1	RX		I	R Y	PZ
τι: Γ	0.000	ſ	0.000) (000	Γ	0.00	ō	J	0.000	0.000
ļ ļ		F		[[[
		1		; /*******		1			1 1] r
			······	<u> </u>		- m			1		r 1
Beport anchor	osulty fo	- Local	Shell Stream	Anat	esia:	•		r	Ĩ		
			1000					F	OK.	Can	call Holp [

Gambar 16. Pendefinisian Anchor

Diambil dari program AutoPIPE

A.2.6. Pembuatan Model LP Evaporator

Pada dasarnya pembuatan model evaporator ini hanya terdapat dua perintah yaitu;

- a. Run point, digunakan untuk menggambar model lurus.
- b. Bend point, digunakan untuk menggambar model belokan.

💯 Run Point			<u>?</u> [X]
Add point (B)afore/(A)Rer	: Alter	Point:	ADO
None of point : 7	401		part in the second
Offset from which point (0	l-Origin):	DEA	
Generate pointe:	7	1 W	
Length	·····	A C	
Offeete - DX:	0.00 DY:	0.00 DZ	: 0.00
Apply offset to all followin	ig spainte :	Г	and the second second
Pipe data identifier :	SUPER -	_	
		OK	Cancal Help

Gambar 17. Penggunaan Run Point Diambil dari program AutoPIPE

🗷 Bend Point					\mathbb{S}
Add point (B)efore/(A)ter :	After	+	Point :	AUT	
Name of point : A02 F	tadius :	Long			
Bend type : Ebow 💌	Ç.,	r			
Offset from which point (O=Origin) :		AD			
Length:					
Offsets - DX : 10.00	DY:	;	0.00 DZ:	F F	0.00
Apply offset to all following points :		F			
Pipe data identifier : SUPE	ER 👻]			
Midpoint : I Percentage ar	round the t	send .			
		I	OX]	Cancel	Help

Diambil dari program AutoPIPE

A.2.7. Pembebanan model

1. Pipa A

	*	Panjang pipa	= 17,1	m
	•	Luas	$=\pi r^2$	
			$=\pi_{\rm c}(r_{\rm our}-r_{\rm in})$	
		1	$=\pi.(0,0159^2-0,0013^2)$	
			= 7,84 x 10 ⁻⁴	m ²
	٠	Volume	= luas x panjang	
			$= 17.1 \times 7.84 \times 10^{-4}$	
		- - -	= 0,01359	m ³
	٠	Massa	= density x volume	
			= 7860 x 0,01359	
			= 106,1	kg
	٠	Berat	= massa x gaya gravitasi	
			= 106,1 x 9,8	$(\text{kg} \times \text{m/s}^2)$
			= 1039,78	N
2.	Pipa B	1		
	٠	Panjang pipa	= 0,560	m

• Luas $= 7,84 \times 10^{-4}$ m²

	٠	Volume	$=4,4 \times 10^{-4}$	m
	٠	Massa	= 3,458	kg
	٠	Berat	= 3,458 x 9,8	
			= 33,888	N
3.	Pipa C	ι ,		
		Panjang pipa	= 16,5	m
	٠	Luas	$=7,84\times10^{-4}$	m ²
	٠	Volume	= 0,013	m ³
		Massa	= 102,8	kg
	٠	Berat	= 102,8 x 9,8	
			= 1007,44	N
4.	Pipa D			
	٠	Panjang pipa	= 0,140	m
	٠	Luas	$=7,84 \times 10^{-4}$	m ²
	٠	Volume	$= 1.1 \times 10^{-4}$	m ³
		Massa	= 0,845	kg
	٠	Berat	= 0,845 x 9,8	
			= 8,281	N
5.	Pipa E		- 7 A A I	
		Panjang pipa	= 17,1	m
	٠	Luas	$=7,84 \times 10^{-4}$	m ²
	٠	Volume	= 0,01359	m ³
		Massa	= 106,1	kg
		Berat	= 1039,78	N
6.	Pipa F	(Elbow)		
	*	Panjang pipa	= 0,0942	m
	*	Luas	$=7,84 \times 10^{-4}$	m ²
	٠	Volume	= 7,385 x 10 ⁻⁵	m ³
	٠	Massa	= 0,580	kg
	٠	Berat	= 5,688	N

- - ^ ~

7. Pipa G

D

Š

ŝ

- Panjang pipa = 0,249 m
- Luas $= 7,84 \times 10^{-4}$ m²
- Volume $= 1,96 \times 10^{-4}$ m³
- Massa = 1,54 kg
- Berat $= 1,54 \times 9.8$

Å

E

Gambar 19. Lokasi Pembebanan

٠

¢

G

P

В

Validasi Simulasi

1. Validasi temperatur air masuk header

*	Flow gas buang	: 0,88	kg/s
٠	Temperatur masuk gas buang	: 507	K
٠	Temperatur keluar gas buang	: 492	K
ŧ	Panas jenis gas buang	: 1,03	kJ/kg.K
٠	Flow air	: 0,172	kg/s
٠	Panas jenis air	: 1,98	kJ/kg.K

Berdasarkan persamaan keseimbangan energi menurut Kreith (1997):

(1)

$$mc_{ph}(T_{hln} - T_{hoat}) = mc_{ph}(T_{cond} - T_{chn})$$
0,98 x 1.03 x (507-492) = 0,172 x 1,98 x (T_{cont}-433)
15,1 = 0,35 x (T_{cont}-433)
43,2 = T_{cont}-433
T_{cont} = 476 K

2. Validasi temperatur sisi spiral

$$\hat{m}c_{ph}(T_{htm} - T_{hour}) = \hat{m}c_{ph}(T_{cout} - T_{chr})$$
3,08.1,03.(507-500) = 0,172.1,98.(T_{cout}-445)
22 = 0,35. (T_{cout}-445)
63 = T_{cout}-445

$$T_{court} = 507 \text{ K}$$

3. Validasi sisi oulet header

$$\hat{m}c_{ph}(T_{hin} - T_{hout}) = \hat{m}c_{ph}(T_{cout} - T_{cin})$$

$$0,88.1,03.(507-504) = 0,172.1,98.(T_{cout}-512)$$

$$2,7 = 0,35.(T_{cout}-512)$$

$$7,7 = (T_{cout}-512)$$

$$T_{cout} = 519 \text{ K}$$

٠

- 4. Validasi penurunan tekanan lp evaporator
 - Tekanan masuk (inlet header) : 1013250 Pa
 - Tekanan keluar (outlet header) : 937700 Pa
 - Penurunan tekanan lp evaporator : 75550 Pa (0,82 bar)

II. Validasi AutoPIPE

 Untuk menghitung reaksi tiap tumpuan (support) pada pipa lp evaporator, maka pipa lp evaporator dipotong pada pipa bagian atas yang ditumpu (support). Sehingga didapatkan gambar seperti dibawah ini

Gambar 1. Susunan Tumpuan Lp Evaporator

• Gaya reaksi tiap tumpuan q N/m R_A 2,7 m R_B

7/2

Diketahul bahwa beban terdistribusi merata adalah q = 18,77 N/m. Sehingga diperoleh reaksi tumpuan pada titik A dan B sebagai berikut:

1111

$$R_A = R_B = (q.L)/2$$

= (18,77 x 2,

2. Free Body Diagram outlet header

Gambar 2. Tumpuan Pada Bagian Outlet Header

Gambar 3. Free Body Diagram

3. Analisa perpindahan (displacement) karena beban termal

 $\delta_T = \alpha.\Delta T.L$

dimana,

δ_T Perpindahan akibat beban termal

a : Koefisien pengembangan termal

ΔT : Perubahan temperatur

L : Panjang benda

sehingga,

$$\delta_{\rm T} = \alpha . \Delta T.L$$

= 10,8.10⁻⁶.(239-30).0,0159
= 10,8.10⁻⁶.209.0,0159
= 35,8.10⁻⁶ m
 $\delta_{\rm T} = 35,8.10^{-6}$ m
= 0,035 mm

Sedangkan dari hasil simulasi dengan AutoPIPE didapatkan bahwa displacement elbow pada temperatur 239 °C adalah sebesar 0 mm.

4. Analisis Tegangan Longitudinal/Tegangan Kontinyu

A. Tegangan Longitudinal

F_{AX} = Internal axial force

= P.A_i
= 138,03 x
$$(\frac{\pi . d_i^2}{4})$$

$$= 138,03 \times \frac{\pi \cdot 1,15^2}{4}$$

= 143,29 lb
S_L = $\frac{P.d_0}{4.5}$
= $\frac{138,03 \times 1,25}{4 \times 0,1}$
= 431,34 Psi

B. Tegangan Kontinyu

$$S_{L} = \frac{P.D_{a}}{4t} + \frac{0.75 j.M_{A}}{Z} \le 1.0S_{h}$$
$$= \frac{(138).(1.25)}{4.0.1} + \frac{0.75.(1.25).(0)}{0.384}$$
$$= 431.25$$
$$= 431.25 \text{ Psi}$$

C. Tegangan Kontinyu AutoPIPE

[*w Sustained i	/sus. load margin) Maxi nai	
Shess :	417	417
Allow: :	12986	12386
Ratio :	0.03	0.03
Combin.:	GR + Max P	GR + Mass P
Expansion	(Mexi) - psi	
Stess:	67046	1
ARCHINE :	39315*	26746
flatio :	1.71	0.00
Combin :	Amb to T1	Amb to T1
Hoop (Mas	- ps:	
SUBS9:	898	656
ALOW. 1	12366	12566
Hatto :		1107
LONDEL.	Max	Max

Gambar 4. Code Stress Hasil Perhitungan

Dari hasil simulasi menggunakan AutoPIPE, didapatkan nilai tegangan kontinyu sebesar 41 psi.

T	abel	A	Hasil	Perban	dingan	Perhitungan	Tegangan	Kontinyu
					······	_	·····	

Parameter	Nilai
Tegangan Kontinyu	431,25 psi
Tegangan Longitudinal	431,24 psi
Tegangan Hasil AutoPIPE	417 psi

- 5. Analisis Tegangan Hoop
 - Gaya Hoop

$$\mathbf{F}_{\mathrm{H}} = \mathbf{P}.\mathbf{d}_{i}.\mathbf{I}$$

- = 138,03 x 1,15 x 3,7
- = 587,32 lb
- Tegangan Hoop

$$S_{\rm H} = \frac{P.d_{a}I}{2tI}$$
$$= \frac{p.d_{a}}{2t}$$
$$= \frac{p.d_{a}}{2t}$$
$$= \frac{138,03x1,25}{2x0,1}$$
$$= 862,68 \text{ Psi}$$

Tabel B Perbandingan hasil Perhitungan Manual dan AutoPIPE

Parameter	Nîlaî		
Tegangan Hoop	862,68 psi		
Tegangan Hasil AutoPIPE	898 psi		

6. Tegangan Geser

T_{max}

$$= \frac{V.Q}{A_m}$$
$$= \frac{5,72xH}{2}$$

$$\frac{5,72x1,33}{\pi(1,25^2-1,15^2)}$$

$$= \frac{7,61}{0,188}$$

= 40,47 Psi

7. Pengecekan Terhadap Keluluhan Material

 τ_{okt}

$$= \frac{1}{3[(S_{Tubbl} - 0)^2 + (0 - 0)^2 + (0 - S_{Tubbl})^2]^{1/2}}$$

= $\frac{2^{1/2} \cdot 3_{Yubbl}}{3}$
= 80 psi

. w .

_ .

A-4 Hasil Pengujan Mikro dan Makro Yang dilakukan oleh PT. EMPU AGUNG SAKTI

٠

•

Hasil Pengujian Mikro dan Makro

a. Pengujian Makroskopik

Gambar 1. Potongan Elbow Tube Yang Telah Dibelah Menjadi Dua Bagian. Diambil dari Laporan Akhir PT. EMPU AGUNG SAKTI

Sebelum belahan elbow tube seperti yang ditunjukkan pada Gambar 4.14. dipotong untuk dibuat sejumlah benda uji maka terlebih dahulu belahan elbow tube tersebut diuji permukaannya secara makroskopik baik dibagian permukaan dalam maupun dipermukaan luarnya dengan menggunakan mikroskop stereo. Hasil pengujian makroskopik permukaan elbow tube tersebut terutama disekitar daerah yang berlubang atau dibagian daerah yang mengalami penipisan ditunjukkan pada gambar dibawah ini.

Gambar 2. Permukaan Bagian Dalam dan Bagian Luar Potongan Elbow Tube Yang Telah Dibelah

Diambil dari Laporan Akhir PT. EMPU AGUNG SAKTI

Elbow tube diatas menunjukkan lubang kebocoran, permukaan dinding bagian dalamnya disekitar daerah lubang memperlihatkan tekstur berbentuk rumah atau sarang tawon (*honeycomb*). Hal ini menandakan bahwa jenis kerusakan yang terjadi pada dinding bagian dalam elbow tube tersebut termasuk *cavitation damage*. Dari gambar diatas juga terlihat dengan jelas bahwa penipisan dinding elbow tube yang disebabkan oleh *cavitation damage* tersebut umumnya terjadi di dinding bagian dalam tube dan terpusat di sekitar daerah dinding pada bagian kurvatur luar yang mengalami perubahan arah belokan yang tajam. Sedangkan penipisan yang terjadi pada bagian permukaan luar elbow tube nampaknya tidak signifikan dan penipisan tersebut kemungkinan disebabkan oleh pengaruh korosi dan/atau oksidasi akibat flue gas.

b. Hasil Analisa Komposisi Kimia

Tabel 1. Hasil analisa komposisi kimia material elbow tube dibandingkan dengan spesifikasi material menurut standar DIN

····	% Berat		
Elemen	Sample	Spesifikasi DIN St 35.8/I	
Fe	Balance	Balance	
C	0.11	≤0.17	
Si	0.24	≤ 0.35	
Mn	0.48	$\leq 0.40 - 0.80$	
P	0.022		
S	0.012	≤ 0.045	
Cr	0.0027	Y ****	

2

Analisa komposisi kimia dilakukan menggunakan Spark Emission Spectrometer dan hasil yang didapat diberikan pada Tabel 2. Dari Tabel 2 terlihat bahwa material elbow tube yang diuji termasuk jenis baja karbon rendah yang memiliki kesesuaian dengan spesifikasi DIN St35.8/I. Ini berarti bahwa material yang digunakan untuk elbow tube outlet header LP Evaporator adalah sesuai dengan spesifikasi yang disebutkan dalam operating manual.

c. Pengujian Struktur Mikro Material Elbow Tube

Setelah dilakukan pengujian makroskopik pada subbab sebelumnya, belahan elbow tube selanjutnya dipotong disekitar bagian dinding tube yang mengalami *cavitation damage* baik pada arah melintang maupun pada arah memanjang. Potongan benda uji tersebut selanjutnya dipersiapkan untuk pengujian struktur mikro dengan melakukan proses mounting, gerinda, pemolesan dan pengetsaan. Foto struktur mikro dari setiap benda uji diambil menggunakan mikroskop optik pada berbagai pembesaran 200x.

Gambar 4.16. Struktur Mikro Material Elbow

Diambil dari Laporan Akhir PT, EMPU AGUNG SAKTI

Pada gambar diatas diperlihatkan struktur mikro material elbow tube pada arah melintang. Struktur mikronya terdiri dari fasa ferit sebagai matrik dan fasa perlit sebagai fasa kedua. Dari struktur mikro yang diperoleh menunjukkan bahwa material elbow tube tersebut termasuk baja karbon rendah dengan kadar karbonnya kurang dari 0,2%, yaitu sesuai dengan hasil analisa komposisi kimia seperti pada Tabel 2. Kondisi struktur mikronya diperkirakan masih cukup baik dimana pola struktur ferit dan perlit masih jelas,

walau sudah terbentuk sejumlah grafit. Belum terjadinya perubahan pola struktur mikro disebabkan karena elbow tube tersebut dioperasikan pada suhu yang relatif rendah yaitu dibawah 2000 C. Dari gambar diatas juga terlihat bahwa kerak atau deposit hanya terbentuk didinding bagian luar elbow tube, sementara didinding bagian dalamnya hampir tidak terbentuk kerak (deposit). Disamping itu pada gambar diatas juga terlihat bentuk permukaan dinding bagian dalam elbow tube yang naik turun akibat cavitation damage tersebut.

d. Hasil Uji Kekerasan (Hardness Test)

Taper 2, mash	Of Kekerasan	(naraness iesi)	Matchar Crow I a	ice Lr Evaporator

T alesai TIT	Kode Benda Uji							
LOKASI UJI	1A	2A	3A	4A	1B			
1	210	214	214	195	185			
2	210	210	195	188	202			
3	192	195	199	181	172			
4	187	185	181	175	192			
5	175	175	181	175	197			
Rata-rata	195 HV	196 HV	194 HV	183 HV	190 HV			
	185 HB	185,5 HB	184,5 HB	174,5 HB	181 HB			
Perkiraan nilai Kuat Tarik	63.8 (kg/mm2)	64.0 (kg/mm2)	63.6 (kg/mm2)	60.2 (kg/mm2)	62.4 (kg/mm2)			

Pengujian kekerasan dengan metode Vickers telah dilakukan pada penampang melintang material elbow tube 1, 2, 3, 4 dan 5 dan hasilnya diberikan pada Tabel 3. Dari Tabel 3 terlihat bahwa nilai kekerasan rata-rata untuk kelima material elbow tube tersebut hampir sama dan ini pula menandakan bahwa kelima material elbow tube tersebut dibuat dari jenis material yang sama yaitu dari jenis baja karbon rendah dengan spesifikasi St 35.8/I seperti yang ditunjukkan pada Tabel 2. Namun demikian nilai

kekerasan yang ditunjukkan pada Tabel 3 tersebut relatif tinggi sehingga nilai kuat tariknya juga relatif tinggi. Tingginya nilai kekerasan atau kuat tarik ini kemungkinan besar disebabkan oleh efek strain hardening yang terjadi pada material elbow tube akibat proses cold bending.

e. Hasil Uji Tarik (Tensile Test)

Tabel 3. Hasil Uji Tarik Material Elbow Tube LP Evaporator

No/Kode	Dimensi	(mm)	Ao	Fy	Fm	σγ	σu	Σ
Benda uji	Lebar	Tebal	(mm2)	(kN)	(kN)	(kgf/mm2)	(kgf/mm2)	(%)
1A	18.98	3.02	57.32	18.75	26.0	33.38	46.28	36
2A	19.01	2.85	54.18	19.00	25.5	35.80	48.00	36

Keterangan : Ao = Luas penampang Fy = Beban luluh Fm = Beban maksimum

 σ y = Kuat luluh σ u = Kuat tarik Σ = Elongasi (Keuletan)

Benda uji tarik sesuai dengan standar dibuat menggunakan potongan elbow tube yang lurus. Pengujian dilakukan menggunakan mesin uji tarik Universal Testing Machine dan hasil yang diperoleh meliputi nilai kuat tarik (*tensile strength*), kuat luluh (yield strength) dan elongasi diberikan pada Tabei 4. Nilai kuat tarik yang diperoleh dari uji tarik ini ternyata lebih rendah dibandingkan dengan perkiraan nilai kuat tarik yang diperoleh dari hasil uji kekerasan seperti pada Tabel 3. Hal ini disebabkan karena benda uji untuk uji tarik diambil dari bagian elbow tube yang lurus dimana pada bagian tube yang lurus tersebut tidak terjadi efek strain hardening. Namun demikian nilai kuat tarik yang diperoleh dari uji tarik (Tabel 4) ternyata masih lebih tinggi dibandingkan dengan persyaratan minimum untuk baja karbon rendah menurut spesifikasi DIN St35.8/I. Dengan demikian material yang digunakan untuk elbow tube outlet header LP Evaporator sudah sesuai dengan spesifikasi material menurut operating manual. Namun demikian untuk aplikasi pada lingkungan aliran fluida yang terdiri dari dua fasa (campuran air dan uap) yang berpotensi menimbulkan *cavitation damage*, pemakaian baja karbon rendah dengan spesifikasi St35.8/I tersebut diperkirakan kurang memadai.

f. Hasil Analisa Kerak (Deposit) Pada Permukaan Elbow Tube

Analisa kerak atau deposit yang terbentuk balk dipermukaan luar maupun dipermukaan dalam elbow tube dilakukan dengan menggunakan metode EDS (Energy

Dispersive X-Ray Spectroscopy). Sample yang dianalisis diambil dari bagian elbow tube yang bocor atau pada bagian yang mengalami penipisan akibat cavitation damage. Analisa EDS ini dimaksudkan untuk menentukan unsur-unsur yang terkandung didalam kerak (deposit) yang terbentuk, sehingga kemudian dapat digunakan untuk mengidentifikasi jenis korosi yang mungkin terjadi pada permukaan elbow tube tersebut. Dari sample telah dipotong dari elbow tube untuk analisa dengan EDS tersebut menunjukkan bahwa unsur-unsur yang terkandung didalam kerak (deposit) yang terbentuk pada permukaan luar elbow tube terdiri dari : iron (Fe), oksigen (O), karbon (C), sílicon (Si) dan sulfur (S). Unsur Fe, O dan C yang dominan merupakan produk/senyawa oksida Fe2O3/FeO yang terjadi pada suhu tinggi dan ikatan Fe3C pada baja. Disamping terjadi oksidasi akibat subu tinggi, adanya unsur S didalam kerak mengindikasikan bahwa permukaan luar elbow tube telah mengalami korosi, walau tingkatan korosi yang terbentuk diperkirakan masih awal dan tidak signifikan. Hal ini juga didukung dari hasil uji struktur mikro dimana sejumlah permukaan luar elbow tube telah memperlihatkan pitting corrosion walau tingkatannya relatif masih dangkal dan belum terlalu signifikan. Sedangkan pada dinding bagian dalam elbow tube yang mengalami penipisan akibat cavitation damage, kerak yang terbentuk relatif sangat tipis dan memperlihatkan kandungan unsur-unsur utama seperti Fe. O dan C. disamping ada beberapa unsur lain seperti Si, Na dan Al. Unsur Fe, O dan C berasal dari senyawa oksida Fe2O3/FeO yang terjadi pada suhu tinggi pada permukaan dalam elbow tube yang dibuat dari baja, dan unsur C berasal dari ikatan Fe3C didalam baja. Sedangkan unsur-unsur Si, Na dan Al diperkirakan membentuk senyawa berupa endapan tipis yang dipengaruhi oleh kualitas air yang digunakan pada HRSG. Hal ini menunjukkan bahwa dinding bagian dalam elbow tube tidak mengalami korosi yang berarti.

6