- — —— i b
a

MECHANIZING LOGIC IN AN ASPECT ORIENTED ATTRIBUTE
| GRAMMAR SYSTEM

L

A. Azurat, L. S. W. B. Prasetya, and S. D. Swierstra

Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
g-mail: {ade,wishnu,doaitse}@cs.uu.nl

ABSTRACT

This paper reports a preliminary work on using an
aspeet oriented attribute grammar system called
UU_AG to develop computer aided verification tools.
UU_AG provides an abstract and modular way fo
develop such a tool and later on incrementally upgrade
them. This paper shows an example of a toy
programming logic implemented in UU_AG., We will
show the implementation of the verification condition
generator (YCG). We extend the implementation with
a new feature such as run-time-trace generator to
validate the computation of the implemented inference
gngine.

Keywords: Verification tools, Attribuie grammar,
Verification condition generator

Manuscript received [10 Maret 2003]. Revised [12 Agustus 2003].

1, INTRODUCTION

Program verification uses mathematical models to
characterize the entire set of ithe possible behaviour of a
program and with a suitable logic we can prove properties
about it without having to actually execute the program,
Although it is superior to testing, because of its complete
coverage, in practice program verification is often
considered as expensive (requiring people who are highly
skilled in mathematics). In certain areas however (safety or
mission critical systems), we have seen that people are
beginning to consider verification as a serious option.

Crucial in making the approach more affordable is the
use of tools, Many components of verifications tools carry
out non-trivial transformations on programs or formulas.
When developing such a component we often start with a
version that only offers a set of basic capabilities, and in

some later stages incrementally extend it with more
capabilities, such as error messaging, reporting, and run-
time validation capabilities. However, these kind of
extensions often cannot be composed hierarchically.
Instead, they have to be tightly woven together. From
experience we know that this is very error prone! So we
want to have a better way to implement a verification too!
~a tool for producing trustworthy programs should in itself
be very trustworthy,

Attribute grammar [8] is a programming formalism that
allows us to declaratively describe (recursive) tree walking
programs (the programmer does not need to specify the
computation flow). Systems implementing attribute
grammars, such as the UU_AG system[5], are able to read
attribute grammar specifications and generate their
implementations. Such a system is suitable for specifying
and generating various components for verification tools,
e.g. as shown in [7]. Another very attractive feature of
UU_AG is that it supports an dspect Oriented {AQ) style
of programmingf4]. Unlike conventional programming,
AQ programming allows aspects {capabilities) of thc same
program to be described separately (modularly),

To demonstrate the virtue of UU_AG we wiil first
show how a toy programming logic can be implemented
using the system and then we will show how a new aspect
can be added to it. In this example, the new aspect
generates, for each individual run of the logic’s inference
engine, a8 Hoare triple styled proof to certify the run. In
general, the same technique can be used to modularly add
a run-time validation capability to a program.

Section 2 gives a brief introducticn of UU_AG —more
information about the system can be found in [5]. Section
3 shortly describes the logic that we use as the running
example (called VSPL). Section 4 shows how VSPL is
described in UU_AG, Section 5 shows how to add a new
aspect to VSPL’s inference engine. Section 6 concludes,
We will assume the reader’s familiarity with functional
programming and data type representation of grammars.

JURNAL [LMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 3 NO.2, OKTOBER 2003 77

Code 2.1 :

Dath Bintree

SFEM Bintree
| Leaf lhs.minleaf = Rint

| Leaf Int
| Node left:RBintree right:Bintree
ATTR Bintree [| | minleaf :; Int]

| Hode lha.minlLeaf = @left.minlLeaf 'min' @right.minLeaf

2. UU_AG THE SYSTEM

Code 2.1 shows a specification of a Haskell-like or
ML-like data type called Bintree for representing binary
trees and a function to compute the sma!lest leaf in a given
binary tree.

The DATA section specifies the data type. Note that
unlike in Haskell or ML, in we can specify the name of
each field of a given data constructor, For example, the
constructor Node has two fields. One is called left and it
contains the left sub-tree under the node. The other is
cailed right, containing the right sub-tree.

UU_AG is an attribute grammar system. It means that
it is specifically intended for the programming of
(recursive) tree walking programs, such as a program that
computes the smallest leaf in a given tree. In the attribute
prammar formalism, such a program is usually called a
semantic function as it can be thought to 'read’ a tree and
internret it to something else. Semantic functions are
specified in a SEM section. Note that the attribute
grammar style of specification is more abstract than, for
example, an ordinary Haskell program: we only need to
describe what the function does on each node (and leaf),
without having to explicitly code the recursion itself —see
the SEM section in Example 2.1,

During the recursion we usually need to pass
inforination from parent to child and from child to parent.
In the attribute grammar formalism, atiributes are used for
this purpose. We can think that each node in a tree is
extended with these attributes. Attributes which are used to
hold data passed from parent to child are called inherited
attributes, Those that are used to pass information in the
other direction is called synthesized attributes,

Attributes are specified in the ATTR section. For the
computing the smallest leaf, we only need one synthesized
attribute calied minLeaf containing an integer which is the
minimum value of the leaves under the node to which the
attribute is attached.

Given the specification as in Code 2.1 the UU AG
system will generate a Haskell implementation thereof.

Quite often a semantic function has to walk a tree
several times and in a certain order to produce its final
result, Each walk can be thought to compute n set of
attributes which are needed as the input for the pext walk.
For example, replacing the leaves in a given tree T with
the value of the smallest leaf in T (so-called repniin
nroblem [2]) will require the tree to be walked twice, For a
complicated semantic function, e.g. a type inference
function, specifying the right order with which the tree
should be walked is not trivial. relies on the lazy
evaluation of its target language (Haskell) to automatically
discover the right order in which the attributes are
computed. So, this complication is abstracted away, the
user does not need to specify nor to be aware of the order
of with which the attributes are to be computed.
Another benefit of UU_AG is its aspect oriented style. We
will explain this as we po later,

3. RUNNING EXAMPLE: VSPL

Consider a very simple programming logic -
abbreviated VSPL - whose languages are described in
Figure 1. A program is either a skip, an assignment, a
nested conditional, or a catenation of iwo statements.
VSPL has only two types of values: Boolean and Integer.
Programs are specified using Hoare triples, for example:

Example 3.1 : Swapping value
{x=AMNy=B)

Xi=x+y

y =Xy,

X =X-¥

(x=BAy=A)

78 JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 3 NO.2. OKTOBER 2003

The specification can be verified by first computing the
weakest pre-condition of the program, and then show that
the pre-condition implies this weakest pre-condition:

Theorem 3.2 : Spec-reduction Rule
[P = prQl
(F1&1{Q}

The weakest pre-condition wp can be computed in the
standard way:

Definifion 3.3 : WP
wp skip = @
wp (v o= E) @ = QIE/V]

wp {if g then = g =>uWp 5 Q) A

S else IV Q {—=g = wp T Q)
wp (5 ; T) Q@ = wp I {wp § Q)
4, IMPLEMENTATION

To implement VSPL in UU_AG we first need to define
a set of Haskell-like data types to represent the grammar of
VSPL. Values of these data types hiive a tree-like structure
and represent VSPL programs and specifications, complete
with their syntactic structures. This approach for
representing grammars and sentences is quite standard.

The grammar of VSPL has three {major) syntactic
categories: Stmt, Expr, and Spec representing statements,
expressions, and specifications, Code 4.1 shows (a fraction
of) the data types representing these categories.

Code 4,1: VSPL datatype

DATA Stmt
| Skip
| Assign x: Variable ¢ Expr
| Catenation s: Stmt t: Stmt
| fTLenElse g Expr

g Stmt

1. Stmnt

DATA Expr

| Negate ™ p: Expr

| Equal x: Expr y: Expr
| Imp p: Expr q: Expr

Once the data types are specified, we can define semantic
functions to process values of those data types. For

example, the cede below shows how the reduction of a
VSPL specification as specified by the inference rule in
Theorem 3.2 can be coded in the UU_AG:

Code 4.2;
ATTR Spec [}]| ve: Expr]
SEM Spec
| Hoa lhs.v¢ = Imp @p.itself @s.wp

The ATTR section specifies one synthesized attribute
called ve. We intend it to hold the result of the reduction.
The SEM section above constructs the representation of
the expression above the horizontal line (often called
verification condition) in Theorem 3.2 and put it in the
attribute ve. The itself keyword represents the entire
subtree that hangs under a particular field of a given node
(data constructor). Given the above code, UU AG will
produce the corresponding Haskell implementation
(executable).

Once a VSPL specification is reduced by the above
function, we still need to prove the resulting formula. We
cannot use UU_AG for this purpose. There are however
enough theorem provers, such as HOL [3], which are well
suited for finishing the task.

Note that the function specified above requires the
information in the aftribute called wp. We have not
specified this attribute yet, but it is intended to held the
weakest pre-condition of the given statement relative to the
given post-condition. Definition 3.3 abstractly specifies
how this ¢can be computed. The code below shows ils
UU_AG implementation:

Code 4.3 : wp computation

ATTR Stmt [q. Expr| | wp: Expr]
SEM Stmt

| Skip ths.wp = @lhs.q

| Assign |hs,wp = subst

. itsell
@e.itself
@lhs.q
| Catenation lhs.wp = @s.wp
5.9 =@twp
t.q =(lhs.q

The function specified above will recursively walk a
tree of type Stmt, which is the representation of an actual
VSPL statement. It also receives the post-condition, which
is passed in the inherited attribute q. The result is stored in
the synthesized attribute wp.

Remember that a synthesized attribute A to a node N
is used to pass information by the processing in N to the
processing of N ’s parent. In the current implementation
of UU_AG, A is accessible from N ’s parent, but not

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 3 NO.2, OKTOBER 20303 19

from A itself. The way to get around this is to keep a
local copy of A . This has to be added by hand, but in the
future version of UU_AG we hope that this will be
automated. For the extension which we will discuss in the
next section it is useful for each node in an Stmt tree to
have access to its wp attribute. The code below shows 2
[raction of the new UU_AG code for the wp computation.
Notice that there are now two wp attributes: a synthesized
wp, and a local wp which is simply a copy of the other.

Code 4.4 : wp computation

SEM Stmt
| Skip loc.wp = @lhs.q
Ihs.wp = Giwp
| Assign loc.wp = subst
{@x.itself
e.its¢lf
1he.q

ths.wp = @wp

5. MULTIPLE ASPECTS

The function to compute wp from the previous section,
which is used to reduce a given VSPL specification, is
very simple, so it is reasonable to say that it can be
implemented quite reliably. In a more general we may
have a quite complicated reduction algorithm. In an
attempt to increase its reliability we may want to add a
capability to produce a trace of validation code for each
run of the program P implementing the algorithm. A
validator can be constructed to read such a code and is
used to validate a given run of P . Typically, such an
extension has to be built by weaving it into P s
recursions, which is of course very error prome. The
UU_AG system allows us to program each capability
(aspect) separately.

Let us assume that in this case the validation code we
try to generate is simply a Hoare triple styled proof
confirming that the resulting wp will at least be strong
enough to guarantee the post-condition of a given VSPL
program. To implement this, we first define some
datatypes to represent VSPL proofs —see Code 5.1, So, a
tree of type Proof represents a proof. Given such a proof
O, the field goal specifies the VSPL specification which is
proven by 0 . The field ruleName specifies the name of
the VSPL inference rule that will prove the goal.
Application of this rule may generate premises which in
turn need to be proven. The premises are specified in the
premises field. Given such a proof, a suitable pretty printer

can be written to render it to, for example, something like
Figure 2. We will also need a validator to validate such a
proof, which we will not show since this is not the main
issue here. |

Code 5.1 : Proof datatype

DATA Proof
| Rule goal | Spec
premisas | Prooflist
ruleName : String

Code 5.2 shows a (Haskell} implementation of
Theorem 3.2 (for (automatically) reducing a given
specification) that one would likely come up with when
implementing it directly (without a generator such as).

Code 5.2 :

1 weg top p 8 t = vo where (vg,) = veg p
5 t

2

3 weg i@ Expr -> Stmt -> Expr ->»
{Expy, Expr}

4

5 wcg p {Assign x e} q = (ve,wp!)

B where

7 ve = Imp p wp

g wp = zubst x e g

9

10 wecg p (Catenation s t} g = {ve,wp]

11 where

12 dummy = TT

13 {_,wp_t} = vcg dummy t g

14 {vC,Wp) = vcg p 3 wp_t

15

The function veg_top does the reduction. It calls veg,
which computes the reduction, and along with it the wp
whose value is needed in computing the reduction,

Code 5.3 shows the same functions veg_top and vcg,
but now they are extended with the ability to co-produce a
validation trace, Notice that to construct sucn a trace we
have te collect some run-time information of veg. So that
is why its construction has to be weaved into the recursion
of veg (because it requires run-titme information. As can be
seen, the code becomes cluttered, To make things worse,
we are not only required to weave a new piece of code into
the existing one, but we also have to change the old code.

80 JURNAL [LMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 3 NO.2, OKTOBER 2003

x=y=8BAay=Ad>x-y=8Brypy=A4

Substituti on
x-y=8Bay=Alx=x=ylx=8Bay=4
M

&

xwix=y)m BAx-pred=2x—(x-~Y)=Bax~-y=4

substitution
[x=-(x-p)=Barx=y=Ady=x-ylx-y=8BaAy= 4} o

caderneriion
[x~(x—-p)=Bax=-p=dly=x-y ;x=x~y{x=8ary=4}
M
w
xe Ary=sB=2x+y-~(x+y-yI=BArx+y-y=4A
Substitnifon
x=dry=8Blx=x+y{x-(x-yI=Bax-—y=4d} \r _
cfenation

.

{x=Aday=8Blx=x+y,pi=x-y, x=x=-y{x=8Bna)y=4}

Figure 2: The Heare Logic rule traces of Example 3.1

WO OE =] O LM WP Lk B

Ba B B = = e e e e
o= S owp o F oy 0 Le [B O

Code 5.3 ;

veg_top p 8 £t = (ve,vtrace) where (vg, , vtrace) = vegp s t
vey i ERpr -> Stmk -> Expr -> [ExXpr, Expr, Proof)

veg p o (stmt@{Assign x €)) g = (vg,wWp,virace)
where
ve = Imp B wWp
wp = sSubst x e g
virace = Rule [(HOA p stmt g} premises ruleMame
ruleName = "Asgign rule”

premises = [Rule (vallid (Imp p wpl) [] “"Pred. logic"]
veg p [(strt@{Catenaticen s t)) g = [vc,wp,vtrace)

where

dummy = TT

{_, wp_t, _v _) = veg dummy £t g

(_¢ _r rulet,vtrace_t) = vcg wp_L t g
(ve,wWp,rule_s, vtrace 8} = vcg p s wp_t

vtrace = Rule {Hoa p stmt g) premises ruleName
ruzleName = "Catenation rule"

premises = [vtrace_s, vtrace_t)

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 3 NO.2, OKTOBER 2003

.-"‘-____"‘"—n—. -

=
f

USAT

.
e
T i
[

Y
I =

——

RETEL .

¥

2L

T
trxi": R,

P
UNIVEK3iTAS

gl

LQrs

L3

'!B‘??éﬁ.
v

Notice how lines 13-14 in the old code have to be
changed to lines 16-17 in the new code. So, extending a
function in this way is really error prone.

Now, let us see how we do that in UU_AG. Code 5.4
shows the attributes and the top level function nceded to
implement the generaiion of the proof. Note that we
simply add another set of ATTR and SEM declarations.
The system will take care that all SEM declarations are
properly merged in generated implementation,

The ATTR sections below state that we have a new
attribute called proof. it will contain the validation trace
that we want to co-produce,

Code 5.4 ;
ATTR Spee [|lproof Prool]
ATTR Stmt [preC Expr ||proof:Proof]

The SEM sections below tells us how this attribute
proof is computed. |

Notice that the SEM sections are really separate
sections! They do not clutter other sections —for example,
the SEM section defining how wp is computed. Neither do
we have to patch the code of the existing sections.

Note also that the attributes have to be computed in a
certain order. For example the premises cannoct be
computed before the wp attribute is computed. For
example, in Code 5.3 this order is specified in lines 13-15",

However, notice that in UU_AG we do not need to
specify this order. The system relies on lazy evaluation to
automatically discover the right order, which is often very
helpful since finding the right order can be non-trivial.

6. CONCLUDING REMARKS

The idea of using attribute grammar formalism to develop
a verification tool is not new. For example [7] shows a
proof editor as a component of language editor specified in
an attribute grammar style. However the combination of
the attribute grammar and aspect oriented approach seems
to be new. The example shown in this paper is very
simple, but we believe that the approach is quite potential.
We have been working on the re-implementation of a
medium sized verification tool for distributed systems
called xMech[1]. Compared to the conventional way used
to implement the first version of xMech, we really
appreciate the modularity provided by the UU_AG system.

The idea of generating vealidation code to validate a
program’s run (Section 5) is closely related to the ideas of
online proof, proof carrying code, and ceriifying model
checkers [6]. We are however are not aware of their
implementation in the attribute grammar style nor in the
aspect oriented style,

local.ruleName

Code 5.5 : Constructing Validation Code

5EM Spec
| Hoa 1hs .proof = @s.procf
5.preC = @p.itself
SEM Stmt
| Asaign

local .premises

lhs .proof

I Catenation

s.preC
t.pre
lhs.procf

logcal.ruleName = “Sequential rule”
local.premises = [@s,procf,

“Assign rule”
[Rule (Valid (Imp @lhs.preC Qwp))
[
“Pred logic”]
Fule (Hoa @lhs.preC @lhs.itself @lhs.q)
Gpremises
Grulename

gt.proof |

= Alns.precC

m @3t wp

Rule {Hpa @lhs.preC @lhs.itself @lhs.qg!}
Gpremises
@rulename

'For the sake of example, let us pretend that in Code 5.3

Haskell is not lazy.

82

JURNAL iLMU KOMPUTER DAN TEKNOLOG] INFORMASI, VOL. 3 NO.2, OKTOBER 2003

—— ——

REFERENCE

[1] A, Azurat and I, §. W. B. Prasetya. A preliminary
report on xmech, Technical Report UU-CS-2002-008,
Institute of Information and Computing Sciences
Utrecht University, P, O. Box 80.089 3508 TB Utrecht
The Netherlands, January 2002,

[21Qege de Moor, Kevin Backhouse, and §S. Doaitse
Swierstra, First-class attribute grammars. Informatica
(Slovenial, 24(3), 2000,

[3] Mike J. C. Gordon and Tom F. Melham. Iniroduction
to HOL, Cambridge University Press, 1993,

[4] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In Mehmet
Akit and Satoshi Matsuoka, editors, ECOOP '97 -
Object-Oriented Programming 1l o European
Conference, Jyvdskpld, Finland, volume 124] of
Lecture Notes for Computer Science, pages 220242,
Springer-Verlag, June 1997,

[5] Andres Lh, Arthur Baars, and Doaitse Swierstra.

Using the. AG System. downloadable;
http://www.cs uu.nl/people/arthurb/data/ AG/AGman.p
i—ﬁg_ .

(6] G. C. Necula. Proof-carrying code. In POPL 97: The
24" ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 106119,
1997,

[7]T. Reps and T. Teitelbaum. The Synthesizer
Generator: A System for Constructing Language-Based
Editors, Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1988,

[8] 8. D. Swierstra and H. H. Vogt. Higher order attribute
grammars. In H, Alblas and B. Melichar, editors,
Attribute Grammars, Applications and Systems, volume
545 of LNCS, pages 256-296, Springer, 1991,

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 3 NO.2, OKTOBER 2003

83

