PERANCANGAN STRUKTUR SEL SURYA LEVEL ENERGI RENDAH DAN MENENGAH UNTUK MENDUKUNG MODUL BEREFISIENSI TINGGI

SKRIPSI

Oleh

<u>RAKRIAN BRE ANANTA AJI</u> 04 04 03 070 9

PROGRAM STUDI TEKNIK ELEKTRO DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA 2008

PERANCANGAN STRUKTUR SEL SURYA LEVEL ENERGI RENDAH DAN MENENGAH UNTUK MENDUKUNG MODUL BEREFISIENSI TINGGI

SKRIPSI

Oleh

RAKRIAN BRE ANANTA AJI

04 04 03 070 9

SKRIPSI INI DIAJUKAN UNTUK MELENGKAPI SEBAGIAN PERSYARATAN MENJADI SARJANA TEKNIK

PROGRAM STUDI TEKNIK ELEKTRO DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA

2008

PERNYATAAN KEASLIAN SKRIPSI

Saya menyatakan dengan sesungguhnya bahwa skripsi dengan judul :

PERANCANGAN STRUKTUR SEL SURYA LEVEL ENERGI RENDAH DAN MENENGAH UNTUK MENDUKUNG MODUL BEREFISIENSI TINGGI

yang dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik pada Program Studi Teknik Elektro Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia, sejauh yang saya ketahui bukan merupakan tiruan atau duplikasi dari skripsi yang sudah dipublikasikan dan atau pernah dipakai untuk mendapatkan gelar kesarjanaan di lingkungan Universitas Indonesia maupun di Perguruan Tinggi atau Instansi manapun, kecuali bagian yang sumber informasinya dicantumkan sebagaimana mestinya.

Depok, 25 Juni 2008

Rakrian Bre Ananta Aji NPM 04 04 03 070 9

PENGESAHAN

Skripsi dengan judul :

PERANCANGAN STRUKTUR SEL SURYA LEVEL ENERGI RENDAH DAN MENENGAH UNTUK MENDUKUNG MODUL BEREFISIENSI TINGGI

dibuat untuk melengkapi sebagian persyaratan untuk menjadi Sarjana Teknik pada Program Studi Teknik Elektro Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. Skripsi ini telah memenuhi syarat/sah untuk diujikan pada Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia.

Prof. Dr. Ir. Nji Raden Poespawati, M.T NIP. 131 595 837

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada :

Prof. Dr. Ir. Nji Raden Poespawati, M.T

selaku dosen pembimbing yang telah bersedia meluangkan waktu untuk memberi pengarahan, diskusi, dan bimbingan serta persetujuan, sehingga skripsi ini dapat selesai dengan baik.

Rakrian Bre Ananta Aji

NPM 04 04 03 070 9

Dosen Pembimbing Prof. Dr. Ir. Nji Raden Poespawati, M.T

Departemen Teknik Elektro

PERANCANGAN STRUKTUR SEL SURYA LEVEL ENERGI RENDAH DAN MENENGAH UNTUK MENDUKUNG MODUL BEREFISIENSI TINGGI

ABSTRAK

Pengembangan energi alternatif yang tidak habis pakai telah lama menjadi perhatian utama, khususnya pemanfaatan energi matahari dengan menggunakan sel surya. Berbagai isu mengenai ketersediaan bahan bakar yang semakin berkurang dan pentingnya kelestarian lingkungan, membuat para pengusaha mencoba mengembangkan sel surya melalui proyek-proyek dengan investasi yang sangat besar. Sebagai gantinya, sel surya yang memiliki sumber energi tak terbatas dan tidak ada polusi, terus dikembangkan. Satu hal yang dicoba untuk selalu ditingkatkan hingga saat ini adalah efisiensi sel surya dalam mengubah energi sinar matahari menjadi energi yang dapat langsung dikonsumsi.

Disain dasar dari perancangan sel surya kali ini, dibuat untuk mendukung modul berefisiensi tinggi menurut dasar-dasar perancangan yang sudah ada, seperti *surface texturing*. Disain modul berefisiensi tinggi memanfaatkan *concentrator* dan cahaya yang dibagi menjadi dua tingkatan energi spektrum cahaya yaitu spektrum cahaya rendah dan spektrum cahaya menengah. Program simulasi yang digunakan adalah perangkat lunak PC1D.

Concentrator berguna untuk mengkonvergensi cahaya matahari sehingga daya yang dihasilkan menjadi lebih besar, menurut perbandingan luas concentrator dan luas permukaan sel surya. Spektrum cahaya dibagi menjadi dua tingkatan energi menggunakan sebuah prisma dan dikonversi dengan sel surya yang berbeda. Dengan demikian, perlu mempelajari sifat-sifat meterial dan karakteristik cahaya untuk mendisain kedua buah sel surya. Sel surya level energi menengah lebih mengoptimalkan penyerapan cahaya biru pada kedalaman persambungan sebesar 0,65 μ m, sedangkan untuk sel surya level energi rendah lebih mengoptimalkan penyerapan cahaya merah pada kedalaman persambungan sebesar 4 μ m. Dari hasil uji coba, akan diperoleh efisiensi total yang merupakan penjumlahan efisiensi dari kedua buah sel surya, yaitu sebesar 46,18 %.

Kata kunci : modul berefisiensi tinggi, surface texturing, concentrator

Rakrian Bre Ananta Aji NPM 04 04 03 070 9 Counsellor

Prof. Dr. Ir. Nji Raden Poespawati, M.T

Electrical Engineering Department

LOW AND MIDDLE ENERGY SOLAR CELLS DESIGN FOR HIGH EFFICENCY MODUL

ABSTRACT

The development of unlimited resources has become hot topics specifically for solar energy use employing solar cells. The world's energy crisis and environmental issues have been a headline in this present. It makes the developers invest their funds in solar cells research programs. The result is the device that can convert solar irradiation into other energy and without pollution. One of the most important measurements for solar cells is the efficiency.

Basic concept for the designs refers to the existing standard designs, such as surface texturing. Solar cells design equips the high efficiency modul. Further, the standard designs are combined with high efficiency modul using concentrator to absorp light more effective. The light spectrums are divided into two levels those are called middle energy spectrums and low energy spectrums. Solar cells are designed using modified PC1D software.

Concentrator is used for collecting solar irradiation and to produce higher power output from the ratio of concentrator's width and solar cell's surface area. The energy spectrums are splitted using prism and converted by different cell materials. Studying the material properties and light characteristics is needed to design both solar cells. Middle energy solar cell optimizes blue spectrum absorption with 0,65 μ m of junction depth. Low energy solar cell optimizes red spectrum absorption with 4 μ m of junction depth. The total efficiency which is the sum efficiency from both solar cells is 46,18 %.

Keywords : high efficiency modul, surface texturing, concentrator

DAFTAR ISI

	Halaman
PERNYATAAN KEASLIAN SKRIPSI	ii
PENGESAHAN	iii
UCAPAN TERIMA KASIH	iv
ABSTRAK	V
ABSTRACT	vi
DAFTAR ISI	vii
DAFTAR GAMBAR	ix
DAFTAR TABEL	xi
DAFTAR LAMPIRAN	xii
DAFTAR ISTILAH / SIMBOL	xiii
BAB I PENDAHULUAN	1
1.1 LATAR BELAKANG	1
1.2 PERUMUSAN MASALAH	1
1.3 TUJUAN	2
1.4 BATASAN MASALAH	2
1.5 METODOLOGI ANALISIS	2
1.6 SISTEMATIKA PENULISAN	3
BAB II DASAR TEORI PERANCANGAN	4
2.1 EFISIENSI	4
2.2 FAKTOR-FAKTOR YANG MEMPENGARUHI EFISIENS	SI 7
2.2.1 Energi Bandgap	7
2.2.2 Temperatur	7
2.2.3 Recombination Lifetime	8
2.2.4 Intensitas Cahaya	8
2.2.5 Densitas Doping dan Karakteristik	8
2.2.6 Kecepatan Rekombinasi Permukaan	10
2.2.7 Resistansi Seri	10
2.2.8 Metal Grid dan Optical Reflection	11,

2.3	DASAR-DASAR PERANCANGAN STRUKTUR DASAR SEL	
	SURYA	11
2.3.	1 Disain Struktur Permukaan Sel surya	11
2.3.	2 Disain Pendifusian Material Sel surya	14
2.4	DASAR-DASAR DISAIN MODUL BEREFISIENSI TINGGI	15
2.4.	1 Concentrator Pada Modul Berefisiensi Tinggi	15
2.4.	2 Sel Surya Untuk Mendukung Modul Berefisiensi Tinggi	15
BAB III	DISAIN STRUKTUR SEL SURYA	17
3.1	DISAIN KEDALAMAN PERSAMBUNGAN SEL SURYA	17
3.1.	1 Kedalaman Persambungan Sel Surya Level Energi Menengah	17
3.1.	2 Kedalaman Persambungan Sel Surya Level Energi Rendah	18
3.2	DISAIN PARAMETER YANG DISIMULASIKAN	18
BAB IV	UJI COBA DAN ANALISIS	20
4.1	UJI COBA SEL SURYA LEVEL ENERGI MENENGAH	20
4.2	UJI COBA SEL SURYA LEVEL ENERGI RENDAH	23
4.3	ANALISIS DISAIN	26
4.3.	1 Analisis Kedalaman Persambungan	26
4.3.	2 Analisis Konsentrasi Doping	26
4.3.	3 Analisis Ketebalan	27
4.3.	4 Analisis Surface Texturing	27
BAB V	KESIMPULAN	31
DAFTAR	ACUAN	32
LAMPIR	AN	33

DAFTAR GAMBAR

Gambar 2.1	Halaı Kurva penjumlahan <i>I-V characteristic</i> dan rangkaian dengan	nan
	beban	5
Gambar 2.2	Vm/Voc, Im/Isc, dan FF sebagai fungsi dari qVoc/ykT	6
Gambar 2.3	Densitas arus sel maksimal yang dapat dicapai	7
Gambar 2.4	High doping effect	9
Gambar 2.5	Voc sebagai fungsi bulk doping density	9
Gambar 2.6	Sel back surface field	10
Gambar 2.7	Antireflection coatings	12
Gambar 2.8	Perbandingan permukaan datar dan surface texturing	12
Gambar 2.9	Bentuk piramida untuk surface texturing permukaan sel surya	13
Gambar 2.10	Foto tekstur piramida terbalik permukaan silikon menggunakan	
	SEM.	13
Gambar 2.11	Light trapping	14
Gambar 2.12	Koefisien absorpsi sebagai fungsi panjang gelombang photon	16
Gambar 2.13	Skema fabricated POC (proof of concept)	16
Gambar 3.1	Radiasi cahaya matahari Blackbody dan AM1.5	17
Gambar 3.2	Wavelength vs Absorption Depth	18
Gambar 3.3	Disain sistem sel surya untuk modul berefisiensi tinggi	19
Gambar 3.4	Disain modul sel surya berefisiensi tinggi	19
Gambar 4.1	Pengaturan quick batch 1 untuk thickness sel surya level energi	
	menengah	21
Gambar 4.2	Pengaturan quick batch 1 untuk background doping sel surya	
	level energi menengah	21
Gambar 4.3	Hasil iterasi manual front diffusion sel surya level energi	
	menengah	22
Gambar 4.4	Pengaturan quick batch 1 untuk surface texturing sel surya level	l
	energi menengah	23
Gambar 4.5	Pengaturan quick batch 1 untuk thickness sel surya level energi	
	rendah	24

Gambar 4.6	Pengaturan quick batch 1 untuk background doping sel surya	
	level energi rendah	24
Gambar 4.7	Hasil iterasi manual front diffusion sel surya level energi	
	rendah	25
Gambar 4.8	Pengaturan quick batch 1 untuk surface texturing sel surya	
	level energi rendah	25

DAFTAR TABEL

Halaman

Tabel 4.1	Quick Batch untuk Menentukan Parameter Sel Surya Level Energi	
	Menengah	20
Tabel 4.2	Quick Batch untuk Menentukan Parameter Sel Surya Level Energi	
	Rendah	23

DAFTAR LAMPIRAN

		Halaman
L1.	HASIL BATCH SIMULASI PC1Dv5.9 UNTUK THICKNESS SEL	
	SURYA LEVEL ENERGI MENENGAH	33
L2.	HASIL BATCH SIMULASI PC1Dv5.9 UNTUK BACKGROUND	
	DOPING SEL SURYA LEVEL ENERGI MENENGAH	34
L3.	HASIL BATCH SIMULASI PC1Dv5.9 UNTUK SURFACE	
	TEXTURING SEL SURYA LEVEL ENERGI MENENGAH	35
L4.	HASIL BATCH SIMULASI PC1Dv5.9 UNTUK THICKNESS SEL	4
	SURYA LEVEL ENERGI RENDAH	36
L5.	HASIL BATCH SIMULASI PC1Dv5.9 UNTUK BACKGROUND	
	DOPING SEL SURYA LEVEL ENERGI RENDAH	37
L6.	HASIL BATCH SIMULASI PC1Dv5.9 UNTUK SURFACE	
	TEXTURING SEL SURYA LEVEL ENERGI RENDAH	38
L7.	HASIL SIMULASI PC1Dv5.9 UNTUK SEL SURYA LEVEL	
	ENERGI MENENGAH	39
L8.	HASIL SIMULASI PC1Dv5.9 UNTUK SEL SURYA LEVEL	
	ENERGI RENDAH	40

DAFTAR ISTILAH / SIMBOL

Simbol	Keterangan	Nilai
q	Muatan listrik	1.6 x 10 ⁻¹⁹ coulomb
ε ₀	Permitivitas ruang hampa	8.85 x 10 ⁻¹⁴ farad/cm
k	Konstanta Boltzmann	$8.617 \text{ x } 10^{-5} \text{ eV/K}$
h	Konstanta Planck	6.63×10^{-34} joule-sec
m_0	Massa elektron ringan	9.11 x 10 ⁻³¹ kg
kT	Energi termal	0.0259 eV (T=300 K)
kT/q	Tegangan termal	0.0259 V (T=300 K)

BAB I

PENDAHULUAN

1.1 LATAR BELAKANG

Kebutuhan energi yang semakin tinggi seiring dengan perkembangan teknologi, semakin membuat kita berpikir perlunya energi alternatif, khususnya penggunaan energi yang tidak habis pakai. Salah satu pemikiran yang paling sederhana adalah dengan memanfaatkan energi matahari, dalam hal ini menggunakan sel surya. Bahan utama dari sel surya adalah bahan semikonduktor, dapat berupa silikon, germanium, galium arsenide, atau gabungan unsur-unsur lain dari golongan III dan V. Tidak seperti kebanyakan bahan lainnya, semikonduktor dapat berperan sebagai konduktor atau isolator tergantung dari jumlah *doping* berupa donor atau akseptor yang dicampurkan ke semikonduktor tersebut. Penyinaran pada persambungan (*junction*) dalam sel surya, dapat melepaskan ikatan elektron dan *hole* yang akan menjadi *carrier* atau arus.

Keuntungan sel surya adalah jumlah sumber energi cahaya matahari yang tidak terbatas, bebas polusi, dan mudah dalam perawatannya. Penggunaan sel surya tidak hanya terbatas pada sumber energi satelit, namun saat ini sudah banyak penggunaannya sebagai sumber energi mobil dan rumah sel surya. Selain itu, kebutuhan akan sumber energi alternatif dalam bentuk *portable* juga semakin meningkat dan mulai dikembangkannya sel surya sebagai sumber energi *portable*. Pemanfaatan sel surya sebagai sumber energi *portable*, mengharuskan sel surya mempunyai efisiensi yang tinggi dalam luasan permukaan yang sangat terbatas. Teknologi modul sel surya yang ada sekarang ini, masih memerlukan ukuran modul yang besar dalam penggunaannya sebagai sumber energi *portable*, sehingga efisiensi menjadi hal yang sangat penting.

1.2 PERUMUSAN MASALAH

Terbatasnya luasan penyinaran cahaya dalam sel surya *portable*, memerlukan suatu modul dengan efisiensi yang tinggi. Dalam usaha mencapai

efisiensi yang sangat tinggi, berbagai pendekatan telah ditemukan dan sering disebut dengan pendekatan untuk *ultra-high efficiency solar cells*. Pada dasarnya, berbagai pendekatan ini menggunakan gabungan karakteristik dari semikonduktor, dengan struktur sel surya yang berbeda-beda pula. Pertimbangannya adalah jenis panjang gelombang atau frekuensi dari cahaya yang dipancarkan sinar matahari yang akan dimanfaatkan menggunakan sel surya yang berbeda berdasarkan kedalaman persambungan (*junction depth*).

1.3 TUJUAN

Tujuan pembuatan skripsi ini adalah untuk merancang dua buah sel surya level energi rendah dan menengah, yang selanjutnya akan digunakan dalam modul berefisiensi tinggi untuk sumber energi *portable*. Parameter-parameter yang akan diteliti dalam pembuatan sel surya ini adalah ketebalan tiap-tiap bagian sel surya dan *doping* yang akan diberikan pada sel surya tersebut serta *surface texturing*.

1.4 BATASAN MASALAH

Permasalahan yang dibahas dalam skripsi ini, yaitu pengaruh ketebalan, tingkat *doping*, dan *surface texturing* terhadap efisiensi sel surya dalam luasan permukaan tertentu. Tingkat energi yang terbagi dua dalam modul efisiensi tinggi akan dimanfaatkan oleh dua sel surya dengan kedalaman persambungan yang berbeda.

1.5 METODOLOGI ANALISIS

Pemilihan disain modul yang tepat untuk merancang sel surya memerlukan studi literatur melalui buku-buku cetak dan jurnal-jurnal yang ada di internet. Setelah menemukan metode atau pendekatan yang sesuai, maka perancangan dilakukan dengan mensimulasikan sel surya menggunakan perangkat lunak PC1Dv5.9. Perangkat lunak PC1D memiliki berbagai jenis parameter yang diperlukan untuk merancang sel surya. Parameter-parameter yang disimulasikan adalah ketebalan, jumlah *doping* dan *surface texturing* yang diberikan pada material semikonduktor.

Data pertama diperoleh dengan memvariasikan ketebalan tiap-tiap material semikonduktor yang berbeda-beda. Data kedua didapatkan dengan memvariasikan

nilai *doping* yang diberikan pada material semikonduktor. Selanjutnya, dilakukan analisis untuk menentukan ketebalan dan jumlah *doping* agar diperoleh efisiensi yang terbaik berdasarkan nilai arus, tegangan, dan daya yang dihasilkan. Setelah didapatkan ketebalan dan *doping* yang optimal, langkah terakhir adalah mensimulasikan parameter *surface texturing*.

1.6 SISTEMATIKA PENULISAN

Penulisan skripsi ini dibagi dalam lima bab, yang terdiri dari :

Bab I terdiri dari latar belakang adanya masalah, perumusan masalah, tujuan penyusunan skripsi, batasan-batasan pada masalah yang akan dibahas, metodologi analisis yang menjelaskan tentang langkah-langkah yang dilakukan dalam penyusunan skripsi, dan sistematika penulisan. Bab II akan memaparkan dasar teori untuk perancangan yang telah dipelajari melalui studi literatur. Bab III berisi disain struktur sel surya yang akan dibuat dan disimulasikan. Bab IV berisi uji coba dan analisis hasil sel surya yang telah disimulasikan. Bab V memaparkan kesimpulan pada skripsi ini.

BAB II

DASAR TEORI PERANCANGAN

Perancangan sel surya ini akan menggunakan dasar-dasar perancangan sel surya yang sudah ada sebelumnya, kemudian dikombinasikan dengan modul baru berefisiensi tinggi untuk membuat sel surya efisiensi tinggi. Batas efisiensi dari material semikonduktor tunggal adalah sekitar 31% [1]. Hal ini dikarenakan tidak ada satu pun material yang dengan sempurna mengabsorpsi sesuai dengan keseluruhan *range* radiasi cahaya matahari yang berkisar antara 0,2 – 3 eV [2]. Cahaya dengan energi di bawah *bandgap* tidak akan diabsorpsi dan dikonversikan menjadi energi listrik, sedangkan energi di atas *bandgap* akan diabsorpsi, namun kelebihan energinya akan hilang dalam bentuk energi panas.

Oleh sebab itu, perancangan ini dilakukan dengan tujuan untuk memaksimalkan penggunaan sel surya level energi menengah dan level energi rendah, sehingga bisa mengabsorpsi cahaya, khususnya cahaya biru dan merah dengan lebih optimal.

Modul berefisiensi tinggi ini juga akan menggunakan *concentrator* untuk mengeksitasi pencahayaan sinar matahari. Konsep perancangan ini akan membagi cahaya menjadi dua tingkat energi atau frekuensi cahaya, yaitu level energi menengah dan rendah dengan menggunakan suatu prisma, sehingga sel surya akan dibuat dua buah untuk menyesuaikan dengan panjang gelombang atau frekuensi yang akan diterima.

Dasar-dasar perancangan sel surya ini melingkupi penggunaan *surface texturing* untuk mengurangi pemantulan cahaya dan pendifusian material semikonduktor untuk mendapatkan lebar persambungan paling optimal dan mengurangi terjadinya rekombinasi, sehingga diharapkan dapat membuat sebuah disain sel surya untuk mendukung modul berefisiensi tinggi.

2.1 EFISIENSI

Saat dioda diberikan penyinaran dan tegangan bias secara bersamaan, total arus dioda, yaitu penjumlahan I_{sc} (arus hubung singkat) dan *dark current* dioda.[3]

$$I(V) = I_{sc} + dark \ current \ dioda \ sebagai \ fungsi \ V$$
$$= I_{sc} - I_0 [e^{(qV/\gamma kT)} - 1] \dots (2.1)$$

Gambar 2.1(a) mengilustrasikan penjumlahan ini. Jika intensitas cahaya dan I_{sc} berubah-ubah, maka kurva I-V dapat naik dan turun secara keseluruhan. Gambar 2.1(b) adalah rangkaian ekivalen solar sel. Tegangan keluaran dan arus dari solar sel ditentukan hanya saat beban dihubungkan ke solar sel. Beban baterai ideal memunyai tegangan terminal yang tetap diasumsikan dalam Gambar 2.1(c), sementara itu, beban resisitif diasumsikan dalam Gambar 2.1(d). Saat beban dihubung singkat (*short circuit*) ($V_{out} = 0$), I_{out} sama dengan I_{sc} . Saat beban dihubung terbuka (*open circuit*) ($I_{out} = 0$), V_{out} yang berhubungan disebut tegangan hubung terbuka (*open circuit voltage*), V_{oc} . Dari Persamaan (2.1) [3]

Daya keluaran adalah [3]

Gambar 2.1 Kurva penjumlahan *I-V characteristic* dan rangkaian dengan beban.[3]

Berdasarkan kurva *I-V*, terlihat bahwa pasangan tertentu dari V_{out} dan I_{out} disebut V_m dan I_m yang akan memaksimalkan P_{out} . [3]

 V_m dapat dicari dengan mensubstitusi I_{out} dalam Persamaan (2.3) dengan $I_{sc} - I_0 \times \left[e^{(qV_{out}/\gamma kT)} - 1\right]$, mendiferensiasikan P_{out} terhadap V_{out} sama dengan nol. Jika V_m diketahui, maka I_m dan P_m dapat dihitung. Berdasarkan $qV_{oc}/\gamma kT$, V_m bernilai sekitar 75 sampai 90 persen dari V_{oc} , dan I_m bernilai sekitar 85 sampai 97 persen dari I_{sc} , sehingga akan didapat nilai *fill factor* (*FF*) [3],

FF merupakan perbandingan area segiempat terbesar yang sesuai di bawah kurva I-V dengan hasil kali $V_{sc} \ge I_{oc}$. Daya keluaran maksimal yang dapat dicapai yaitu[3]

FF adalah fungsi dari $qV_{oc}/\gamma kT$, atau $\ln[(I_{sc}/I_0)+1]$ seperti ditunjukkan dalam Gambar 2.2.

Gambar 2.2 Vm/Voc, Im/Isc, dan FF sebagai fungsi dari qVoc/ykT [3]

Efisiensi konversi daya dari solar sel adalah [3]

$$\eta \equiv \frac{P_m}{P_{in}} = \frac{V_{oc} \times I_{sc} \times FF}{incidentsolarpower}$$
(2.7)

Untuk memperoleh efisiensi konversi yang tinggi, maka diinginkan nilai I_{sc} yang besar atau efisiensi pengumpulan yang tinggi, V_{oc} yang besar atau *dark current* yang kecil, dan *fill factor* yang tinggi atau sudut lancip pada kurva *I-V*. Dalam spektrum cahaya, 26 persen energi berada di dalam *photon-photon* yang mempunyai hv < 1,1 eV.

2.2 FAKTOR-FAKTOR YANG MEMPENGARUHI EFISIENSI

2.2.1 Energi Bandgap

Untuk Si yang mempunyai $E_g = 1,12$ eV, solar sel silikonnya mempunyai $V_{oc} \approx 0,55$ V. GaAs yang mempunyai $E_g = 1.43$ eV, solar sel GaAs mempunyai $V_{oc} \approx 0,9$ V. V_{oc} meningkat sebanding dengan kenaikan E_g . Dari Gambar 2.3 kita lihat bahwa nilai maksimum yang dapat dicapai J_{sc} (densitas arus) menurun berbanding terbalik dengan kenaikan E_g . Dengan demikian, diketahui bahwa efisiensi solar sel akan maksimum pada E_g tertentu.

Gambar 2.3 Densitas arus sel maksimal yang dapat dicapai [3]

Efisiensi maksimum dapat dilewati dengan sistem yang membagi spektrum cahaya menjadi dua level energi, kemudian tiap level energi diserap jenis sel surya dengan kedalaman persambungan yang berbeda.

2.2.2 Temperatur

Gambar 3.13 juga menunjukkan bahwa efisiensi menurun dengan temperatur yang meningkat. Nilai V_{oc} bergantung pada temperatur tetapi tidak dengan I_{sc} . Dari Persamaan (2.10) [3]

$$\frac{dV_{oc}}{dT} = \frac{1}{q}\frac{dE_g}{dT} - \frac{k}{q}\ln\left[\frac{B}{J_{sc}}\left(\frac{C_p}{N_d} + \frac{C_n}{N_a}\right)\right] = \frac{1}{q}\frac{dE_g}{dT} - \frac{1}{T}\left(\frac{E_g}{q} - V_{oc}\right)\dots\dots(2.11)$$

Untuk Si, $dE_g/dT = -0,0003 \text{ eV/}^{\circ}\text{C}$, $E_g/q - V_{oc} \approx 0.5 \text{ V}$, maka $dV_{oc}/dT = -2 \text{ mV/}^{\circ}\text{C}$. Untuk setiap kenaikan temperatur sebesar 1°C, V_{oc} turun sekitar 0,002/0,55 \approx 0,4% dari nilai saat dalam temperatur ruang, dan efisiensi turun dengan persentase yang hampir sama. Dalam Persamaan (2.11) bagian dE_g/dT biasanya dapat diabaikan. Nilai dV_{oc}/dT dapat diprediksi dari nilai E_g dan V_{oc} yang diketahui pada suatu sel.

2.2.3 Recombination Lifetime

Untuk memperbesar nilai I_{sc} , maka *carrier-recombination lifetime* harus yang lama. Dalam material *indirect-gap* seperti Si, sejumlah *carrier* yang signifikan dibangkitkan sampai jarak 100 µm dari persambungan, dan diharapkan *recombination lifetime* yang lebih lama dari 1 µs. *Lifetime* yang lama juga mengurangi *dark current* dan meningkatkan V_{oc} . Untuk mencapai *recombination lifetime* yang lama, perlu pencegahan rekombinasi di tengah selama pembuatan material dan fabrikasi sel.

2.2.4 Intensitas Cahaya

Konsep yang diperlukan adalah memfokuskan cahaya pada solar sel dengan konsentrator, sehingga solar sel yang kecil dapat memproduksi daya listrik besar. Misalkan, intensitas cahaya matahari dikonsentrasikan sebanyak X kali, maka daya masukan per area sel dan J_{sc} akan meningkat sebanyak X kali [3]. V_{oc} juga meningkat berdasarkan Persamaan (2.10) sesuai dengan $(kT/q)\ln X$. Dan daya keluaran meningkat lebih dari X kali dan efisiensi konvesi menjadi lebih tinggi.

2.2.5 Densitas Doping dan Karakteristik

Faktor lain yang dapat mempengaruhi V_{oc} adalah densitas *doping*. Semakin tinggi densitas *doping*, semakin tinggi pula V_{oc} . Sebuah fenomena yang dikenal dengan *heavy doping effect* telah cukup menarik perhatian, karena deformasi struktur pita dan perubahan statistik elektron pada konsentrasi *doping* yang tinggi, N_d dan N_a dalam persamaan diganti dengan $(N_d)_{eff}$ dan $(N_a)_{eff}$, yang ditunjukkan pada Gambar 2.4. Saat $(N_d)_{eff}$ dan $(N_a)_{eff}$ mencapai puncak, sudah tidak efektif lagi untuk menggunakan N_d dan N_a yang sangat tinggi, tepatnya karena *lifetime* cenderung menurun pada densitas *doping* tinggi, hal ini bisa menyebabkan

adanya Auger recombination. Gambar 2.5 menunjukkan hal tersebut. Heavy doping effect perlu diperhatikan dalam diffused region.

Pada saat $(N_d)_{eff}$ dan $(N_a)_{eff}$ tidak merata dan semakin menurun ke arah persambungan, maka akan tercipta medan listrik dalam arah yang sama dan berguna untuk pengumpulan *photo-generated carriers*. Medan ini juga akan meningkatkan I_{sc} .

Gambar 2.5 Voc sebagai fungsi bulk doping density.[3]

2.2.6 Kecepatan Rekombinasi Permukaan

Kecepatan rekombinasi permukaan yang rendah ikut meningkatkan I_{sc} , dan juga meningkatkan V_{oc} karena penurunan I_0 . Kecepatan rekombinasi pada permukaan depan sangat sulit untuk diukur dan sering diasumsikan menjadi tak berhingga. Jika bagian belakang sel digabung dengan *metal contact*, maka kecepatan rekombinasi pada permukaan belakang juga menjadi tak berhingga. Oleh sebab itu, muncul istilah sel *back-surface field* (BSF) [3] yang ditunjukkan pada Gambar 2.6. Sebuah *layer* p⁺ tambahan didifusikan ke bagian belakang sel sebelum digabung dengan *metal contact*. Seperti yang ditunjukkan diagram energi dalam Gambar 2.6, *interface* p/p⁺ menghasilkan *barrier* untuk elektron, sehingga tidak mudah mencapai *ohmic contact* dan berekombinasi di sana.

Gambar 2.6 Sel back surface field.[3]

2.2.7 Resistansi Seri

Dalam setiap solar sel, terdapat beberapa resistansi seri yang muncul dari timah, *metal contact grid*, atau resistansi *bulk cell*. Sumber yang paling dominan dari resistansi seri adalah *thin diffused layer*. Arus yang dikumpulkan di persambungan pn pada rangkaian solar sel akan mengalir dalam *layer* n ke batas metal terdekat.dan ini merupakan jalur resistif. Resistansi seri dapat diminimalisasi dengan lebih mendekatkan batas metal. Efek dari resistansi seri(R_s) dalam jumlah tertentu adalah pergeseran kurva *I-V*, misalkan pada Gambar 2.1(d), kurva akan bergeser ke kiri dari perkalian $I \ge R_s$. Hal ini, mempunyai efek dalam menurunkan V_m dari perkalian $I_m \ge R_s$. Jika $I_m \ge R_s \ll V_m$, maka akibat yang timbul pada efisiensi akan menjadi semakin kecil.

2.2.8 Metal Grid dan Optical Reflection

Metal contact grid pada permukaan depan tidak tembus cahaya. Untuk memaksimalkan I_{sc} , area yang digunakan untuk metal grid harus diminimalisasi. Selain untuk menjaga R_s tetap rendah, hal ini diperlukan agar barisan metal grid mempunyai ruang yang optimal. Tidak semua cahaya dapat memasuki Si karena adanya optical reflection. Reflektivitas dari permukaan Si murni adalah sekitar 40% [3]. Hal ini dapat dikurangi dengan penggunaan antireflection coatings. Untuk cahaya frekuensi tunggal yang menumbuk sel pada sudut yang tepat (lurus), reflektivitas dapat dibuat nol menggunakan coating tunggal dengan ketebalan sebesar seperempat dari panjang gelombang dan mempunyai indeks refraksi sama dengan \sqrt{n} , dimana n adalah indeks refraksi Si.

2.3 DASAR-DASAR PERANCANGAN STRUKTUR DASAR SEL SURYA

2.3.1 Disain Struktur Permukaan Sel surya

Faktor yang mempengaruhi efisiensi atau pengumpulan *photon* adalah karena adanya pemantulan cahaya pada permukaan sel surya yang menyebabkan penyerapan jumlah *photon* berkurang dan energi untuk *carrier-generation* juga menurun. Penurunan ini dapat mengurangi jumlah arus yang akan terjadi. Langkah-langkah yang dapat diambil untuk mengurangi hilangnya energi yang diserap akibat pemantulan adalah:

- Meminimalisasi kontak pada bagian atas yang menutupi permukaan sel surya (efek *shading*), sehingga lebar permukaan penyerapan menjadi lebih luas.
- Melingkupi permukaan atas sel surya dengan antireflection coatings.
- Memberikan *surface texturing* untuk mengurangi pemantulan.
- Jarak yang ditempuh cahaya dalam sel surya bisa ditingkatkan dengan kombinasi *surface texturing* dan *light trapping*.

Antireflection coatings tersusun dari layer tipis material dielektrik dengan ketebalan tertentu, sehingga efek interferensi pada coating yang disebabkan pemantulan gelombang cahaya dari permukaan atas antireflection coating dapat mengubah fasanya menjadi berbeda dengan gelombang cahaya yang dipantulkan dari permukaan semikonduktor. Gambar 2.7 menunjukkan cahaya hasil refleksi dari antireflection coatings dan permukaan semikonduktor.

Gambar 2.7 Antireflection coatings [4]

Surface texturing, dikombinasikan dengan *antireflection coatings* atau tidak, dapat digunakan untuk meminimalisasi pemantulan. Permukaan yang kasar menurunkan tingkat pemantulan dengan meningkatkan peluang cahaya terpantul kembali ke permukaan dibandingkan cahaya terpantul ke udara luar, hal ini diperlihatkan pada Gambar 2.8.

Gambar 2.8 Perbandingan permukaan datar dan surface texturing [4]

Gambar 2.9 menampilkan *surface texturing* yang berbentuk piramida pada permukaan sel surya. Tipe lain *surface texturing* dikenal dengan *inverted pyramid texturing* (tekstur piramida terbalik). Piramida di-*etching* ke dalam permukaan semikonduktor bukan di-*etching* untuk membentuk piramida ke arah luar permukaan. (lihat Gambar 2.10)

Gambar 2.9 Bentuk piramida untuk *surface texturing* permukaan sel surya. [4]

Gambar 2.10 Foto tekstur piramida terbalik permukaan silikon menggunakan SEM.[4]

Light trapping merupakan kombinasi surface texturing pada permukaan luar bagian depan dan permukaan dalam bagian belakang, sehingga jalur cahaya yang masuk ke sel surya akan terus dipantulkan di dalam bulk material. Dengan demikian, jumlah cahaya yang diserap akan semakin banyak. Light trapping biasanya dicapai dengan mengubah sudut jalur yang dilalui cahaya dan membuat cahaya kembali dipantulkan dengan sudut permukaan tertentu. Sudut yang direfraksikan ke dalam material semikonduktor menurut Hukum Snell adalah [4]:

dimana θ_1 adalah sudut yang dibentuk dari garis sinar datang terhadap garis normal pada indeks refraksi n_1 dan θ_2 sudut yang dibentuk dari garis sinar yang dibiaskan terhadap garis normal pada indeks refraksi n_2 . Dengan menggunakan total refleksi internal, cahaya dapat diperangkap di dalam sel dan membuat berbagai jalur pantulan di sepanjang material sel, yang dapat menjaga panjang jalur optik tetap tinggi. Gambar 2.11 menunjukkan jalur cahaya saat proses *light trapping*.

Gambar 2.11 Light trapping [4]

2.3.2 Disain Pendifusian Material Sel surya

Pendifusian dengan konsentrasi lebih pada bagian tertentu sel surya berguna untuk mengurangi adanya rekombinasi. Rugi-rugi rekombinasi mempengaruhi pengumpulan jumlah *carrier* yang telah dibangkitkan, akibatnya arus hubung singkat (*short circuit current*) dan tegangan hubung terbuka (*open circuit voltage*) berubah. Rekombinasi dapat dikelompokkan berdasarkan letak dimana rekombinasi tersebut terjadi. Pada umumnya, rekombinasi pada permukaan, *depletion region*, dan di dalam material sel surya merupakan area utama peristiwa rekombinasi. Untuk mengurangi rekombinasi permukaan yang sangat cepat, maka perlu dilakukan *passivating* pada permukaan tersebut, sedangkan untuk mengurangi rekombinasi pada bagian belakang sel surya, dapat dilakukan difusi *heavy doping*.

Agar persambungan pn bisa mengumpulkan seluruh *light generated carriers*, rekombinasi permukaan dan *bulk* harus diminimalisasi. Kondisi yang dibutuhkan dalam pengumpulan arus, yaitu *carrier*, harus dibangkitkan sampai batas panjang difusi (*diffusion length*) dari persambungan, sehingga *carrier* dapat berdifusi ke persambungan sebelum berekombinasi. Pada bagian tertentu dengan tingkat rekombinasi tinggi, *carrier* harus dibangkitkan lebih dekat ke arah persambungan dibandingkan ke arah bagian yang mudah berekombinasi. Rekombinasi yang tinggi meningkatkan arus difusi *forward bias*, sehingga menurunkan tegangan hubung terbuka. Rekombinasi dikendalikan oleh jumlah *minority carriers* pada tepi persambungan, tergantung pada seberapa cepat berekombinasi.

2.4 DASAR-DASAR DISAIN MODUL BEREFISIENSI TINGGI

2.4.1 Concentrator Pada Modul Berefisiensi Tinggi

Concentrator sangat berpengaruh dalam meningkatkan efisiensi secara signifikan karena energi cahaya yang lebih besar membuat penyerapan menjadi lebih efektif. Penggunaan peralatan optik seperti cermin, lensa *fresnel, dichroic films*, dan *light guide* memungkinkan adanya pengumpulan cahaya matahari dan mengkonsentrasikan energi tersebut pada sebuah sel surya dengan area yang kecil. Hal ini dapat mengurangi total area sel yang besarnya sesuai dengan perbandingan konsentrasi dan menurunkan biaya sistem *photovoltaic*, karena *concentrator* optik yang relatif tidak mahal bisa menggantikan mahalnya material semikonduktor tertentu. Pemanfaatan konsentrasi cahaya menaikkan efisiensi konversi sel.

2.4.2 Sel Surya Untuk Mendukung Modul Berefisiensi Tinggi

Banyak energi dari cahaya yang datang tidak dikonversikan menjadi listrik dalam penggunaan sel surya. Saat *photon* mempunyai energi lebih sedikit dari *bandgap* material semikonduktor, *photon* tidak dapat diabsorpsi karena tidak cukup energi untuk mengeksitasi elektron dari pita konduksi ke pita valensi. Oleh sebab itu, tidak ada cahaya dengan energi lebih sedikit dari *bandgap* yang digunakan dalam sel surya. Jika energi *photon* lebih besar dari *bandgap*, kelebihan energi akan diubah menjadi panas karena elektron hanya menyerap sejumlah energi yang dibutuhkan untuk bergerak ke pita konduksi.

Di dalam modul berefisiensi tinggi, pemanfaatan spektrum cahaya akan lebih baik dengan penggunaan dua buah sel surya yang berbeda nilai kedalaman persambungannya. Tiap sel surya dibuat dengan konsentrasi *doping* yang berbeda menurut kedalaman persambungan dan mengabsorpsi bagian spektrum yang berbeda pula. Dalam menentukan ketebalan sel surya, perbedaan penting tiap material semikonduktor adalah konstanta absorpsi material dan jumlah energi *photon* dengan energi tertentu. Koefisien absorpsi sebagai fungsi panjang gelombang *photon* untuk berbagai jenis semikonduktor ditampilkan pada Gambar2.12.

Gambar 2.12 Koefisien absorpsi sebagai fungsi panjang gelombang *photon* [5] Gambar 2.13 memperlihatkan disain *proof of concept* (POC) sel surya yang terdiri dari empat komponen.[6]

Gambar 2.13 Skema fabricated POC (proof of concept). [6]

BAB III

DISAIN STRUKTUR SEL SURYA

3.1 DISAIN KEDALAMAN PERSAMBUNGAN SEL SURYA

3.1.1 Kedalaman Persambungan Sel Surya Level Energi Menengah

Untuk mendukung modul berefisiensi tinggi, maka akan dibuat dua buah sel surya untuk menyerap panjang gelombang cahaya dengan level energi rendah dan menengah. Sel surva level energi menengah akan diiluminasi cahaya monokromatik dengan panjang gelombang 400 – 650 µm, nilai steady statenya 480 µm, seperti ditunjukkan Gambar 3.1. Sel surya level energi menengah akan lebih mengoptimalkan penyerapan energi cahaya biru. Cahaya biru dipilih karena mempunyai tingkat energi yang paling tinggi dibandingkan tingkat energi lainnya. Kedalaman persambungan akan dipilih berdasarkan kedalaman penyerapan cahaya terhadap panjang gelombang cahaya biru, seperti ditunjukkan Gambar 3.2. Dari Gambar 3.2, terlihat bahwa kedalaman penyerapan cahaya untuk cahaya biru dengan energi paling tinggi adalah 0,65 µm. Kedalaman 0,65 µm akan menjadi kedalaman persambungan. Pembangkitan elektron-hole bernilai maksimum ada daerah persambungan atau seluruh pasangan elektron-hole pada pada persambungan akan terlepas ikatannya saat berada dalam iluminasi cahaya.

Gambar 3.1 Radiasi cahaya matahari Blackbody dan AM1.5.[4]

Gambar 3.2 *Wavelength* vs *Absorption Depth.*[4]

3.1.2 Kedalaman Persambungan Sel Surya Level Energi Rendah

Sel surya yang kedua adalah sel surya level energi rendah. Sel surya ini akan mengoptimalkan penyerapan cahaya dengan level energi rendah, khususnya cahaya merah. Sel surya level energi menengah akan diiluminasi cahaya monokromatik dengan panjang gelombang $650 - 780 \mu m$, nilai *steady state*nya 660 μm , seperti ditunjukkan Gambar 3.1. Kedalaman persambungan akan dipilih berdasarkan kedalaman penyerapan cahaya terhadap panjang gelombang cahaya merah, seperti ditunjukkan Gambar 3.2. Dari Gambar 3.2, terlihat bahwa kedalaman penyerapan cahaya untuk cahaya merah adalah 4 μm . Kedalaman 4 μm akan menjadi kedalaman persambungan.

3.2 DISAIN PARAMETER YANG DISIMULASIKAN

Substrat sel surya berupa material tipe p, sedangkan bagian atasnya berupa material tipe n. Material tipe n dibuat dengan cara difusi dan diberikan konsentrasi *doping* yang lebih tinggi, namun memiliki ketebalan yang lebih kecil sesuai dengan tingkat kedalaman absorpsi sebesar 0,65 µm atau 4 µm di bawah permukaan depan sel surya, dan ketebalan substrat material tipe p akan disimulasikan menggunakan perangkat lunak PC1Dv5.9. Selain itu, parameter yang akan disimulasikan menggunakan PC1Dv5.9 adalah konsentrasi material semikonduktor tipe n dan tipe p, serta *surface texturing*. Area divais yang akan

disimulasikan seluas 100 cm² dan tingkat eksitasi menggunakan eksitasi *one-sun* (satu matahari).

Gambar 3.3 adalah gambar rancangan struktur sistem kedua buah divais sel surya dan Gambar 3.4 adalah gambar modul yang didukung sel surya level energi menengah dan level energi rendah.

Gambar 3.3 Disain sistem sel surya untuk modul berefisiensi tinggi.

Gambar 3.4 Disain modul sel surya berefisiensi tinggi.[7]

BAB IV

UJI COBA DAN ANALISIS

4.1 UJI COBA SEL SURYA LEVEL ENERGI MENENGAH

Parameter-parameter yang telah ditentukan, yaitu area divais permukaan sel surya seluas 100 cm², kedalaman persambungan sel surya level energi menengah sebesar 0,65 μ m, dan eksitasi *one-sun*. Nilai default awal *background doping* tipe p yang diberikan adalah 1x10¹⁶ cm⁻³, sedangkan *doping* untuk *front diffusion* tipe n adalah 1x10²⁰ cm⁻³.

1) Menentukan *thickness*

Untuk menentukan ketebalan paling optimal, maka akan memanfaatkan fitur *quick batch* yang ada dalam perangkat lunak PC1Dv5.9. Hasil simulasinya ditunjukkan pada Tabel 4.1. Data hasil *quick batch thickness* untuk sel surya level energi menengah dilampirkan pada Lampiran L1. Tampilan layar pengaturan *quick batch* ditunjukkan pada Gambar 4.1. Tabel *quick batch* parameter ditunjukkan pada Tabel 4.1.

Tabel 4.1 *Quick Batch* untuk Menentukan Parameter Sel Surya Level Energi Menengah

Parameter	Range	Jumlah	Nilai	V _{oc}	I _{sc}	P _{max}
i didilicici	Batch	Step	Optimal	(Volt)	(Amp)	(Watt)
Thickness (µm)	15 - 40	100	15,25	0,672	-3,265	2,214
Background Doping (cm ⁻³)	1E+16 - 1E+18	100	1,4E+17	0,6889	-3,206	2,26
Front Surface Angle (°)	5 - 85	30	5	0 6995	3 203	2 258
Front Surface Depth (µm)	1 - 5	30	1	0,0005	-3,203	2,230

Quick Batch						
O Disable batch mode					Γ	OK
Obtain batch parameters fr	om external file lected)					Cancel
Quick Batch What to vary	H	ow to vary			Which comb	inations
Parameter Region	From	to		log or linear	No. of steps	
Thickness 🔽 1	15	40	um	🗌 Log	100	
(None) 🔽 1	0	0	1	🗌 Log	30	Permute
(None)	0	0		🗖 Log	5	Permute
(None)	0	0		🗖 Log	5	Permute
	Output pa	arameters				
BaseVoc Basel:	sc 💌	BasePmax	•	(None)	•	
Thickness of region						

2) Menentukan *doping* substrat

Untuk menentukan *doping* substrat yang optimal, dapat memvariasikan parameter *background doping* (BkgndDop) di dalam *quick batch*. Hasil simulasinya ditunjukkan pada Tabel 4.2. Data hasil *quick batch background doping* untuk sel surya level energi menengah dilampirkan pada Lampiran L2. Tampilan layar pengaturan *quick batch* ditunjukkan pada Gambar 4.2.

×

Quick Batch						
C Disable batch mode						ОК
C Obtain batch parameters	from external file					Cancel
Open (No file s	elected)					
🕞 Quick Batch —						
What to vary	Н	ow to vary		loa or	Which com	binations
Parameter Region	From	to		linear	No. of steps	
BkgndDop 🔽 1	1e16	1e18	cm-3	🗌 Log	100	
(None) T	0	0		Log	2	Permute
(None)	0	0	-		2	Permute
	-	-	_		J-	Permute
(None) 🗾 1	0	0		📃 Log	2	
	Output pa	arameters				
BaseVoc 💌 Base	elsc 💌	BasePmax	-	(None)	•	

Gambar 4.2 Pengaturan *quick batch* 1 untuk *background doping* sel surya level energi menengah.

3) Menentukan *front diffusion*

Penentuan nilai *front diffusion* menggunakan iterasi manual yang memvariasikan nilai *peak doping* terhadap *junction depth* (kedalaman persambungan), hingga *peak doping* mencapai konvergensi pada nilai tertentu. Hasil yang diperoleh setelah melakukan iterasi secara manual adalah nilai *peak doping* sebesar $1,01 \times 10^{20}$, dengan *junction depth* sebesar $0,65 \mu$ m. Gambar 4.3 menunjukkan hasil iterasi manual untuk *front diffusion* sel surya level energi menengah.

_					
	First Front Dil	fusion		×	
	💌 Enable	• n-type		ОК	
		O p-type		Cancel	
				Profile	
	Peak Doping	1.01e20	cm-3	C Uniform	
	Depth Factor	0.2875	um	C Exponential	
				🔿 Gaussian	
	Peak Position	0	um	Erfc	
	Calculated				
	Sheet Resist at 3	ance 44.37 00 K	- c	hms/square	
	Junction D	epth 0.65	C	m	
	For backgroun	d doping der	nsity 1.4	4e17 cm-3	
1					

Gambar 4.3 Hasil iterasi manual front diffusion sel surya level energi menengah.

4) Menentukan *surface texturing*

Pengaturan *quick batch* dilakukan dengan permutasi antara parameter *front surface texture angle* (FrTx*Angle*) dan *front surface texture depth* (FrTx*Depth*). Hasil simulasinya ditunjukkan pada Tabel 4.3. Data hasil *quick batch surface texturing* untuk sel surya level energi menengah dilampirkan pada Lampiran L3. Tampilan layar pengaturan *quick batch* ditunjukkan pada Gambar 4.4.

Quick Batch					<u>×</u>
Disable batch mode Obtain batch parameters fro Open (No file sele	m external file :cted)				OK Cancel
Quick Batch What to vary Parameter Region FrI xéngle I FrI xéngle I I INone) I INone) I	H From 5 1 0 0	ow to vary to 85 5 0 0	deg um	Which linear No. of s Log 30 Log 30 Log 2 Log 2	combinations teps Permute Permute Permute
BaseVoc 💌 Basels	Output pa	BasePmax	•	(None)]

Gambar 4.4 Pengaturan *quick batch* 1 untuk *surface texturing* sel surya level energi menengah.

4.2 UJI COBA SEL SURYA LEVEL ENERGI RENDAH

Parameter-parameter yang telah ditentukan, yaitu area divais permukaan sel surya seluas 100 cm², kedalaman persambungan sel surya level energi rendah sejauh 4 μ m, dan eksitasi *one-sun*. Nilai default awal *background doping* tipe p yang diberikan adalah 1x10¹⁶, sedangkan *doping* untuk *front diffusion* tipe n adalah 1x10²⁰.

1) Menentukan *thickness*

Untuk menentukan ketebalan paling optimal, maka akan memanfaatkan fitur *quick batch* yang ada dalam perangkat lunak PC1Dv5.9. Hasil simulasinya ditunjukkan pada Tabel 4.4. Data hasil *quick batch surface texturing* untuk sel surya level energi rendah dilampirkan pada Lampiran L4. Tampilan layar pengaturan *quick batch* ditunjukkan pada Gambar 4.5. Tabel *quick batch* parameter ditunjukkan pada Tabel 4.2.

Tabel 4.2 *Quick Batch* untuk Menentukan Parameter Sel Surya Level Energi Rendah

Kendan								
Parameter	Range	Jumlah	Nilai	V _{oc}	I _{sc}	P_{max}		
	Batch	Step	Optimal	(Volt)	(Amp)	(Watt)		
Thickness (µm)	10 - 30	100	14,65	0,662	-3,999	2,358		
Background Doping (cm ⁻³)	1E+16 - 1E+18	100	1,2E+17	0,6633	-3,999	2,367		
Front Surface Angle (°)	5 - 85	30	5	0 6622	2 070	2 260		
Front Surface Depth (µm)	1 - 5	30	1	0,0033	-3,979	2,300		

Quick Batch				ž
O Disable batch mode				ОК
C Obtain batch parameters fr	om external file lected)			Cancel
Quick Batch				5.011 11 12
What to vary Parameter Region	Hi From	ow to vary to	log or	Which combinations No. of steps
Thickness 🔽 1	10	30 u	um 🗌 Log	100
(None)	0	0	🗖 Log	2 Permute
(None) 1	0	0	□ Loa	2 Permute
(None) 1	0	0	Log	2 Permute
	, Output pa	rameters		,
BaseVoc 💌 Basel	sc 💌	BasePmax	(None)	•

Gambar 4.5 Pengaturan quick batch 1 untuk thickness sel surya level energi rendah.

2) Menentukan *doping* substrat

Untuk menentukan *doping* substrat yang optimal, dapat memvariasikan parameter *background doping* (BkgndDop) di dalam *quick batch*. Hasil simulasinya ditunjukkan pada Tabel 4.5. Data hasil *quick batch surface texturing* untuk sel surya level energi rendah dilampirkan pada Lampiran L5. Tampilan layar pengaturan *quick batch* ditunjukkan pada Gambar 4.6.

iick Batch							
C Disable batch p C Obtain batch p Open	mode arameters fr (No file sel	om external file ected)		Z			OK Cancel
Quick Batch	ary Region	Hi From 1.e15 0 0	to to 1.e17 0 0	cm-3	log or linear Log Log Log Log	Which comb No. of steps 100 2 2 2 2	Permut
BaseVoc 💌	Basels	Output pa	rameters BasePmax	•	(None)	¥	

Gambar 4.6 Pengaturan *quick batch* 1 untuk *background doping* sel surya level energi rendah.

3) Menentukan *front diffusion*

Penentuan nilai *front diffusion* menggunakan iterasi manual yang memvariasikan nilai *peak doping* terhadap *junction depth* (kedalaman

persambungan), hingga *peak doping* mencapai konvergensi pada nilai tertentu. Hasil yang diperoleh setelah melakukan iterasi secara manual adalah nilai *peak doping* sebesar 9,99x 10^{19} cm⁻³, dengan *junction depth* sebesar 4 µm. Gambar 4.7 menunjukkan hasil iterasi manual untuk *front diffusion* sel surya level energi rendah.

Gambar 4.7 Hasil iterasi manual front diffusion sel surya level energi rendah.

4) Menentukan *surface texturing*

Pengaturan quick batch dilakukan dengan permutasi antara parameter front surface texture angle (FrTxAngle) dan front surface texture depth (FrTxDepth). Hasil simulasinya ditunjukkan pada Tabel 4.6. Data hasil quick batch surface texturing untuk sel surya level energi rendah dilampirkan pada Lampiran L6. Tampilan layar pengaturan quick batch ditunjukkan pada Gambar 4.8.

Quick Batch						
C Disable batch mode						OK
C Obtain batch parameters fro	m external file					Cancel
Open (No file sele	ected)					
Quick Batch What to vary	He	ow to vary			Which cor	nbinations
Parameter Region	From	to		log or linear	No. of step:	5
FrTxAngle 🔽 1	5	85	deg	🗌 Log	30	
FrTxDepth 🗾 1	1	5	um	🗖 Log	30	- 🔽 Permute
(None) 🔽 1	0	0		🗖 Log	2	- I Permute
(None) 1	0	0		🗖 Log	2	
	Output pa	rameters				
BaseVoc 💌 Baselse	c 💌	BasePmax	•	(None)	-	

Gambar 4.8 Pengaturan *quick batch* 1 untuk *surface texturing* sel surya level energi rendah.

4.3 ANALISIS DISAIN

4.3.1 Analisis Kedalaman Persambungan

Dalam disain sel surya, material semikonduktor tipe n berperan sebagai emiter. Oleh sebab itu, material semikonduktor tipe n memiliki doping konsentrasi tinggi, namun ketebalannya lebih kecil dibandingkan semikonduktor tipe p. Untuk sel surya level energi menengah, kedalaman persambungan dibuat sebesar 0,65µm dari permukaan atas sel surya dan diiluminasi cahaya monokromatik dengan range 400 – 650 µm, sedangkan untuk sel surya level energi rendah, kedalaman persambungan dibuat sebesar 4 µm dari permukaan atas sel surya dan diiluminasi cahaya monokromatik dengan range 650 – 780 µm. Kedalaman persambungan dipilih sebesar 0,65 µm pada sel surya level energi menengah, karena penyerapan cahaya sel surya level energi menengah lebih mengoptimalkan penyerapan cahaya biru dengan panjang gelombang utama sebesar 480 µm. Pada sel surya level energi rendah, dipilih kedalaman persambungan sebesar 4 µm, karena penyerapan sel surya level energi rendah lebih mengoptimalkan penyerapan cahaya merah dengan panjang gelombang utama sebesar 660 µm. Kedalaman persambungan sebesar 0,65 µm dan 4 µm akan menjadi tempat dimana terjadi penyerapan cahaya biru, dan energinya akan melepaskan ikatan elektron-hole di sekitar daerah persambungan. Jumlah elektron dan hole yang terlepas ikatannya paling banyak berada pada persambungan, yang kemudian akan menjadi arus dalam rangkaian.

4.3.2 Analisis Konsentrasi Doping

Material atau substrat awal dari sel surya adalah material semikonduktor tipe p. Selanjutnya, dilakukan penumbuhan material semikonduktor tipe n di atas tipe p dengan proses difusi. Material semikonduktor tipe n pada bagian atas berperan sebagai emiter yang nantinya akan mengalirkan elektron hasil iluminasi pada daerah persambungan. Oleh sebab itu, konsentrasi *doping* tipe n dibuat dengan konsentrasi lebih tinggi dibanding tipe p. Konsentrasi *doping* material semikonduktor tipe p diperoleh menggunakan fitur *quick batch* dalam simulasi, sedangkan konsentrasi material semikonduktor tipe n didapatkan dengan cara iterasi manual hingga terkonvergensi pada nilai tertentu.

Dari hasil simulasi, untuk sel surya level energi menengah, konsentrasi *doping* semikonduktor tipe p adalah 1.4×10^{17} cm⁻³ dan konsentrasi *doping*

semikonduktor tipe n adalah $1,01 \times 10^{20}$ cm⁻³, sedangkan untuk sel surya level energi rendah, konsentrasi *doping* semikonduktor tipe p adalah $1,2 \times 10^{16}$ cm⁻³ dan konsentrasi *doping* semikonduktor tipe n adalah $9,99 \times 10^{19}$ cm⁻³.

4.3.3 Analisis Ketebalan

Semakin tebal material semikonduktor sel surya, maka semakin banyak cahaya yang dapat diserap untuk melepaskan ikatan elektron-*hole*. Energi spektrum cahaya diserap oleh material semikonduktor pada ketebalan atau kedalaman yang berbeda di dalam sel surya. Kedalaman penyerapan cahaya juga mempengaruhi probabilitas pengumpulan (*collection probability*). Probabilitas pengumpulan menjelaskan kemungkinan *carrier* yang digenerasi cahaya terserap pada bagian tertentu dalam divais, kemudian akan dikumpulkan oleh persambungan pn dan memberikan kontribusi dalam menghasilkan arus. Besar probabilitas bergantung pada jarak yang dilalui oleh *carrier* yang digenerasi cahaya digenerasi cahaya dibandingkan dengan panjang difusi. Dengan demikian, semakin jauh *carrier* yang digenerasi cahaya dari persambungan pn, maka semakin besar kemungkinan pasangan elektron-*hole* untuk berekombinasi kembali.

Kedalaman persambungan dioptimalkan untuk menyerap cahaya biru pada sel surya level energi menengah dan cahaya merah pada sel surya level energi rendah, sehingga ketebalan sel surya dipengaruhi juga oleh kedalaman persambungan. Ketebalan yang diperoleh dari hasil *quick batch* simulasi PC1Dv5.9 untuk sel surya level energi menengah adalah 15,25 µm, sedangkan untuk sel surya level energi rendah adalah 14,65 µm.

4.3.4 Analisis Surface Texturing

Efek pemantulan pada permukaan pada sel surya dapat menurunkan jumlah energi cahaya yang diserap untuk melepaskan ikatan pasangan elektron*hole* atau generasi *carrier*. Untuk mengurangi adanya efek pemantulan tersebut, maka pada permukaan disain sel surya ini akan dibuat *surface texturing*. *Surface texturing* dibuat membentuk susunan piramida. Dengan demikian, cahaya yang mengenai *surface texturing* sebagian besar akan terserap dan sebagian kecil lainnya akan dipantulkan. Hasil pantulan pertama tadi akan mengenai piramida disebelahnya dan sebagian besar cahaya akan diserap lagi, hingga akhirnya arah sebagian kecil pantulan menjauhi permukaan sel surya. Cahaya yang telah masuk ke dalam sel surya akan dipantulkan kembali oleh permukaan bawah, maka cahaya dapat terperangkap di dalam sel surya untuk lebih banyak menggenerasi *carrier*.

Susunan *surface texturing* yang lebih optimal menggunakan susunan piramida terbalik [4], namun yang disimulasikan dalam perangkat lunak PC1Dv5.9 belum menggunakan susunan piramida terbalik. PC1D menggunakan susunan piramida ke atas yang ukuran dan susunannya sama. Hasil simulasi *quick batch* sel surya level energi menengah yang memvariasikan parameter *front texture angle* dan *front texture depth* yang dipermutasi adalah kedalaman 1 μ m dengan sudut 5°, sedangkan hasil simulasi untuk sel surya level energi rendah adalah kedalaman 1 μ m dengan sudut 5°.

Dari simulasi PC1Dv5.9, sel surya level energi menengah menghasilkan arus hubung singkat bernilai -3,203 amper, tegangan hubung terbuka bernilai 0,6885 volt, dan maksimum daya keluaran bernilai 2,258 watt, sedangkan sel surya level energi rendah menghasilkan arus hubung singkat, yaitu -3,979 amper, tegangan hubung terbuka bernilai 0,6633 volt, dan maksimum daya keluaran bernilai 2,36 watt. Arus hubung singkat adalah arus maksimum dan tegangan hubung singkat adalah tegangan maksimum dari sel surya. *Fill factor* (*FF*) merupakan parameter yang berhubungan dengan V_{oc} dan I_{sc} , dan menentukan daya maksimum sel surya. *Fill factor* didefinisikan sebagai perbandingan daya maksimum sel surya dengan hasil perkalian dari V_{oc} dan I_{sc} . Dari Persamaan 4.1 sampai 4.4 [4]

$$P_m = V_{oc} \times I_{sc} \times FF \dots (4.3)$$

dimana v_{oc} didefinisikan sebagai V_{oc} yang dinormalisasi, maka untuk perhitungan sel surya level energi menengah menurut perhitungan V_{oc} adalah

$$V_{oc} = \frac{q}{nKT} v_{oc} = \frac{1,6.10^{-19}}{1 \times 1,38.10^{-23} \times 298} \times 0,6885 = 26,7873 volt$$

$$FF = \frac{V_{oc} \ln(V_{oc} + 0.72)}{V_{oc} + 1} = \frac{26,7873 - \ln(26,7873 + 0.72)}{26,7873 + 1} = 0,8447$$

$$P_m = V_{oc} \times I_{sc} \times FF = 0,6885 \times 3,203 \times 0,8447 = 1,758 watt$$

$$\eta \equiv \frac{P_m}{P_{in}} = \frac{1,758}{10} \times 100\% = 17,58\%$$

untuk perhitungan sel surya level energi rendah menurut perhitungan V_{oc} adalah

$$V_{oc} = \frac{q}{nKT} v_{oc} = \frac{1,6.10^{-19}}{1 \times 1,38.10^{-23} \times 298} \times 0,6633 = 25,8068 \text{ volt}$$

$$FF = \frac{V_{oc} \ln(V_{oc} + 0,72)}{V_{oc} + 1} = \frac{25,8068 - \ln(25,8068 + 0,72)}{25,8068 + 1} = 0,8404$$

$$P_m = V_{oc} \times I_{sc} \times FF = 0,6633 \times 3,979 \times 0,8404 = 2,2180 \text{ watt}$$

$$\eta \equiv \frac{P_m}{P_{in}} = \frac{2,2180}{10} \times 100\% = 22,18\%$$

Dua perhitungan di atas adalah perhitungan menurut tegangan keluaran maksimum dari simulasi. Total efisiensi adalah penjumlahan efisiensi dari kedua sel surya berdasarkan tegangan keluaran maksimum dari simulasi, yaitu 39,76 %. Jika kita mengasumsikan daya keluaran maksimum dari simulasi adalah total daya keluaran sel surya, maka perhitungan efisiensi untuk sel surya level energi menengah menjadi

$$\eta \equiv \frac{P_m}{P_{in}} = \frac{\max P_{out}}{incidentsolarpower} = \frac{2,258}{10} \times 100\% = 22,58\%$$

sedangkan perhitungan efisiensi untuk sel surya level energi bawah adalah

$$\eta \equiv \frac{P_m}{P_{in}} = \frac{\max P_{out}}{incidentsolarpower} = \frac{2,360}{10} \times 100\% = 23,60\%$$

Dengan demikian, total efisiensi adalah penjumlahan efisiensi dari kedua sel surya berdasarkan daya keluaran maksimum dari simulasi, yaitu 46,18 %. Nilai hasil perhitungan efisiensi yang berbeda disebabkan perhitungan yang berdasarkan tegangan keluaran maksimum dari simulasi, masih mencari nilai *fill factor* terlebih dahulu, sebelum melakukan perhitungan efisiensi. Efisiensi berdasarkan tegangan keluaran maksimum dari simulasi, perhitungannya menggunakan nilai tegangan hubung terbuka dari simulasi, dimana nilai tegangan hubung terbuka dari simulasi, dimana nilai tegangan hubung terbuka dari simulasi, dimana nilai tegangan hubung terbuka tersebut tidak bernilai maksimum akibat adanya pengaruh rugi-rugi yang ada dalam parameter, seperti resitansi dan refleksi, sehingga nilai *fill factor* tidak dapat mencapai nilai idealnya. Pada perhitungan yang berdasarkan daya keluaran maksimum dari simulasi, tidak lagi melakukan perhitungan *fill factor*, dan nilai *fill factor* diasumsikan ideal atau bernilai satu.

Berdasarkan disain struktur sel surya dan hasil uji coba sel surya level energi menengah dan bawah, maka didapatkan perancangan struktur sistem sel surya seperti pada Gambar 3.3 dan disain modul berefisiensi tinggi seperti pada Gambar 3.4. Spesifikasi hasil simulasi sel surya level energi menengah dan bawah menggunakan perangkat lunak PC1D ditunjukkan pada Lampiran L7 dan L8.

BAB V

KESIMPULAN

Setelah melakukan uji coba dan analisis terhadap disain sel surya untuk mendukung modul berefisiensi tinggi diperoleh kesimpulan sebagai berikut.

- 1. Disain sel surya level energi menengah memanfaatkan *range* panjang gelombang cahaya monokromatik 400 650 μ m dengan lebih mengoptimalkan cahaya biru pada kedalaman persambungan sebesar 0,65 μ m, dan dari simulasi didapatkan *doping* tipe p sebesar 1,4x10¹⁷ cm⁻³, *doping* tipe n sebesar 1,01x10²⁰ cm⁻³, ketebalan sebesar 15,25 μ m, *surface texturing* dengan kedalaman 1 μ m dan sudut 5°.
- 2. Disain sel surya level energi rendah memanfaatkan *range* panjang gelombang cahaya monokromatik 650 780 μm dengan lebih mengoptimalkan cahaya merah pada kedalaman persambungan sebesar 4 μm, dan dari simulasi didapatkan *doping* tipe p sebesar 1,2x10¹⁶cm⁻³, *doping* tipe n sebesar 9,99x10¹⁹ cm⁻³, ketebalan sebesar 14,65 μm, *surface texturing* dengan kedalaman 1 μm dan sudut 5°.
- 3. Simulasi PC1D untuk sel surya level energi menengah menunjukkan daya keluaran maksimum basis sebesar 2,258 Watt/100cm², arus hubung singkat basis sebesar 3,203 A dan tegangan hubung terbuka basis sebesar 0,6885 V. Efisiensi yang didapatkan berdasarkan pada perhitungan V_{oc} adalah 17,58%. Jika daya keluaran maksimum basis diasumsikan sebagai keluaran total dari sel surya, maka efisiensinya adalah 22,58%.
- 4. Simulasi PC1D untuk sel surya level energi rendah menunjukkan daya keluaran maksimum basis sebesar 2,360 Watt/100cm², arus hubung singkat basis sebesar 3,979 A dan tegangan hubung terbuka basis sebesar 0,6633 V. Efisiensi yang didapatkan berdasarkan pada perhitungan V_{oc} adalah 22,18%. Jika daya keluaran maksimum basis diasumsikan sebagai keluaran total dari sel surya, maka efisiensinya adalah 23,60%.
- 5. Total efisiensi berdasarkan perhitungan V_{oc} adalah 39,76%, sedangkan total efisiensi jika diasumsikan max $P_{base} = P_{out}$, adalah 46,18%.

DAFTAR ACUAN

- [1] Kwok K. Ng, "COMPLETE GUIDE TO SEMICONDUCTOR DEVICES", McGrawHill, New York, 1995.
- [2] S. M. Sze, "*Physics of Semiconductor Devices*", McGrawHill, New York, 1981.
- [4] Stuart Bowden, Christiana Honsberg, "Photovoltaics CDROM", National Science Foundation, <u>http://www.udel.edu/igert/pvcdrom/</u>, diakses Maret 2008.
- [5] Steven Lansel, "*Technology and Future of III-V Multi-Junction Solar Cells*", School of Electrical and Computer Engineering dan Georgia Institute of Technology, Atlanta, 2005.
- [6] Allen Barnett, Christiana Honsberg, Douglas Kirlpatrick, et al., "50% *EFFICIENT SOLAR CELL ARCHITECTURES AND DESIGNS*", 2006.
- [3] Chenming Hu, Richard M. White, "SOLAR CELLS : From Basics to Advance Systems", McGrawHill, New York, 1983.
- [7] Allen Barnett, Douglas Kirkpatrick, Christiana Honsberg, et al., "*MILESTONES TOWARD 50% EFFICIENT SOLAR CELL MODULES*", September 2007.

LAMPIRAN

L1.HASIL BATCH SIMULASI PC1Dv5.9 UNTUK THICKNESS SEL SURYA LEVEL ENERGI MENENGAH

no.	Thickness(1)	BaseVoc	Baselsc	BasePmax
1	15.00	0.6723	-3.265	2.184
2	15.25	0.6720	-3.265	2.214
3	15.51	0.6717	-3.265	2.213
4	15.76	0.6714	-3.265	2.212
5	16.01	0.6712	-3.265	2.211
6	16.26	0.6709	-3.265	2.210
7	16.52	0.6706	-3.265	2.208
8	16.77	0.6703	-3.265	2.207
9	17.02	0.6700	-3.265	2.206
10	17.27	0.6697	-3.265	2.205
11	17.53	0.6695	-3.265	2.204
12	17.78	0.6692	-3.265	2.203
13	18.03	0.6689	-3.265	2.202
14	18.28	0.6686	-3.265	2.201
15	18.54	0.6684	-3.265	2.200
16	18.79	0.6681	-3.265	2.199
17	19.04	0.6678	-3.265	2.198
18	19.29	0.6676	-3.265	2.197
19	19.55	0.6673	-3.265	2.196
20	19.80	0.6671	-3.265	2.195
21	20.05	0.6668	-3.265	2.194
22	20.30	0.6665	-3.265	2.193
23	20.56	0.6663	-3.265	2.192
24	20.81	0.6660	-3.265	2.191
25	21.06	0.6658	-3.265	2.190
26	21.31	0.6655	-3.265	2.189
27	21.57	0.6653	-3.265	2.188
28	21.82	0.6651	-3.265	2.187
29	22.07	0.6648	-3.265	2.186
30	22.32	0.6646	-3.265	2.185
31	22.58	0.6643	-3.265	2.184
32	22.83	0.6641	-3.265	2.183
33	23.08	0.6639	-3.265	2.182
34	23.33	0.6636	-3.265	2.181
35	23.59	0.6634	-3.265	2.181
36	23.84	0.6632	-3.265	2.180
37	24.09	0.6629	-3.265	2.179
38	24.34	0.6627	-3.265	2.178
39	24.60	0.6625	-3.265	2.177
40	24.85	0.6623	-3.265	2.176
41	25.10	0.6620	-3.265	2.175
42	25.35	0.6618	-3.265	2.175
43	25.61	0.6616	-3.265	2.174
44	25.86	0.6614	-3.265	2.173

L2.HASIL BATCH SIMULASI PC1Dv5.9 UNTUK BACKGROUND

DOPING SEL SURYA LEVEL ENERGI MENENGAH

no.	BkgndDop(1)	BaseVoc	Baselsc	BasePmax
1	1.00E+16	0.6701	-3.200	2.157
2	2.00E+16	0.6771	-3.200	2.200
3	3.00E+16	0.6808	-3.201	2.219
4	4.00E+16	0.6830	-3.201	2.231
5	5.00E+16	0.6845	-3.202	2.238
6	6.00E+16	0.6856	-3.203	2.243
7	7.00E+16	0.6863	-3.202	2.247
8	8.00E+16	0.6869	-3.203	2.250
9	9.00E+16	0.6874	-3.204	2.252
10	1.00E+17	0.6878	-3.204	2.255
11	1.10E+17	0.6882	-3.205	2.257
12	1.20E+17	0.6884	-3.205	2.258
13	1.30E+17	0.6887	-3.206	2.259
14	1.40E+17	0.6889	-3.206	2.260
15	1.50E+17	0.6881	-3.207	2.257
16	1.60E+17	0.6874	-3.207	2.253
17	1.70E+17	0.6867	-3.208	2.250
18	1.80E+17	0.6860	-3.208	2.247
19	1.90E+17	0.6853	-3.208	2.244
20	2.00E+17	0.6847	-3.209	2.242
21	2.10E+17	0.6841	-3.209	2.239
22	2.20E+17	0.6836	-3.210	2.237
23	2.30E+17	0.6830	-3.210	2.234
24	2.40E+17	0.6825	-3.210	2.232
25	2.50E+17	0.6820	-3.211	2.230
26	2.60E+17	0.6815	-3.211	2.227
27	2.70E+17	0.6810	-3.211	2.225
28	2.80E+17	0.6805	-3.212	2.223
29	2.90E+17	0.6800	-3.212	2.221
30	3.00E+17	0.6796	-3.212	2.219
31	3.10E+17	0.6792	-3.212	2.217
32	3.20E+17	0.6788	-3.213	2.216
33	3.30E+17	0.6784	-3.213	2.214
34	3.40E+17	0.6780	-3.213	2.212
35	3.50E+17	0.6776	-3.214	2.211
36	3.60E+17	0.6772	-3.214	2.209
37	3.70E+17	0.6769	-3.214	2.207
38	3.80E+17	0.6765	-3.215	2.206
39	3.90E+17	0.6762	-3.215	2.205
40	4.00E+17	0.6759	-3.215	2.203
41	4.10E+17	0.6755	-3.216	2.202
42	4.20E+17	0.6752	-3.216	2.201
43	4.30E+17	0.6749	-3.216	2.199
44	4.40E+17	0.6746	-3.217	2.198
45	4.50E+17	0.6743	-3.217	2.197

SEL SURYA LEVEL ENERGI MENENGAH

no.	FrTxAngle	FrTxDepth	BaseVoc	Baselsc	BasePmax
1	5.00	1.00	0.6885	-3.203	2.258
2	5.00	1.14	0.6885	-3.203	2.258
3	5.00	1.28	0.6885	-3.203	2.258
4	5.00	1.41	0.6885	-3.203	2.258
5	5.00	1.55	0.6885	-3.203	2.258
6	5.00	1.69	0.6885	-3.203	2.258
7	5.00	1.83	0.6885	-3.203	2.258
8	5.00	1.97	0.6885	-3.203	2.258
9	5.00	2.10	0.6885	-3.203	2.258
10	5.00	2.24	0.6885	-3.203	2.258
11	5.00	2.38	0.6885	-3.203	2.258
12	5.00	2.52	0.6885	-3.203	2.258
13	5.00	2.66	0.6885	-3.203	2.258
14	5.00	2.79	0.6885	-3.203	2.258
15	5.00	2.93	0.6885	-3.203	2.258
16	5.00	3.07	0.6885	-3.203	2.258
17	5.00	3.21	0.6885	-3.203	2.258
18	5.00	3.34	0.6885	-3.203	2.258
19	5.00	3.48	0.6885	-3.203	2.258
20	5.00	3.62	0.6885	-3.203	2.258
21	5.00	3.76	0.6885	-3.203	2.258
22	5.00	3.90	0.6885	-3.203	2.258
23	5.00	4.03	0.6885	-3.203	2.258
24	5.00	4.17	0.6885	-3.203	2.258
25	5.00	4.31	0.6885	-3.203	2.258
26	5.00	4.45	0.6885	-3.203	2.258
27	5.00	4.59	0.6885	-3.203	2.258
28	5.00	4.72	0.6885	-3.203	2.258
29	5.00	4.86	0.6885	-3.203	2.258
30	5.00	5.00	0.6885	-3.203	2.258
31	7.76	1.00	0.6884	-3.202	2.257
32	7.76	1.14	0.6884	-3.203	2.257
33	7.76	1.28	0.6884	-3.203	2.257
34	7.76	1.41	0.6884	-3.203	2.257
35	7.76	1.55	0.6884	-3.203	2.257
36	7.76	1.69	0.6884	-3.203	2.257
37	7.76	1.83	0.6884	-3.203	2.257
38	7.76	1.97	0.6884	-3.203	2.257
39	7.76	2.10	0.6884	-3.203	2.257
40	7.76	2.24	0.6884	-3.203	2.257
41	7.76	2.38	0.6884	-3.203	2.257
42	7.76	2.52	0.6884	-3.203	2.257
43	7.76	2.66	0.6884	-3.203	2.257
44	7.76	2.79	0.6884	-3.203	2.257
45	7.76	2.93	0.6884	-3.203	2.257
46	7.76	3.07	0.6884	-3.203	2.257
47	7.76	3.21	0.6884	-3.203	2.257
48	7.76	3.34	0.6884	-3.203	2.257

L4.HASIL BATCH SIMULASI PC1Dv5.9 UNTUK THICKNESS SEL

SURYA LEVEL ENERGI RENDAH

no.	Thickness(1)	BaseVoc	Baselsc	BasePmax
1	10.00	0.6611	-3.713	2.103
2	10.20	0.6612	-3.733	2.137
3	10.40	0.6613	-3.753	2.156
4	10.61	0.6614	-3.771	2.174
5	10.81	0.6615	-3.789	2.190
6	11.01	0.6616	-3.806	2.205
7	11.21	0.6617	-3.822	2.220
8	11.41	0.6617	-3.837	2.233
9	11.62	0.6618	-3.851	2.245
10	11.82	0.6619	-3.865	2.256
11	12.02	0.6619	-3.878	2.266
12	12.22	0.6619	-3.891	2.276
13	12.42	0.6620	-3.902	2.285
14	12.63	0.6620	-3.914	2.294
15	12.83	0.6620	-3.924	2.302
16	13.03	0.6620	-3.934	2.310
17	13.23	0.6621	-3.944	2.317
18	13.43	0.6621	-3.953	2.324
19	13.64	0.6621	-3.962	2.330
20	13.84	0.6621	-3.970	2.336
21	14.04	0.6621	-3.978	2.342
22	14.24	0.6620	-3.985	2.348
23	14.44	0.6620	-3.992	2.353
24	14.65	0.6620	-3.999	2.358
25	14.85	0.6620	0.000	2.363
26	15.05	0.6620	0.000	2.368
27	15.25	0.6619	0.000	2.372
28	15.45	0.6619	0.000	2.376
29	15.66	0.6619	0.000	2.381
30	15.86	0.6618	0.000	2.385
31	16.06	0.6618	0.000	2.388
32	16.26	0.6617	0.000	2.392
33	16.46	0.6617	0.000	2.395
34	16.67	0.6616	0.000	2.399
35	16.87	0.6616	0.000	2.402
36	17.07	0.6615	0.000	2.405
37	17.27	0.6615	0.000	2.408
38	17.47	0.6614	0.000	2.411
39	17.68	0.6614	0.000	2.413
40	17.88	0.6613	0.000	2.416
41	18.08	0.6612	0.000	2.447
42	18.28	0.6612	0.000	2.450
43	18.48	0.6611	0.000	2.452
44	18.69	0.6610	0.000	2.453

L5.HASIL BATCH SIMULASI PC1Dv5.9 UNTUK BACKGROUND

DOPING SEL SURYA LEVEL ENERGI RENDAH

no.	BkandDop(1)	BaseVoc	Baselsc	BasePmax
1	1.00E+15	0.6537	-3.994	2.211
2	2.00E+15	0.6544	-3.994	2.255
3	3.00E+15	0.6554	-3.996	2.284
4	4.00E+15	0.6565	-3.996	2.304
5	5.00E+15	0.6576	-3.997	2.318
6	6.00E+15	0.6586	-3.997	2.330
7	7.00E+15	0.6596	-3.998	2.339
8	8.00E+15	0.6605	-3.998	2.346
9	9.00E+15	0.6613	-3.999	2.353
10	1.00E+16	0.6620	-3.999	2.358
11	1.10E+16	0.6627	-4.000	2.363
12	1.20E+16	0.6633	-4.000	2.367
13	1.30E+16	0.6638	0.000	2.371
14	1.40E+16	0.6643	0.000	2.374
15	1.50E+16	0.6648	0.000	2.377
16	1.60E+16	0.6652	0.000	2.380
17	1.70E+16	0.6656	0.000	2.382
18	1.80E+16	0.6659	0.000	2.384
19	1.90E+16	0.6663	0.000	2.386
20	2.00E+16	0.6666	0.000	2.388
21	2.10E+16	0.6669	0.000	2.390
22	2.20E+16	0.6671	0.000	2.392
23	2.30E+16	0.6674	0.000	2.393
24	2.40E+16	0.6676	0.000	2.394
25	2.50E+16	0.6678	0.000	2.396
26	2.60E+16	0.6680	0.000	2.397
27	2.70E+16	0.6682	0.000	2.398
28	2.80E+16	0.6684	0.000	2.399
29	2.90E+16	0.6686	0.000	2.400
30	3.00E+16	0.6687	0.000	2.401
31	3.10E+16	0.6689	0.000	2.402
32	3.20E+16	0.6690	0.000	2.403
33	3.30E+16	0.6692	0.000	2.404
34	3.40E+16	0.6693	0.000	2.405
35	3.50E+16	0.6694	0.000	2.406
36	3.60E+16	0.6696	0.000	2.407
37	3.70E+16	0.6697	0.000	2.407
38	3.80E+16	0.6698	0.000	2.408
39	3.90E+16	0.6699	0.000	2.409
40	4.00E+16	0.6700	0.000	2.409
41	4.10E+16	0.6701	0.000	2.410
42	4.20E+16	0.6702	0.000	2.411
43	4.30E+16	0.6703	0.000	2.411
44	4.40E+16	0.6703	0.000	2.412
45	4.50E+16	0.6704	0.000	2.412

no. FrTxAngle FrTxDepth BaseVoc Baselsc BasePmax 1 5.00 1.00 0.6633 -3.979 2.360 2 5.00 1.14 0.6633 -3.979 2.360 3 5.00 1.28 0.6633 -3.979 2.360 4 5.00 1.41 0.6633 -3.979 2.360 5 5.00 1.55 0.6633 -3.979 2.360 2.360 6 5.00 1.69 0.6633 -3.979 7 5.00 1.83 0.6633 -3.979 2.360 8 5.00 1.97 -3.979 2.360 0.6633 9 5.00 2.10 0.6633 -3.979 2.360 10 5.00 2.24 0.6633 -3.979 2.360 5.00 2.38 -3.979 2.360 11 0.6633 5.00 2.52 2.360 12 0.6633 -3.979 13 5.00 2.66 0.6633 -3.979 2.360 14 5.00 2.79 0.6633 -3.979 2.360 15 5.00 2.93 0.6633 -3.979 2.360 16 -3.979 2.360 5.00 3.07 0.6633 17 5.00 3.21 0.6633 -3.979 2.360 18 2.360 5.00 3.34 0.6633 -3.97919 5.00 3.48 0.6633 -3.979 2.360 5.00 0.6633 20 3.62 -3.979 2.360 21 5.00 3.76 0.6633 -3.979 2.360 -3.979 5.00 3.90 0.6633 2.360 22 23 5.00 4.03 0.6633 -3.9792.360 24 5.00 4.17 0.6633 -3.979 2.360 25 5.00 4.31 0.6633 -3.979 2.360 26 5.00 4.45 0.6633 -3.979 2.360 27 5.00 4.59 0.6633 -3.979 2.360 28 5.00 2.360 4.72 0.6633 -3.97929 5.00 4.86 -3.979 2.360 0.6633 2.360 30 5.00 5.00 0.6633 -3.979 31 7.76 1.00 0.6633 -3.9772.360 32 7.76 1.14 0.6633 -3.977 2.360 33 7.76 1.28 0.6633 -3.9772.360 34 7.76 1.41 0.6633 -3.977 2.360 35 7.76 1.55 0.6633 -3.977 2.360 36 7.76 1.69 0.6633 -3.977 2.360 37 7.76 1.83 2.360 0.6633 -3.977 38 7.76 2.360 1.97 0.6633 -3.977 39 7.76 2.360 2.10 0.6633 -3.977 2.24 40 7.76 0.6633 -3.977 2.360 41 7.76 2.38 0.6633 -3.977 2.360 42 7.76 2.52 0.6633 -3.977 2.360 43 7.76 2.66 0.6633 -3.9772.360 44 7.76 2.79 0.6633 -3.977 2.360 45 7.76 2.93 0.6633 -3.977 2.360 46 7.76 3.07 0.6633 -3.977 2.360 47 7.76 -3.977 3.21 0.6633 2.360 48 2.360 7.76 3.34 0.6633 -3.977

SEL SURYA LEVEL ENERGI RENDAH

L7.HASIL SIMULASI PC1Dv5.9 UNTUK SEL SURYA LEVEL ENERGI

MENENGAH

DEVICE Device Schematic Device area: 100 cm² Front surface texture depth: 1 µm Е No surface charge No Exterior Front Reflectance No Exterior Rear Reflectance No internal optical reflectance Emitter contact enabled Base contact enabled No internal shunt elements **REGION 1** Thickness: 15.25 µm Material modified from si.mat Carrier mobilities from internal model B Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×1010 cm-3 Refractive index from si.inr Absorption coeff. from si300.abs No free carrier absorption P-type background doping: 1.4×10¹⁷ cm⁻³ 1st front diff.: N-type, 1.01×10²⁰ cm⁻³ peak No 2nd front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 10 \ \mu s$ No Front-surface recombination No Rear-surface recombination EXCITATION Excitation modified from one-sun exc Excitation mode: Transient, 16 timesteps Temperature: 25°C Base circuit: Sweep from -0.8 to 0.8 V Collector circuit: Zero Primary light source enabled Constant intensity: 0.1 W cm⁻² Monochrome, wavelength from 400 to 650 nm Secondary light source disabled RESULTS Short-circuit Ib: -3.203 amps Max base power out: 2.258 watts Open-circuit Vb: 0.6885 volts

L8.HASIL SIMULASI PC1Dv5.9 UNTUK SEL SURYA LEVEL ENERGI

RENDAH

