PENGARUH KONSENTRASI HIDROGEN KLORIDA (HCI) DAN WAKTU PERLAKUAN HIDROTERMAL TERHADAP KRISTALINITAS MATERIAL MESOPORI SILIKA SBA-15

SKRIPSI

Oleh

IBADURRAHMAN

04 04 04 03 48

DEPARTEMEN TEKNIK METALURGI DAN MATERIAL FAKULTAS TEKNIK UNIVERSITAS INDONESIA GENAP 2007/2008

PENGARUH KONSENTRASI HIDROGEN KLORIDA (HCI) DAN WAKTU PERLAKUAN HIDROTERMAL TERHADAP KRISTALINITAS MATERIAL MESOPORI SILIKA SBA-15

SKRIPSI

Oleh

IBADURRAHMAN

04 04 04 03 48

SKRIPSI INI DIAJUKAN UNTUK MELENGKAPI SEBAGIAN PERSYARATAN MENJADI SARJANA TEKNIK

DEPARTEMEN TEKNIK METALURGI DAN MATERIAL FAKULTAS TEKNIK UNIVERSITAS INDONESIA GENAP 2007/2008

PERNYATAAN KEASLIAN SKRIPSI

Saya menyatakan dengan sesungguhnya bahwa skripsi dengan judul :

PENGARUH KONSENTRASI HIDROGEN KLORIDA (HCI) DAN WAKTU PERLAKUAN HIDROTERMAL TERHADAP KRISTALINITAS MATERIAL MESOPORI SILIKA SBA-15

Yang diajukan untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik Departemen Metalurgi dan Material Fakultas Teknik Universitas Indonesia, sejauh yang saya ketahui bukan merupakan tiruan atau duplikasi dari skripsi yang sudah dipublikasikan dan atau pernah dipakai gelar kesarjanaan di lingkungan Universitas Indonesia maupun di perguruan tinggi atau instansi manapun, kecuali bagian yang sumber informasinya dicantumkan sebagaimana mestinya.

Depok, Juli 2008

<u>IBADURRAHMAN</u>

NPM. 0404040348

LEMBAR PENGESAHAN

Skripsi dengan judul:

PENGARUH KONSENTRASI HIDROGEN KLORIDA (HCI) DAN WAKTU PERLAKUAN HIDROTERMAL TERHADAP KRISTALINITAS MATERIAL MESOPORI SILIKA SBA-15

Disusun untuk melengkapi sebagian persyaratan kurikulum Program Sarjana Reguler Universitas Indonesia guna memperoleh gelar Sarjana Teknik pada Departemen Metalurgi dan Material Fakultas Teknik Universitas Indonesia.

> Depok, Juli 2008 Menyetujui, Dosen Pembimbing

Dr. Ir. Akhmad Herman Yuwono, M. Phil. Eng. NIP. 132 137 843

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada:

Dr. Ir. Akhmad Herman Yuwono, M. Phil. Eng.

selaku dosen pembimbing yang telah bersedia meluangkan waktu untuk memberi pengarahan, diskusi dan bimbingan serta persetujuan sehingga skripsi ini dapat selesai dengan baik.

Serta Dr. Ir. Donanta Dhaneswara, M.Si, M. Hilmy Alfaruqi, kedua orang tua dan teman-teman yang telah memberi semangat dan doa tanpa henti dalam menjalani penelitian dan perkuliahan selama ini.

DAFTAR ISI

	Halaman
HALAMAN JUDUL	i
PERNYATAAN KEASLIAN SKRIPSI	
PENGESAHAN	iii
UCAPAN TERIMA KASIH	iv
ABSTRAK	V
ABSTRACT	vi
DAFTAR ISI	vii
DAFTAR GAMBAR	X
DAFTAR TABEL	xii
DAFTAR LAMPIRAN	xiii
DAFTAR SINGKATAN	xiv
BAB I PENDAHULUAN	1
1.1 LATAR BELAKANG PENELITIAN	1
1.2 TUJUAN PENELITIAN	2
1.3 RUANG LINGKUP PENELITIAN	2
1.3.1 Material	2
1.3.2 Proses	2
1.3.3 Parameter Penelitian	3
1.3.4 Tempat Penelitian	3
BAB II STUDI LITERATUR	4
2.1 TEKNOLOGI NANO	4
2.2 MATERIAL MESOPORI	5
2.3 SBA-15	7
2.3.1 Sintesis SBA-15	7
2.3.1.1 Metode sol–gel	7
2.3.1.2 Tahapan proses sol-gel	9
2.3.2 Material Penyusun SBA-15	10

2.3.2.1 TEOS (Tetraethylorthosilicate)	10
2.3.2.2 Surfaktan Pluronik 123	11
2.3.2.3 HCl sebagai katalis	16
2.4 PEMBENTUKAN MISEL DALAM SELF ASSEMBLY	16
2.5 HIDROTERMAL	18
2.5.1 Sejarah	18
2.5.2 Kegunaan	19
2.6 X-RAY POWDER DIFFRACTION (XRD)	19
2.6.1 Prinsip Kerja XRD	19
2.6.2 Produksi	20
2.6.3 Difraksi	20
2.6.4 Deteksi	21
2.6.5 Interpretasi	22
2.7 BRUNAUER, EMMET, TELLER (BET)	22
2.8 SPEKTROSKOPI FOURIER TRANSFORM INFRA	
RED (FTIR)	23
BAB III METODOLOGI PENELITIAN	
3.1 DIAGRAM ALIR PENELITIAN	25
3.2 PERALATAN DAN BAHAN	26
3.2.1 Peralatan	26
3.2.2 Bahan-bahan	26
3.3 PROSES SINTESIS SBA-15	26
3.3.1 Konsentrasi TEOS, P123, Air dan HCl	26
3.3.2 Penentuan Konsentrasi HCl	27
3.3.3 Penentuan Temperatur Pada Saat Sintesis	28
3.3.4 Proses Sintesis	29
3.3.5 Proses Pengambilan Sampel dan Pembersihan	30
3.4 PROSES PENGERINGAN	30
3.5 PROSES HIDROTERMAL	31
3.6 KARAKTERISASI	32
3.6.1 X-Ray Diffraction (XRD)	32
3.6.2 Brunauer, Emmet, Teller (BET)	32

3.6.3 Spektroskopi Fourier Transform Infra Red (FTIR)	33
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	34
4.1. HASIL PENGUJIAN X-RAY DIFFRACTION (XRD)	34
4.1.1 Hasil Pengujian XRD Pada Konsentrasi Hidrogen Klorida	
(HCl) 0.5, 1, 2 dan 4 M	34
4.1.2 Hasil Pengujian XRD Pada Perlakuan Hidrotermal	
Selama 2, 6 dan 12 jam	36
4.2. HASIL PENGUJIAN FOURIER TRANSFORM	
INFRA RED (FTIR)	38
4.3. HASIL PENGUJIAN BRUNAUER, EMMET,	
TELLER (BET)	39
4.4. PENGOLAHAN DATA XRD	40
4.5. PEMBAHASAN	44
4.5.1 Pengaruh Konsentrasi Hidrogen Klorida (HCl)	44
4.5.2 Pengaruh Waktu Hidrotermal	49
BAB V KESIMPULAN	54
5.1. KESIMPULAN	54
5.2. SARAN	55
DAFTAR AGNAN	56
DAFTAR ACUAN	
LAMPIRAN	

DAFTAR GAMBAR

		Halaman
Gambar 2.1	Sejarah perkembangan ilmu pengetahuan hingga	
	mencapai skala nano	4
Gambar 2.2	Foto mikro material mesopori silika MCM-41	5
Gambar 2.3	Foto mikro SBA-15	7
Gambar 2.4	Ilustrasi sintesis SBA-15	8
Gambar 2.5	Struktur TEOS	10
Gambar 2.6	Ilustrasi surfaktan amfifilik	11
Gambar 2.7	Klasifikasi surfaktan	12
Gambar 2.8	CMC (Critical Micelle Concentration)	15
Gambar 2.9	Struktur kimia P123	16
Gambar 2.10	Ilustrasi pembentukan misel	17
Gambar 2.11.	Adsorpsi permukaan dan terbentuknya misel	18
Gambar 2.12.	Komponen-komponen X-ray diffraction (XRD)	20
Gambar 2.13	Tabung sinar-X	20
Gambar 2.14 .	Difraksi radiasi sinar-X dalam struktur kristal	21
Gambar 2.15 .	Deteksi dan interpretasi difraksi sinar-X	22
Gambar 2.16	Grafik BET	23
Gambar 3.1	Diagram alir penelitian	25
Gambar 3.2	Magnetic stirrer	28
Gambar 3.3	Oven Memmert yang digunakan pada proses	
	pengeringan dan hidrotermal	30
Gambar 3.4	Container yang digunakan pada proses hidrotermal	32
Gambar 4.1	Hasil XRD sampel dengan konsentrasi HCl 0.5 M pada	
	hidrotermal selama 2, 6 dan 12 jam	34
Gambar 4.2	Hasil XRD sampel dengan konsentrasi HCl 1 M pada	
	hidrotermal selama 2, 6 dan 12 jam	35
Gambar 4.3	Hasil XRD sampel dengan konsentrasi HCl 2 M pada	
	hidrotermal selama 2, 6 dan 12 jam	35
Gambar 4.4	Hasil XRD sampel dengan konsentrasi HCl 4 M pada	
	hidrotermal selama 2, 6 dan 12 jam.	36
Gambar 4.5	Hasil XRD sampel dengan perlakuan hidrotermal selam	a
	2 jam pada konsentrasi HCl 0.5, 1, 2 dan 4 M.	36
Gambar 4.6	Hasil XRD sampel dengan perlakuan hidrotermal selam	a
	6 jam pada konsentrasi HCl 0.5, 1, 2 dan 4 M	37
Gambar 4.7	Hasil XRD sampel dengan perlakuan hidrotermal selam	a
	12 jam pada konsentrasi HCl 0.5, 1, 2 dan 4 M	37
Gambar 4.8	Hasil pengujian FTIR pada konsentrasi HCl 4 M	
	dengan hidrotermal selama 12 jam	38
Gambar 4.9	Hasil pengujian FTIR pada konsentrasi HCl 0.5 M	
	dengan hidrotermal selama 12 jam	38

Gambar 4.10	Hasil pengujian FTIR pada konsentrasi HCl 0.5 M	
	dengan hidrotermal selama 2 jam	39
Gambar 4.11 .	Kurva adsorbsi-desorbsi sampel	40
Gambar 4.12	Grafik yang dihasilkan pada software PeakFit	40
Gambar 4.13	Hasil smoothing dari grafik	41
Gambar 4.14	Hasil penentuan FWHM	41
Gambar 4.15	Grafik hasil review	42
Gambar 4.16	Data yang dihasilkan software PeakFit	42
Gambar 4.17	Pengaruh konsentrasi HCl terhadap ukuran kristal	
	pada hidrotermal selama 2 jam	44
Gambar 4.18	Pengaruh konsentrasi HCl terhadap ukuran kristal	
	pada hidrotermal selama 6 jam	45
Gambar 4.19	Pengaruh konsentrasi HCl terhadap ukuran kristal	
	pada hidrotermal selama 12 jam	46
Gambar 4.20	Hidrolisis dengan katalis HCl	47
Gambar 4.21	Serangan nukleofilik untuk membentuk ikatan siloxene	47
Gambar 4.22	Perbandingan intensitas Si-O-Si dan Si-OH hasil	
	pengujian FTIR dengan konsentrasi HCl 0.5 (i) M dan 4 M (ii)	48
Gambar 4.23		
	pada konsentrasi HCl 0.5 M pada temperatur 100°C	49
Gambar 4.24	Pengaruh waktu hidrotermal terhadap ukuran butir	
	pada konsentrasi HCl 1 M pada temperatur 100°C	50
Gambar 4.25	Pengaruh waktu hidrotermal terhadap ukuran butir	
	pada konsentrasi HCl 2 M pada temperatur 100°C	51
Gambar 4.26	Pengaruh waktu hidrotermal terhadap ukuran butir	
	pada konsentrasi HCl 4 M pada temperatur 100°C	52
Gambar 4.27	Perbandingan intensitas Si–O–Si dan Si–OH hasil	
	pengujian FTIR dengan hidrotermal selama 2 jam (i)	
	dan 12 jam (ii)	53

DAFTAR TABEL

		Halaman
Гabel 2.1	Sifat fisik TEOS	11
Γabel 2.2	Perbedaan Gugus Surfaktan	14
Γabel 2.3	Sifat fisik Pluronik P123	15
Гabel 3.1	Komposisi bahan-bahan yang digunakan	27
Γabel 3.2	Skala pada temperatur <i>magnetic stirrer</i>	29
Гabel 3.3	Pembagian sampel dan lamanya waktu proses	31
Гabel 4.1	Ukuran kristal	43

DAFTAR LAMPIRAN

Lampiran 1 Hasil pengujian XRD

Lampiran 2 Hasil pengujian BET

Lampiran 3 Hasil pengujian FTIR

DAFTAR SINGKATAN

SDA Structure Directing Agent

PEO Polietilen-oksida

PPO Polipropilen-oksida

TEOS Tetraethylorthosilicate

XRD X-Ray Diffraction

BET Brunauer, Emmet, dan Teller

FTIR Fourier Transform Infra Red