BAB III

DATA DESAIN DAN HASIL INSPEKSI

III. 1 DATA DESAIN

Data yang digunakan pada penelitian ini adalah merupakan data dari sebuah *offshore platform* yang terletak pada perairan Laut Jawa, di utara Propinsi DKI Jakarta dengan iklim tropis. Data yang digunakan merupakan hasil pemeriksaan secara visual dan lewat pengukuran ketebalan menggunakan metode *non-destructive*, *Ultrasonic Testing* (UT).

Offshore platform tersebut terdiri dari 2 bagian, yaitu :

- 1. Compression section (CS), digunakan sebagai jalur utama untuk gas alam yang akan dikompresi (main gas line). Direncanakan untuk bertahan hingga tahun 2018 dengan opsi pemanjangan pemakaian hingga 2034 (16 tahun)
- 2. Flow section (FS), merupakan jalur utama dari minyak cair (main oil line) yang diolah pada platform ini. Bagian platform ini direncanakan untuk tetap dipertahankan hingga tahun 2009 dan mungkin diperpanjang untuk setahun kemudian (2010).

Total jalur (*lines*) yang terdapat pada *offshore platform* tersebut adalah 83 jalur. Untuk penelitian kali ini, akan diambil sebanyak sepuluh (10) jalur sebagai bahan pembahasan, dengan delapan (8) jalur dari CS dan dua (2) dari FS. Kesepuluh (10) jalur tersebut adalah:

Compression section

- 1. PG-0110-XD-20" (PG-110-D-20 TO PG-111-XD-26)
- 2. PG-0101-XD-2" (PG-101-XD-12 TO 2" NC VALVE)
- 3. PG0105-D-4" (RED 6"x4" TO RED 6"x4")

- 4. PG-0105-D-10" (PG-105-D-8" TO MMF GAS LIFT)
- 5. PG-0123-D-2" (MM-R-40-01 TO MM-R-40-01)
- 6. PG-0113-D-2" (PG-117-D-6" TO 2" BALL VALVE)
- 7. PG-0102-XD-20" (PG-101-XD-26" TO PG-102-D-20)
- 8. PG-0117-D-6" (MM-V-41-01 TO 6" WELD CAP)

Flow section

- 1. PG-0019-D-10" (E-001-BX to V-001-HX)
- 2. PG-0021-D-16" (10"-D-060-P-21 TO MMF-108-D-16)

III.1.1 Fluida Yang Dialirkan

Berdasarkan fungsinya sebagai jalur pipa untuk *main gas line* dan *main oil line*, maka fluida yang dialirkan pada jalur pipa perlu diperhatikan komposisinya. Komposisi tersebut akan amat mempengaruhi tingkat korosivitas yang terjadi pada bagian dalam pipa.

Untuk jalur gas (CS), maka fluida gas yang dialirkan perlu diperhatikan nilai kadar CO₂, H₂S dan merkurinya. Sementara untuk jalur minyak atau kondensat (FS), yang penting untuk diperhatikan adalah kandungan air, tingkat keasaman (pH), kadar klorida (Cl), sisa zat inhibitor dan asam organik lainnya.

Tabel 3. 1 Karakteristik fluida teralir

No	Section	Deskripsi	Berbahaya (hazardous)	CO ₂	Erosi	Mengandung Sulfida (H ₂ S)	Keterangan
1	Compression station	Main gas line (MGL)	Ya	Ya	-	Ya	Sebagian jalur pipa
2	Flow station	Main oil line (MOL)	Ya	Ya	-	Ya	terendam air (<i>riser</i>)

III.1.2 Spesifikasi Desain Pipa

Data berikut akan memberikan gambaran tentang spesifikasi desain pipa yang digunakan, dan parameter proses yang ditetapkan.

Tabel 3. 1 Spesifikasi desain pipa pada kesepuluh jalur yang dibahas

	Nomon							Spesifikasi	desain pipa			
NO	Nomor jalur	Line section	Section	Class	NPS	Material selection	schedule	Temp operasi	Outside diameter	Nominal thickness	MAWS	Design pressure
1	PG-0110- XD-20"	PG-110-D-20 TO PG-111-XD- 26		XD	20	A-234-WPB	80	500 F	20"	1.03"	52000 psig	1200 psig
2	PG-0101- XD-2"	PG-101-XD-12 TO 2" NC VALVE		XD	2	API X52	80	500 F	2.375"	0.28"	52000 psig	1200 psig
3	PG-0105- D-4"	RED 6"x4" TO RED 6"x4"		D	6&4	A-234-WPB	80	500 F	6.625" & 4.5"	0.50" & 0.38"	15000 psig	1200 psig
4	PG-0105- D-10"	PG-105-D-8" TO MMF GAS LIFT	Compression	D	10	A106B & A-234-WPB	80	500 F	10.75"	0.59"	15000 psig	1200 psig
5	PG-0123- D-2"	MM-R-40-01 TO MM-R-40-01	station	D	2	A106B & A-234-WPB	80	500 F	2.375"	0.28"	15000 psig	1200 psig
6	PG-0113- D-2"	PG-117-D-6" TO 2" BALL VALVE		D	2	A 106B	80	500 F	2.375"	0.28"	15000 psig	1200 psig
7	PG-0102- XD-20"	PG-101-XD-26" TO PG-102-D- 20		XD	20	A-234-WPB	XS	500 F	20"	0.50"	52000 psig	1200 psig
8	PG-0117- D-6"	MM-V-41-01 TO 6" WELD CAP		D	6	A106B & A-234-WPB	80	500 F	6.625"	0.50"	15000 psig	1200 psig
9	PG-0019- D-10"	E-001-BX to V- 001-HX		D	10	A106B & A-234-WPB	80	500 F	10.75"	0.59"	15000 psig	1200 psig
10	PG-0021- D-16"	10"-D-060-P-21 TO MMF-108- D-16	Flow station	D	16	A106B & A-234-WPB	80	500 F	16" & 8.625"	0.88" & 0.50"	52000 psig	1200 psig

III.1.2 Spesifikasi Material Pipa

Seperti yang ditulis pada tabel diatas, material yang dipakai pada kedua jalur adalah jenis A-234-WPB, A106B, dan API 5L X52. Masing-masing material tersebut memiliki fungsi yang berbeda tergantung pada letaknya pada jalur pipa. Untuk jenis material A-234-WPB dan A106B diatur dalam standar ASTM (*American Society of Testing Material*) sementara untuk API 5L X52 diatur oleh standar yang dikeluarkan API (*American Petroleum Institute*).

- 1. ASTM A-234 (*Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and Elevated Temperatures*) mengatur tentang penggunaan material baja karbon sebagai bagian pengencang pipa.
- 2. ASTM A-106 (*Seamless Carbon Steel Pipe*) mengatur tentang spesifikasi material yang digunakan pada pipa baja karbon tanpa kampuh
- 3. API 5L (*Line Pipe*) mengatur tentang material yang digunakan dalam jalur pipa

Untuk komposisi dari masing-masing material, penulis tidak mendapatkan data lengkapnya, namun bila mengacu dari standar yang digunakan maka dapat diperkirakan secara kasar. Untuk material A-234-WPB dan A106B dengan nilai kelas ekstra kuat (XD) diatur sifat mekanis minimalnya pada ASME B.31.3 *Appendix* A, tabel A-1 (lampiran).

Tabel 3. 2 Jenis baja karbon yang digunakan pada CS dan FS

No	Material	Fungsi	Spesifikasi	Specified Minimum Strength (ksi)		Minimum		Minimum		Keterangan	Efiesiensi sambungan (E)
				Tensile	yield		(L)				
		Forging dan				Pada					
		fitting pipa				penggunaan					
1*	Baja	pada	A-234- 60 35		35	temperature	1.0				
1	karbon	penggunaan	WPB	00	33	tinggi, baja	1.0				
		temperatur				ini dicampur					
		ruang				dengan Mo					
2**	Baja	Digunakan	A 106	48	30	Setingkat	Bergantung				
	karbon	pada pipa	grade A	40	30	dengan	metode				

standar ataupun pipa saluran	A 106 grade B	60	35	ASTM A53, A523, API 5L PSL1	penyambungan
Dibuat dengan seamless pipe	A 106 grade C	70	40	Digunakan pada temperature tinggi	1.0

Sumber: * ASME B.31.3 Appendix A, tabel A-1

Sedangkan untuk material API 5L X52 yang digunakan, maka harus dapat memenuhi standar sifat mekanis minimum yang ditetapkan API.

Tabel 3. 3 Sifat mekanis minimum API 5L X52 dan X56

API 5L Grade	Yield Strength min. (ksi)	Tensile Strength min. (ksi)	Joint Efficiency (E)	Keterangan
X52	52	66	1	Jenis pipa ini semuanya dibuat
X56	56	71	1	secara seamless

Sumber: http://www.woodcousa.com

Bila dilihat dari spesifikasi diatas, nampak bahwa baik material yang digunakan sebagai *fitting* (A-234-WPB) dan jalur pipa (A-106-B maupun API 5L X52) memiliki kemiripan sifat mekanis yaitu nilai kekuatan tarik dan luluh minimum yang tidak jauh berbeda. Selain itu, keseluruhan jenis pipa yang digunakan pada jalur FS dan CS adalah jenis *seamless pipe* (pipa tanpa kampuh) yang memiliki nilai efisiensi sambungan satu (1.0).

III. 2 DATA INSPEKSI

Proses inspeksi pada kedua *section* dilakukan pada bulan Mei 2007 yang lalu dengan dengan menggunakan metode NDT, yaitu dengan cara pemeriksaan visual (*visual examination*) dan metode *ultrasonic testing* untuk mengetahui ketebalan dan profil pipa.

Proses metode inspeksi dengan UT dilakukan dengan menggunakan perlengkapan *Ultrasonic Flaw Detector* USK 57 atau *DM-4 DL Ultrasonic Thickness Gauge* yang telah terkalibrasi. Proses yang dilakukan bersifat *on-stream*

^{**} http://www.usstubular.com

inspection, dimana operator inspeksi akan melakukan proses pemeriksaan ketebalan dinding pipa pada saat proses tetap berlangsung dan tanpa melakukan proses pemindahan lapisan coating. Titik pengukuran (thickness measurement location, TML) pada setiap pipa harus mencukupi standar yang telah ditetapkan pada API 570 bagian 3.4.3 tentang tuntunan umum dalam melakukan proses inspeksi pada jalur pipa dan dapat digunakan untuk proses evaluasi lebih lanjut. Proses pemeriksaan secara keseluruhan harus sesuai dengan standar ASME B 3.1.3 Chapter VI tentang proses pemeriksaan jalur pipa proses (processing piping).

Sedangkan untuk operator yang melakukan proses pemeriksaan UT ini haruslah orang yang berkompeten dengan memegang sertifikasi NDT dan memenuhi kriteria seperti yang telah disebutkan dalam ASME Section V Article 5 mengenai Non Destructive Examination.

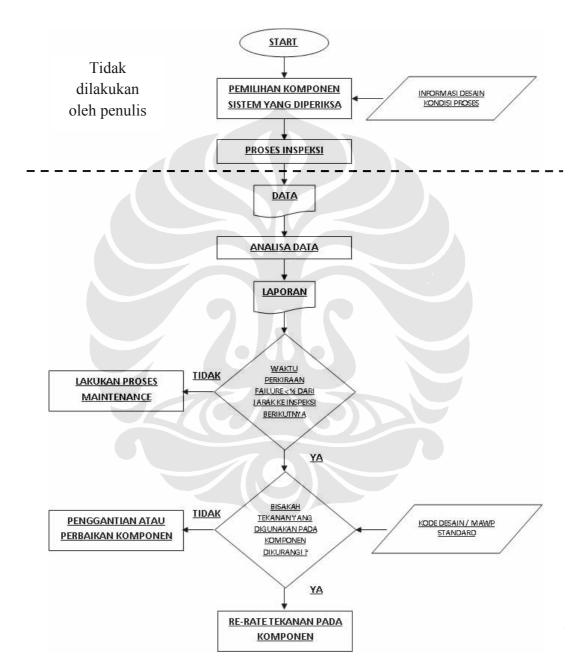
Hasil dari inspeksi UT juga harus dilengkapi pula dengan hasil pemeriksaan visual. Pada hasil pemeriksaan tersebut kemudian akan dapat dikelompokkan tingkat korosi yang terjadi secara umum sebagai berikut.

- (G) Good : Tidak terdapat indikasi akan adanya korosi
- (F) Fair : *Terjadi korosi ringan pada permukaan* dengan produk oksida yang sedikit
- (B) Bad : *Terdapat area pitting yang luas* dengan hasil oksida yang banyak

Tabel 3. 4 Hasil inspeksi visual dan pengukuran UT pada jalur pipa CS

No	Jalur pipa	No Jalur	Ketebalan aktual (mm)	Kondisi visual
1	PG-0110-XD-20" (PG-110-D-20 TO PG-111-XD-26)	C1-1	12.47	Baik
2	PG-0101-XD-2" (PG-101-XD-12 TO 2"	C2-1	5.11	Cukup

	NC WALVE	C2-2	5.49	(terdapat kerusakan
	VALVE)	C2-3	5.32	coating)
		C3-1	11.07	
		C3-2	8.59	Baik
	PG0105-D-4" (RED 6"x4" TO RED	C3-3	8.07	Buruk (terdapat korosi
3	6"x4")	C3-4	9.07	parah)
		C3-5	8.35	
		C3-6	11.0	Baik
		C4-1	10.27	
		C4-2	10.16	
		C4-3	10.36	
		C4-4	10.05	D.:I.
		C4-5	10.43	Baik
		C4-6	14.29	
		C4-7	10.35	
		C4-8	9.89	
		C4-9	10.33	
		C4-10	10.82	
		C4-11	10.86	
4	PG-0105-D-10"	C4-12	13.27	
7	(PG-105-D-8" TO MMF GAS LIFT)	C4-13	11.19	
		C4-14	14.34	
		C4-15	12.38	
		C4-16	10.79	Baik
		C4-17	13.22	Dark
		C4-18	13.31	
		C4-19	12.99	
		C4-20	13.36	
		C4-21	13.85	
		C4-22	13.16	
		C4-23	12.47	
		C4-24	13.27	
		C5-1	5.04	
		C5-2	4.11	Baik
5	PG-0123-D-2"	C5-3 C5-4	4.10 1.10	Buruk (terdapat korosi
3	(MM-R-40-01 TO MM-R-40-01)			parah)
		C5-5	4.16	
		C5-6	3.98	Baik
		C5-7	4.40	


6	PG-0113-D-2" (PG-117-D-6" TO 2" BALL VALVE)	C6-1	4.30	Baik
7	PG-0102-XD-20" (PG-101-XD-26" TO PG-102-D-20)	C7-1	11.27	Baik
		C8-1	10.03	
		C8-2	8.85	
		C8-3	9.71	
8	PG-0117-D-6"	C8-4	9.20	Deil-
8	(MM-V-41-01 TO 6" WELD CAP)	C8-5	10.75	Baik
		C8-6	11.05	
		C8-7	11.09	
		C8-8	11.84	

Tabel 3. 5 Hasil inspeksi visual dan pengukuran UT pada jalur pipa FS

No	John nine	No	Ketebalan aktual	Kondisi visual
110	Jalur pipa	Jalur	(mm)	Kondisi visuai
		F1-1	11.94	
		F1-2	14.65	
		F1-3	14.12	
		F1-4	14.53	
		F1-5	12.43	
	PG-0019-D-10" (E-001-BX to	F1-6	12.75	Baik
1	V-001-HX)	F1-7	12.07	(Namun terdapat penopang pipa
		F1-8	11.35	yang rusak)
		F1-9	12.45	
		F1-10	12.15	
		F1-11	12.62	
		F1-12	12.45	
		F1-13	12.16	
		F2-1	16.02	
		F2-2	16.52	5 "
		F2-3	19.21	Baik
	PG-0021-D-16"	F2-4	19.07	
2	(10"-D-060-P-21 TO MMF-	F2-5	15.79	Cukup
	108-D-16)	F2-6	15.62	Baik
		F2-7	7.19	
		F2-8	11.36	Buruk (terdapat korosi parah)

III. 3 FLOWCHART ANALISA DATA

Dari tabel data yang ditulis pada bagian sebelumnya, maka data tersebut akan diolah dengan urutan tertentu sebagai validasi tindakan yang dapat dilakukan pada komponen tersebut.

Gambar 3. 1 Skema flowchart pengolahan data