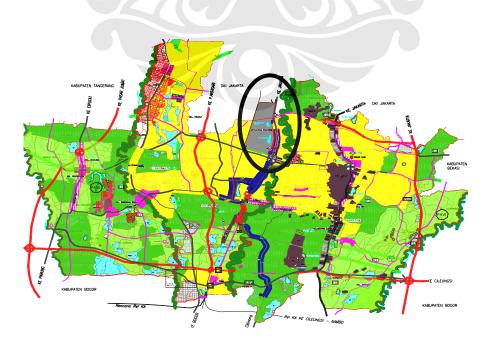
BAB IV

KONDISI EKSISTING SISTEM DRAINASE PADA WILAYAH STUDI


4.1 GAMBARAN UMUM

4.1.1 Kota Depok

Kota Depok adalah sebuah kota di provinsi Jawa Barat, Indonesia. Depok terletak tepat di selatan Jakarta, yakni antara Jakarta-Bogor. Kota ini dahulu adalah kota kecamatan dalam wilayah kabupaten Bogor, yang kemudian mendapat status kota administratif pada tahun 1982. Sejak 20 April 1999, Depok ditetapkan menjadi kotamadya (sekarang kota) yang terpisah dari kabupaten Bogor.

Jumlah penduduk kota Depok berdasarkan profil isian (BPS/P4B) mencapai 1.313.495 jiwa dengan kepadatan rata-rata 5.818 jiwa/km² dan pertumbuhan penduduk mencapai 3,70 % per tahun. Karena itu, Depok termasuk kedalam kategori kota metropolitan. Keputusan pemerintah memindahkan sebagian besar kegiatan akademis Universitas Indonesia ke Depok yang menempati areal 318 hektar pada tanggal 5 September 1987 menjadi salah satu faktor penentu perkembangan pesat kota Depok seperti sekarang. Kala itu, lahan hijau yang berfungsi sebagai konservasi air masih luas. Jumlah penduduk pun dibawah 700.000 jiwa. Sebelumnya, pertumbuhan penduduk Depok yang pesat dipicu oleh proyek percontohan perumahan nasional berskala besar pada pertengahan tahun 1970-an. Depok kini menjadi kota besar, padahal daerah ini direncanakan dihuni tidak lebih dari 800.000 jiwa pada tahun 2005. Akan tetapi, pada tahun 2002 penduduk Depok sudah mencapai 1,2 juta jiwa. Pada tahun 2005 jumlah penduduk kota Depok sudah jauh melebihi perkiraan Pemerintah Daerah Depok dengan jumlah 1.380.576 jiwa yang tersebar dibeberapa kecamatan, diantaranya:

- Kecamatan Beji dengan Pusat Pemerintahan berkedudukan dikelurahan Beji, terdiri dari 6 kelurahan dengan jumlah pendududk sebanyak 80.377 jiwa dan luas wilayah 1614 Ha.
- 2. Kecamatan Sukmajaya, dengan pusat pemerintahan berkedudukan dikelurahan Mekar Jaya, terdiri dari 11 kelurahan dengan jumlah pendududk sebanyak 216.396 Jiwa dan luas wilayah 3.398 Ha.
- 3. Kecamatan Pancoran Mas, dengan pusat pemerintahan berkedudukan dikelurahan Depok, terdiri dari 6 Kelurahan dan 6 Desa dengan jumlah penduduk 156.118 jiwa dan luas wilayah 2.671 Ha.
- 4. Kecamatan Limo dengan pusat pemerintahan berkedudukan di Desa Limo Kecamatan Limo, terdiri dari 8 desa dengan jumlah penduduk 66.891 jiwa dan luas wilayah 2.595,3 Ha.
- 5. Kecamatan Cimanggis dengan pusat pemerintahan yang berkedudukan di desa Cisalak pasar kecamatan Cimanggis. Terdiri dari 1 kelurahan dan 12 desa dengan jumlah penduduk 221.330 jiwa dan luas wilayah 5.077,3 Ha.
- 6. Kecamatan Sawangan dengan pusat pemerintahan yang berkedududkan di desa Sawangan. Terdiri dari 14 desa dengan jumlah penduduk 87.758 jiwa dan luas wilayah 4.673,8 Ha. (Sumber: www.depok.go.id)

Gambar 4.1 Plan site kota depok

4.1.2 Fakultas Teknik Universitas Indonesia

Gambar 4.3 Plan site Fakultas Teknik Universitas Indonesia

4.1.2.1 Tata Guna Lahan

• Luas Bruto lahan terpakai FTUI

				Dimensi	Bangunan		
No	Caduna		N	etto Lahan Terj	oakai		Bruto
110	Gedung	Panjang	Lebar	Luas tapak	Jumlah	Luas	Lahan
					lantai	bangunan	Terpakai
1	BP3	22	22	484.00	1.00	484.00	508.20
2	Kantin Mahasiswa	43	202	8,686.00	1.00	8,686.00	9,120.30
3	Pusgiwa	25	25	625.00	2.00	1,250.00	656.25
4	Perpustakaan	80	15	1,200.00	2.00	2,400.00	1,260.00
5	Engineering Center	100	17	1,700.00	5.00	8,500.00	1,785.00
6	Jurusan Sipil (Kantor)	20	20	400.00	2.00	800.00	420.00
	Lab Sipil	30	20	600.00	4.00	2,400.00	630.00
7	Jurusan Arsitektur	20	20	400.00	2.00	800.00	420.00
	Studio	20	20	600.00	4.00	2,400.00	630.00
8	Jurusan Mesin	20	20	400.00	2.00	800.00	420.00
	Lab Mesin	20	20	600.00	4.00	2,400.00	630.00
9	Jurusan Elektro	20	20	400.00	2.00	800.00	420.00
	Lab Elektro	20	20	600.00	4.00	2,400.00	630.00
10	Jurusan Gas Petrokimia	20	20	400.00	2.00	800.00	420.00
	Lab Gas Petrokimia	20	20	600.00	4.00	2,400.00	630.00
11	Jurusan Metalurgi	20	20	400.00	2.00	800.00	420.00
	Lab Metalurgi	20	20	600.00	4.00	2,400.00	630.00
12	Jurusan Teknik Industri	20	20	400.00	2.00	800.00	420.00
	Lab TI	25	5	600.00	5.00	3,000.00	630.00
13	Gedung Dekanat	24	24	576.00	2.00	1,152.00	604.80
14	Gedung GK						
	Gedung Utama	32	26	832.00	2.00	1,664.00	873.60
	R. Tangga	11.7	5.2	60.84	2.00	121.68	63.88
15	Ruang Kuliah Bersama	45	45	2,025.00	2.00	4,050.00	2,126.25
16	Selasar Penghubung Bang.						
17	Selasr existing	515	2	1,030.00	1.00	1,030.00	1,081.50
18	Selasar Pengembangan	125	2	250.00	1.00	250.00	262.50
	Jumlah			24,468.84		52,587.68	25,692.28

REKAPITULASI:				
- LUAS LAHAN				
FTUI : - LUAS TAPAK	98,000.00	M2		
BANGUNAN : - LUAS JALAN &	24,468.84	M2	24.97	%
PARKIR :	9,712.50	M2	9.91	%
- LUAS LAHAN HIJAU				
FTUI :	63,818.66	M2	65.12	%

■ LUAS LAHAN PARKIR FT-UI : 9,712.50 m²

■ Laporan Bangunan FTUI (OKTOBER 2004)

NO	FISIK BANGUNAN	LUAS BANGUNAN	TAHUN PEMBANGUNAN	T. PAKAI
1	Gedung Dekanat	1728	2002	2
2	Engineering Center	1720	2002	-
	Gedung B (s/d lt dsr.)	1700	2000	4
	Gedung A (s/d lt 6)	7200	2000	4
	Gedung C (s/d lt dsr.)	72	2000	4
3	Jurusan Sipil (Kantor)	800	1989	15
	Lab Sipil	2400	1989	15
4	Jurusan Arsitektur	800	1989	15
	Studio/Lab.	2400	1989	15
5	Jurusan Mesin	800	1989	15
	Lab Mesin	2400	1989	15
6	Jurusan Elektro	800	1989	15
	Lab Elektro	2400	1989	15
7	Jurusan Gas Petrokimia	800	1992	12
	Lab Gas Petrokimia	2400	1992	12
8	Jurusan Metalurgi	800	1992	12
	Lab Metalurgi	2400	1992	12
9	Jurusan Teknik Industri	800	1999	5
	Lab TI (Tahap Pengembangan)	250	1999	5
10	Gedung Kuliah Bersama			
	Gedung Utama	1800	1989	15
	Ruang2 Kuliah	2400	1989	15
	Gedung Administrasi &	JAE		
11	Komp.	2079	1995	9
12	BP3	484	1995	9
13	Kantin Mhsw, Musholla	1075	1992	12
14	Pusgiwa	1250	1992	12
15	Selasar Penghubung Bang.	1000	1000	4.5
	Selasr existing	1030	1989	15
4.	Selasar Pengembangan	250	2000	4
16	Bangunan Pelengkap	450	4000	
	SATPAM,R.GENSET dll.	150	1989	15
		41468		

4.2 KONDISI EKSISTING SISTEM DRAINASE PADA WILAYAH STUDI

Setelah melakukan survey dan pengukuran kasar ,didapat bentuk dan dimensi dari sistem drainase Fakultas Teknik Universitas Indonesia, dengan detail gambar dan dimensi sebagai berikut:

Tabel 4.1 Jenis dan bentuk Saluran

No	Jenis dan Bentuk Saluran	Keterangan
1	Bentuk Persegi Empat	Saluran drainase di sekitar gedung
		teknik mesin
		Lebar : 25 cm
	\$500 Si	Tinggi : 22 cm
		Saluran drainase di sekitar gedung
		teknik industri
		Lebar : 29 cm
		Tinggi : 36 cm
		Saluran drainase di sekitar gedung
		pusgiwa teknik
		1. Lebar : 22 cm
		Tinggi : 40 cm
		2. Lebar : 24 cm
		Tinggi : 28 cm
		Saluran drainase di sekitar kantin
		teknik
		1. Lebar : 23 cm
		Tinggi : 35 cm
		2 Lebar : 23 cm
		Tinggi : 39 cm
		35 Universitas Indonesia

• Saluran drainase di sekitar gedung

komputer teknik

Lebar: 30 cm Tinggi: 50 cm

Jari-jari : 10 cm

2 Kombinasi Bentuk SetengahLingkaran dengan Segi Empat

Lebar : 27 cm

Tinggi : 26 cm

Jari-jari : 8 cm

Lebar: 30 cm

Tinggi: 50 cm

Jari-jari : 10 cm

 Saluran drainase di sekitar gedung teknik sipil

Lebar: 26 cm

Tinggi: 25 cm

Jari-jari : 8 cm

• Saluran drainase di sekitar gedung

teknik arsitektur

Lebar: 30 cm Tinggi: 23 cm

Jari-jari : 7 cm

- Saluran drainase di sekitar gedung
 - kuliah
 - 1. Lebar : 28 cm
 - Tinggi : 24 cm
 - Jari-jari : 8 cm
 - .2. Lebar : 28 cm
 - Tinggi : 28 cm
 - Jari-jari : 15 cm
- Saluran drainase di sekitar gedung teknik mesin
 - 1. Lebar : 30 cm
 - Tinggi : 38 cm
 - Jari-jari : 8 cm
 - .2. Lebar : 27 cm
 - Tinggi : 23 cm
 - Jari-jari : 7 cm
- Saluran drainase di sekitar gedung
 - teknik metalurgi
 - Lebar: 28 cm
 - Tinggi: 30 cm
 - Jari-jari : 13 cm
- Saluran drainase di sekitar gedung
 - teknik gas dan petokimia
 - Lebar: 29 cm
 - Tinggi: 20 cm
 - Jari-jari : 7 cm
- Saluran drainase di sekitar kantin
 - teknik
 - Lebar: 18 cm
 - Tinggi: 17 cm
 - Jari-jari : 6 cm

4.3 IKLIM DAN CURAH HUJAN

Wilayah Depok termasuk dalam daerah beriklim tropis dengan perbedaan curah hujan yang cukup kecil dan dipengaruhi oleh iklim musim, secara umum musim kemarau antara bulan April-September dan musim hujan antara Oktober-Maret.

Temperatur : 24,3-33 derajat Celcius

Kelembapan rata-rata : 82 %

Penguapan rata-rata: 3,9 mm/th

Kecepatan angin rata-rata : 3,3 knot

Penyinaran matahari rata-rata : 49,8 %

> Jumlah curah hujan : 2684 mm/th

> Jumlah hari hujan : 222 hari/tahun

Iklim Depok yang tropis mendukung untuk pemanfaatan lahan pertanian ditambah lagi dengan kadar curah hujan yang continue di sepanjang tahun. Permasalahan mendasar walaupun disatu sisi di dukung oleh iklim tropis yang baik yaitu alokasi tata guna lahan yang harus mempertimbangkan sektor lain terutama lahan hijau dan permukiman.

Kondisi curah hujan diseluruh wilayah didaerah Depok relatif sama, dengan rata-rata curah hujan sebesar 327 mm/th. Kondisi curah hujan seperti diatas, mendukung kegiatan dibidang pertanian terutama pertanian lahan basah diareal irigasi teknis. Sedangkan untuk daerah tinggi dan tidak ada saluran irigasi teknis akan lebih sesuai untuk tanaman palawija kombinasi dengan padi/lahan basah pada musim hujan sebagai pertanian tadah hujan. Selain penting sebagai sumber irigasi, curah hujan juga penting untuk pemberian gambaran penentuan lahan, terutama lokasi, pola cocok tanam, dan jenis tanaman yang sesuai.

4.3.1 Intensitas Hujan

Intensitas hujan adalah derasnya hujan yang jatuh pada luas daerah tadah hujan tertentu. Ukuran deras hujan yaitu akumulasi tinggi hujan pada jangka waktu (menit) tertentu dinyatakan dalam satuan mm per menit.

Data curah hujan di Indonesia dikumpulkan oleh Lembaga Meteorologi dan Geofisika Dep. Perhubungan. Jika dikaitkan dengan perencanaan drainase, maka penggunaan data curah hujan adalah untuk:

- a. Perhitungan dimensi saluran drainase
- b. Perhitungan dimensi bangunan-bangunan drainase

Hujan merupakan salah satu bentuk presipitasi yang sangat penting di Indonesia, karena selain di Irian Barat, di Indonesia bentuk presipitasi lain seperti salju tidak ada. Hujan berupa tetes-tetes air yang mempunyai diameter lebih besar dari 0,5 mm (0,02 inci). Curah hujan umumnya menunjukan banyaknya hujan yang jatuh dalam suatu satuan waktu tertentu. Hujan menurut intensitasnya dapat dibagi dalam lima jenis, seperti terlihat dalam tabel :

Tabel 4.2 Keadaan Curah Hujan dan Intensitas Curah Hujan

Keadaan Curah Hujan	Intensitas Cu	rah Hujan (mm)
	1 jam	24 Jam
Hujan sangat ringan	< 1	< 5
Hujan ringan	1 s/d 5	5 s/d 20
Hujan normal	5 s/d 20	20 s/d 50
Hujan lebat	10 s/d 20	50 s/d 100
Hujan sangat lebat	> 20	> 100

Sumber: "Hidrologi Untuk Pengairan" Takeda K., Sosrodarsono S. 1985

Intensitas hujan merupakan salah satu faktor yang mempengaruhi debit banjir pada suatu wilayah. Semakin tinggi intensitas hujan suatu wilayah, maka akan semakin besar pula debit banjir yang akan terjadi pada daerah tersebut.

Untuk menentukan tinggi intensitas hujan rencana suatu daerah, kita harus terlebih dahulu menentukan lengkung IDF (*Intensity Duration Frequency*). Lengkung IDF merupakan penyajian secara grafis hubungan antara intensitas hujan (tinggi hujan per satuan waktu), durasi hujan (lama terjadinya satu peristiwa hujan) dari periode ulang rencana yang sesuai dengan prasarana dan wilayah studi yang direncanakan. Lengkung IDF berupa suatu seri lengkung-lengkung IDF, dimana setiap lengkung mewakili satu periode ulang (Tr), dengan durasi hujan (Td) sebagai absis dan intensitas hujan (I_{Tr}) sebagai ordinat.

Durasi hujan rencana ditetapkan sebagai lama hujan (Td) yang sama dengan waktu konsentrasi (Tc), karena aliran maksimum terjadi apabila seluruh bagian dari daerah aliran berperan pada pengaliran tersebut.

Sedangkan waktu konsentrasi (Tc) adalah waktu yang diperlukan air hujan untuk mengalir dari suatu titik yang terjauh dari suatu daerah aliran sampai ke titik pengamatan. Bila hujan berlangsung lebih lama daripada waktu konsentrasi alirannya, maka intensitasnya akan lebih kecil dan laju pengaliran berkurang daripada jika lama hujan sama dengan waktu konsentrasi.

Waktu konsentrasi dipengaruhi oleh beberapa faktor, antara lain :

- Jarak terjauh dari daerah tangkapan air sampai ke titik pengamatan (L)
- Kemiringan Lahan (S)
- Jenis Tanah
- Besarnya Curah Hujan

Inlet time (to) dapat dihitung dengan menggunakan rumus-rumus empiris yang diturunkan untuk menghitung waktu konsentrasi, yang umumnya hanya memperhitungkan pengaruh dari kemiringan lahan (S) dan jarak terjauh dari daerah tangkapan air sampai ke titik pengamatan (L). Untuk keadaan dipulau Jawa, menurut SCS-USBR (Haspers) dapat digunakan hubungan sebagai berikut:

$$S = \Delta H / L$$

Dimana:

L = Jarak titik terjauh dengan titik pengamatan(km)

 ΔH = beda tinggi titik terjauh dengan titik pengamatan.....(km)

Sedangkan tc dapat dihitung dengan menggunakan rumus SCS. Dengan menghitung panjang saluran (PS) dan menghitung kecepatan aliran (V), maka td dapat dihitung dengan persamaan :

$$tc = PS / V$$

Kecepatan aliran dapat dihitung dengan rumus manning:

$$V = 1/n \cdot R^{2/3} \cdot S^{1/2}$$

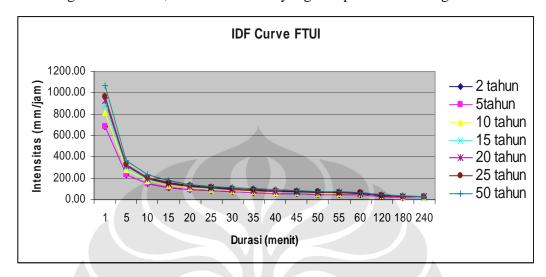
BAB V

ANALISA PERMASALAHAN

Analisa dilakukan berdasarkan data-data yang diperoleh. Data tersebut berupa data hasil pengamatan dilapangan dan data lain baik termasuk gambar guna memberikan gambaran kondisi wilayah. Analisa dimensi saluran menggunakan metode saluran yang ekonomis, dengan keluaran berupa;

- a. Lebar saluran (b)
- b. Tinggi air (h)
- c. Kecepatan saluran (v)

Merujuk dimensi saluran yang ada dapat ditentukan ketinggian elevasi minimum bangunan.


5.1. ANALISA HIDROLOGI

5.1.1 Data Curah Hujan

Data curah hujan harian yang didapat , diolah dengan menggunakan metode distribusi Gumbel untuk mendapatkan curah hujan harian ekstrem yang terjadi di Fakultas Teknik Universitas Indonesia. Curah hujan harian ekstrem yang terjadi bervariasi berdasarkan periode ulangnya, yaitu :

- Periode ulang 2 tahunan : 101,25 mm
- Periode ulang 5 tahunan : 128,41 mm
- Periode ulang 10 tahunan: 154,38 mm
- Periode ulang 15 tahunan: 166,63 mm
- Periode ulang 20 tahunan: 174,68 mm
- Periode ulang 25 tahunan: 181,13 mm
- Periode ulang 50 tahunan: 200,97 mm

Selanjutnya untuk mendapatkan kurva IDF (IDF curve) dengan tujuan mendapatkan intensitas hujan, data-data curah hujan harian ekstrem tersebut diolah dengan menggunakan metode Mononobe. Setelah melalui pengolahan data dengan Mononobe, maka kurva IDF yang didapat adalah sebagai berikut :

Gambar 5.1. Kurva IDF FTUI

5.2. AREA DRAINASE

Area drainase Fakultas Teknik Universitas Indonesia dibagi menurut sub das yang ada, Pembagian area drainase berdasarkan sub das adalah sebagai berikut:

Tabel 5.1 Luas Areal Drainase

_								
Daerah	Sa	luran			Luas (m ²)			
	Type	No	Kode	Rumput	Conblok	Aspal	Atap	Total
I	Primer	1	P1	18243	8966	4256	143	31608
II	Tersier	1	T1	169	246	0	102	517
		2	T2	349	40	0	113	502
		3	Т3	334	0	0	66	400
		4	T4	234	0	0	60	294
		5	T5	88	165	0	486	1111
		6	T6	293	0	0	538	831
		7	T7	351	22	0	480	831
		8	T8	196	0	0	117	313
		9	Т9	79	0	178	111	368
		10	T10	295	48	0	551	894

Daerah	Salu	ran			Luas (m²)			
	Туре	No	Kode	Rumput	Conblok	Aspal	Atap	Total
		11	T11	75	0	170	108	353
		12	T12	24	0	471	495	1194
		13	T13	256	0	0	189	445
		14	T14	183	7	0	189	379
		15	T15	482	0	469	189	1140
		17	T17	274	75	0	117	466
		18	T18	127	390	110	697	1324
		19	T19	368	55	194	683	1300
		20	T20	231	0	0	104	335
	Sekunder	1	S1	762	0	0	189	951
		2	S2	545	0	339	228	1112
	Primer	1	P1	7686	318	1565	474	10043
	- 4							
III	Tersier	1	T1	182	50	0	111	343
		2	T2	405	0	0	485	890
		3	Т3	201	0	0	117	318
		4	T4	912	0	0	485	1397
		5	T5	814	0	0	102	916
		6	T6	534	0	0	102	636
		7	T 7	1053	0	0	485	1538
		8	T8	0	0	0	117	117
		9	T9	452	0	0	82	534
		10	T10	234	0	0	82	316
		11	T11	210	58	0	198	466
		12	T12	890	229	0	198	1317
		13	T13	468	0	0	198	666
		14	T14	73	80	0	198	351
		15	T15	234	0	0	72	306
		16	T16	313	0	0	72	385
		17	T17	800	0	0	485	1285
		18	T18	1413	100	0	485	1998
		19	T19	700	24	0	86	810
		20	T20	105	108	0	86	299
		21	T21	0	534	0	300	834
		22	T22	1201	982	0	300	2483
		23	T23	225	0	360	117	702
		24	T24	700	24	0	108	832
		25	T25	243	100	0	108	351
		26	T26	1413	100	0	485	1998
		27	T27	800	0	0	485	1285
		28	T28	282	0	256	117	655
		29	T29	1701	0	62	87	1850
		30	T30	1497	0	0	724	2221
		31	T31	1375	80	0	1076	2531

Daerah	Saluran					Luas		
	Type	No	Kode	Rumput	Conblok	Aspal	Atap	Total
		32	T32	1198	547	0	810	2555
		33	T33	150	0	0	254	404
		34	T34	210	63	0	117	390
		35	T35	471	0	0	96	567
		36	T36	471	0	0	96	567
	Sekunder	1	S1	2636	100	323	674	3733
		2	S2	883	231	0	74	1188
		4	S4	1553	0	256	698	2507
		5	S5	0	1274	314	1218	2806
	Primer	1	P1	2635	1274	314	1942	6165

5.3 KOEFISIEN RUNOFF

Dalam areal drainase Fakultas Teknik ini digunakan koefisien *runoff* sebagai berikut :

Untuk bangunan-bangunan (atap)	0,850
Untuk perkerasan jalan dan parkir (conblok)	0,775
Untuk jalan raya (aspal)	0,825
Untuk taman (rumput)	0,20

Untuk area yang terdiri dari berbagai tipe permukaan dengan karakteristik penyerapan yang berbeda maka koefisien terbobotnya:

$$C = \frac{\sum_{i} A_{i}C_{i}}{\sum_{i} A_{i}}$$
 dapat dilihat pada tabel 5.2 (hubungan antara fungsi area drainase

dengan koefisien runoff-nya

Contoh perhitungan untuk saluran tipe P1 (pada daerah sub das I):

Area bangunan (atap) 143 m²
Area jalan dan parkir (conblok) 8966 m²
Area jalan raya (aspal) 4256 m²
Area rumput 18243 m²

Koefisien C terbobot:

$$\frac{(143\times0,850) + (8966\times0,775) + (4256\times0,825) + (18243\times0,2)}{31608} = 0,450$$

5.4 WAKTU KONSENTRASI

Waktu konsentrasi (tc) adalah waktu yang diperlukan oleh air untuk mencapai bak pengumpul dari tempat yang paling jauh dalam areal aliran air.

Waktu konsentrasi dibagi dua komponen yaitu :

$$tc = to + td$$

di mana:

to = waktu masuk atau inlet time

tc = waktu aliran atau conduit time

Waktu konsentrasi ini dapat dilihat dalam tabel 5.3 untuk setiap segmen areal drainase dan saluran yang ada.

Tabel 5.2 Koefisien Aliran

Daerah	Saluran			K	oefisien Alir	an (C)		C terbobot
	Type	No	Kode	Rumput	Conblok	Aspal	Atap	
I	Primer	1	P1	0.200	0.775	0.825	0.850	0.450
II	Tersier	1	T1	0.200	0.775	0.825	0.850	0.602
		2	T2	0.200	0.775	0.825	0.850	0.392
		3	T3	0.200	0.775	0.825	0.850	0.307
		4	T4	0.200	0.775	0.825	0.850	0.333
		5	T5	0.200	0.775	0.825	0.850	0.503
		6	T6	0.200	0.775	0.825	0.850	0.621
		7	T7	0.200	0.775	0.825	0.850	0.596
		8	Т8	0.200	0.775	0.825	0.850	0.443
		9	T9	0.200	0.775	0.825	0.850	0.698
		10	T10	0.200	0.775	0.825	0.850	0.631
		11	T11	0.200	0.775	0.825	0.850	0.700
		12	T12	0.200	0.775	0.825	0.850	0.682
		13	T13	0.200	0.775	0.825	0.850	0.476
		14	T14	0.200	0.775	0.825	0.850	0.535
		15	T15	0.200	0.775	0.825	0.850	0.565
		17	T17	0.200	0.775	0.825	0.850	0.456
		18	T18	0.200	0.775	0.825	0.850	0.763
		19	T19	0.200	0.775	0.825	0.850	0.659
		20	T20	0.200	0.775	0.825	0.850	0.402
	Sekunder	1	S1	0.200	0.775	0.825	0.850	0.329

Daerah	S	aluran		K	oefisien Alir	an (C)		C terbobot
	Type	No	Kode	Rumput	Conblok	Aspal	Atap	
		2	S2	0.200	0.775	0.825	0.850	0.524
	Primer	1	P1	0.200	0.775	0.825	0.850	0.346
III	Tersier	1	T1	0.200	0.775	0.825	0.850	0.494
		2	T2	0.200	0.775	0.825	0.850	0.554
		3	Т3	0.200	0.775	0.825	0.850	0.439
		4	T4	0.200	0.775	0.825	0.850	0.426
		5	T5	0.200	0.775	0.825	0.850	0.272
		6	T6	0.200	0.775	0.825	0.850	0.304
		7	T7	0.200	0.775	0.825	0.850	0.405
		9	T9	0.200	0.775	0.825	0.850	0.300
		10	T10	0.200	0.775	0.825	0.850	0.369
		11	T11	0.200	0.775	0.825	0.850	0.548
		12	T12	0.200	0.775	0.825	0.850	0.398
		13	T13	0.200	0.775	0.825	0.850	0.393
		14	T14	0.200	0.775	0.825	0.850	0.698
		15	T15	0.200	0.775	0.825	0.850	0.353
		16	T16	0.200	0.775	0.825	0.850	0.322
		17	T17	0.200	0.775	0.825	0.850	0.445
		18	T18	0.200	0.775	0.825	0.850	0.387
		19	T19	0.200	0.775	0.825	0.850	0.286
		20	T20	0.200	0.775	0.825	0.850	0.595
		21	T21	0.200	0.775	0.825	0.850	0.802
		22	T22	0.200	0.775	0.825	0.850	0.506
		23	T23	0.200	0.775	0.825	0.850	0.629
		24	T24	0.200	0.775	0.825	0.850	0.301
		25	T25	0.200	0.775	0.825	0.850	0.400
		26	T26	0.200	0.775	0.825	0.850	0.387
	٦	27	T27	0.200	0.775	0.825	0.850	0.445
		28	T28	0.200	0.775	0.825	0.850	0.560
		29	T29	0.200	0.775	0.825	0.850	0.252
		30	T30	0.200	0.775	0.825	0.850	0.412
		31	T31	0.200	0.775	0.825	0.850	0.495
		32	T32	0.200	0.775	0.825	0.850	0.529
		33	T33	0.200	0.775	0.825	0.850	0.609
		34	T34	0.200	0.775	0.825	0.850	0.488
		35	T35	0.200	0.775	0.825	0.850	0.310
		36	T36	0.200	0.775	0.825	0.850	0.310
	Sekunder	1	S1	0.200	0.775	0.825	0.850	0.387
		2	S2	0.200	0.775	0.825	0.850	0.352
		4	S4	0.200	0.775	0.825	0.850	0.445
		5	S5	0.200	0.775	0.825	0.850	0.813
	Primer	1	P1	0.200	0.775	0.825	0.850	0.555

Tabel 5.3 Waktu Konsentrasi

	Salu	ran	I	Wa	ktu Konsent	trasi
Daerah	Туре	No	Kode	To (menit)	Td (menit)	Tc (menit)
I	Primer	1	P1	13.42	7	20.42
				101		
II	Tersier	1	T1	1.86	1.5	3.36
		2	T2	7.96	1	8.96
		3	T3	2.86	1.4	4.26
		4	T4	2.86	1.4	4.26
		5	T5	7.96	1.6	9.56
		6	T6	2.54	1.3	3.84
		7	T7	1.09	1.6	2.69
		8	T8	2.54	1.3	3.84
		9	T9	2.20	1.3	3.50
		10	T10	2.86	1.6	4.46
		11	T11	2.20	1.3	3.50
_		12	T12	2.20	1.6	3.80
		13	T13	3.76	1.3	5.06
		14	T14	1.09	1.3	2.39
		15	T15	3.01	1.3	4.31
		17	T17	2.54	1.3	3.84
		18	T18	1.86	1.7	3.56
,		19	T19	1.49	2.5	3.99
		20	T20	1.09	1.3	2.39
	Sekunder	1	S 1	3.76	1.3	5.06
		2	S2	2.20	0.7	2.90
	Primer	1	P1	21.01	1.3	22.31
					<u> </u>	
III	Tersier	1	T1	2.54	1.3	3.84
		2	T2	1.09	1.6	2.69
		3	Т3	2.54	1.3	3.84
		4	T4	1.09	1.6	2.69
		5	T5	2.54	1.6	4.14
		6	T6	2.54	1.6	4.14
		7	T7	1.09	1.6	2.69
		8	Т8	2.54	1.3	3.84
		9	Т9	2.54	1.4	3.94
		10	T10	2.54	1.4	3.94
		11	T11	1.66	1.3	2.96
		12	T12	2.46	1.3	3.76
		13	T13	1.66	1.3	2.96
		14	T14	1.66	1.3	2.96

	Salu	ran		Waktu Konsentrasi			
Daerah	Туре	No	Kode	To (menit)	Td (menit)	Tc (menit)	
		15	T15	2.54	1.3	3.84	
		16	T16	2.54	1.3	3.84	
		17	T17	1.97	1.6	3.57	
		18	T18	1.97	1.6	3.57	
		19	T19	2.17	1.2	3.37	
		20	T20	2.17	1.2	3.37	
		21	T21	1.97	1.4	3.37	
		22	T22	1.97	1.4	3.37	
		23	T23	1.29	1.3	2.59	
		24	T24	2.17	1.2	3.37	
		25	T25	2.17	1.2	3.37	
		26	T26	1.97	1.6	3.57	
		27	T27	1.97	1.6	3.57	
		28	T28	1.29	1.3	2.59	
		29	T29	2.17	1.2	3.37	
		30	T30	2.07	1.1	3.17	
		31	T31	1.97	1.6	3.57	
		32	T32	1.97	1.6	3.57	
		33	T33	1.29	1.3	2.59	
		34	T34	1.29	1.3	2.59	
		35	T35	2.17	1.3	3.47	
		36	T36	2.17	1.2	3.37	
	Sekunder	1	S 1	1.49	1.3	2.79	
		2	S2	3.19	1.3	4.49	
		3	S 3	2.29	1.2	3.49	
		4	S4	1.58	1.3	2.88	
		5	S5	4.03	1	5.03	
	Primer	1	P1	1.97	0.5	2.47	

Contoh perhitungan waktu konsentrasi untuk saluran tipe P1 (pada daerah sub das I) :

Waktu masuk
$$to = 0.0195 \times \left(\frac{Lo}{\sqrt{S}}\right)^{0.77}$$

Lo = Jarak titik terjauh dari bak pengumpul = 104,5 m = 342,76 ft

S = kemiringan lahan = 5 %

Sehingga to =
$$0.0195 \times \left(\frac{342,76}{\sqrt{0.05}}\right)^{0.77} = 13,42$$
 menit

Waktu aliran td = 7 menit

Jadi waktu konsentrasi Tc = 20,42 menit

5.5 INTENSITAS HUJAN

Setelah didapat waktu konsentrasi maka didapat pula durasinya yang sama dengan waktu konsentrasi (Td = Tc) sehingga intensitas hujan untuk durasi masing-masing segmen bisa diketahui baik menggunakan lengkung IDF yang tersedia maupun menggunakan rumus Mononobe. Hasil perhitungan intensitas hujan dapat dilihat dalam lampiran 14.

Contoh perhitungan intensitas hujan untuk saluran tipe P1 (pada daerah sub das I), dengan menggunakan rumus Mononobe (dapat dilihat pada no 2-10):

Xtr = 101,2535 mm (untuk waktu ulang 2 tahun)

Td = 0.340 jam

Xtr = 128,4138 mm (untuk waktu ulang 5 tahun)

Td = 0.340 jam

Xtr = 181,1304 mm (untuk waktu ulang 25 tahun)

Td = 0.340 jam

$$I = \frac{101,2535}{24} \left(\frac{24}{0,340}\right)^{\frac{2}{3}} = 72,003 \text{ mm/jam (waktu ulang 2 tahun)}$$

$$I = \frac{128,4138}{24} \left(\frac{24}{0,340}\right)^{\frac{2}{3}} = 91,317 \text{ mm/jam (waktu ulang 5 tahun)}$$

$$I = \frac{181,1304}{24} \left(\frac{24}{0,340}\right)^{\frac{2}{3}} = 128,805 \text{ mm/jam (waktu ulang 25 tahun)}$$

5.6 DEBIT RENCANA

Dari hasil yang telah didapat tersebut di atas maka debit rencana untuk tiap segmen bisa dicari dengan menggunakan rumus rasional. Hasil perhitungan debit rencana ini dapat dilihat dalam lampiran 15, 16 dan 17.

Contoh perhitungan debit rencana untuk saluran tipe P1 (pada daerah sub das I)

C = koefisien runoff = 0.450

A = area drainase = 31608 m²

I = intensitas hujan = $0.072 \text{ m}^3/\text{jam}$ (waktu ulang 2 tahun)

I = intensitas hujan = $0.091 \text{ m}^3/\text{jam}$ (waktu ulang 5 tahun)

I = intensitas hujan = $0.129 \text{ m}^3/\text{jam}$ (waktu ulang 25 tahun)

$$Q = C I A$$

$$= 0,450 \times 0,072 \times 31608 = 0,285 \text{ m}^3/\text{s}$$
 (untuk waktu ulang 2 tahun)

$$Q = C I A$$

$$= 0.450 \times 0.091 \times 31608 = 0.361 \,\mathrm{m}^3 /\mathrm{s}$$
 (untuk waktu ulang 5 tahun)

$$Q = C I A$$

$$= 0,450 \times 0,129 \times 31608 = 0,509 \text{ m}^3/\text{s}$$
 (untuk waktu ulang 25 tahun)

5.7 PERENCANAAN SALURAN

5.7.1. Kedalaman Hidraulis Saluran

Berdasarkan debit rencana (Qr) yang didapat maka dapat dihitung kedalaman hidraulis saluran dapat dilihat dalam lampiran 18.

Contoh perhitungan debit rencana untuk saluran tipe P1 (pada daerah sub das I):

S = kemiringan saluran = 0,005714

n = koefisien kekasaran manning = 0,015

 $Q = 0.285 \text{ m}^3/\text{s}$ (untuk waktu ulang 2 tahun)

 $Q = 0.361 \text{ m}^3 / \text{s}$ (untuk waktu ulang 5 tahun)

 $Q = 0.509 \text{ m}^3 / \text{s}$ (untuk waktu ulang 25 tahun)

$$y_n = 0.917 \times \left(\frac{Qn}{\sqrt{s}}\right)^{\frac{3}{8}}$$

$$y_n = 0.917 \times \left(\frac{0.285 \times 0.015}{\sqrt{0.005714}}\right)^{\frac{3}{8}} = 0.312 \text{ m (untuk waktu ulang 2 tahun)}$$

$$y_n = 0.917 \times \left(\frac{0.361 \times 0.015}{\sqrt{0.005714}}\right)^{\frac{3}{8}} = 0.341 \text{ m (untuk waktu ulang 5 tahun)}$$

$$y_n = 0.917 \times \left(\frac{0.509 \times 0.015}{\sqrt{0.005714}}\right)^{\frac{3}{8}} = 0.388 \text{ m (untuk waktu ulang 25 tahun)}$$

5.7.2. Luas Penampang dan Jari-jari Hidrolis

Berdasarkan dimensi saluran yang ada maka dapat dihitung luas dan jarijari hidrolis penampang saluran (lihat tabel 5.4)

Contoh perhitungan luas penampang dan jari-jari hidrolis untuk saluran tipe P1 (pada daerah sub das I) :

Bentuk Saluran : Persegi empat

Dimensi saluran : b = 0.5 m

$$h = 0.6 \text{ m}$$

$$A = b x h = 0.5 x 0.6 = 0.30 m^2$$

$$R = \frac{A}{2(b+h)} = \frac{0,30}{2(0,5+0,6)} = 0,136 \text{ m}$$

Tabel 5.4 Dimensi Saluran

	Salu	A	R		
Daerah	Туре	No	Kode	(m ²)	(m)
I	Primer	1	P1	0.300	0.136
II	Tersier	1	T1	0.060	0.060
		2	T2	0.060	0.060
		3	T3	0.100	0.067
		4	T4	0.055	0.059
		5	T5	0.055	0.059
		6	T6	0.055	0.059
		7	T7	0.055	0.059
		8	T8	0.104	0.080
		9	T9	0.104	0.080
		10	T10	0.104	0.080
		11	T11	0.104	0.080
		12	T12	0.091	0.063
		13	T13	0.076	0.058
		14	T14	0.076	0.058
		15	T15	0.076	0.058
		17	T17	0.081	0.069
		18	T18	0.081	0.069
		19	T19	0.081	0.069
		20	T20	0.081	0.053
	Sekunder	1	S1	0.071	0.075
		2	S2	0.071	0.075
	Primer	1	P1	0.300	0.136

Dl-	Salı	A	R		
Daerah	Туре	No	Kode	(m^2)	(m)
III .	Tersier	1	T1	0.062	0.052
		2	T2	0.062	0.052
		3	Т3	0.062	0.052
		4	T4	0.062	0.052
		5	T5	0.100	0.067
		6	Т6	0.100	0.067
		7	T7	0.080	0.060
		8	T8	0.080	0.060
		9	Т9	0.046	0.045
		10	T10	0.046	0.045
		11	T11	0.066	0.054
		12	T12	0.066	0.054
		13	T13	0.066	0.054
		14	T14	0.066	0.054
		15	T15	0.046	0.045
		16	T16	0.046	0.045
		17	T17	0.092	0.064
		18	T18	0.092	0.064
		19	T19	0.185	0.089
		20	T20	0.185	0.089
		21	T21	0.185	0.089
		22	T22	0.185	0.089
		23	T23	0.185	0.089
		24	T24	0.046	0.045
		25	T25	0.046	0.045
		26	T26	0.104	0.068
		27	T27	0.104	0.068
		28	T28	0.104	0.068
		29	T29	0.046	0.045
		30	T30	0.185	0.089
		31	T31	0.081	0.069
		32	T32	0.081	0.069
		33	T33	0.090	0.072
		34	T34	0.088	0.071
		35	T35	0.067	0.065
		36	T36	0.067	0.065
	Sekunder	1	S 1	0.360	0.150
		2	S2	0.360	0.150
		4	S4	1.000	0.785
		5	S5	1.000	0.785
	Primer	1	P1	1.000	0.785

5.7.3 Debit Kapasitas dan Kecepatan Aliran

Kemudian dapat dihitung debit dan kecepatan aliran berdasarkan dimensi dan perhitungan diatas (lihat tabel 5.5)

Contoh perhitungan debit limpasan dan kecepatan aliran untuk saluran tipe P1 (pada daerah sub das I) :

Bentuk Saluran: Persegi empat

Dimensi saluran : b = 0.5 m

$$h = 0.6 \text{ m}$$

$$A = b \times h = 0.5 \times 0.6 = 0.30 \text{ m}^2$$

$$R = \frac{A}{2(b+h)} = \frac{0,30}{2(0,5+0,6)} = 0,136 \text{ m}$$

$$s = \frac{F}{L} = \frac{2}{350} = 0,006$$

n = koefisien kekasaran manning = 0,015

$$V = \frac{1}{n} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}} = \frac{1}{0,015} \times 0,136^{\frac{2}{3}} \times 0,006^{\frac{1}{2}}$$

$$V = 1,335$$

$$Q = A \times V$$

$$Q = 0,30 \times 1,335 = 0,4005$$

Tabel 5.5 Debit Kapasitas dan Kecepatan Aliran

	9	Salurar		A	R	V terjadi	Qsaluran
Daerah	Type	No	Kode	(m ²)	(m)	(m/det)	(m³/det)
I	Primer	1	P1	0.300	0.136	1.335	0.401
II	Tersier	1	T1	0.060	0.060	1.445	0.087
		2	T2	0.060	0.060	1.719	0.103
		3	T3	0.100	0.067	1.226	0.122
		4	T4	0.055	0.059	1.123	0.062
		5	T5	0.055	0.059	0.976	0.054
		6	T6	0.055	0.059	1.421	0.078
		7	T7	0.055	0.059	0.976	0.054
		8	T8	0.104	0.080	1.755	0.183
		9	Т9	0.104	0.080	1.755	0.183
		10	T10	0.104	0.080	1.205	0.126
		11	T11	0.104	0.080	1.755	0.183

Daerah	Sa	aluran	l	A	R	V terjadi	Q _{saluran}
Daeran	Туре	No	Kode	(m ²)	(m)	(m/det)	(m³/det)
		12	T12	0.091	0.063	1.030	0.094
		13	T13	0.076	0.058	1.435	0.109
		14	T14	0.076	0.058	1.189	0.090
		15	T15	0.076	0.058	1.435	0.109
		17	T17	0.081	0.069	1.592	0.128
		18	T18	0.081	0.069	1.214	0.098
		19	T19	0.081	0.069	0.858	0.069
		20	T20	0.081	0.053	1.329	0.107
	Sekunder	1	S1	0.071	0.075	1.711	0.121
		2	S2	0.071	0.075	3.247	0.229
	Primer	1	P1	0.300	0.136	1.772	0.532
	1111101			0.000	0.120	11,7,2	0.002
III	Tersier	1	T1	0.062	0.052	1.314	0.081
	10101	2	T2	0.062	0.052	0.902	0.056
		3	T3	0.062	0.052	1.314	0.081
		4	T4	0.062	0.052	0.902	0.056
		5	T5	0.100	0.067	1.055	0.105
		6	T6	0.100	0.067	1.055	0.105
		7	T7	0.080	0.060	0.989	0.079
		8	T8	0.080	0.060	1.440	0.115
		9	T9	0.046	0.045	0.944	0.043
		10	T10	0.046	0.045	0.944	0.043
		11	T11	0.066	0.054	1.231	0.081
		12	T12	0.066	0.054	1.231	0.081
		13	T13	0.066	0.054	1.231	0.081
		14	T14	0.066	0.054	1.231	0.081
		15	T15	0.046	0.045	1.009	0.046
		16	T16	0.046	0.045	1.009	0.046
		17	T17	0.092	0.064	1.047	0.096
		18	T18	0.092	0.064	1.047	0.096
		19	T19	0.185	0.089	2.254	0.418
		20	T20	0.185	0.089	2.254	0.418
		21	T21	0.185	0.089	1.491	0.276
		22	T22	0.185	0.089	1.391	0.258
		23	T23	0.185	0.089	1.886	0.350
		24	T24	0.046	0.045	0.003	0.011
		25	T25	0.046	0.045	1.427	0.065
		26	T26	0.104	0.068	1.091	0.114
		27	T27	0.104	0.068	1.091	0.114
		28	T28	0.104	0.068	1.573	0.164
		29	T29	0.046	0.045	1.427	0.065
		30	T30	0.185	0.089	2.322	0.430

Daerah	Saluran			A	R	V terjadi	Qsaluran
	Type	No	Kode	(\mathbf{m}^2)	(m)	(m/det)	(m³/det)
		31	T31	0.081	0.069	1.104	0.089
		32	T32	0.081	0.069	1.104	0.089
		33	T33	0.090	0.072	1.637	0.147
		34	T34	0.088	0.071	1.616	0.142
		35	T35	0.067	0.065	1.283	0.086
		36	T36	0.067	0.065	1.815	0.122
	Sekunder	1	S1	0.360	0.150	2.610	0.940
		2	S2	0.360	0.150	2.806	1.010
		4	S4	1.000	0.785	0.250	0.250
		5	S5	1.000	0.785	0.250	0.250
	Primer	1	P1	1.000	0.785	0.250	0.250

5.8 ANALISA PERMASALAHAN

Permasalahan yang timbul akibat tidak mampunya suatu daerah untuk menangani debit limpasan yang terjadi di daerahnya adalah masalah genangan. Ketidakmampuan ini menyebabkan timbulnya genangan pada wilayah tersebut apabila turun hujan.

Pada kasus FTUI, genangan-genangan air dapat berpotensi terjadi pada wilayah Sub DAS II terutama sekitar gedung teknik sipil, selain dikarenakan letak dari gedung teknik sipil tersebut berada pada elevasi terendah daripada gedung-gedung yang lain juga tidak dilakukan pemeliharaan sistem tata air dengan baik dan pembangunan yang berwawasan lingkungan.

Untuk alternatif-alternatif penyelesaian atas permasalahan-permasalahan mengenai genangan yang diakibatkan oleh debit limpasan yang terjadi di FTUI akan dibahas pada bab selanjutnya. Alternatif yang diberikan diharapkan dapat mengurangi debit limpasan yang terjadi di FTUI, sehingga masalah genangan air yang disebabkan tidak tertampungnya debit limpasan tidak akan terjadi lagi di masa yang akan datang.