

Lampiran A

Mekanika Kuantum Relativistik

A.1 Aljabar Dirac

Dalam mekanika kuantum relativistik, ruang dan waktu dinyatakan dalam vektor empat sebagai berikut

$$x^{\mu} \equiv (x^0, x^1, x^2, x^3) \equiv (t, \mathbf{x}) \equiv (t, x, y, z),$$
 (A.1)

disebut vektor empat kontravarian, dan vektor empat kovariannya berbentuk

$$x_{\mu} \equiv (x_0, x_1, x_2, x_3) \equiv (t, -\mathbf{x}) \equiv (t, -x, -y, -z).$$

= $g_{\mu\nu}x^{\nu}$, (A.2)

dimana $g_{\mu\nu}$ adalah matriks transformasi

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 (A.3)

Operator differensial

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\partial_0, \partial_1, \partial_2, \partial_3) = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) = \left(\frac{\partial}{\partial t}, \nabla\right)$$
 (A.4)

$$\partial^{\mu} = g^{\mu\nu}\partial_{\nu} = \left(\frac{\partial}{\partial t}, -\nabla\right) \tag{A.5}$$

Vektor-4 energi-momentum

$$p^{\mu} \equiv (p^0, p^1, p^2, p^3) \equiv (E, \mathbf{p}), \quad p^{\mu} \equiv (p^0, p^1, p^2, p^3) \equiv (E, \mathbf{p})$$
 (A.6)

di mana berlaku relasi

$$p^{\mu}p_{\mu} \equiv p^2 = p^{\mu}g_{\mu\nu}p^{\nu} = E^2 - \mathbf{p} \cdot \mathbf{p} = m^2.$$
 (A.7)

Matriks Dirac yang digunakan adalah:

$$\gamma^{\mu} \equiv (\gamma^0, \gamma^i), \quad \gamma^{0\dagger} = \gamma^0 \quad \gamma^{\mu} = \gamma^0 \gamma^{\mu\dagger} \gamma^0.$$
(A.8)

memiliki representasi_matriks

$$\gamma_0 = \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}. \tag{A.9}$$

di mana ketiga matriks Pauli, σ^i dinyatakan oleh

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
 (A.10)

yang memenuhi hubungan antikomutatif

$$\{\sigma^i, \sigma^j\} \equiv \sigma^i \sigma^j + \sigma^j \sigma^i = 2\delta_{ij} ,$$
 (A.11)

dan hubungan komutatif

$$\left[\sigma^{i}, \sigma^{j}\right] \equiv \sigma^{i} \sigma^{j} - \sigma^{j} \sigma^{i} = 2i\epsilon_{ijk} \sigma^{k}, \qquad (A.12)$$

di mana ϵ_{ijk} merupakan bentuk nonkovarian tensor antisimetrik Levi-Civita yang didefinisikan kemudian pada Pers. (A.18).

Matriks Dirac γ memenuhi hubungan antikomutatif berikut

$$\{\gamma^{\mu}, \gamma^{\nu}\} \equiv \gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} = 2g^{\mu\nu} , \qquad (A.13)$$

dan hubungan komutatif

$$[\gamma^{\mu}, \gamma^{\nu}] \equiv \gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \equiv -2i\sigma^{\mu\nu} , \qquad (A.14)$$

Pada hubungan ini

$$\sigma^{ij} = \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix} \quad \text{dan } \sigma^{0i} = i \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0 \end{pmatrix} .$$
 (A.15)

Kombinasi lainnya yang berguna adalah

$$\gamma^5 \equiv i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \gamma_5 = \frac{1}{24} i \epsilon_{\mu\nu\rho\sigma} \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad (A.16)$$

$$\gamma_5 \gamma_\sigma = -\gamma_\sigma \gamma_5 = \frac{1}{6} i \epsilon_{\mu\nu\rho\sigma} \gamma^\mu \gamma^\nu \gamma^\rho, \tag{A.17}$$

tensor antisimetrik Levi-Civita didefinisikan sebagai

$$\epsilon_{\mu\nu\rho\sigma} = \begin{cases}
+1 & \text{untuk permutasi siklik} \\
-1 & \text{untuk permutasi anti - siklik} \\
0 & \text{jika ada dua atau lebih indeks yang sama}
\end{cases}$$
 (A.18)

Persamaan Klein-Gordon:

$$(\Box + m^2)\Phi = 0, \quad \Box \equiv \partial^{\mu}\partial_{\nu}.$$
 (A.19)

Persamaan Dirac:

$$(i\partial - m)\Psi = 0$$
 dimana $d = a_{\mu}\gamma^{\mu}$. (A.20)

Di dalam ruang momentum

$$(\not p - m)u(p,s) = 0, \qquad (A.21)$$

$$(p+m)v(p,s) = 0, (A.22)$$

dimana u(p,s) dan v(p,s) adalah spinor-spinor Dirac. Hubungan kelengkapan spinor Dirac

$$\sum_{s=1,2} = u^{(s)}(p,s)\bar{u}^{(s)}(p,s) = (\not p + m)$$
 (A.23)

$$\sum_{s=1,2} = u^{(s)}(p,s)\bar{u}^{(s)}(p,s) = (\not p + m)$$
(A.23)
$$\sum_{s=1,2} = v^{(s)}(p,s)\bar{v}^{(s)}(p,s) = (\not p - m)$$
(A.24)

A.2 Natural Units

Pada fisika partikel, untuk menyederhanakan perhitungan biasanya digunakan sistem satuan yang disebut Natural Units. Dimana pada sistem ini nilai konstanta c dan \hbar diambil sama dengan satu :

$$\hbar = c = 1 \tag{A.25}$$

Hal ini memudahkan kita dalam perhitungan, sebab faktor \hbar dan c sangat sering muncul pada perhitungan. Tetapi pada hasil akhir kita harus merubah besaran yang kita dapat dalam sistem satuan yang sebenarnya.

Sekarang kita akan melihat implikasi dari pemilihan nilai \hbar dan c ini :

• c = 1

Pada sistem satuan MKS, c memiliki nilai:

$$c \simeq 3 \cdot 10^8 m/s \tag{A.26}$$

dengan memilih nilai c=1 sedangkan kecepatan memiliki dimensi :

$$[c] = [L][T]^{-1}$$
 (A.27)

kita akan mendapatkan satuan panjang akan sama dengan satuan waktu. Jadi, panjang dan waktu akan memiliki dimensi yang sama :

$$[L] = [T]$$

dengan cara yang sama, dari hubungan energi- momentum pada relativitas khusus :

$$E^2 = p^2 c^2 + m^2 c^4 (A.28)$$

kita dapat melihat bahwa pemilihan nilai c=1 akan menyebabkan energi, massa, dan momentum memiliki dimensi yang sama. Satuan momentum yang biasa kita gunakan adalah Mev/c atau Gev/c dan massa yaitu Mev/c^2 atau Gev/c^2 akan menjadi Mev atau Gev ketika c=1.

• $\hbar = 1$

nilai dari konstanta Planck adalah:

$$\hbar = 6, 6 \cdot 10^{-22} Mevs \tag{A.29}$$

dimensi dari \hbar adalah energi-waktu, sehingga:

$$[\hbar] = [M][L]^2[T]^{-1}$$
 (A.30)

dengan mengambil nilai $\hbar = 1$ maka kita akan mendapatkan hubungan antara [M], [L], dan [T]. Karena dimensi [L] dan [T] sama, maka :

$$[M] = [L]^{-1} = [T]^{-1}$$
 (A.31)

Lampiran B

Analisis Tensor

Hukum-hukum fisika haruslah tidak bergantung pada sistem koordinat yang dipergunakan untuk menyatakan dalam bentuk matematik, apabila hukum-hukum ini berlaku. Studi terhadap konsekuensi-konsekuensi dari persyaratan ini menjurus pada analisis tensor yang memainkan peranan penting dalam teori relativitas umum, mekanika, teori elektromagnetik, dan teori medan kuantum.

B.1 Transformasi Koordinat

Misalkan (x^1, x^2,x^N) dan (x'^1, x'^2,x'^N) adalah koordinat-koordinat sebuah titik dalam dua buah kerangka acuan yang berbeda. Maka, transformasi koordinat dari kerangka acuan yang satu ke yang lainnya dinyatakan dengan :

$$x^{\prime k} = x^{\prime k}(x^1, x^2, \dots x^N)$$
(B.1)

$$x^k = x^k(x'^1, x'^2, \dots x'^N)$$
(B.2)

B.2 Vektor-Vektor Kontravarian dan Kovarian

Jika N buah besaran A^1, A^2, \dots, A^N dalam sebuah sistem koordinat (x^1, x^2, \dots, x^N) berhubungan dengan N buah besaran-besaran lainnya A'^1, A'^2, \dots, A'^N pada sistem koordinat yang lain $(x'^1, x'^2, \dots, x'^N)$ melalui persamaan transformasi :

$$A'^{p} = \frac{\partial x^{p}}{\partial x'^{q}} A^{q}$$

$$p = 1, 2, \dots, N$$
(B.3)

dengan indeks berulang adalah penjumlahan indeks tersebut dari $1, 2, \dots, N$, maka besaran-besaran ini disebut komponen dari vektor kontravarian atau tensor kontravarian rank satu.

jika N buah besaran $A_1, A_2,, A_N$ dalam sebuah sistem koordinat (x^1, x^2,x^N) berhubungan dengan N buah besaran lainnya $A'_1, A'_2,, A'_N$ dalam sistem koordinat (x'^1, x'^2,x'^N) melalui persamaan transformasi :

$$A_p' = \frac{\partial x^q}{\partial x'^p} A_q \tag{B.4}$$

maka besaran-besaran ini disebut komponen-komponen dari vektor kovarian atau tensor kovarian rank dua.

B.3 Tensor-Tensor Kontravarian, Kovarian dan Tensor campuran

Jika N^2 buah besaran-besaran A^{qs} dalam sebuah sistem koordinat (x^1, x^2,x^N) berhubungan dengan N^2 buah besaran-besaran yang lainnya A'^{pr} dalam sistem koordinat (x'^1, x'^2,x'^N) melalui persamaan transformasi :

$$A'^{pr} = \frac{\partial x'^p}{\partial x^q} \frac{\partial x'^r}{\partial x^s} A^{qs} \tag{B.5}$$

maka besaran-besaran ini disebut komponen-komponen kontravarian dari sebuah tensor rank dua.

 N^2 buah besaran A_{qs} disebut komponen-komponen kovarian dari sebuah tensor rank dua jika :

$$A'_{pr} = \frac{\partial x^q}{\partial x'^p} \frac{\partial x^s}{\partial x'^r} A_{qs} \tag{B.6}$$

begitu pula N^2 buah besaran A_s^q disebut komponen-komponen dari sebuah tensor campuran rank dua jika :

$$A_r^{\prime p} = \frac{\partial x^{\prime p}}{\partial x^q} \frac{\partial x^s}{\partial x^{\prime r}} A_s^q \tag{B.7}$$

contoh yang biasa kita temui adalah del
ta kronecker $\delta_k^j.$

B.4 Tensor Simetrik dan Asimetrik

Sebuah tensor dikatakan simetrik terhadap kedua indeks kontravarian atau kovariannya jika komponen-komponennya tetap tidak berubah dalam mempertu-

karkan kedua indeks tersebut. Jadi jika $A_{qs}^{mpr}=A_{qs}^{pmr}$ maka tensornya simetrik dalam m
 dan p. Sebuah tensor disebut antisimetrik terhadap kedua indeks kontravarian atau kovariannya jika komponen-komponennya berubah tanda dalam mempertukarkan kedua indeks tersebut. Jadi jika $A_{qs}^{mpr}=-A_{qs}^{pmr}$ maka tensornya anti simetrik dalam m
 dan p.

Daftar Acuan

- [1] A. Fajarudin, A. Sulaiman, T.P. Djun, and L.T. Handoko. Magnetofluid Unification in the Yang-Mills Lagrangian. arXiv:physics.0508219v3.(2008).
- [2] B.A. Bambah, S.M. Mahajan and C. Mukku. Yang-Mills magnetofluid unification. Phys.Rev. Lett. 97, 072301 (2006).
- [3] Donald. H.Perkins. Introduction to High Energy physics. World Scientific. 1992.
- [4] Ryder, L.H. Quantum Field Theory. Cambridge University Press. (1996).
- [5] S.M. Mahajan. Temperature-Transformed "Minimal coupling": Magnetofluid unification.90,0335001 (2003)
- [6] T.Muta. Foundation of Quantum Chromodynamics. World scientific, singapore.1987
- [7] Markus. H.Thoma. The Quark-Gluon Plasma Liquid. arXiv:Physics,hep-ph/040921v2.2004
- [8] Halzen and Martin.Quarks and Leptons: An Introductory Course in Modern Particle Physics.1984
- [9] Horace, Lamb. **Hydrodynamics**. Dover Publication, Inc. 1945
- [10] Solomon Gartenhaus. Element of Plasma Physics. Holt, Rinehart and Wiston. 1964
- [11] Letessier, J and Rafel, J. Hadron and Quark Gluon Plasma. Cambridge University Press. 2002.